

 [image: manning]

 Build a Text-to-Image Generator (from Scratch)

 With transformers and diffusions

 Mark Liu

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road        

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2026 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Doug Rudder
 Technical editor: Nathan Crocker
 Review editor: Kishor Rit
 Production editor: Kathy Rossland
 Copy editor: Julie McNamee
 Proofreader: Melody Dolab
 Typesetter: Tamara Švelić Sabljić
 Cover designer: Marija Tudor

 ISBN 9781633435421

 Printed in the United States of America

 dedication

 To all AI enthusiasts!

 contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Understanding attention and transformers

 1 A tale of two models: Transformers and diffusions

 1.1 What is a text-to-image generation model?

 1.1.1 Unimodal vs. multimodal models

 1.1.2 Practical use cases of text-to-image models

 1.2 Transformer-based text-to-image generation

 1.2.1 Converting an image into a sequence of integers and then back

 1.2.2 Training and using a transformer-based text-to-image model

 1.3 Text-to-image generation with diffusion models

 1.3.1 Forward and reverse diffusions

 1.3.2 Latent diffusion models and Stable Diffusion

 1.4 How to build text-to-image models from scratch

 1.5 Challenges for text-to-image generation models

 1.5.1 Are generative AI models stealing from artists?

 1.5.2 The geometric inconsistency problem

 1.6 Social, environmental, and ethical concerns

 2 Build a transformer

 2.1 An overview of attention and transformers

 2.1.1 How the attention mechanism works

 2.1.2 How to create a transformer

 2.2 Word embedding and positional encoding

 2.2.1 Word tokenization with the Spacy library

 2.2.2 A sequence padding function

 2.2.3 Input embedding from word embedding and positional encoding

 2.3 Creating an encoder–decoder transformer

 2.3.1 Coding the attention mechanism

 2.3.2 Defining the Transformer() class

 2.3.3 Creating a language translator

 2.4 Training and using the German-to-English translator

 2.4.1 Training the encoder–decoder transformer

 2.4.2 Translating German to English with the trained model

 3 Classify images with a vision transformer

 3.1 The blueprint to train a ViT

 3.1.1 Converting images to sequences

 3.1.2 Training a ViT for classification

 3.2 The CIFAR-10 dataset

 3.2.1 Downloading and visualizing CIFAR-10 images

 3.2.2 Preparing datasets for training and testing

 3.3 Building a ViT from scratch

 3.3.1 Dividing images into patches

 3.3.2 Modeling the positions of different patches in an image

 3.3.3 Using the multi-head self-attention mechanism

 3.3.4 Building an encoder-only transformer

 3.3.5 Using the ViT to create a classifier

 3.4 Training and using the ViT to classify images

 3.4.1 Choosing the optimizer and the loss function

 3.4.2 Training the ViT for image classification

 3.4.3 Classifying images using the trained ViT

 4 Add captions to images

 4.1 Training and using a transformer to add captions

 4.1.1 Preparing data and the causal attention mask

 4.1.2 Creating and training a transformer

 4.2 Preparing the training dataset

 4.2.1 Downloading and visualizing Flickr 8k images

 4.2.2 Building a vocabulary of tokens

 4.2.3 Preparing the training dataset

 4.3 Creating a multimodal transformer to add captions

 4.3.1 Defining a ViT as the image encoder

 4.3.2 Creating the decoder to generate text

 4.4 Training and using the image-to-text transformer

 4.4.1 Training the encoder–decoder transformer

 4.4.2 Adding captions to images with the trained model

 Part 2 Introduction to diffusion models

 5 Generate images with diffusion models

 5.1 The forward diffusion process

 5.1.1 How diffusion models work

 5.1.2 Visualizing the forward diffusion process

 5.1.3 Different diffusion schedules

 5.2 The reverse diffusion process

 5.3 A blueprint to train the U-Net model

 5.3.1 Steps in training a denoising U-Net model

 5.3.2 Preprocessing the training data

 5.4 Training and using the diffusion model

 5.4.1 The Denoising Diffusion Probabilistic Model noise scheduler

 5.4.2 Inference using the U-Net denoising model

 5.4.3 Training and using the denoising U-Net model

 6 Control what images to generate in diffusion models

 6.1 Classifier-free guidance in diffusion models

 6.1.1 An overview of classifier-free guidance

 6.1.2 A blueprint to implement CFG

 6.2 Different components of a denoising U-Net model

 6.2.1 Time step embedding and label embedding

 6.2.2 The U-Net denoising model architecture

 6.2.3 Down blocks and up blocks in the U-Net

 6.3 Building and training the denoising U-Net model

 6.3.1 Building the denoising U-Net

 6.3.2 The Denoising Diffusion Probabilistic Model

 6.3.3 Training the diffusion model

 6.4 Generating images with the trained diffusion model

 6.4.1 Visualizing generated images

 6.4.2 How the guidance parameter affects generated images

 7 Generate high-resolution images with diffusion models

 7.1 Attention in U-Net, DDIM, and image interpolation

 7.1.1 Incorporating the attention mechanism in the U-Net model

 7.1.2 Denoising Diffusion Implicit Models

 7.1.3 Image interpolation in diffusion models

 7.2 High-resolution flower images as training data

 7.2.1 Visualizing images in the training dataset

 7.2.2 Applying forward diffusion on flower images

 7.3 Building and training a U-Net for high-resolution images

 7.3.1 Building the denoising U-Net model

 7.3.2 Training the denoising U-Net model

 7.4 Image generation and interpolation

 7.4.1 Using the trained denoising U-Net to generate images

 7.4.2 Transition from one image to another

 Part 3 Text-to-image generation with diffusion models

 8 CLIP: A model to measure the similarity between image and text

 8.1 The CLIP model

 8.1.1 How the CLIP model works

 8.1.2 Selecting an image from Flickr 8k based on a text description

 8.2 Preparing the training dataset

 8.2.1 Image-caption pairs in Flickr 8k

 8.2.2 The DistilBERT tokenizer

 8.2.3 Preprocess captions and images for training

 8.3 Creating a CLIP model

 8.3.1 Creating a text encoder

 8.3.2 Creating an image encoder

 8.3.3 Building a CLIP model

 8.4 Training and using the CLIP model

 8.4.1 Training the CLIP model

 8.4.2 Using the trained CLIP model to select images

 8.4.3 Using the OpenAI pretrained CLIP model to select images

 9 Text-to-image generation with latent diffusion

 9.1 What is a latent diffusion model?

 9.1.1 How variational autoencoders work

 9.1.2 Combining a latent diffusion model with a variational autoencoder

 9.2 Compressing and reconstructing images with VAEs

 9.2.1 Downloading the pretrained VAE

 9.2.2 Encoding and decoding images with the pretrained VAE

 9.3 Text-to-image generation with latent diffusion

 9.3.1 Guidance by the CLIP model

 9.3.2 Diffusion in the latent space

 9.3.3 Converting latent images to high-resolution ones

 9.4 Modifying existing images with text prompts

 10 A deep dive into Stable Diffusion

 10.1 Generating images with Stable Diffusion

 10.2 The Stable Diffusion architecture

 10.2.1 Generating images from text with Stable Diffusion

 10.2.2 Text embedding interpolation

 10.3 Creating text embeddings

 10.4 Image generation in the latent space

 10.5 Converting latent images to high-resolution ones

 Part 4 Text-to-image generation with transformers

 11 VQGAN: Convert images into sequences of integers

 11.1 Converting images into sequences of integers and back

 11.2 Variational autoencoders

 11.2.1 What is an autoencoder?

 11.2.2 The need for VAEs and their training methodology

 11.3 Vector quantized variational autoencoders

 11.3.1 The need for VQ-VAEs

 11.3.2 The VQ-VAE model architecture and training process

 11.4 Vector quantized generative adversarial networks

 11.4.1 Generative adversarial networks

 11.4.2 VQGAN: A GAN with a VQ-VAE generator

 11.5 A pretrained VQGAN model

 11.5.1 Reconstructing images with the pretrained VQGAN

 11.5.2 Converting images into sequences of integers

 12 A minimal implementation of DALL-E

 12.1 How min-DALL-E works

 12.1.1 Training min-DALL-E

 12.1.2 From prompt to pixels: Image generation at inference time

 12.2 Tokenizing and encoding the text prompt

 12.2.1 Tokenizing the text prompt

 12.2.2 Encoding the text prompt

 12.3 Iterative prediction of image tokens

 12.3.1 Loading the pretrained BART decoder

 12.3.2 Predicting image tokens using the BART decoder

 12.4 Converting image tokens to high-resolution images

 12.4.1 Loading the pretrained VQGAN detokenizer

 12.4.2 Visualizing the intermediate and final high-resolution outputs

 Part 5 New developments and challenges

 13 New developments and challenges in text-to-image generation

 13.1 State-of-the-art text-to-image generators

 13.1.1 DALL-E series

 13.1.2 Google’s Imagen

 13.1.3 Latent diffusion models: Stable Diffusion and Midjourney

 13.2 Challenges and concerns

 13.3 A blueprint to fine-tune ResNet50

 13.3.1 The history and architecture of ResNet50

 13.3.2 A plan to fine-tune ResNet50 for classification

 13.3.3 Using ResNet50 to classify images

 13.4 Fine-tuning ResNet50 to detect fake images

 13.4.1 Downloading and preprocessing real and fake face images

 13.4.2 Fine-tuning ResNet50

 13.4.3 Detecting deepfakes using the fine-tuned ResNet50

 appendix  Installing PyTorch and enabling GPU training locally and in Colab

 A.1 Installing Python and setting up a virtual environment

 A.1.1 Installing Anaconda

 A.1.2 Setting up a Python virtual environment

 A.1.3 Installing Jupyter Notebook

 A.2 Installing PyTorch

 A.3 Using Google Colab for GPU training and inference

 references

 index

 preface

 This book begins with my curiosity about how machines could create images from nothing more than words. When I first encountered DALL-E and Stable Diffusion, the results seemed magical: type a prompt, and out came a lifelike image that matched the description perfectly. But behind the magic were mathematics, code, and a long line of ideas in machine learning. I wanted to demystify those ideas, not just for myself, but for anyone who learns best by building things from scratch.

 Generative AI is advancing at a pace few of us could have predicted, reshaping not only the way we work but also how we create, design, and communicate. Text-to-­image models in particular are among the most visible and transformative of these technologies. They embody the leap from unimodal to multimodal AI, systems that reason across different types of data. While the headlines focused on their impressive outputs, I found myself drawn to this question: How do they really work? The only satisfying answer, I decided, was to build one myself.

 This book is the result of that journey. It’s not a collection of high-level explanations or black box demonstrations. Instead, it’s a hands-on guide to re-creating the fundamental building blocks of text-to-image generation: transformers, vision models, diffusion processes, and latent representations. By reconstructing these systems piece by piece, readers like you gain a deeper understanding of both their power and their limitations. As Richard Feynman once put it, “What I cannot create, I do not understand.” That spirit guides every chapter.

 Writing this book also came from a desire to bridge two communities: the machine learning researchers pushing the frontier of generative models and the developers, designers, and enthusiasts who are eager to harness these tools but uncertain where to begin. My hope is that by working through code, experiments, and projects, you’ll see that these models aren’t impenetrable black boxes, but accessible systems built from understandable components.

 The examples in this book are intentionally playful (pandas in top hats, bananas on motorcycles) because creativity should be joyful. But the lessons carry serious value—from rapid prototyping in design and marketing, to aiding education, to enabling new forms of artistic expression. By the end of this book, I hope you not only understand how text-to-image models function but also feel comfortable extending, adapting, and imagining new applications of your own.

 acknowledgments

 Many people have helped bring this book from idea to reality, and I’m deeply grateful for their contributions.

 First, I owe special thanks to Jonathan Gennick, my acquisition editor at Manning. Jonathan not only believed in this project from the very beginning but also guided it with a clear vision of what readers most want to learn. His thoughtful feedback helped me shape the structure of the book in a way that makes the learning journey approachable and rewarding.

 I’m equally indebted to my development editor, Doug Rudder, whose insistence on clarity pushed me to become a better writer. Doug’s ability to spot where explanations could be simplified or examples expanded has left a lasting mark on the book. His encouragement to always aim for clarity, even when discussing the most technical details, has greatly enhanced the accessibility of the book.

 My sincere gratitude also goes to my technical editor, Nathan Crocker, author of AI-Powered Developer (Manning, 2024) and cofounder and CTO of Checker, the global liquidity network for stablecoins. Nathan’s rigorous technical review and insightful comments were invaluable. His careful attention to detail caught subtle issues, and his practical suggestions improved the book tremendously. One memorable example is from chapter 11, where I initially instructed readers to clone and manually update an outdated GitHub repository. Nathan wisely proposed that I instead provide a forked and updated repository so readers could dive directly into experimentation without unnecessary manual updating. It’s improvements like these, both large and small, that make this book far more accessible to readers.

 I would also like to thank the broader Manning team, including the production editor, copyeditor, and reviewers, who worked behind the scenes to polish the manuscript and ensure its accuracy. Their efforts often go unseen but are crucial to turning a draft into a finished book. To all of the following reviewers, your suggestions helped make this a better book: Abhilash Babu, Adil Patel, Akinwale Habib, Alejandro Cuevas Rivero, Amaresh Rajasekharan, Arun Lakhera, Atilla Özgür, Curtis Bates, Devavrat Sabnis, Dieter Späth, Donald Bleyl, Eli Richmond Hini, Gautham K, Giovanni Alzetta, Hardev Ranglani, Ifiok Moses, Ijem Ofili, Ishita Verma, Jahred Love, Jan Goyvaerts, José Salavert-Torres, Khashayar Baghizadeh, Mariia Bulycheva, Matheus Antônio Nogueira, Mouhamed Klank, Naga Sai Abhinay Devarinti, Oscar Peña, Pavan Kumar Adepu, Praveen Nair, Ravikumar Sanapala, Raymond Cheung, Sergio Arbeo, Shabie Iqbal, Mohammad Shahnawaz Akhter, Simeon Leyzerzon, Sukanya Konatam, Tathagata Dasgupta, Thomas M. Seeber, Trinnawat Charoenpradubsilp, Vikram Shibad, Vishal Gandhi, Xin Hu, and Yuanyuan Chen.

 Finally, I want to express my deepest gratitude to my family. To my wife, Ivey Zhang, thank you for your patience, encouragement, and constant belief in this project, even during the long evenings and weekends I spent writing. To my son, Andrew Liu, thank you for reminding me of the joy of curiosity, the same spirit that inspired me to write this book. This journey wouldn’t have been possible without your love and support.

 about this book

 This book was written with one guiding principle: the best way to truly understand how something works is to build it from the ground up. Build a Text-to-Image Generator (from Scratch) takes this philosophy and applies it to one of the most exciting areas in AI today: text-to-image generation. Rather than treating modern AI systems as impenetrable black boxes, this book guides you step-by-step through the construction of the core components that make them work: transformers, vision models, diffusion processes, and multimodal architectures. By the end, you’ll not only know how to use state-of-the-art models, such as Stable Diffusion and DALL-E, but also how to re-create simplified versions of them yourself, giving you both practical skills and a deep conceptual foundation.

 Who should read this book

 This book is written for developers, researchers, students, and curious practitioners who want to move beyond simply running prebuilt AI models and instead learn how they are designed. You should have a solid command of Python and a working knowledge of machine learning, especially neural networks in PyTorch. A background in deep learning fundamentals, such as convolutional networks, embeddings, and training loops, will be helpful, though the book introduces each concept in context. If you’re an engineer seeking to deepen your AI skills, a researcher exploring multimodal learning, or simply an enthusiast who learns best by coding, this book is for you.

 How this book is organized: A road map

 The book is organized into four parts:

 	
Part 1: Understanding attention and transformers—Introduces transformers, the architecture that revolutionized natural language processing and later computer vision. You’ll build transformers from scratch and apply them to machine language translation (e.g., German to English), classification, and image captioning tasks.

 	
Part 2: Introduction to diffusion models—Explains how diffusion models work by gradually denoising random noise into coherent images. You’ll implement diffusion­-based image generation and explore methods to control and enhance the quality of generated images.

 	
Part 3: Text-to-image generation with diffusion models—Focuses on multimodal learning. You’ll train and experiment with contrastive language-image pretraining (CLIP) for measuring text–image similarity, implement latent diffusion, and take a deep dive into the architecture of Stable Diffusion.

 	
Part 4: Text-to-image generation with transformers—Demonstrates how to generate images using transformer-based approaches. You’ll learn about vector quantized generative adversarial network (VQGAN) for converting images into discrete tokens and build a minimal implementation of DALL-E.

 	
Part 5: New developments and challenges—The last chapter surveys recent advances and open challenges in text-to-image generation, including copyright issues, ethical concerns, and future research directions. The second half of the chapter provides a hands-on guide on how to fine-tune ResNet50 to differentiate real images from deepfakes.

 Along the way, you’ll complete hands-on projects, such as generating “a panda with a top hat reading a book” or “a banana riding a motorcycle,” to make abstract ideas both engaging and concrete.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/build-a-text-to-image-generator-from-scratch. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/build-a-text-to-image-generator-from-scratch and from GitHub at https://github.com/markhliu/txt2img.

 Each chapter comes with a Jupyter Notebook that replicates the code presented in the text as well as a Google Colab notebook. I encourage you to run the notebooks, modify the code, and experiment with your own prompts and data.

 Software and hardware requirements

 This book assumes you’re working in Python 3 with PyTorch installed. Installation instructions for PyTorch, as well as guidance on enabling GPU acceleration locally and in Google Colab, are provided in the appendix. While most examples can run on a modern laptop CPU, training models from scratch will be faster and more enjoyable with access to a GPU (e.g., those available through Colab or a personal NVIDIA GPU). You’ll also need standard Python libraries such as NumPy, matplotlib, and Hugging Face’s Transformers and Datasets.

 How to use this book

 This is a hands-on, build-first book. You’ll benefit most by typing out the code, running the experiments, and exploring “what if” scenarios on your own. Each chapter is designed to be self-contained, but reading sequentially will provide the smoothest learning curve. If you’re new to transformers or diffusion models, start from the beginning. If you’re already comfortable with the basics, you can jump directly into the parts that focus on multimodal and text-to-image generation.

 Above all, this book is meant to be practical and enjoyable. By the final chapter, you’ll not only have the skills to understand how today’s leading text-to-image models work but also the confidence to adapt and extend them for your own projects.

 liveBook discussion forum

 Purchase of Build a Text-to-Image Generator (from Scratch) includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/build-a-text-to-image-generator-from-scratch/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 [image:]

 Mark Liu is a tenured finance professor and the founding director of the master of science in finance program at the University of Kentucky. He is the author of four books: Make Python Talk (No Starch Press, 2021), Machine Learning, Animated (CRC Press, 2023), AlphaGo Simplified (CRC Press, 2024), and Learn Generative AI with PyTorch (Manning, 2024). Mark obtained his PhD in finance from Boston College. Mark has published his research in top finance journals such as Journal of Financial Economics, Journal of Financial and Quantitative Analysis, and Management Science.

 about the cover illustration

 The figure on the cover of Build a Text-to-Image Generator (from Scratch), titled “L’Actrice,” or “The Actress,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Understanding attention
and transformers

 This part introduces the foundations of transformer architectures, which have become the backbone of modern generative AI. We begin with a comparison of transformers and diffusion models, showing how each tackles the problem of generating data in very different ways. From there, you’ll build a transformer from scratch in chapter 2 to translate German to English, gaining hands-on experience with the attention mechanism that enables these models to capture relationships across sequences.

 We then explore practical applications of transformers in computer vision and multimodal tasks. You’ll implement a vision transformer (ViT) to classify images in chapter 3 and build a multimodal transformer to generate captions for images in chapter 4, bridging the gap between visual and textual data. By the end of this part, you’ll understand how transformers adapt naturally from text to images, as well as why attention has become the most influential concept in modern AI.

1 A tale of two models: Transformers and diffusions

This chapter covers

 	The distinction between unimodal and multimodal models

 	How vision transformers use attention mechanisms from natural language processing to process images

 	The inner workings of diffusion models and how they generate images from noise

 	The challenges and limitations facing current text-to-image models

 Generative artificial intelligence (generative AI) refers to a class of machine learning models designed to create new content—text, images, audio, or even video—that closely resembles real-world data. Unlike traditional AI systems that merely classify, predict, or retrieve information, generative AI models are creative: they “learn” patterns from massive datasets and then generate entirely new outputs based on those patterns. For example, ChatGPT can write essays and code, while DALL-E and Stable Diffusion can produce images from written descriptions.

 Text-to-image generation stands out as one of the most captivating advances within generative AI. These models translate natural language prompts into detailed, visually compelling images, often with remarkable creativity and realism. Recent breakthroughs such as OpenAI’s DALL-E 2, Google’s Imagen, and Stability AI’s Stable Diffusion have captured the world’s attention by turning abstract descriptions into vivid pictures, sometimes indistinguishable from photographs or human art. Beyond creating images from scratch, these systems can also edit existing photos through text commands (e.g., cropping, removing objects, or changing backgrounds), making them valuable tools for photographers and designers alike. Companies such as Adobe have integrated text-to-image and text-based editing into their design suites, enabling graphic designers to instantly visualize and refine concepts. In healthcare, start-ups use these models to convert doctors’ notes into medical diagrams. The real-world impact is profound: generative AI is reshaping industries ranging from design and entertainment to education and medicine.

 At the core of these systems are two powerful approaches: (1) transformer architectures that were originally developed for natural language processing (NLP) and (2) diffusion models. Vision transformers (ViT), for instance, adapt the same attention mechanisms that revolutionized language models such as BERT and GPT, applying them to image data by treating an image as a sequence of smaller patches. Meanwhile, diffusion models take a radically different path: they start with pure random noise and iteratively denoise it, gradually shaping it into a coherent image that matches the prompt. Both methods have redefined what’s possible in multimodal AI, where systems must reason across multiple types of data (text, images, audio, and more).

 This chapter explores the foundations and real-world impact of text-to-image generation. I’ll clarify key concepts, from unimodal (dealing with one single data type) to multimodal (dealing with two or more data types) models, and walk through the mechanics of both transformer- and diffusion-based approaches. Along the way, I’ll highlight the practical applications and the ways these technologies are already transforming workflows. You’ll see, for example, how companies such as Canva let users generate illustrations for marketing with a simple prompt, as well as how platforms such as Midjourney enable artists to explore new creative frontiers.

 Additionally, you’ll learn about the unique challenges text-to-image generation models face, such as interpreting complex prompts, maintaining geometric consistency, and addressing questions of ethics and copyright. Whether you’re an AI researcher, a developer, or simply curious about the future of creativity, understanding these technologies will give you an edge as generative AI continues to reshape how we interact with information and art.

1.1 What is a text-to-image generation model?

 Text-to-image models are multimodal generative models designed to transform a text description into a corresponding image. Multimodal means that the model processes different types of data. In the case of text-to-image models, the input is text, while the output is an image. Multimodal models can handle a variety of input–output combinations, such as text, images, audio, and video. This contrasts with unimodal models, where only one type of data is handled by the model.

 In this section, I’ll cover text-to-image generation models, emphasizing the fact that they are multimodal instead of unimodal models. I’ll then outline the practical applications of text-to-image generation.

1.1.1 Unimodal vs. multimodal models

 Unimodal models operate within a single type of data modality, such as text-only or image-only models. For instance, a unimodal text model generates text based solely on text input, similar to traditional language models. As a specific example, GPT-3 is a unimodal model because it processes text as input and generates text as output. Likewise, an image model might generate images from random noise, but it would only process image data.

 In contrast, multimodal models connect different data modalities, enabling interactions across text, images, audio, and video. Text-to-image models exemplify this approach, taking input in one modality (e.g., text) and generating output in another (images). These models use a combination of NLP and computer vision techniques to interpret textual descriptions and create corresponding images. A prominent example is text-to-image generation models (e.g., Stable Diffusion), where the input is text and an image (when editing existing images), and the output is an image.

 Figure 1.1 shows the difference between unimodal and multimodal models. The top half of the figure illustrates how unimodal models operate. In these models, the input and output are of the same type. An example is GPT-3, which takes text as input and generates text as output. In contrast, the bottom half of the figure depicts multimodal models, which handle different data types. An example is Stable Diffusion, a text-to-image model. Here, the input is a text description, and the output is an image that matches the description. Alternatively, as you’ll see later in the book, Stable Diffusion can also modify an existing image using text descriptions. In this case, the input is text and an image, while the output is an image.

 [image:]

Figure 1.1 Comparison of unimodal and multimodal models

1.1.2 Practical use cases of text-to-image models

 Text-to-image models have a wide range of practical applications in real-world scenarios, such as content generation, product design, and educational and training tools. While images are their primary output, learning how to build these models from scratch also equips you with skills relevant to related tasks. For example, the ability to align text and image representations can be extended to measuring similarity between text and images or to selecting the most appropriate image for a given description. You’ll also learn to build and train an image-to-text model to add captions to images.

 These models can rapidly generate high-quality content, making them ideal for producing art, illustrations, and other creative visuals based on textual input. This capability is particularly useful for artists, designers, and writers who need to quickly prototype visual concepts. In advertising and marketing, businesses can use these models to create targeted advertisements, generate engaging marketing content, or quickly produce visuals tailored to specific customer descriptions or product requirements.

 In product design, text-to-image models enable rapid prototyping based on design prompts, facilitating faster design cycles and greater flexibility in exploring variations. Game designers, for instance, can create environments, characters, assets, and concept art for games, animations, or films simply by describing their features. Similarly, fashion designers can generate prototypes, sketches, or visual concepts from descriptive prompts, accelerating visual iteration and market testing.

 Text-to-image models are also valuable in education and training, helping illustrate complex concepts described in text, such as visualizing historical events, scientific phenomena, or medical conditions. Additionally, these models can assist in data augmentation for machine learning by generating synthetic datasets with realistic images based on textual descriptions, helping train and augment models when data is scarce.

 The skills you acquire from building text-to-image models from scratch in this book will enable you to create various practical applications. For example, after completing chapter 4, you’ll be able to generate captions for images. Figure 1.2 illustrates three examples of adding captions to images.

 As shown in figure 1.2, the generated captions may not be identical to the human-­created ones (because there are different ways of describing the same image) but still accurately capture the content of the images. For instance, the original caption for the third image states, “two young girls are running through shallow water at a pool,” whereas the model-generated caption reads, “two girls are running away from the water and laughing.” Despite the difference in wording, the generated caption accurately reflects the scene depicted in the third image. The captioning technology is especially valuable for the vast number of images that lack human-created captions, making them accessible and searchable in large databases.

 [image:]

Figure 1.2 Examples of generating captions for images. The original caption from the training dataset, created by humans, is displayed above each image. The image is then fed into a trained image-to-text model to generate the second caption shown. While the generated captions differ from those created by humans, they accurately describe what’s going on in these images.

 Later, you’ll learn how to build and train a contrastive language-image pretraining (CLIP) model from scratch. A trained CLIP model enables you to measure the similarity between a text prompt and an image. As a result, you can perform an image selection task: input a text description and use the model to identify the image from a large pool that best matches the text. These examples highlight just a few of the many real-world applications of text-to-image generation models and the valuable skill sets they offer.

1.2 Transformer-based text-to-image generation

 One approach to text-to-image generation involves framing the task as a next-token prediction problem using a transformer. Here, an image is broken down into smaller patches, such as a 16 × 16 grid, resulting in 256 patches in total. These patches are arranged sequentially, starting from the top-left corner and progressing rightward, ending at the bottom-right corner.

 For example, consider this text prompt, “panda with a top hat reading a book.” Figure 1.3 illustrates the progression of how an image might be formed. The trained transformer first predicts the top-left patch of the image based on the prompt. During each subsequent iteration, the transformer predicts the next patch based on the prompt and the previously generated patches, repeating this process until all 256 patches are generated.

 [image: A collage of a panda reading a book Description automatically generated]

Figure 1.3 How the min-DALL-E model generates an image based on the prompt “panda with a top hat reading a book.” The top-left subplot shows the output when 32 image patches are generated. The second subplot in the top row shows the output when 64 patches are generated. The remaining images show the outputs for 96, 128, . . ., and 256 patches.

 You might be wondering how a model converts a text prompt into meaningful image patches that align with the description. To do this, the training of a transformer-based text-to-image generative model needs three components:

 	A submodel (vector quantized generative adversarial network [VQGAN]) to convert an image into a sequence of integers; let’s call the sequence image tokens. The same submodel can convert the image tokens (i.e., a sequence of integers) back to the original image.

 	Another submodel (bidirectional and auto-regressive transformer [BART]) to convert text descriptions into a sequence of integers; let’s call the sequence text tokens.

 	A method to make the image tokens identical to the text tokens.

 To generate an image from a text prompt after the model is trained, we feed the text prompt to BART to produce text tokens. Because the text tokens are trained to be identical to the image tokens, we can feed the text tokens to VQGAN to produce an image as the output that matches the text prompt.

 Sounds abstract? I agree. Let’s dive deeper into the transformer-based text-to-image generative model and see how various components work.

1.2.1 Converting an image into a sequence of integers and then back

 In transformer-based text-to-image generation, a crucial step is converting an image into a sequence of integers, just as language models convert text into sequences of word tokens. This transformation is enabled by VQGAN, as I’ll explain in detail in chapter 11. In a nutshell, VQGAN uses an encoder to compress the input image into a compact, lower-dimensional latent representation. The latent vector is replaced by its closest match from a learned codebook containing a fixed set of discrete vectors. This quantization process maps the image into a sequence of integers where each integer refers to an index in the codebook.

 Why is this important? This discrete sequence allows us to treat the image in a way that’s analogous to text: just as sentences can be represented by sequences of word indices, images can now be represented as sequences of codebook indices. This enables the use of transformer architectures, originally developed for modeling language, to process and generate images patch by patch, token by token.

 Figure 1.4 is a diagram of how VQGAN works. The encoder in VQGAN compresses an image into a lower-dimensional latent space. The latent vector for each image is divided into different patches. The continuous latent vector for each patch is then compared to the discrete vectors in the codebook. The quantized latent vector uses discrete vectors in the codebook to approximate the continuous latent vector for each image patch. The quantized latent vectors are then passed through the decoder in VQGAN to reconstruct the image.

 [image:]

Figure 1.4 A diagram of VQGAN

 The encoder in VQGAN first transforms an image into a grid, where each cell corresponds to a “patch” of the original image. For example, we can divide an image into 16 × 16 = 256 patches. Each patch is represented by a continuous vector in a lower-­dimensional latent space. These continuous latent representations are compared to the vectors in a codebook, which has a finite number (e.g., 1,024) of discrete vectors. The quantized latent vector uses discrete vectors in the codebook to approximate the continuous latent vector for the image patches. This step is crucial because it converts an image into a sequence of integers. For example, the image in the figure is converted to the sequence (873, 862, 873, . . ., 148). This means the top-left patch is represented by vector 873 in the codebook, the patch to the right is represented by vector 862, . . ., and the bottom-right patch is represented by vector 148. This step discretizes the image information, effectively turning continuous image data into a sequence of integers with each integer representing an image token.

 The quantized latent vectors are then passed through the decoder in VQGAN to reconstruct the image. This step allows a sequence of image tokens (i.e., a sequence of integers) to be converted to realistic images by the trained decoder in VQGAN.

 To summarize, the encoder in VQGAN transforms an image into a sequence of integers. The decoder in VQGAN converts a sequence of integers back into an image. These two features have important implications for transformer-based text-to-image models, as we’ll explain in the next subsection.

1.2.2 Training and using a transformer-based text-to-image model

 OpenAI’s DALL-E is a transformer-based text-to-image model. While DALL-E isn’t open source, Boris Dayma et al.’s DALL-E mini project (https://github.com/borisdayma/dalle-mini) aims to replicate it. In chapter 12, you’ll learn how to generate images from text prompts using Brett Kuprel’s min-DALL-E project (https://github.com/kuprel/min-dalle), which is a PyTorch implementation of the DALL-E mini project.

 Figure 1.5 is a diagram of how DALL-E mini is trained and then used to generate an image based on a text prompt. The left side of this figure depicts how a transformer-­based text-to-image model is trained, while the right side illustrates the process of generating an image from a text prompt using the trained model. To train the model, images are encoded into image tokens using a VQGAN encoder. Corresponding captions are processed through a BART encoder and then a BART decoder to generate text tokens. The objective is to train the BART decoder to predict text tokens that match the image tokens produced by the VQGAN encoder. To generate an image using the trained model, the text prompt is fed into the BART encoder and then the BART decoder to produce the predicted text tokens, which are passed through the VQGAN decoder to generate the final output, as shown at the top center of the figure.

 [image:]

Figure 1.5 How DALL-E mini is trained to generate an image based on a text prompt

 I’ll cover the DALL-E mini project in detail in chapter 12, but here’s a summary. During training, we start with a large collection of image–caption pairs. Each image is encoded into a sequence of discrete tokens using VQGAN, while the paired caption is transformed into a sequence of text tokens via a BART encoder and then a BART decoder. The core training objective is to align the BART decoder’s output with the image tokens produced by the VQGAN encoder. This is achieved by minimizing the difference between the text tokens and the image tokens.

 At inference time, the process works in reverse. Given a text prompt, we encode it using the BART encoder and pass it through the BART decoder to generate a sequence of text tokens. These predicted tokens are then fed into the VQGAN decoder, which reconstructs and outputs the final image that matches the prompt, as shown in the top center of figure 1.5.

1.3 Text-to-image generation with diffusion models

 The second approach for text-to-image generation is based on diffusion models. To understand how text-to-image diffusion models work, I’ll first discuss the idea behind forward diffusion and reverse diffusion. Imagine you want to train a diffusion model to generate high-resolution images (not based on a text prompt, but unconditionally, without any input). You first acquire a set of images for training. You’ll gradually introduce small amounts of noise into these images. This process is known as forward diffusion. After many steps of adding noise, the training images become pure random noise (much like the snowy static on a TV screen).

 You’ll then train a model to reverse this process, which is known as the reverse diffusion process (or the denoising process). Specifically, you’ll start with random noise images and progressively reduce the noise until the images are indistinguishable from those in the original training set. The trained diffusion model can use random noise images as a starting point. The model gradually eliminates noise from the image over many iterations until a clean image is generated. This is the underlying principle of diffusion-­based models.

 Diffusion-based text-to-image generation can be viewed as a denoising process that depends on a text prompt. It begins with an image composed entirely of random noise. A trained diffusion model then iteratively removes noise from this image, guided by a text prompt, until a coherent image matching the prompt emerges. Diffusion models have become the preferred choice for generative tasks because of their ability to generate high-quality images by systematically denoising images through progressive steps. They form the foundation of leading text-to-image systems, including Imagen, DALL-E 2, and Stable Diffusion.

1.3.1 Forward and reverse diffusions

 In forward diffusion, noise is gradually added to a clean image until it becomes pure noise. Figure 1.6 shows how the forward diffusion process works.

 [image: A diagram of a dog AI-generated content may be incorrect.]

Figure 1.6 In the forward diffusion process, we start with a clean image from the training set, x0, and add noise ε0 to it to form a noisy image x1, which is a weighted sum of x0 and ε0. We repeat this process for 1,000 time steps until the image x1,000 becomes random noise.

 We start with a clean image, x0, which is illustrated with the leftmost image of a dog in figure 1.6. In the forward diffusion process, we’ll add small amounts of noise to the image in each of the T time steps (e.g., T = 1,000; a time step is a discrete stage in the process of gradually adding noise to data). The noise tensor follows a standard normal distribution and has the same shape as the clean image. In time step 1, we add noise ε0 to the image x0 so that we obtain a noisy image x1, which is a weighted sum of x0 and ε0.

 Time steps, forward diffusion, and reverse diffusion

 A time step is a discrete stage in the process of gradually adding noise to data or removing noise from the data. In the forward diffusion process, we start with a clean image at time step 0 and gradually add noise to the image to obtain noisy images at time steps 1, 2, . . ., until we reach time step T = 1,000, when the image becomes pure random noise.

 In contrast, in the reverse diffusion process, we start with a pure random noise image at time T = 1,000. We then gradually remove noise from the image to obtain images at time steps 999, 998, . . ., until we obtain a clean image at time step 0. That is, we go from time step 0 to time step T in forward diffusion, and we go from time step T to time step 0 in reverse diffusion.

 Let’s keep adding noise to the image for the next T-1 time steps so that the noisy image at time step t, xt, is a weighted sum of xt–1 and εt–1. We control the amount of noise injected into the images over time so that at time T = 1,000, the image, xT, becomes complete random noise (shown at the right in figure 1.6).

 We’ll then construct a deep neural network as the denoising model to reverse the diffusion process, which is the denoising process referred to earlier. If we can train a model to reverse the forward diffusion process, we can feed the model with random noise and ask it to produce a noisy image. We can then feed the noisy image to the trained denoising model again and obtain a clearer, though still noisy, image. We can repeat the process for many time steps, and the output is a clean image. This is the idea behind denoising diffusion models.

1.3.2 Latent diffusion models and Stable Diffusion

 To generate an image based on a text prompt, we start with an image composed of pure random noise. We use a trained U-Net denoising model to iteratively remove noise from this image, guided by the text prompt. However, creating a high-resolution image this way can be computationally intense, as images contain many pixels, and the diffusion process involves many time steps (often 1,000 or more). As a result, the generation process is extremely time consuming and inefficient.

 Latent diffusion models (LDMs) address this challenge by conducting the forward and reverse diffusion processes on a smaller, compressed version of the image, significantly reducing the pixel count. However, this comes at the cost of lower image quality. To compensate for this, once the LDM is trained, we use a variational autoencoder (VAE) decoder to convert the low-resolution images back into high-resolution images as the final output. A VAE is a generative model composed of an encoder and a decoder. The encoder transforms high-resolution images into compact, lower-dimensional representations, which the decoder then uses to reconstruct the original image.

 You’ll learn how LDMs work in chapter 9. Instead of conducting forward and reverse diffusion processes on high-resolution images of size 3 × 512 × 512 (3 color channels with a height and width of 512 pixels), the LDM in our example conducts diffusion processes in a latent space where the images have dimensions of 4 × 64 × 64. This reduces the size of the input to the diffusion model by 48 times (since (3 × 512 × 512) ÷ (4 × 64 × 64) = 48), which greatly speeds up the diffusion processes. The images in the latent space are then fed to a trained VAE, which converts them into high-resolution images of size 3 × 512 × 512. Figure 1.7 is a diagram of the steps involved in text-to-image generation with a trained LDM.

 [image:]

Figure 1.7 How a trained LDM generates an image based on a text prompt

 To generate an image, we first encode the text prompt (e.g., “a banana riding a motorcycle, wearing sunglasses and a straw hat”) into a text embedding (top left of figure 1.7). We then start the reverse diffusion process in the latent space, as illustrated in the bottom half of the figure. We iteratively denoise a noisy image, conditional on the text embedding so the generated image matches the text embedding. This step is guided by a CLIP model, which you’ll learn all about in chapter 8. The CLIP model guides the image generation by maximizing the similarity between the text embedding and the generated image embedding. Once the reverse diffusion process is finished in the lower-­dimensional (latent) space, the latent image is presented to a trained VAE decoder to convert it to a high-resolution image, which is the final output of the model (top right of figure 1.7).

 Better yet, you can visualize the intermediate outputs from the LDM. Figure 1.8 shows the generated images at different time steps during the image generation process. The left image shows that at time step t = 800, the image looks close to pure noise. As we move to the right, the image starts to match the text prompt. At time step t = 0, you can see a clean image of a banana riding a motorcycle. Recall that in reverse diffusion, we start with a pure random noise image at T = 1,000. We then gradually remove noise to obtain cleaner images at t = 999, 998, . . ., and eventually t = 0. This is why you see noisy images at t = 800 and less noisy images at t = 600, 400, . . ., until you see a clean image at t = 0 in figure 1.8.

 [image:]

Figure 1.8 Intermediate decoded outputs from a trained LDM at time steps 800, 600, . . ., 200, and 0. The text prompt is “a banana riding a motorcycle, wearing sunglasses and a straw hat.”

 Stable Diffusion is based on the LDM discussed earlier. It’s one of the state-of-the-art text-to-image models, along with OpenAI’s DALL-E 2 and Google’s Imagen. However, Stable Diffusion is the only one that is open source and free for anyone to use.

 Stable Diffusion was developed by researchers from CompVis, Stability AI, and LAION. It’s largely based on the 2022 paper by Rombach et al. [1]. Stable Diffusion has incorporated several improvements and additional features:

 	Stable Diffusion uses improved training techniques and optimizations, which lead to better stability and performance, further enhancing the quality of generated images.

 	While the LDM in the 2022 paper was trained on the LAION-400M dataset (with 400 million image–text pairs), Stable Diffusion was trained on a subset of an even larger dataset, the LAION-5B database (with 5 billion image–text pairs).

 	Stable Diffusion has developed user-friendly applications and interfaces, democratizing access to high-quality generative models. These tools enable users without deep technical expertise to have access to the power of diffusion models.

 In chapter 10, you’ll learn how to use Stable Diffusion to generate high-quality images through text prompts by using Hugging Face’s Diffusers library, but I’ll first discuss how to generate images using out-of-the-box tools. The StableDiffusionPipeline package in the Diffusers library allows you to use Stable Diffusion as an off-the-shelf tool to generate images in just a few lines of code. For example, the prompt “an astronaut in a spacesuit riding a unicorn” leads to the image shown in figure 1.9.

 [image:]

Figure 1.9 The StableDiffusionPipeline package in the Diffusers library allows you to use Stable Diffusion as an off-the-shelf tool to generate great images in just a few lines of code. Here, for example, it creates an image of an “astronaut in a spacesuit riding a unicorn.”

 We’ll then take a dive deep into the Stable Diffusion model and look at how various components of Stable Diffusion work. Instead of treating Stable Diffusion as a black box, we’ll look under the hood and see how each component of the model contributes to the text-to-image generation process.

1.4 How to build text-to-image models from scratch

 The best way to learn something is always by building it from scratch. In this book, you’ll create text-to-image models from the ground up so you can grasp a deep understanding of various components within these models. Building these models yourself allows you to use them more effectively.

 Throughout the book, you’ll implement and train key components of text-to-image models using small datasets, making it feasible to complete training in Google Colab or on a standard computer equipped with a CUDA-enabled GPU (NVIDIA GeForce RTX 20 series or better) in just a few hours. For parts of the models that require extensive data and time to train, we’ll load publicly available pretrained parameters so you can witness these models in action.

 The models discussed in this book are built on deep neural networks. We’ll use Python and PyTorch to create, train, and deploy these models. Python is chosen for its intuitive syntax, cross-platform compatibility, and active community support. Meanwhile, PyTorch stands out among other frameworks, such as TensorFlow, due to its dynamic computational graph, which makes it highly adaptable and easier to debug. This book assumes you have a working knowledge of Python, including basic concepts such as functions, classes, lists, and dictionaries. If you need a refresher, there are numerous free online resources available. The appendix includes instructions for installing Python, creating a virtual environment for this book, and setting up Jupyter Notebook as the primary computing environment. The appendix also covers how to install PyTorch with CUDA or train models with a GPU in Google Colab.

 You should also have basic knowledge of machine learning and an understanding of training deep neural networks using PyTorch. If you’re not there yet, consider starting with a book on this subject, such as Deep Learning with PyTorch by Luca Antiga, et al. (Manning, 2020).

 Figure 1.10 outlines the eight-step learning journey you’ll follow to build your own text-to-image generator from scratch. Each step builds practical skills and conceptual understanding, guiding you from basic model components to advanced multimodal systems.

 [image:]

Figure 1.10 The eight steps to building a text-to-image generator from scratch

 Let’s walk through what you’ll achieve in each step. In step 1, you’ll build and train an encoder–decoder transformer for tasks such as translating German to English. This step prepares you to code the attention mechanisms and learn the transformer architectures. In step 2, you’ll dive into computer vision by constructing a ViT for image classification. You’ll see how images are split into patches and processed like sequences, which is a crucial insight for multimodal modeling.

 We’ll explore the fundamentals of forward and reverse diffusion in step 3 by implementing a basic diffusion model that learns to denoise images, a key building block of today’s best image generators. In step 4, you’ll learn to steer the generation process with conditioning information. This prepares you for the use of classifier-free guidance, which lets you control how closely images match your text prompts, balancing creativity and accuracy.

 In step 5, you’ll build a CLIP model from scratch and learn how to connect images and text in a shared embedding space. CLIP is essential for guiding LDMs, as it quantifies the similarity between generated images and text descriptions. In step 6, you’ll combine your knowledge to construct a diffusion-based text-to-image generator, using latent spaces and CLIP guidance. In step 7, you’ll master the VQGAN framework, which enables you to convert images into discrete codebook sequences, making transformer-­based image generation possible. Finally, in step 8, you’ll build a min-DALL-E, a transformer-­based model that predicts image tokens one at a time from text prompts, echoing the architecture behind OpenAI’s DALL-E model.

 Each step is carefully crafted to build your intuition, skill, and confidence. By the end of this book, you’ll not only understand how text-to-image models work but also why they work and how to build, extend, and improve them yourself.

 Figure 1.10 serves as a road map for the whole book that we’ll refer back to as we progress. With this structured, hands-on approach, you’ll transform from a consumer of generative AI into a true creator, capable of building text-to-image models from scratch and understanding every layer of their magic.

1.5 Challenges for text-to-image generation models

 This is an exciting time for AI enthusiasts in general. Along with other generative models, text-to-image generation has made great strides in recent years, transforming from rudimentary image generation into a sophisticated and creative tool capable of generating highly detailed and realistic images from text prompts.

 OpenAI’s DALL-E series, Google’s Imagen, and Stability AI’s Stable Diffusion represent major milestones in text-to-image generation. These models take advantage of advancements in deep learning, particularly in transformer architectures and diffusion models, to bridge the gap between linguistic and visual modalities. Chapter 13 will explain how the DALL-E series, Imagen, and Midjourney work.

 However, despite these advancements, the state-of-the-art text-to-image generation models still face many challenges. In this section, we’ll focus on two of these: (1) the debate on whether text-to-image models “steal” from artists by reproducing training data or whether they create new concepts and (2) the geometric inconsistency problem.

1.5.1 Are generative AI models stealing from artists?

 The first challenge facing state-of-the-art text-to-image models is the debate on whether text-to-image models steal from artists by reproducing training data or whether they create new concepts [2]. The debate is rooted in concerns over intellectual property, creativity, and the nature of generative AI. This debate has two main camps.

 The first camp argues that current text-to-image models reproduce and steal from training data because these models are typically trained on vast datasets, which may include copyrighted artworks, photographs, and illustrations without explicit permission from the creators. Therefore, text-to-image models are, in effect, “copying” aspects of these works by generating images that are influenced by the style, composition, or elements of the original pieces in the training data. This is especially true if certain images are overrepresented in the training data. In such cases, the model may unintentionally or intentionally reproduce elements that are highly similar to the original artwork, blurring the line between generation and copying. There have been instances where models seemed to re-create nearly identical versions of known artworks or images when given prompts closely related to them [3].

 The second camp argues that text-to-image models create new concepts, rather than reproducing training data. People in this camp are mostly proponents of generative models, and they argue that these models don’t memorize or reproduce images from their training data directly, but rather learn patterns and statistical relationships between pixels, objects, and styles. Like human artists, models are capable of “inspiration” from vast sources without copying any single work. They combine concepts in new and unexpected ways to generate original outputs.

 People on this side argue that the process of image generation in models such as diffusion models involves adding random noise to an image and then refining that noise based on the patterns learned during training. This process inherently prevents the model from reproducing exact images from the training data. The outputs are always new, even if they are influenced by certain stylistic or compositional elements. Proponents emphasize that text-to-image models are tools that generate new and novel content by learning from patterns in data, much like how human artists learn and create. This debate will likely evolve as legal and ethical standards catch up to technological advancements in generative AI.

1.5.2 The geometric inconsistency problem

 The second challenge facing text-to-image generation models is the geometric inconsistency problem. Text-to-image models, whether based on transformers or diffusion models, often struggle with maintaining geometric consistency because they are typically trained on large, diverse datasets of 2D images without a deep understanding of 3D structure or physical rules governing spatial relationships. Therefore, these models don’t inherently understand 3D geometry. They learn patterns and associations between pixels and the semantic meaning of text, but they lack an internal representation of the 3D world, which is essential for maintaining consistent spatial relationships across objects and viewpoints.

 Transformer-based models use positional encodings to understand spatial relationships, but these are limited when it comes to enforcing strict geometric constraints, especially across complex 3D objects. Current text-to-image models typically lack a robust mechanism for encoding depth and perspective consistently. These models don’t understand the rules of perspective, lighting, or physics as humans do. As a result, they might generate objects that defy physical laws or appear distorted when viewed from certain angles, which breaks geometric consistency. Achieving geometric consistency would likely require incorporating models that explicitly consider 3D structure, physics simulations, or other methods that enforce spatial coherence.

1.6 Social, environmental, and ethical concerns

 Text-to-image generation, like other generative AI technologies, has rapidly advanced, evolving from basic image generation to a powerful tool capable of creating detailed, realistic images from text prompts. As these state-of-the-art models have advanced, new concerns have emerged. This section explores the social, environmental, and ethical implications associated with these models.

 The first concern centers on the computational costs and environmental impact of these models. Developing and deploying leading text-to-image models is computationally intensive, requiring vast resources, including large datasets and powerful hardware. The energy consumption for training these models is significant, contributing to environmental costs. For example, an article in Computer Weekly in June 2024 mentioned that “if the rate of AI usage continues on its current trajectory without any form of intervention, then half of the world’s total energy supply will be used on AI by 2040” [4]. Although techniques such as pruning, quantization, and transfer learning have been developed to offset the impact, the scalability of text-to-image models remains an obstacle. Reducing the computational footprint without compromising output quality remains a critical research focus.

 A second concern involves the potential misuse of model-generated images. The ability to produce realistic images opens possibilities for misuse in the form of deepfakes and misinformation. These models can be exploited to create misleading, propagandistic, or manipulative content, posing risks to public trust, democratic processes, and reliable information. For example, in early 2024, thousands of New Hampshire voters received a robocall purporting to be from Joe Biden [5]. Addressing these risks calls for robust content moderation systems, clear guidelines for responsible use, and partnerships between AI developers, policymakers, and media organizations to curb the spread of misinformation.

 Finally, text-to-image models often reflect societal biases related to race, gender, or culture. For example, prompts like “a doctor” or “a leader” may yield stereotypical depictions that amplify existing social inequalities. Addressing these biases requires methods for auditing and mitigating biases within models, a challenge that demands collaboration among AI developers, social scientists, and ethicists. However, it’s essential to avoid overcorrection, as demonstrated by cases such as Google’s Gemini model, which, in seeking to correct stereotypes, inadvertently produced inaccurate historical depictions, for example, including people of color in portrayals of Nazi-era German soldiers [6].

 Text-to-image generative AI models have made tremendous progress in the past few years, becoming transformative tools in art, design, and AI. However, as these models become more integrated into society, addressing the challenges of resource consumption, ethical use, and bias will be essential for responsible and sustainable development.

 Summary

 	Text-to-image models are a type of multimodal generative model designed to transform a text description into a corresponding image.

 	Unimodal models operate within a single type of data modality, such as text-only or image-only models. In contrast, multimodal models connect different data modalities, enabling interactions across text, images, audio, and video.

 	Transformer-based text-to-image generation models treat images as sequences by dividing them into patches, each patch acting as an element in the sequence. Image generation is then a sequence prediction problem, where the model predicts patches from top-left to bottom-right based on a text prompt.

 	In diffusion-based text-to-image generation models, we start with an image of pure noise. The model iteratively denoises it based on the text prompt, reducing noise with each step until a clear image matching the prompt is produced.

 	Instead of conducting forward and reverse diffusion processes on high-­resolution images, latent diffusion models (LDMs) conduct diffusion processes in a lower-­dimensional latent space, making the process faster and more efficient. After training, a variational autoencoder (VAE) converts the low-resolution latent space images into high-resolution final outputs.

 	Despite significant advancements, text-to-image generative models face challenges such as copyright disputes, geometry inconsistencies, and social, ethical, and environmental concerns.

2 Build a transformer

 This chapter covers

 	How the attention mechanism assigns weights to elements in a sequence

 	Building an encoder–decoder transformer from scratch for language translation

 	Word embedding and positional encoding

 	Training a transformer from scratch to translate German to English

 Understanding attention and transformer architectures is foundational for modern generative AI, especially for text-to-image models. This chapter comes at the very beginning of our journey to build a text-to-image generator from scratch for two reasons:

 	One of the most powerful approaches to text-to-image generation is based directly on transformers. As you’ll see in chapter 12, models such as ­OpenAI’s DALL-E treat image generation as a sequence prediction task. An image is divided into patches (e.g., a 16 × 16 grid, resulting in 256 patches). The transformer then generates these patches one by one, predicting the next patch in the sequence based on the text prompt and the patches generated so far. This sequential approach borrows from the same techniques used in language translation. At the core of this process is the attention mechanism, which allows the model to focus on the most relevant parts of the input when making predictions.

 	Even when models aren’t explicitly based on transformers, such as diffusion models, attention mechanisms are still essential. The denoising U-Net backbone used in diffusion models relies on attention to selectively focus on relevant parts of the input. In addition, when generating images from text prompts, diffusion models use a multimodal transformer such as contrastive language-image pretraining (CLIP) to encode both images and text into a shared latent space, allowing the model to align generated images with textual descriptions accurately.

 In short, whether you’re building DALL-E–like transformer models or advanced diffusion models, attention and transformers are everywhere. That’s why we start here. By implementing the attention mechanism and building a transformer from scratch, you’ll gain the intuition and coding skills needed for all subsequent chapters.

 Figure 2.1 charts the eight key steps you’ll follow to build a complete text-to-image generator from scratch. This chapter is the crucial first step: learning to build and train an encoder–decoder transformer for tasks such as translating German to English. By mastering how attention works at the code level, you’ll establish the core skills needed for more advanced architectures, eventually culminating in your own text-to-image generator.

 [image:]

Figure 2.1 The eight-step road map for building a text-to-image generator from scratch. This chapter launches your journey by guiding you through the construction and training of an encoder–decoder transformer for German-to-English translation, giving you hands-on experience with attention mechanisms and transformer architectures, the essential building blocks for all subsequent steps.

 In the rest of this chapter, you’ll explore the inner workings of the attention mechanism, including query, key, and value vectors, and how scaled dot-product attention (SDPA) is calculated. You’ll conduct a line-by-line implementation of the seminal “Attention Is All You Need” paper by Vaswani et al. [1], which I’ll refer to often in this chapter. Specifically, you’ll train the transformer on a real dataset with 29,000 German-­to-English sentence pairs. This prepares you for building text-to-image models later in the book. By the end of this chapter, you’ll have coded a transformer from scratch and demystified the “black box” of attention. This prepares you for building text-to-image models later in the book. Let’s dive in and see why attention truly is all you need.

2.1 An overview of attention and transformers

 Transformers are advanced deep-learning models that excel in handling sequence-to-sequence prediction challenges. Their strength lies in effectively understanding the relationships between elements in sequences over long distances, such as two words far apart in the text (e.g., 100 words away from each other).

 The revolutionary aspect of the transformer architecture is its attention mechanism. This mechanism assesses the relationship between words in a sequence by assigning weights, determining the degree of relatedness in meaning among words based on the training data. This enables models such as ChatGPT to comprehend relationships between words, thus “understanding” human language more effectively.

 In this section, we’ll dive deep into the attention mechanism, exploring how it works. This process is crucial for determining the importance, or weights, of various words within a sentence. After that, we’ll examine the structure of different transformer models, including one that can translate between any two languages.

2.1.1 How the attention mechanism works

 The attention mechanism is an algorithm designed to compute the relationships between any two elements in a sequence. It assigns scores to indicate how one element is related to all other elements, including itself, within the sequence. A higher score signifies a stronger relationship between the two elements. In natural language processing (NLP), the attention mechanism enables the model to meaningfully relate one word to other words in a sentence.

 This chapter will guide you through implementing the attention mechanism for language translation, using German to English translation as an example. We’ll construct a transformer composed of an encoder and a decoder: the encoder transforms a German sentence, such as Wie geht es dir (How are you), into vector representations that capture its meaning. The decoder then uses these vector representations to generate the English translation.

 Like other neural networks, transformers can’t take raw text as inputs. Therefore, we’ll first convert German and English phrases into input embeddings, which we can feed into our transformer model. Figure 2.2 illustrates how we convert raw text into input embeddings using our example German phrase of “Wie geht es dir” (How are you?), which is broken down into a sequence of smaller semantic units known as tokens ([Wie, geht, es, dir]). Each token is then transformed into a word embedding that captures its meaning. Positional encodings are also created to retain the order of tokens within the sequence. Finally, the word embeddings and positional encodings are combined element-wise to produce the final input embedding. We perform the same procedures to create word embeddings, positional encodings, and eventually input embedding for English phrases.

OEBPS/Images/CH01_F06_Liu2.png
Noise Noise

% %41 xr
Noisy image Random noise

OEBPS/Images/cover.jpg
BUILD A

with transformers and diffus|

Mark Liv

/'I MANNING

OEBPS/Images/liu-mark.jpg

OEBPS/Images/CH01_F04_Liu2.png
Original
image

Codebook
(a collection of e,)

z_
1

1022

1023

2
M
Discrete
latent
representations

latent

Quantization
based on the
shortest distance
between z and e,

z,
Continuous

representations

A sequence of integers

Flattened

873

862

873

148

VaQV-AE
Decoder

Reconstructed
image

W

OEBPS/Images/CH01_F10_Liu2.png
Lay the foundation for text-to-image generation.

ch6
; - . 4. Classifier-
1.Builda 2. Vision 3. Diffusion iesifie
transformer. transformer models. e dituskg
guidance
| e cho-10 ch 11 ch 12
5. CLIP: 7.VQGAN: o
6. Stable 8. Replicating
similarity between| Diffuaion image to DALLE
text and image sequence
Build a sion-based Build a transformer-based

image generator. text-to-image generator.

OEBPS/Images/CH01_F08_Liu2.png

OEBPS/Images/CH01_F07_Liu2.png
Final output

3x512x512
Text embedding
Text prompt:
e.g., Banana riding
o CLIP
a motorcyle, with
sunglasses and i Encodeg
a straw hat
Denoised
Latent image latent image
(464 x 64) (464 x 64)
. Conditional
Latent seed: Latent VAE

Random noise

U-Net

Repeat N inference steps

OEBPS/Images/CH01_F01_Liu2.png
Handle only one
type of data,
eg. GPT-3

Unimodal
Models

Handle more than
one type of data
e.g., Stable Diffusion

Multimodal
Models

Output
(e.g., image)

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH02_F01_Liu2.png
Build and train an encoder—decoder
transformer to translate German to
English; code attention from scratch.

\\, ch2 ch3-4 ch5 ch6

\
| tBuida | 2. Vision 3. Diffusion 1 Classifor.
| transformer. | transformer models
|] quidance
[one ch 910 ch 11 ch12
5.CLIP: | 7. VQGAN:
similarity between f)‘ :"’b‘e image to 8. 'E;"L“EEE“”Q
text and image | iffusion sequence 3

OEBPS/Images/CH01_F05_Liu2.png
Training
image

Training
caption

Image
tokens

VQGAN
—— | Encoder | ——»|
(frozen)

Predicted
image
tokens

Minimize

cross-entropy :

loss

Generated
image

VQGAN

Decoder

Predicted
image
tokens

OEBPS/Images/CH01_F03_Liu2.png

OEBPS/Images/CH01_F09_Liu2.jpg

OEBPS/Images/CH01_F02_Liu2.png
“+Original caption

the children are playing basketball
indoors

“Generated caption

the boy is playing basketball in the
arena

**Original caption:
two white dogs run through the grass

**Generated caption
two white dogs running

**Original caption:

two young girls are running through
shaliow water at a pool
*Generated caption:

two girls are running away from the
water and laughing

