

 [image: cover]

Go in Practice

 Matt Butcher
 Matt Farina

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Susanna Kline
Technical development editors: Ivan Kirkpatrick, Kim Shrier,
Glenn Burnside, Alain Couniot
Review editor: Aleksandar Dragosavljevic
Project editor: Karen Gulliver
Copy editor: Sharon Wilkey
Proofreader: Melody Dolab
Technical Proofreader: James Frasché
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781633430075

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Background and fundamentals

 Chapter 1. Getting into Go

 Chapter 2. A solid foundation

 Chapter 3. Concurrency in Go

 2. Well-rounded applications

 Chapter 4. Handling errors and panics

 Chapter 5. Debugging and testing

 3. An interface for your applications

 Chapter 6. HTML and email template patterns

 Chapter 7. Serving and receiving assets and forms

 Chapter 8. Working with web services

 4. Taking your applications to the cloud

 Chapter 9. Using the cloud

 Chapter 10. Communication between cloud services

 Chapter 11. Reflection and code generation

 Index

 List of Figures

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Background and fundamentals

 Chapter 1. Getting into Go

 1.1. What is Go?

 1.2. Noteworthy aspects of Go

 1.2.1. Multiple return values

 1.2.2. A modern standard library

 1.2.3. Concurrency with goroutines and channels

 1.2.4. Go the toolchain—more than a language

 1.3. Go in the vast language landscape

 1.3.1. C and Go

 1.3.2. Java and Go

 1.3.3. Python, PHP, and Go

 1.3.4. JavaScript, Node.js, and Go

 1.4. Getting up and running in Go

 1.4.1. Installing Go

 1.4.2. Working with Git, Mercurial, and version control

 1.4.3. Exploring the workspace

 1.4.4. Working with environment variables

 1.5. Hello, Go

 1.6. Summary

 Chapter 2. A solid foundation

 2.1. Working with CLI applications, the Go way

 2.1.1. Command-line flags

 2.1.2. Command-line frameworks

 2.2. Handling configuration

 Technique 3 Using configuration files

 Technique 4 Configuration via environment variables

 2.3. Working with real-world web servers

 2.3.1. Starting up and shutting down a server

 2.3.2. Routing web requests

 2.4. Summary

 Chapter 3. Concurrency in Go

 3.1. Understanding Go’s concurrency model

 3.2. Working with goroutines

 Technique 10 Using goroutine closures

 Technique 11 Waiting for goroutines

 Technique 12 Locking with a mutex

 3.3. Working with channels

 Technique 13 Using multiple channels

 Technique 14 Closing channels

 Technique 15 Locking with buffered channels

 3.4. Summary

 2. Well-rounded applications

 Chapter 4. Handling errors and panics

 4.1. Error handling

 Technique 16 Minimize the nils

 Technique 17 Custom error types

 Technique 18 Error variables

 4.2. The panic system

 4.2.1. Differentiating panics from errors

 4.2.2. Working with panics

 4.2.3. Recovering from panics

 4.2.4. Panics and goroutines

 4.3. Summary

 Chapter 5. Debugging and testing

 5.1. Locating bugs

 5.1.1. Wait, where is my debugger?

 5.2. Logging

 5.2.1. Using Go’s logger

 5.2.2. Working with system loggers

 5.3. Accessing stack traces

 Technique 26 Capturing stack traces

 5.4. Testing

 5.4.1. Unit testing

 5.4.2. Generative testing

 5.5. Using performance tests and benchmarks

 Technique 29 Benchmarking Go code

 Technique 30 Parallel benchmarks

 Technique 31 Detecting race conditions

 5.6. Summary

 3. An interface for your applications

 Chapter 6. HTML and email template patterns

 6.1. Working with HTML templates

 6.1.1. Standard library HTML package overview

 6.1.2. Adding functionality inside templates

 6.1.3. Limiting template parsing

 6.1.4. When template execution breaks

 6.1.5. Mixing templates

 6.2. Using templates for email

 Technique 38 Generating email from templates

 6.3. Summary

 Chapter 7. Serving and receiving assets and forms

 7.1. Serving static content

 Technique 39 Serving subdirectories

 Technique 40 File server with custom error pages

 Technique 41 Caching file server

 Technique 42 Embedding files in a binary

 Technique 43 Serving from an alternative location

 7.2. Handling form posts

 7.2.1. Introduction to form requests

 7.2.2. Working with files and multipart submissions

 7.2.3. Working with raw multipart data

 7.3. Summary

 Chapter 8. Working with web services

 8.1. Using REST APIs

 8.1.1. Using the HTTP client

 8.1.2. When faults happen

 8.2. Passing and handling errors over HTTP

 8.2.1. Generating custom errors

 8.2.2. Reading and using custom errors

 8.3. Parsing and mapping JSON

 Technique 53 Parsing JSON without knowing the schema

 8.4. Versioning REST APIs

 Technique 54 API version in the URL

 Technique 55 API version in content type

 8.5. Summary

 4. Taking your applications to the cloud

 Chapter 9. Using the cloud

 9.1. What is cloud computing?

 9.1.1. The types of cloud computing

 9.1.2. Containers and cloud-native applications

 9.2. Managing cloud services

 9.2.1. Avoiding cloud provider lock-in

 9.2.2. Dealing with divergent errors

 9.3. Running on cloud servers

 9.3.1. Performing runtime detection

 9.3.2. Building for the cloud

 9.3.3. Performing runtime monitoring

 9.4. Summary

 Chapter 10. Communication between cloud services

 10.1. Microservices and high availability

 10.2. Communicating between services

 10.2.1. Making REST faster

 10.2.2. Moving beyond REST

 10.3. Summary

 Chapter 11. Reflection and code generation

 11.1. Three features of reflection

 Technique 66 Switching based on type and kind

 Technique 67 Discovering whether a value implements an interface

 Technique 68 Accessing fields on a struct

 11.2. Structs, tags, and annotations

 11.2.1. Annotating structs

 11.2.2. Using tag annotations

 11.3. Generating Go code with Go code

 Technique 70 Generating code with go generate

 11.4. Summary

 Index

 List of Figures

 List of Listings

Foreword

 When I heard that Matt Farina and Matt Butcher were starting a new book on Go, I was excited. Both have been key contributors
 in the Go ecosystem for years, and have extensive work experience and backgrounds that flavor the prose in this book with
 the spice of past learnings. The book is intended as a spiritual successor to Go in Action, taking you beyond the basics that we introduced there and into more practical learning.

 The book is broken into four easily digestible parts, each with a different focus. Part 1 is a refresher on key Go concepts. If you’re in a hurry and comfortable with your Go skills, you can safely skip this section,
 but I discourage that. In reviewing the final manuscript, I found nuggets of such value that I think everyone would benefit
 from these chapters.

 Part 2 dives into the mechanics of managing a Go application in the real world. The chapter on errors is one of the best treatises
 on Go errors I’ve ever read, and the chapter on debugging and testing provides useful information on that crucial middle step
 of application development that takes your application from proof of concept to reliable production system.

 In part 3, you’ll learn about ways to create user interfaces for your application. The chapter on templates is an excellent guide to
 what many find to be a complicated part of Go’s ecosystem. You’ll see practical ways to reuse your templates and make your
 web interfaces more dry. The examples alone are worth the price of the book, as it’s difficult to find examples of template usage that can be easily
 mapped to a real-world application. Later, you’ll see how to create and consume a standards-compliant REST API and learn the
 tricks to properly versioning that API.

 The final section of the book moves into the interoperability layer that’s required in nearly every application today. You’ll
 dive deep into cloud infrastructure and see where Go fits in the cloud-computing model. You’ll finish with great coverage
 of microservices and service-to-service communication patterns.

 Whether you’re just coming to Go or you’ve been writing Go applications for years, this book has vital knowledge that will
 help you take your application development to the next level. The authors do a great job of presenting complex information
 with a unified voice and in a manner that’s easy to digest. I’m excited for the publication of this book and the value that
 it brings to the Go community. I hope that you’ll enjoy reading it as much as I have.

 —BRIAN KETELSEN

 CO-AUTHOR OF GO IN ACTION

 CO-FOUNDER OF GOPHER ACADEMY

Preface

 When we first started using Go, we saw a language with a lot of potential. We wanted to build applications with it. But it
 was a new language, and many companies are wary of introducing a new programming language.

 This is especially true in the enterprise, where Go has the potential to have a huge impact. New languages are challenged
 to be trusted, accepted, and adopted. There are hundreds of thousands of developers in businesses where leaders need to be
 swayed to try a new language and developers need to learn it well enough to build applications and see a benefit.

 Open source projects, conferences, training, and books all help to make a programming language more palatable. We wanted to
 write a book that teaches Go in order to help the Go community, help those trying to learn Go or to convince their organizations’
 leadership, and help us in the companies that we work for and with.

 When we first started the book, it was targeted squarely at cloud development with Go. Go is a language built for the cloud,
 and we’ve spent years working in cloud computing. Once we started working with Manning Publications, we saw an opportunity
 to expand beyond the cloud, into more useful and helpful patterns. And so the book shifted from being cloud-focused to pattern-focused.
 Yet it still retains its cloud roots.

 Go in Practice is our attempt to help developers move from being familiar with the language to being productive with it. To help the community
 of developers grow, while helping organizations write better software.

Acknowledgments

 We’ve spent about two years writing this book, but none of the effort would have been possible without the commitment of our
 families. They’ve supported us through the early mornings, late nights, and weekends when we were focused on writing. They
 were there as we were fixated on solving problems, even when we weren’t sitting down to write.

 Good code is never created in a vacuum. We’re also grateful to the women and men of the Go community who have so generously
 given their time to create a great language, great libraries, and a thriving ecosystem. It has been exciting to be a part
 of such a diverse, burgeoning community of developers. In particular, Rob Pike, Brian Ketelsen, and Dave Cheney all reached
 out to us early in our Go learning process. They’re admirable ambassadors of the language. Special thanks to Brian for contributing
 the foreword to the book and for endorsing our work.

 We appreciate the many individuals who gave time and effort to the creation of this book. It has been an arduous process,
 and thanks to many careful readers, including our MEAP readers, we found and corrected numerous mistakes.

 We’d like to thank everyone at Manning, especially our development editor, Susanna Kline; our technical development editors,
 Ivan Kirkpatrick, Kim Shrier, Glenn Burnside, and Alain Couniot; and our technical proofreader, James Frasché; as well as
 everyone who worked on our book behind the scenes. Thanks also to the many reviewers who took the time to read our manuscript
 at various stages of its development and who provided invaluable feedback: Anthony Cramp, Austin Riendeau, Brandon Titus,
 Doug Sparling, Ferdinando Santacroce, Gary A. Stafford, Jim Amrhein, Kevin Martin, Nathan Davies, Quintin Smith, Sam Zaydel,
 and Wes Shaddix.

 Finally, we owe a debt of gratitude to the Glide community, which has grown with us as we worked to build a top-tier package
 manager for Go. Thank you for your support.

Matt Butcher

 I began writing this book at Revolv, continued when Google/Nest acquired us, and finished at Deis. Thanks to all three for
 supporting the writing of this book. Thanks to Brian Hardock, Cristian Cavalli, Lann Martin, and Chris Ching, all of whom
 served as early sounding boards. Matt Boersma provided helpful feedback for several chapters. Kent Rancourt and Aaron Schlesinger
 each inspired particular code examples in this book. Matt Fisher, Sivaram Mothiki, Keerthan Mala, Helgi Þorbjörnsson (yes,
 Helgi, I copied and pasted that), Gabe Monroy, Chris Armstrong, Sam Boyer, Jeff Bleiel, Joshua Anderson, Rimas Mocevicius,
 Jack Francis, and Josh Lane all (wittingly or unwittingly) influenced specific portions of this book. The impact of Michelle
 Noorali and Adam Reese cannot be understated; I’ve learned a lot watching a couple of Ruby developers master Go. And thanks
 to Angie, Annabelle, Claire, and Katherine for their unflagging support and understanding.

Matt Farina

 I would like to thank Kristin, my beautiful and amazing wife, along with our wonderful daughters, Isabella and Aubrey, for
 their love and support.

 I wrote this book while working at Hewlett Packard Enterprise, formerly Hewlett-Packard. Working at HPE has taught me invaluable
 lessons while providing me with the opportunity to work alongside and learn from those far wiser than myself. Specifically,
 I need to thank Rajeev Pandey, Brian Aker, Steve McLellan, Erin Handgen, Eric Gustafson, Mike Hagedorn, Susan Balle, David
 Graves, and many others. They have affected the way I write and operate applications, and that has shown up in these chapters
 in subtle ways.

 There have been many others who influenced portions of this book, sometimes without realizing it. Thanks to Tim Pletcher,
 Jason Buberel, Sam Boyer, Larry Garfield, and all those I may have forgotten who had a positive influence.

 Finally, I want to thank Matt Butcher. I never imagined authoring books until you suckered me into it. Thanks!

About this Book

 Go in Practice is a book about practical development using the Go programming language. Developers already familiar with the basics of Go
 will find patterns and techniques for creating Go applications. Chapters are organized around central themes (for example,
 chapter 10, “Communicating between cloud services”), but then explore a variety of techniques related to that theme.

How the book is organized

 The 11 chapters are divided into four parts.

 Part 1, “Background and fundamentals,” provides a foundation for building applications. Chapter 1 provides the background of Go for those not already familiar with it or those with a passing understanding who would like
 to learn more. Building console applications and servers is the topic of chapter 2, and concurrency in Go is the topic of chapter 3.

 Part 2, “Well-rounded applications,” contains chapters 4 and 5. These chapters cover errors, panics, debugging, and testing. The goal of this section is to build applications you trust
 that handle problems well.

 Part 3, “An interface for your applications,” contains three chapters with topics ranging from generating HTML and to serving assets
 to providing and working with APIs. Many Go applications provide web applications and REST APIs for interaction. These chapters
 cover patterns to aid in their construction.

 Part 4, “Taking your applications to the cloud,” contains the remaining chapters, which focus on cloud computing and generating
 code. Go is a language built with cloud needs in mind. This section showcases patterns that enable working with those services
 and operating applications, sometimes as microservices, in them. It also covers generating code and metaprogramming.

 There are 70 techniques explored in the book, each with its own Problem, Solution, and Discussion sections.

Code conventions and downloads

 All source code in the book is presented in a mono-spaced typeface like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out key concepts, and numbered
 bullets are sometimes used in the text to provide additional information about the code.

 Source code for the examples in the book is available for download from the publisher’s website at www.manning.com/books/go-in-practice and from GitHub at github.com/Masterminds/go-in-practice.

Author Online Forum

 The purchase of Go in Practice includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/books/go-in-practice. This page provides information on how to get on the forum after you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 [image:]

 MATT BUTCHER is an architect at Deis, where contributing to open source projects is his day job. He has written several books and dozens
 of articles. Matt holds a PhD in philosophy and teaches in the Computer Science department at Loyola University Chicago. Matt
 is passionate about building strong teams and developing elegant solutions to complex problems.

 [image:]

 MATT FARINA is a Principal Engineer in the Advanced Technology Group at Hewlett Packard Enterprise. He is an author, speaker, and regular
 contributor to open source software who has been developing software for over a quarter century. He likes to solve problems
 for regular people by creating solutions using both the latest technology and the mundane that can be easily overlooked.

About the Cover Illustration

 The figure on the cover of Go in Practice is captioned “Habit of the Wife of a Russian Peasant in 1768.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, published in London between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened
 with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” An English cartographer, he was the leading map supplier
 of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial
 maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs of the lands
 he surveyed and mapped, and these are brilliantly displayed in his four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections
 such as this one were popular, introducing the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It’s now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we’ve traded a cultural and visual diversity for a more varied personal life, or a more varied and interesting intellectual
 and technical life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jefferys’ pictures.

Part 1. Background and fundamentals

 This opening part of the book provides some background about Go and a foundation for building applications. Chapter 1 starts with an overview of Go for those not already familiar with it.

 Chapters 2 and 3 move into base components for an application. Chapter 2 provides the foundation for building an application, including working with console applications and servers, and handling
 configuration. Chapter 3 focuses on using goroutines. Goroutines are one of the more powerful and useful elements in Go. They’re regularly used in
 Go applications, and you’ll see them through the rest of this book.

Chapter 1. Getting into Go

 This chapter covers

 	Introducing Go

 	Understanding where Go fits into the language landscape

 	Getting up and running in Go

 The way we build and run software is changing. Innovation has swept in, disrupting long-standing assumptions about the computing
 environments that software runs in. To fully take advantage of these innovations, you need languages and tools that support
 them at their core.

 When most mainstream programming languages and supporting toolchains were developed, they were designed for single-core processing.
 That’s what we had. Now desktop computers, servers, and even our phones have processors with multiple cores. Running software
 with operations taking place concurrently can happen anywhere.

 Toolchains around building applications have changed. Increased functionality and complexity in software requires environments
 that can build and execute the code rapidly and efficiently. Testing larger and more complicated codebases needs to happen
 quickly so it doesn’t become a development blocker. Many applications are developed using libraries. Libraries and their versions are managed differently, thanks to solutions to disk-space problems
 that hampered this in the past.

 The way infrastructure and software are delivered has changed. Using colocated servers, managing your own hardware, or getting
 simple virtual private servers used to be the norm. Standing up a service at scale often meant you needed an investment in
 running your own hardware, including load balancers, servers, and storage. Getting everything ordered, assembled, and connected
 to the world would take weeks or months. Now it’s available in a matter of seconds or minutes via the cloud.

 This chapter introduces the Go programming language for those not already familiar with it. In this chapter, you’ll learn
 about the language, the toolchain that accompanies it, where Go fits into the landscape of languages, and how to install Go
 and get it running.

1.1. What is Go?

 Go, sometimes referred to as golang to make it easier to find on the web, is a statically typed and compiled open source programming language initially developed
 by Google. Robert Griesemer, Rob Pike, and Ken Thompson were attempting to create a language for modern systems programming
 that solved real-world problems they encountered while building large systems at scale.

 Instead of attempting to attain theoretical pureness, these designers engineered Go around real-world practical situations.
 It’s inspired by a host of languages that came before it, including C, Pascal, Smalltalk, Newsqueak, C#, JavaScript, Python,
 Java, and many others.

 Go isn’t the typical statically typed and compiled language. The static typing has features that make it feel dynamic, and
 the compiled binaries have a runtime that includes garbage collection. The design of the language took into account the types
 of projects that Google would need to use it for: large codebases operating at scale and being developed by large developer
 teams.

 At its core, Go is a programming language defined by a specification that can be implemented by any compiler. The default
 implementation is shipped via the go tool. But Go is more than a programming language. As figure 1.1 illustrates, layers are built on top of the language.

 Figure 1.1. The layers of Go

 [image:]

 Developing applications requires more than a programming language—for example, testing, documentation, and formatting. Each
 of these areas needs tools to support it. The go tool that’s used to compile applications also provides functionality to support these elements. It’s a toolchain for application
 development. One of the most notable aspects of the toolchain is package management. Out of the box, the programming language
 Go and the go toolchain provide for packages. A built-in package system, along with a common toolchain for the essential elements of development,
 has enabled an ecosystem to form around the programming language.

 One of the defining characteristics of Go is its simplicity. When Griesemer, Pike, and Thompson were originally designing
 the language, a feature didn’t go in until all three agreed that it should be a feature of the language. This style of decision-making, along with their years of experience, led
 to a simple but powerful language. It’s simple enough to keep in your head yet powerful enough to write a wide variety of
 software.

 An example of this philosophy can be seen in the variable syntax:

 var i int = 2

 Here a variable is created as an integer and set to a value of 2. Because an initial value is given, you can shorten the syntax as follows:

 var i = 2

 When an initial value is provided, the compiler is smart enough to figure out the type. In this case, the compiler sees the
 value of 2 and knows the type is an integer.

 Go doesn’t stop there. Do we need the var keyword? Go provides something called short variable declarations:

 i := 2

 This is a concise equivalent to the first variable statement. It’s less than half the length of the first example, easy to
 read, and happens because the compiler figures out the missing parts.

 Simplicity means Go doesn’t have all the features of every other programming language. For example, Go has neither a ternary
 operator (usually ?:) nor type generics. Lacking some features present in other modern languages has opened Go to occasional criticism, but this
 shouldn’t deter you from using Go. With software, there’s often more than one way to solve a programming problem. Although
 Go may lack a feature that another language contains, Go provides ways to solve the same problems in a well-thought-out manner.

 Although the core of the language is fairly simple, the Go built-in package system enables you to add many aspects. Many of
 the missing elements can be built as a third-party package and incorporated into applications via the package system.

 The minimal size and complexity has benefits. The language can be learned quickly and easily retained. This turns out to be
 quite a benefit when quickly crafting and iterating over a codebase.

1.2. Noteworthy aspects of Go

 Because Go is designed around practical situations, it has several noteworthy features. These useful characteristics, when
 used together, provide the building blocks for Go applications.

 1.2.1. Multiple return values

 One of the first things you’ll learn in Go is that functions and methods can return multiple values. Most programming languages
 support returning a single value from a function. When you need to return multiple values, they’re shoehorned into a tuple,
 hash, or other type, and that value is returned. Go is one of the few languages natively supporting multiple return values.
 This feature is regularly used, and something you’ll see in virtually every part of Go and the libraries and applications
 written in it. For example, consider the following function that returns two string names.

 Listing 1.1. Multiple returns: returns.go

 [image:]

 	

 Tip

 Imported packages used in this chapter, such as fmt, bufio, net, and others, are part of the standard library. More details, including their APIs and how they work, can be found at https://golang.org/pkg.

 	

 In this example, each return is defined in the function definition after the arguments [image:]. In this case, there are two string values. When return is called, it returns two strings [image:] to match the definition. When the Names function is called, you need to have a variable for each return to capture the value [image:]. But if you want to ignore one of the returned values, use _ instead of a variable name [image:]. (Don’t worry too much about the details of this example. You’ll come back to these concepts, libraries, and tools in the
 coming chapters.)

 Building on the idea of multiple returned values, you can name them and work with these names the same way you do variables.
 To illustrate, let’s rework the previous example to use named return values in the next listing.

 Listing 1.2. Named return values: returns2.go

 [image:]

 As the Names function executes, the named return variables [image:] are available to have values assigned to them [image:]. When return is called [image:] with no values, the current values for the return names are returned. For code calling the function, getting the response
 [image:] and using it works the same as without using names.

 1.2.2. A modern standard library

 Modern applications have common themes, such as being networked and dealing with encryption. Instead of burdening you, the
 developer, with the task of hunting for commonly needed libraries, the Go standard library provides useful modern functionality
 out of the box. Let’s take a look at a few elements in the standard library so you can get an idea of what’s included.

 	

 Note

 The entire standard library is documented, with examples, at http://golang.org/pkg/.

 	

Networking and HTTP

 Building applications in a networked world means applications need to work as both a client that can connect to other networked
 devices, and as a server that other applications can connect to (see listing 1.3). The Go standard library makes this easy, whether you’re working with HTTP or dealing directly with Transmission Control
 Protocol (TCP), User Datagram Protocol (UDP), or other common setups.

 Listing 1.3. Read TCP status: read_status.go

 [image:]

 Connecting directly to a port is part of the net package, in which Go provides a common setup for different types of connections. The Dial function [image:] connects using the type and endpoint specified. In this case, it makes a TCP connection to golang.org on port 80. Over the
 connection, a GET request is sent [image:], and the first line of the response is printed [image:].

 The ability to listen on a port is similarly easy to work with. Instead of calling out to an endpoint by using Dial, the Listen function in the net package enables an application to listen on a port and act on incoming connections.

 HTTP, Representational State Transfer (REST), and web servers are incredibly common. To handle this common case, Go has the
 http package for providing both a client and a server (see the following listing). The client is simple enough to use that it
 meets the needs of the common everyday cases and extensible enough to use for the complex cases.

 Listing 1.4. HTTP GET: http_get.go

 [image:]

 This example shows how to print the body of a simple HTTP GET request. The HTTP client can go far beyond this to deal with proxies, perform TLS handling, set headers, handle cookies,
 create client objects, and even swap out the transport layer altogether.

 Creating an HTTP server with Go is a common task. What Go provides in the standard library is powerful enough to operate at
 scale, easy to get started with, and flexible enough to handle complex applications. Chapter 3 is dedicated to getting up and running with an HTTP server.

HTML

 If you’re working with web servers, you’re likely going to work with HTML as well. The html and html/template packages provide a great start to generating web pages. Whereas the html package deals with escaping and unescaping HTML, the html/template package deals with creating reusable HTML templates. The security model for handling the data is documented, and helper functions
 exist for working with HTML, JavaScript, and more. The template system is extensible, making it an ideal base for more-complicated
 functionality, while providing a good set of functionality for anyone to get started.

Cryptography

 Cryptography has become a common component of an application, whether you’re dealing with hashes or encrypting sensitive information.
 Go provides the common functionality including MD5, multiple versions of Secure Hash Algorithm (SHA), Transport Layer Security
 (TLS), Data Encryption Standard (DES), Triple Data Encryption Algorithm (TDEA), Advanced Encryption Standard (AES, formerly
 known as Rijndael), Keyed-Hash Message Authentication Code (HMAC), and many others. Additionally, a cryptographically secure
 random number generator is provided.

Data Encoding

 When you share data between systems, an immediate concern is encoding. Did the data come in with base64 encoding? Does JavaScript
 Object Notation (JSON) or Extensible Markup Language (XML) data need to be turned into a local object? These are common situations,
 especially in our modern networked world.

 Go was designed with encoding in mind. Internally, Go is entirely handled as UTF-8. This should be no surprise, as the creators
 of UTF-8 also created Go. But not everything passed around between systems is in UTF-8, and you have to deal with data formats
 that add meaning to the text. To handle the transitions and manipulations, Go has packages and interfaces. The packages provide
 features such as the ability to turn a JSON string into instantiated objects, and the interfaces provide a way to switch between
 encodings or add new ways to work with encodings via external packages.

 1.2.3. Concurrency with goroutines and channels

 Computer processors with multiple processing cores have become commonplace. They’re in devices from servers to cell phones.
 Yet most programming languages were designed for processors with a single core, because that’s what existed at the time. Some programming languages even have a runtime with a global thread lock hampering the ability to easily run routines in parallel.
 Go was designed with parallel and concurrent processing in mind.

 Go has a feature called a goroutine, a function that can be run concurrently to the main program or other goroutines. Sometimes dubbed lightweight threads, goroutines are managed by the Go runtime, where they’re mapped and moved to the appropriate operating system thread and
 garbage-collected when no longer needed. When multiple processor cores are available, the goroutines can be run in parallel
 because various threads are running on different processing cores. But from the developer’s point of view, creating a goroutine
 is as easy as writing a function. Figure 1.2 illustrates how goroutines work.

 Figure 1.2. Goroutines running in threads distributed on the available processing cores

 [image:]

 To further illustrate how this works, let’s look at a goroutine that counts from 0 to 4 while the main program prints Hello World concurrently, as shown in the following listing.

 Listing 1.5. Concurrent output

 0
1
Hello World
2
3
4

 This printed output is a mix of two functions printing concurrently. The code to make this happen is similar to normal procedural
 programming, but with a small twist, as shown next.

 Listing 1.6. Printing concurrently

 [image:]

 The count function [image:] is a normal function that counts from 0 to 4. To run count in parallel rather than in order, you use the go keyword [image:]. This causes main to continue executing immediately. Both count and main execute concurrently.

 Channels provide a way for two goroutines to communicate with each other. By default, they block execution, allowing goroutines
 to synchronize. Figure 1.3 shows a simple example.

 Figure 1.3. Passing variables between goroutines via a channel

 [image:]

 In this example, a variable is passed from one goroutine to another through a channel. This operation works even when goroutines
 are running in parallel on different processor cores. Although this example shows one-directional information passing, channels
 can be one-directional or bidirectional.

 The following listing is an example of taking advantage of a channel.

 Listing 1.7. Using channels: channel.go

 [image:]

 At the start of main, an integer-typed channel c is created [image:] to communicate between goroutines. When printCount is started as a goroutine, the channel is passed in [image:]. As an argument to printCount, the channel needs to be identified as an integer channel [image:]. In the for loop inside printCount, num waits for channel c to send in integers [image:]. Back in main, a list of integers is iterated over and passed into the channel c one at a time [image:]. When each integer is passed into the channel on main [image:], it’s received into num within printCount [image:]. printCount continues until the for loop goes into another iteration and comes to the channel statement again [image:], where it waits for another value to come in on the channel. After main is done iterating over the integers, it continues on. When main is finished executing, the entire program is done, so you pause for a second [image:] before exiting so printCount can complete before main is done. Running this code produces the following listing.

 Listing 1.8. Channel output

 8 6 7 5 3 0 9 -1 End of main

 Using channels and goroutines together provides functionality similar to lightweight threads or internal micro-services that
 communicate over a type-defined API. These can be chained or pieced together by using various techniques.

 You’ll return to goroutines and channels, two of Go’s most powerful concepts, several times in this book. You’ll see how they’re
 used to write servers, handle message passing, and delay the execution of tasks. You’ll also examine design patterns for working
 with goroutines and channels.

 1.2.4. Go the toolchain—more than a language

 Developing modern scalable and maintainable applications requires many elements. Compiling isn’t the only common step. From
 the beginning, Go had this in mind. Go is more than a language and compiler. The go executable is a toolchain enabling lightweight package management, testing, documentation generation, and more, in addition
 to being able to compile a Go codebase into an executable. To illustrate, let’s look at a few of the components in the toolchain.

Package Management

 Many modern programming languages have package managers, but how many have package management built right in? Go does, and
 this proves to be useful for two important reasons. The obvious reason is programmer productivity. The second reason is faster
 compile time. Package handling was designed with a compiler in mind. It’s one of the reasons the compiler is so fast.

 The easiest way to ease into packages is to look at the standard library (see the following listing), which is built on the
 package system.

 Listing 1.9. Single package import

 [image:]

 Packages are imported by their name. In this case, fmt is the format package. Everything in the package that can be referenced is available with the package name as the prefix.
 Here you have fmt.Println:

 import (
 "fmt"
 "net/http"
)

 Package imports can be grouped together and should be in alphabetical order. In this case, the net/http package is referenced with the http. prefix.

 The import system works with packages from outside the Go standard library, and those packages are referenced just like any
 other package:

 [image:]

 Package names are unique strings and can be anything. Here they’re URLs to external packages. This enables Go to know this
 unique resource and to go out and get it for you:

 $ go get ./...

 The go get command can accept a path, such as golang.org/x/net/html, to get an individual package or ./... can be used, which will walk through the codebase and get any referenced external packages. Here Go looks at the import statement, sees an external reference, gets the package, and makes it available in the current workspace.

 Go can talk to version-control systems to get the packages. It can speak to Git, Mercurial, SVN, and Bazaar when you have
 them installed in your local environment. In this case, Go retrieves the codebase from Git and checks out the latest commit
 from the default branch.

 This package system isn’t designed to be everything anyone would ever want in a package system. It provides the basics that
 can be used directly or as a basis for a more fully featured system.

Testing

 Testing is a common element of software development—some would say it’s essential. Go provides a system for testing that includes
 a package in the standard library, a command-line runner, code-coverage reporting, and race-condition detection.

 Creating and executing tests is fairly straightforward, as shown in the next listing.

 Listing 1.10. Hello World: hello.go

 package main

import "fmt"

func getName() string {
 return "World!"
}

func main() {
 name := getName()
 fmt.Println("Hello ", name)
}

 Starting with a variant form of a Hello World application, you have a function, getName, that can be tested. Go’s naming convention for test files is that they end in _test.go. This suffix tells Go that this is a file to be run when tests execute, and excluded when the application is built, as shown
 in the next listing.

 Listing 1.11. Hello World test: hello_test.go

 [image:]

 When go test is run, it executes the function that begins with Test [image:]. In this case, TestName

OEBPS/006fig01_alt.jpg
package main

import (

“fmte
) ? Two strings defined for return
func Names() (string, string)

return "Foo*, "Bar" <——@) Two strings are returned.

}

func main() {

nl, n2 := Names() |_@ Variables get two values
fmt.Println(nl, n2) and print them.
3, _

Names () <) Gets first return value and skips second
£met. Println(n3)

OEBPS/num-01.jpg
1

OEBPS/0xxfig02.jpg

OEBPS/01fig01_alt.jpg
‘What is Go?

A programming language: Go is a modern
programming language designed to use
modern hardware architectures.

A development toolchain: To support Go
application development, built-in tools provide
testing, documentation, formatting, and more.

An ecosystem: Go contains built-in package
management that works with source-code

/— management systems such as Git. An ecosystem
of packages and libraries have sprung up to
support Go applications.

OEBPS/common02.jpg

OEBPS/0xxfig01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common01.jpg

OEBPS/num-02.jpg

OEBPS/num-04.jpg

OEBPS/num-03.jpg
£}

OEBPS/cover.jpg
Matt Butcher
Matt Farina
Foswom o Bran Ketelsen

INCLUDES 70 TECHNIQUES

[| FTYTI

OEBPS/015fig01_alt.jpg
PRCXA0S a8 D

import “testing* Functions starting

i with Test are run.
func TestName(t *testing.T) (

name := getName ()

if name t= *worldt® (|_@ Report
t.Error (“Respone from getName is unexpected value*) errorif

1

test fai
}

OEBPS/014fig01_alt.jpg
SPOLE &

“golang. org/x/net /html® < External package referenced by URL
e

*net/http®

OEBPS/013fig01_alt.jpg
]

import *fmt*

< The ft package is imported.

func main() (

£mt.Println("Hello World!") < Afunction from fmt is used.
}

OEBPS/008fig01_alt.jpg
PAREage N,

import (
“bufio*
“fmen
“net*

)

Connects over TCP
func main() (
conn, _ := met.Dial(*tcp*, *golang.org:80%)

frt Eprint (conn, "GET / HITE/LOV\mE\T) o
status, _

wbufio. NewReader (conn) .ReadString (‘\n')
fntPrintln(status) Prints the first response line

Sends string over
the connection

OEBPS/007fig01_alt.jpg
PREEN Jan

import (
“fmee
)

func Names() (first string,

first = "Foo®
second = "Bar*
return

)

func main() {
nl, n2 := Names()

£mt.Println(nl, n2)

second string)

«

<

© Returned values have names.
]

|_@ Values assigned to named
return variables

<

1) return is called with no values.

(Q Variables are filled with values.

OEBPS/01fig02_alt.jpg
Goroutine.

Goroutine

Goroutine|

Thread

Goroutine

Goroutine

Goroutine

Goroutine

1)1

Thread

Processing Core

Processing Core

L

A goroutine, a function executing
concurrently to other functions,
runs on a thread managed by the
Go scheduler.

Goroutines can be moved
between operating system
threads by the Go scheduler.

Ifa thread is blocked—say, by an
1/0 bound task—other goroutines
can be moved to other threads.

Modern computing systems
have processors with multiple
cores, and in some cases
‘multiple processors with
‘multiple cores. Threads take
advantage of this.

OEBPS/008fig02_alt.jpg
- P,

import (

e

*i0/ioutil®

“net/httpt
)
Sl G Makes an HITP GET request
resp, _ :

whttp.Get (*http://example.con/")
Prints the body, _
bodyasa | wioutil Readall(resp.Body) <<——— Reads the body from the response
string L ene.print1n(string (body))

resp.Body.Close () < Closes the connection
3

OEBPS/01fig03_alt.jpg
Step I: A goroutine has an instance of a type.

Goroutine Channel Goroutine
Instance
Step 2: The goroutine passes the instance into a channel.
Goroutine, Channel Goroutine
Instance
Step 3: The channel passes the instance into another goroutine.
Goroutine Channel Goroutine

Instance.

OEBPS/011fig01_alt.jpg
IPRRE -

import (
fme
“time®

func count () {
for i :

0; 4 <55 der (Function to execute
fmt.Println(i) as goroutine
time.Sleep(time.Millisecond * 1)

func main() (
go count () <—@ Starts goroutine
time.Sleep(time.Millisecond * 2)
£t Println(“Hello World")
time.Sleep(time.Millisecond * 5)

OEBPS/num-05.jpg
&

OEBPS/012fig01_alt.jpg
PRESRIN s

import (
~£mt
“time*
)
func printCount (c chan int) (<@ Anint type channel passed in
num = 0
for num >= 0 (
<-c <@ Waits for value to come in
£me. Print (num, * *)
)
]
func main() (
c := make(chan int) <@ Achannel s created.
a := [lint(8, 6, 7, 5, 3, 0, 9, -1}
go printCount (c) <€) Starts the goroutine
for v range a ()/o Passes ints into channel

)

time.Sleep(time.Millisecond * 1) <@ main pauses before ending.
fnt. Println("End of main®)

OEBPS/num-06.jpg

