

 [image: cover]

 RabbitMQ in Action: Distributed messaging for everyone

 Alvaro Videla and Jason J.W. Williams

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	
 [image:]

 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
 	Development editors:
 	Maria Townsley, Cynthia Kane

	20 Baldwin Road
 	Technical proofreader:
 	Jerry Kuch

	PO Box 261
 	Copyeditor:
 	Benjamin Berg

	Shelter Island, NY 11964
 	Proofreader:
 	Katie Tennant

	
 	
 	Typesetter:
 	Dottie Marsico

	
 	
 	Cover designer:
 	Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Dedication

 To my grandfather, Maximiliano Godoy, who showed me the ways of life. Gracias.

 A.V.

 To Mama, Papa, and my sister J’aime. Your love, support, and faith in me has made it possible to climb mountains... and to
 God who always carries me to the other side.

 J.W.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Pulling RabbitMQ out of the hat

 Chapter 2. Understanding messaging

 Chapter 3. Running and administering Rabbit

 Chapter 4. Solving problems with Rabbit: coding and patterns

 Chapter 5. Clustering and dealing with failure

 Chapter 6. Writing code that survives failure

 Chapter 7. Warrens and Shovels: failover and replication

 Chapter 8. Administering RabbitMQ from the Web

 Chapter 9. Controlling Rabbit with the REST API

 Chapter 10. Monitoring: Houston, we have a problem

 Chapter 11. Supercharging and securing your Rabbit

 Chapter 12. Smart Rabbits: extending RabbitMQ

 Appendix A. Using Rabbit from Java and .NET

 Appendix B. Online resources

 Appendix C. Installing RabbitMQ on Windows

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Pulling RabbitMQ out of the hat

 1.1. Living in other people’s dungeons

 1.2. AMQP to the rescue

 1.3. A brief history of RabbitMQ

 1.4. Picking RabbitMQ out of the hat (and other open options)

 1.5. Installing RabbitMQ on Unix systems

 1.5.1. Why environment matters—living la vida Erlang

 1.5.2. Getting the package

 1.5.3. Setting up the folder structure

 1.5.4. Firing Rabbit up for the first time

 1.6. Summary

 Chapter 2. Understanding messaging

 2.1. Consumers and producers (not an economics lesson)

 2.2. Building from the bottom: queues

 2.3. Getting together: exchanges and bindings

 2.4. Multiple tenants: virtual hosts and separation

 2.5. Where’s my message? Durability and you

 2.6. Putting it all together: a day in the life of a message

 2.7. Using publisher confirms to verify delivery

 2.8. Summary

 Chapter 3. Running and administering Rabbit

 3.1. Server management

 3.1.1. Starting nodes

 3.1.2. Stopping nodes

 3.1.3. Stopping and restarting the application: what’s the difference?

 3.1.4. Rabbit configuration files

 3.2. Asking permission

 3.2.1. Managing users

 3.2.2. Rabbit’s permissions system

 3.3. Checking up

 3.3.1. Viewing statistics

 3.3.2. Understanding RabbitMQ’s logs

 3.4. Fixing a bad Rabbit: troubleshooting

 3.4.1. badrpc,nodedown and other Erlang-induced problems

 3.5. Summary

 Chapter 4. Solving problems with Rabbit: coding and patterns

 4.1. A decoupling story: what pushes us to messaging

 4.1.1. An asynchronous state of mind (separating requests and actions)

 4.1.2. Affording scale: a world without load balancers

 4.1.3. Zero-effort APIs: why be locked into just one language?

 4.2. Fire-and-forget models

 4.2.1. Sending alerts

 4.2.2. Parallel processing

 4.3. Remember me: RPC over RabbitMQ and waiting for answers

 4.3.1. Private queues and sending acknowledgements

 4.3.2. Simple JSON RPC with reply_to

 4.4. Summary

 Chapter 5. Clustering and dealing with failure

 5.1. Batteries included: RabbitMQ clustering

 5.2. Architecture of a cluster

 5.2.1. Queues in a cluster

 5.2.2. Distributing exchanges

 5.2.3. Am I RAM or a disk?

 5.3. Setting up a cluster on your laptop

 5.4. Distributing the nodes to more machines

 5.5. Upgrading cluster nodes

 5.6. Mirrored queues and preserving messages

 5.6.1. Declaring and using mirrored queues

 5.6.2. Under the hood with mirrored queues

 5.7. Summary

 Chapter 6. Writing code that survives failure

 6.1. Load balancing your Rabbits

 6.1.1. Installing HAProxy

 6.1.2. Configuring HAProxy

 6.2. Lost connections and failing clients between servers

 6.3. Summary

 Chapter 7. Warrens and Shovels: failover and replication

 7.1. Warrens: another way of clustering

 7.2. Setting up load balancer–based master/slave clusters

 7.3. Long-distance communication and replication

 7.3.1. Shoveling your Rabbits: an introduction to the Shovel plugin

 7.3.2. Installing Shovel

 7.3.3. Configuring and running Shovel

 7.4. Summary

 Chapter 8. Administering RabbitMQ from the Web

 8.1. Beyond rabbitmqctl: the RabbitMQ Management plugin

 8.1.1. Why you need the Management plugin

 8.1.2. Management plugin features

 8.1.3. Enabling the Management plugin

 8.2. Managing RabbitMQ from the web console

 8.2.1. Monitoring the Erlang VM

 8.2.2. Importing configuration from JSON files

 8.3. Managing users from the web console

 8.3.1. Creating users

 8.3.2. Managing users’ permissions

 8.4. Managing exchanges and queues from the web console

 8.4.1. Listing queues

 8.4.2. Creating queues

 8.5. Back to the command line

 8.5.1. Why another CLI?

 8.5.2. CLI administration the easier way

 8.5.3. Installing rabbitmqadmin script

 8.5.4. Purging queues, creating exchanges, and more

 8.6. Summary

 Chapter 9. Controlling Rabbit with the REST API

 9.1. What can you do with the RabbitMQ REST API?

 9.2. Granting your clients access

 9.3. Accessing statistics

 9.4. Automating vhost and user provisioning

 9.5. Summary

 Chapter 10. Monitoring: Houston, we have a problem

 10.1. RabbitMQ monitoring: keeping an eye on your warren

 10.1.1. Writing health checks for Nagios

 10.1.2. Checking that RabbitMQ is alive with AMQP simulation checks

 10.1.3. Checking aliveness with the REST API

 10.1.4. Creating a watchdog for configuration changes

 10.1.5. Monitoring your cluster status

 10.2. Making sure consumers are consuming

 10.2.1. Monitoring queue levels through AMQP

 10.2.2. Using the REST API to watch queue levels

 10.2.3. Rules of thumb for establishing a queue count baseline

 10.3. Summary

 Chapter 11. Supercharging and securing your Rabbit

 11.1. The need for speed

 11.1.1. Message durability

 11.1.2. Message acknowledgment

 11.1.3. Routing algorithm and bindings

 11.1.4. Delivering messages

 11.2. Memory usage and process limits

 11.2.1. Memory usage

 11.2.2. Erlang process count

 11.3. SSL connections

 11.3.1. SSL certificates

 11.3.2. Setting up a certificate authority

 11.3.3. Generating the root certificate

 11.3.4. Generating the server certificates

 11.3.5. Generating the client certificates

 11.3.6. Enabling SSL listeners in RabbitMQ

 11.3.7. Testing your RabbitMQ SSL setup

 11.4. Summary

 Chapter 12. Smart Rabbits: extending RabbitMQ

 12.1. RabbitMQ plugins

 12.1.1. What can you do with plugins?

 12.1.2. Where do you find plugins?

 12.1.3. Installing plugins

 12.1.4. Removing plugins

 12.2. Making your own plugins

 12.2.1. Getting the RabbitMQ Public Umbrella

 12.2.2. Setting up the folder structure

 12.2.3. Including the plugin build system

 12.2.4. Creating the Erlang application file

 12.3. Creating your custom exchange module

 12.3.1. Registering your exchange with RabbitMQ

 12.3.2. Implementing the exchange behaviour

 12.3.3. Compiling your custom exchange

 12.3.4. Taking your plugin for a test drive

 12.4. Summary

 Appendix A. Using Rabbit from Java and .NET

 A.1. Saying hello again (library options and Hello World)

 A.2. Alerting revisited: porting the alert app to event-oriented .NET

 A.3. RPC with your coffee: implementing AMQP RPC with Java

 A.3.1. Obtaining the Java libraries

 A.3.2. Setting up the class path

 A.3.3. Creating an RPC Server

 A.3.4. Creating your RPC client

 A.3.5. Testing your RPC client and server

 A.4. Summary

 Appendix B. Online resources

 B.1. Websites you should know

 B.2. Blogs

 B.3. AMQP libraries and related OSS projects

 B.3.1. Client libraries

 B.4. Discussions and mailing lists

 B.5. Summary

 Appendix C. Installing RabbitMQ on Windows

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Welcome to RabbitMQ in Action. If you’re like me, possibly you’re thinking, “Should I read past page one?” Alas, too many technology books are written
 and published, and not all merit more than superficial attention. So let me invite you to read on, if you think this description
 fits you:

	You want a practical way to learn about push technology, streaming data, and other messaging patterns.

 	You want to achieve professional-level expertise with RabbitMQ, including best practices for design and running in production.

In other words, this book is not just a guide to RabbitMQ. It teaches fundamental design patterns across many use cases. It
 shows why more applications are using them—and what the “dos” and “don’ts” are.

 What are these patterns? If you’ve ever wanted to draw a picture of your system as an information flow or network, rather
 than as a stack, then you’re probably using messaging, or are ready to do so. You may be thinking of data delivery, nonblocking
 operations, or push notifications. Or you want to use publish/subscribe, asynchronous processing, or work queues. All of these
 are patterns, and they form part of the design canvas known as messaging.

 Messaging is a critical capability: it enables software applications to connect and scale. Applications can connect to each
 other as components of a larger application, or to user devices and data. Messaging is essentially asynchronous in that it
 decouples applications by separating the sending and receiving of data. The wonderful thing is that this connection pattern
 works in the same way at any scale.

 Scale is the point. The dominance of the internet as a basis for application delivery has made scale the critical factor in
 application design. Thinking small is no longer acceptable. Recently the term big data has become fashionable. But everything is big now, compared to only a few years ago.

 For example, the number of mobile-connected devices will exceed the number of people on earth soon, probably in 2012. As I
 write this, Facebook is about to IPO. CTO Bret Taylor said that “Facebook would have been a mobile application if the technology
 had been available when Mark Zuckerberg was building it in his dorm room.”

 Take a moment to think about that. Most applications used to look like this: you load a document or get data from a database,
 do some processing, and write the results to disk. Future applications will look more like Facebook: always on, cloud hosted,
 and accessible anywhere. Input and processing are continuous and automatic, and deliver a filtered stream of information that
 the user wants, as it happens.

 These levels of automation, reach, and scale are impossible without adopting a very specific set of design patterns. It is
 these patterns that you can learn in this book. Derek Collison, one of the originators of modern messaging technology, memorably
 described messaging as enabling “data in motion.” It’s hard to imagine an application that doesn’t need to move data. So messaging
 is everywhere.

 This book gets you started immediately. The patterns are presented as code examples that you can run, and the authors take
 special care to help you operate your system as well. With Jason J. W. Williams and Alvaro Videla, you have access to experts
 who’ve been running large-scale RabbitMQ systems for years. This book is a natural culmination of their outstanding work sharing
 these experiences with the community.

 After you get a feel for RabbitMQ, it’s very easy to get help and find more examples via the extensive RabbitMQ user community,
 regardless of which languages you’re writing code in. This makes RabbitMQ an excellent choice for your messaging needs.

 I hope this has whetted your appetite to turn the page and read on. There will be messages, and there will be rabbits, and
 all will be revealed.

 ALEXIS RICHARDSON

 COFOUNDER AND FORMER CEO

 RABBIT TECHNOLOGIES, LTD.

 SENIOR DIRECTOR

 VMWARE CLOUD APPLICATION PLATFORM

Preface

 Writing this book has been like discovering RabbitMQ itself—encountering a problem that needed solving, but not knowing what
 the solution looked like. Until May 2010, we didn’t even know each other. We both had been active in the RabbitMQ community
 for the past two years, but we’d never actually bumped into each other. Then one day a conversation with Alexis Richardson
 (Rabbit’s CEO at the time) introduced Alvaro and me to each other, and made what you hold in your hands possible. What we
 had in common was a desire to write down in a single place all the knowledge we had acquired about RabbitMQ the hard way.
 Back in 2010, that knowledge was (and today still largely is) scattered across the internet in a smattering of blog articles
 and terse technical tutorials. In other words, we both wanted to write the book we wished had existed when we started with
 RabbitMQ two years earlier.

 Neither of us came from a traditional messaging background, which made us fast friends and has largely informed the tone of
 RabbitMQ in Action; we wanted this book to be accessible for folks who’ve never heard of a queue or a binding before. In fact, when each of
 us discovered RabbitMQ, we didn’t even know what “messaging” was or that it was the solution to the problems we were having.
 My (Jason’s) situation was that my company needed a way to take the spam reportings we received from our customers and process
 them out-of-band from our main stream of incoming messages. In Alvaro’s case, his company had a social network whose member
 communication system was creaking under the load of a 200 GB database. Like so many others who’ve come to messaging, both
 us had first tried to solve our queue-centric issues using database tables. Problems, like ensuring that only one application
 instance consumed any particular queue item, plagued our attempts at a database-driven solution and sent us looking for a
 better way. After all, we knew we couldn’t be the first people in the history of software to have these issues.

 The solution for both of us came in a surprisingly similar way: a friend at Plaxo told me to check out this “RabbitMQ thing”
 as a way to solve my queue-centric problems, and an Erlang colleague of Alvaro’s in China gave him the same advice. Halfway
 around the world, both of us discovered RabbitMQ in the same way, and in response to trying to solve almost exactly the same
 problem! In fact, since you’re reading this book about RabbitMQ, it’s likely that similar challenges have led you to discover
 RabbitMQ in the same way. That speaks to the fact of why RabbitMQ is so popular: it easily solves the basic problems of distributing
 data that each of us runs into again and again when trying to scale the software that we build.

 Our hope is that RabbitMQ in Action will help you design solutions to those challenges more quickly and easily with RabbitMQ, so you can spend more time writing
 the software that will change the world and less time getting up to speed on the messaging broker that will help you do it.
 Perhaps, along the way, RabbitMQ will introduce you to an awesome coauthor who will become the lifelong friend you never expected.[1] This book is a product of how much we love writing software, and our hope is that it will help you do the same in ways you
 never thought possible.

 1 They say that coauthor relationships have a worse “divorce” rate than marriage. It’s not a bad comparison, since writing
 a book together requires the constant give-and-take and mutual respect that it takes to make living in close quarters work.
 So it’s been an unexpected blessing to not only be able to write a book, but to discover a friend whose ideas can live in
 close quarters with yours and make a whole far greater than you could achieve alone.

 ALVARO VIDELA

 DÜBENDORF, SWITZERLAND

 JASON J. W. WILLIAMS

 BOISE, IDAHO, UNITED STATES

Acknowledgments

 Only two names appear on the cover of this book, but there are many more without whom it would not exist. First and foremost,
 we’d like to thank Alexis Richardson, RabbitMQ’s CEO when we started writing. Without his recommendation, Manning would not
 have come knocking on our inboxes, and we would never have written a book together. We also thank him for providing the foreword
 to our book. In that vein, we need to express our utmost gratitude to the RabbitMQ team for continual help and answers to
 our incessant questions about the minutiae of Rabbit. In particular, we owe a thank you to Matthew Sackman and Matthias Radestock,
 without whom the chapters on clustering and RabbitMQ internals would not have been possible.

 Above all, we owe an incalculable debt of gratitude to Jerry Kuch from the RabbitMQ team. Jerry volunteered countless hours
 repeatedly reviewing drafts of each chapter for accuracy, including doing the “official” technical review of the completed
 book by himself. Every time we needed clarification or advice outside our experience, Jerry was always a quick IM away. He
 was never cranky and never complained about being our point person on the RabbitMQ team. If you find yourself discovering
 little picadillos you never knew about Rabbit’s operation, you likely have Jerry Kuch to thank. He truly made this a better
 book, and is a fantastic engineer.

 At Manning, we cannot thank our primary development editor Maria Townsley enough. Maria kept us writing and on track. She
 put up with our work schedules, and our feast-or-famine style of delivering material. Above all she was our advocate and fought
 for what was important to us. If you enjoy the style of RabbitMQ in Action, thank Maria as she carried the flag for it. We also need to thank Cynthia Kane tremendously for getting us through the final
 chapters and into print. Cynthia stepped in as our final development editor when we were set in our ways. She adapted to our
 work style, and treated the book as if she’d been invested in it with us from day one. Cynthia was truly our third-base coach
 and got us home.

 Finally, we’d like to thank our dedicated readers, who bought the book during Manning’s Early Access Program (MEAP), as well
 as our reviewers: Barry Alexander, P. David Pull, Bruce Snyder, Tony Garnock-Jones, James Williams, Patrick Lemiuex, Bruce
 Lowekamp, Carlton Gibson, Paul Grebenc, Richard Siddaway, Gordon Dickens, Gene Campbell, Karsten Strøbæk, Jeff Addison, David
 Dossot, Daniel Bretoi, and Ben Rockwood. You were not paid, and yet you gave us detailed feedback and thoughtful advice as
 if the book were your baby too. This book is immeasurably better in ways unforeseen by us because of you. Thank you.

Alvaro

 I would like to thank my wife Silvana for being always there supporting me during the writing of this book. How many movies
 we did not watch and how many times we did not go for walks together because I was writing this book? I don’t know...but all
 I can say now is, thanks for understanding. Another big thanks goes to my mom for always believing in me. After all, writing
 a book is a family effort. I’d also like to thank my ol’ pals at The Netcircle in China where I caught the rabbit fever and
 made them hear the word RabbitMQ too many times a day. Finally, I would like to thank Jason; Manning presented me with a coauthor and I ended up with a great
 friend.

Jason

 I can never thank my parents and my sister enough for their support and love during this process. They believed in me and
 urged me forward—including making sure my derrière was pushed out the door to the coffee shop to write when I didn’t feel
 like it. They always believed I would complete this book, even when the end looked so far away.

 I’m lucky enough to call my parents my partners in the startup we founded together, and as partners, I owe them and DigiTar
 a huge debt for never complaining when writing cut into work hours, and for giving me the flexibility to balance both. Without
 our company, I would never have been driven to discover Rabbit or write the blog tutorials that led to being invited to write
 this book. Among the many blessings and opportunities DigiTar has given me, this book is one of them.

 Finally, thank you to Alvaro. You are the friend I never knew existed, my ever steadfast compatriot in arms, and truly my
 brother from another mother. Thank you for being an unexpected blessing.

About this Book

 RabbitMQ is an open source message broker and queueing server that can be used to let disparate applications share data via
 a common protocol, or to simply queue jobs for processing by distributed workers. It doesn’t matter whether your project is
 big or small: RabbitMQ can adapt to your needs. Do you want to quickly prototype one of your application components in language
 X and be sure you can easily switch it tomorrow to a more performant language? RabbitMQ can help you by decoupling the communication
 protocol. Do you need to be able to process image uploads for your social website as they arrive, while adding or removing
 workers with ease? You can use Rabbit queues to store jobs and let the broker perform the load balancing and job distribution
 for you. Problems like these can be easily and quickly solved by using RabbitMQ; this book is here to show you how to best
 implement your architectures around messaging.

 Programming your application is one thing—keeping your application up and running is where the challenge starts. Don’t worry;
 this book also covers best practices for RabbitMQ administration, clustering, securing, and monitoring, so you can also learn
 the operational side of things.

 Finally, we’ll get into RabbitMQ’s brain and those inner details that will let you understand the system resources used by
 the broker so you can perform capacity planning while you design your architectures. Also, you’ll learn how to extend the
 broker by installing plugins and by creating your own, because, why not? Get your editor ready because you’ll be coding in
 Python, PHP, Erlang, Java, and C#.

Roadmap

 Chapter 1 explains the origin of the AMQP protocol, how RabbitMQ was born, and what industry problems it came to solve. Next, you’ll
 install the server and create your first Hello World program that will send data via RabbitMQ.

 Chapter 2 immerses you in the world of messaging. We go from basic concepts up to seeing how to map those concepts in AMQP (the protocol
 used by RabbitMQ). Once you’re past that, you’ll learn about message durability and what happens in the life of a message
 from being published to getting consumed on the other end of the network.

 Chapter 3 shows the basics of server management. You’ll see how to start and stop nodes, how to configure permissions, and how to get
 statistics about what’s happening on the server. And we give you some useful tips for troubleshooting the server.

 Chapter 4 teaches you about messaging patterns and best practices. You’ll learn about fire-and-forget models, RPC architectures, and
 much more.

 Chapter 5 starts a series of three chapters on RabbitMQ clustering and setup for high availability. Here you’ll set up a RabbitMQ cluster
 both on your local machine and on physical servers. You’ll learn how to upgrade a cluster of RabbitMQ nodes and how to use
 mirrored queues.

 Chapter 6 discusses how to load balance a set of RabbitMQ brokers using HAProxy while teaching how to create smart messaging clients
 that know how to reconnect to the broker in case of failures.

 Chapter 7 ends the series on high availability by explaining how active/standby broker pairs work. You’ll also learn about the Shovel
 plugin that allows RabbitMQ to replicate data across data centers.

 Chapter 8 is where RabbitMQ administration goes visual. You’ll learn about the RabbitMQ Management plugin and its web interface, but
 we don’t stop there: we also perform an overview of the REST API offered by the plugin.

 Chapter 9 builds from the previous chapter by explaining the REST API in detail. Here you’ll learn how most of the administration tasks
 can be performed from your code by using this API. Provisioning new users and virtual hosts for your applications was never
 so easy.

 Chapter 10 teaches you how to monitor RabbitMQ, from Nagios checks to using AMQP and the REST API to monitor the server internal state.
 You’ll learn what you can do to detect problems before they happen.

 Chapter 11 explains in detail the inner workings of exchanges (the routing algorithms used by RabbitMQ). We go into the details of the
 resources used by your messaging fabric to see what to expect from your architectural decisions. We also cover the security
 side of things by teaching you to enable SSL connections for your applications.

 Chapter 12 ends the book by showing how to extend RabbitMQ’s behavior both by adding new plugins created by others and by creating your
 own plugin.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 Since one of RabbitMQ’s greatest strengths is gluing together applications written in different languages, we use both Python
 and PHP as the primary example languages (with a little .NET and Java thrown in for good measure in the appendixes). But we
 want our examples to be as widely usable as possible to readers from all languages. Since we can’t convert every example into
 every language, we’ve posted a Github repository so you can contribute too: https://github.com/rabbitinaction/sourcecode.

 In the official Github repository you’ll find the latest versions of the example code from the book, along with a number of
 those examples already converted by other readers into languages like Ruby. Don’t see your favorite language? Fork the repository
 and add it! Then just send us a pull request and we’ll do our best to incorporate your versions of the examples. (Note: you
 must use the same BSD license as our code for us to pull your changes in.)

 If you’d like the canonical and truly “official” copies of the examples from RabbitMQ in Action, you can download them from the publisher’s website: http://manning.com/RabbitMQinAction. The exact code as it appears in the latest published edition of the book will always be posted there.

Author Online

 The purchase of RabbitMQ in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/RabbitMQinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 ALVARO VIDELA is a developer and architect specializing in MQ-based applications. He speaks about RabbitMQ at conferences throughout Asia,
 Europe, and the U.S.

 JASON J. W. WILLIAMS is CTO of DigiTar, a messaging service provider, where he directs design and development, including using RabbitMQ for real-time
 analysis operations since 2008.

About the Cover Illustration

 The figure on the cover of RabbitMQ in Action is captioned “A farmer from Lumbarda, island of Korcula, Croatia.” The illustration is taken from a reproduction of an album
 of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum
 in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split,
 itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace
 from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied
 by descriptions of the costumes and of everyday life.

 Lumbarda is small fishing village of approximately 1,200 inhabitants. It is situated on the northeastern coast of the island
 of Korcula, one of a number of small islands in the Adriatic off the western coast of Croatia. The farmer on the cover is
 wearing his work clothes, not one of the colorful and richly embroidered costumes that are typical for this region, worn only
 on Sundays and other special occasions. His everyday outfit consists of well-patched brown trousers and a brown vest worn
 over a white linen shirt, and a straw hat on his head. He is smoking a pipe, leaning on a spade, and, appropriately enough,
 looking down at a white rabbit, in a moment of rest from his toils.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Chapter 1. Pulling RabbitMQ out of the hat

	

 This chapter covers

	The need for an open protocol—AMQP

 	Brief history of RabbitMQ

 	Installing RabbitMQ

 	First program—Hello World

	

We live in a world where real-time information is constantly available, and the applications we write need easy ways to be
 routed to multiple receivers reliably and quickly. More important, we need ways to change who gets the information our apps
 create without constantly rewriting them. Too often, our application’s information becomes siloed, inaccessible by new programs
 that need it without rewriting (and probably breaking) the original producers. You might be saying to yourself, “Sure, but
 how can message queuing or RabbitMQ help me fix that?” Let’s start by asking whether the following scenario sounds familiar.

 You’ve just finished implementing a great authentication module for your company’s killer web app. It’s beautiful. On every
 page hit, your code efficiently coordinates with the authentication server to make sure your users can only access what they
 should. You’re feeling smug, because every page hit on your company’s worldclass avocado distribution website activates your
 code. That’s about when your boss walks in and tells you the company needs a way to log every successful and failed permission
 attempt so that it can be data mined. After you lightly protest that that’s the job of the authentication server, your boss
 not so gently informs you that there’s no way to access that data. The authentication server logs it in a proprietary format;
 hence this is now your problem. Mulling over the situation causes a four-aspirin headache, as you realize you’re going to
 have to modify your authentication module and probably break every page in the process. After all, that wonderful code of
 yours touches every access to the site. Let’s stop for a moment though. Let’s punch the Easy button and time warp back to the beginning of the
 development of that great auth module. Let’s assume you leveraged message queuing heavily in its design from day one.

 With RabbitMQ in place, you brilliantly leveraged message queuing to decouple your module from the authentication server.
 With every page request, your authentication module is designed to place an authorization request message into RabbitMQ. The
 authentication server then listens on a RabbitMQ queue that receives that request message. Once the request is approved, the
 auth server puts a reply message back into RabbitMQ where it’s routed to the queue that your module is listening on. In this
 world, your boss’s request doesn’t faze you. You realize you don’t need to touch your module or even write a new one. All
 you need to do is write a small app that connects to RabbitMQ and subscribes to the authorization requests your auth module
 is already publishing. No code changes. Nothing you already wrote knows anything has changed. It’s so simple a smile almost
 breaks out on your face. That’s the power of messaging to make your day job easier.

 Message queuing is simply connecting your applications together with messages that are routed between them by a message broker like RabbitMQ.
 It’s like putting in a post office just for your applications. The reality is that this approach isn’t just a solution to
 the real-time problems of the financial industry; it’s a solution to the problems we all face as developers every day. We,
 the authors, don’t come from a financial services background. We had no idea what “enterprise messaging” was when we needed
 to scale. We were simply devs like you with an itch that needed scratching: an itch to deal with real-time volumes of information
 and route it to multiple consumers quickly. We needed to do it all without blocking the producers of that information ...
 and without them needing to know who the final consumers might be. RabbitMQ helped us to solve those common problems easily,
 and in a standards-based way that ensured any app of ours could talk to any other app, be it Python, PHP, or even Scala.

 Over the next few chapters, we’ll take you on a ride. It starts by explaining how message queuing works, its history, and
 how RabbitMQ fits in. Then we’ll take you all the way through to real-world examples you can apply to your own scalability
 and interoperability challenges ... ending with how to make Rabbit purr like a well-oiled machine in a “downtime is not acceptable!”
 environment.

 This is the book we wished was on the shelves when we entered the messaging wilderness. We hope it will help you benefit from
 our experience and battle scars and free you to make amazing applications with less pain. Before we’re done in this chapter,
 you’ll have a short history of messaging under your belt, and RabbitMQ up and running. Without further ado, let’s take a look
 at where all this messaging fun started.

1.1. Living in other people’s dungeons

 The world of message queuing didn’t start out the dank and cramped one it is today, with most folks subservient to lock-in
 overlords. It started with a ray of light in an otherwise byzantine software landscape. It was 1983 when a 26-year-old engineer
 from Mumbai had a radical question: why wasn’t there a common software “bus”—a communication system that would do the heavy
 lifting of communicating information from one interested application to another? Coming from an education in hardware design
 at MIT, Vivek Ranadivé envisioned a common bus like the one on a motherboard, only this would be a software bus that applications
 could plug into. (See http://hbswk.hbs.edu/archive/1884.html.) Thus, in 1983 Teknekron was born. A freshly minted Harvard MBA in his hand and this powerful idea in his head, Vivek started
 plowing a path that would help developers everywhere.

 Having the idea was one thing, but finding a killer application for it was something completely different. It was at Goldman
 Sachs in 1985 that Ranadivé found his first customer and the problem his software bus was born to solve: financial trading.
 A trader’s stall at that time was packed to the brim with different terminals for each type of information the trader needed
 to do his job. Teknekron saw an opportunity to replace all those terminals and their siloed applications. In their place would
 be Ranadivé’s software bus. What would remain would be a single workstation whose display programs could now plug into the
 Teknekron software bus as consumers and allow the trader to “subscribe” to the information the trader wanted to see. Publishsubscribe
 (PubSub) was born, as was the world’s first modern message queuing software: Teknekron’s The Information Bus (TIB).

 It didn’t take long for this model of data transfer to find many more killer uses. After all, an application publishing data
 and an application consuming it no longer had to directly connect to each other. Heck, they didn’t even have to know each
 other existed. What Teknekron’s TIB allowed application developers to do was establish a set of rules for describing message
 content. As long as the messages were published according to those rules, any consuming application could subscribe to a copy
 of the messages tagged with topics it was interested in. Producers and consumers of information could now be completely decoupled
 and flexibly mixed on-the-fly. Either side of the PubSub model (producer/consumer) was completely interchangeable without
 breaking the opposite side. The only thing that needed to remain stable was the TIB software and the rules for tagging and
 routing the information. Since the financial trading industry is full of information with a constantly changing set of interested
 folks, TIB spread like wildfire in that sector. It was also noticed by telecommunications and especially news organizations, who also had information that needed timely delivery to a dynamically changing set of interested
 consumers. That’s why mega news outfit Reuters purchased Teknekron in 1994.

 Meanwhile, this burgeoning new segment of enterprise software didn’t go unnoticed by Big Blue. After all, many of IBM’s biggest
 customers were in the financial services industry. Also, Teknekron’s TIB software was frequently run on IBM hardware and operating
 systems ... all without the boys in White Plains getting a cut. Thus, in the late ’80s IBM began research into developing
 their own message-queuing software, leveraging their extensive experience in information delivery from developing DB2 (see
 http://www-01.ibm.com/software/integration/wmq/MQ15Anniversary.html). Development began in 1990 at IBM’s Hursely Park Laboratories near Winchester, United Kingdom. What emerged three years
 later was the IBM MQSeries family of messagequeuing server software. In the 17 years since, MQSeries has evolved into WebSphere
 MQ and is today the dominant commercial message-queuing platform. During that time, Ranadivé’s TIB hardly disappeared into
 the bowels of Reuters. Instead it has remained the other major player in enterprise messaging, thriving through a renaming
 to Rendezvous and Teknekron’s re-emergence as an independent company in the form of TIBCO in 1997. The same year, Microsoft’s first crack
 at the messaging market emerged: Microsoft Message Queue (MSMQ).

 Through all of this evolution, message queuing (MQ) software primarily remained the domain of large-budgeted organizations with a need for reliable, decoupled, realtime message
 delivery. Why didn’t MQ find a larger audience? How did it survive the information boom that was the late ’90s internet bubble
 without experiencing explosive adoption? After all, everyone today from Twitter to Salesforce.com is scrambling to create
 internal solutions to the PubSub problems that The Information Bus solved 25 years ago. Two words: vendor lock-in. The commercial
 MQ vendors wanted to help applications interoperate, not create standard interfaces that would allow different MQ products
 to interoperate or, Heaven forbid, allow applications to change MQ platforms. Vendor lock-in has kept prices and margins high,
 and commercial MQ software out of reach of the startups and Web 2.0 companies that are abounding today.

 As it turned out, smaller tech companies weren’t the only ones unhappy about the high-priced walled gardens of MQ vendors.
 The financial services companies that formed the bread and butter of the MQ industry weren’t thrilled either. Inevitably,
 the size of financial companies meant that MQ products were in place from multiple vendors servicing different internal applications.
 If an application subscribing to information on a TIBCO MQ suddenly needed to consume messages from an IBM MQ, it couldn’t
 easily be done. They used different APIs, different wire protocols, and definitely couldn’t be federated together into a single
 bus. From this problem was born the Java Message Service (JMS) in 2001 (see http://en.wikipedia.org/wiki/Java_Message_Service). JMS attempted to solve the lock-in and interoperability problem by providing a common Java API that hides the actual interface
 to the individual vendor MQ products. Technically, a Java application only needs to be written to the JMS API, with the appropriate
 MQ drivers selected. JMS takes care of the rest ... supposedly. The problem is you’re trying to glue a single standard interface over multiple diverse interfaces. It’s like gluing together different
 types of cloth: eventually the seams come apart and the reality breaks through. Applications could become more brittle with
 JMS, not less. A new standards-based approach to messaging was needed.

1.2. AMQP to the rescue

 In 2004, JPMorgan Chase required a better solution to the problem and started development of the Advanced Message Queuing Protocol (AMQP) with iMatix Corporation (see http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Development). AMQP from the get-go was designed to be an open standard that would solve the vast majority of message queuing needs and
 topologies. By virtue of being an open standard, anyone can implement it, and anyone who codes to the standard can interoperate
 with MQ servers from any AMQP vendor.

 In many ways, AMQP promises to liberate us from the dungeons of vendors and fulfill Ranadivé’s original vision: dynamically
 connecting information in real time from any publisher to any interested consumer over a software bus.

1.3. A brief history of RabbitMQ

 Figure 1.1. Short timeline of message queueing

 [image:]

 In the early 2000s, a young entrepreneur out of the London financial sector cofounded a company for caching Java objects:
 Metalogic. For Alexis Richardson, the theory was simple enough: use Java objects for distributed computing and cache them
 in transit for performance. The reality was far different. Varying versions of the Java Virtual Machine, as well as differing
 libraries on the client and server, could make the objects unusable when they arrived. There were too many environment variables in the real world for Metalogic’s approach to
 be widely successful. What did come out of Metalogic was Alexis meeting Matthias Radestock.

 Matthias was working for LShift, where Alexis was subleasing office space while at Metalogic. LShift at the time was heavily
 involved in language modeling and distributed computing contracts for a major software vendor. The background in these areas
 triggered Matthias’s interest in Erlang, the programming language that Ericsson had originally developed for their telephone
 switching gear. What grabbed Matthias’s attention was that Erlang excelled at distributed programming and robust failure recovery,
 but unfortunately at the time it wasn’t open source. In the meantime, Metalogic had closed operations and LShift was in the
 process of winding down their primary distributed computing contract. But Alexis had learned two valuable lessons from his
 experience at Metalogic: what works in a distributed computing environment, and what companies want for those environments.

 Alexis knew he wanted to start a new company to solve the problems of communicating in a distributed environment. He also
 knew the next company he started would be open source and build on the model just proved successful by JBoss and MySQL. Looking
 back at where the Metalogic solution had run into problems, Alexis started to see that messaging was the right answer to distributed
 computing. More important, in the tech world circa 2004 a huge gap existed for open source messaging. No one was providing
 a messaging solution except for the big commercial vendors, and while “enterprise” open source was flourishing with databases
 (MySQL) and application servers (JBoss), no one was touching the missing component: messaging. Interestingly, it was in 2004
 that AMQP was just starting to be developed at JPMorgan Chase. Through his background in the financial industry, Alexis had
 been introduced to the principal driver of AMQP at JPMorgan, John O’Hara (future founder of the AMQP Working Group). Through
 O’Hara, Alexis became acquainted with AMQP, and started lining up the building blocks for what would become RabbitMQ.

 Around 2005, Alexis cofounded CohesiveFT. He and his cofounders in the U.S. started the company to provide an application
 stack and tools for what has today become cloud computing. That a key part of that stack would be distributed messaging seemed
 obvious to Alexis, who (still in the same office as LShift) started talking to Matthias about AMQP. What was clear to Matthias
 was that he’d just found the application he’d been looking for to write in Erlang. But before any of this could get started,
 Alexis and Matthias focused on three questions that they knew would be critical to an open source version of AMQP being successful
 if it was written in Erlang:

	Would large financial institutions care whether their messaging broker was written in Erlang?

 	Was Erlang really a good choice for writing an AMQP server?

 	If it was written in Erlang, would that slow down adoption in the open source community?

The first issue was quickly dispatched by a financial company who confirmed they didn’t care what it was written in if it
 helped reduce their integration costs. The second question was answered by Francesco Cesarini at Erlang Solutions: from his
 analysis of AMQP, the specification implied an architecture present in every telephone switch. In other words, you couldn’t
 pick a better implementation language than Erlang for building an AMQP broker. The final question was put to rest by an entirely
 different messaging server: ejabberd. By 2005, Extensible Messaging and Presence Protocol (XMPP) had become a respected standard for open instant messaging, and one of the foremost implementations was the Erlang-based
 ejabberd server package by Alexey Shchepin. ejabberd was widely in use by many different organizations, and its implementation
 in Erlang didn’t seem to be slowing anyone down.

 With the three major questions answered, Alexis and Matthias convinced CohesiveFT and LShift to jointly back the project.
 The first thing they did was contract Matthew Sackman (now a core Rabbit developer) to write a prototype in Erlang to test
 latency. They quickly discovered that using the distributed computing libraries built into Erlang produced incredible latency
 that was comparable to using raw sockets. There was also the question of what to call this thing: everyone agreed on Rabbit.
 After all, rabbits are fast and they multiply like crazy, making it a great name for distributed software. Not the least of
 the reasons for this choice is that Rabbit is easy to remember. Thus, in 2006 Rabbit Technologies was born: a joint venture
 between CohesiveFT and LShift that would hold the intellectual property for what we know today as RabbitMQ.

 The timing couldn’t have been more perfect because, around the same time, the first public draft of the AMQP specification
 had become available. As a new specification, AMQP was rapidly changing. This was an area where Erlang proved critical. By
 using Erlang, RabbitMQ could be developed quickly and keep pace with a moving target: the AMQP standard. Amazingly, version
 1.0 of RabbitMQ was written in only two and a half months by core developer Tony Garnock-Jones. From the beginning, RabbitMQ
 has implemented a key feature of AMQP that differentiates it from TIBCO and IBM: provisioning resources like queues and exchanges
 can be done from within the protocol itself. With the commercial vendors, provisioning is done by specialized staff at specialized
 administrative consoles. RabbitMQ’s provisioning capabilities make it the perfect communication bus for anyone building a
 distributed application, particularly one that leverages cloud-based resources and rapid deployment.

 That brings us to today, where RabbitMQ is used by everyone from small Silicon Valley startups to some of the largest names
 on the internet. That’s perhaps the best thing about RabbitMQ, and the thing that surprised its founders: its largest block
 of users are tech firms, not financial companies. RabbitMQ fulfills Ranadivé’s vision for the rest of us with smaller budgets
 and the same real problems. That’s what drew us to RabbitMQ. We didn’t know that we were looking for message-queueing software.
 All we knew was that we had real problems to solve integrating applications and serving high transaction loads. RabbitMQ provides
 a powerful toolkit for solving those problems, and brings to the masses the rich history of messaging ... and finally a pluggable
 information bus for everyone that needs one.

1.4. Picking RabbitMQ out of the hat (and other open options)

 Today, RabbitMQ isn’t the only game in town for open messaging. Options like ActiveMQ, ZeroMQ, and Apache Qpid all providing
 different open source approaches to message queuing. The question is, why do we think you should pick RabbitMQ?

	Except for Qpid, RabbitMQ is the only broker implementing the AMQP open standard.

 	Clustering is ridiculously simple on RabbitMQ because of Erlang.

 	Your mileage may vary, but we’ve found RabbitMQ to be far more reliable and crash resistant than its competitors.

Perhaps the most important reason is that RabbitMQ is incredibly easy to install and use. Whether you need a simple one-node
 setup for your workstation, or a sevenserver cluster to power your web infrastructure, RabbitMQ can be up and running in about
 30 minutes. With that in mind, it’s about time we fired up the little critter.

1.5. Installing RabbitMQ on Unix systems

 So far we’ve discussed the motivation behind the AMQP protocol and the history of the RabbitMQ server. Now it’s time to get
 the broker up and running and start doing cool stuff with it. The operating system requirements for running RabbitMQ are flexible
 because we can run it on several platforms including Linux, Windows, Mac OS X, and other Unix-like systems. In this chapter
 we’ll go through the process of setting up the server for a generic Unix system (all examples and instructions in the book
 assume a UNIX environment unless otherwise noted). Since RabbitMQ is written in Erlang, we need to have installed the language
 libraries to run the broker.

 1.5.1. Why environment matters—living la vida Erlang

 We recommend that you use the latest version of Erlang, which at the time of this writing is R14A. You can obtain a copy of
 Erlang from its website (http://www.erlang.org/). Please follow the installation instructions provided there. By running the latest version of Erlang on your system, you’ll
 be sure to have all the updates and improvements for the foundations RabbitMQ will run on. Every new release of Erlang includes
 performance improvements that are worth having.

 Once you have RabbitMQ dependencies solved, create a folder where you can perform our tests. Assuming that you’re running
 a Unix-flavored system, fire up a terminal to start typing commands:

 $ mkdir rabbitmqinaction
$ cd rabbitmqinaction

 1.5.2. Getting the package

 Then download the RabbitMQ Server from the server download page: http://www.rabbitmq.com/server.html. Select the package for a generic Unix system and download it:[1]

 1 Pre-build installation packages for RabbitMQ are available for Windows, Debian/Ubuntu and RedHat (RPM) from http://www.rabbitmq.com/download.html.

 $ wget http://www.rabbitmq.com/releases/rabbitmq-server/v2.7.0/\
rabbitmq-server-generic-unix-2.7.0.tar.gz

 Your next step is to unpack the tarball and change to the rabbitmq_server-2.7.0 directory inside the package:

 $ tar -xzvf rabbitmq-server-generic-unix-2.7.0.tar.gz
$ cd rabbitmq_server-2.7.0/

 1.5.3. Setting up the folder structure

 You’re nearly ready to start the broker, but there are a couple of folders to create before you do that. The first one is
 where RabbitMQ will write the logs. You can look into this folder in case you need to troubleshoot your installation. The
 second folder is for the Mnesia database that RabbitMQ uses to store information about the broker, like queue metadata, virtual
 hosts, and so on. Type the following commands at the terminal:

 $ mkdir -p /var/log/rabbitmq
$ mkdir -p /var/lib/rabbitmq/mnesia/rabbit

 You may need to run those commands as a super user. If you have to do so, then don’t forget to chown the folders to your system user.

	

Tip

 When we run RabbitMQ in production, we usually create a rabbitmq user and then we grant the folder privileges to that user instead of running all the commands with a normal user account.

OEBPS/manning.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/infinity.jpg

OEBPS/cover.jpg

