

 [image: cover]

 Programming the TI-83 Plus/TI-84 Plus

 Christopher R. Mitchell

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	Development editor : Elizabeth Lexleigh
Copyeditor : Linda Recktenwald
Technical proofreader: Dan Cook
Proofreader : Elizabeth Martin
Typesetter : Dennis Dalinnik
Cover designer : Marija Tudor

ISBN: 9781617290770

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Getting started with programming

 Chapter 1. Diving into calculator programming

 Chapter 2. Communication: basic input and output

 Chapter 3. Conditionals and Boolean logic

 Chapter 4. Control structures

 Chapter 5. Theory interlude: problem solving and debugging

 2. Becoming a TI-BASIC master

 Chapter 6. Advanced input and events

 Chapter 7. Pixels and the graphscreen

 Chapter 8. Graphs, shapes, and points

 Chapter 9. Manipulating numbers and data types

 3. Advanced concepts; what’s next

 Chapter 10. Optimizing TI-BASIC programs

 Chapter 11. Using hybrid TI-BASIC libraries

 Chapter 12. Introducing z80 assembly

 Chapter 13. Now what? Expanding your programming horizons

 Appendix A. Review: using your calculator

 Appendix B. TI-BASIC command reference

 Appendix C. Resource list

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Getting started with programming

 Chapter 1. Diving into calculator programming

 1.1. Your calculator: the pocket computer you already own

 The Evolution of the Modern Graphing Calculator

 1.2. Hello World: your first program

 1.2.1. Before you begin: notes on the TI-BASIC language

 1.2.2. Displaying “Hello, World”

 1.2.3. Running the Hello World program

 1.3. Math programming: a quadratic solver

 1.3.1. Building the quadratic solver

 1.3.2. Testing the solver

 1.4. Game programming: a guessing game

 1.4.1. Guessing game source and function

 1.4.2. Lessons of the guessing game

 1.5. Summary

 Chapter 2. Communication: basic input and output

 2.1. Getting to know the program editor and homescreen

 2.1.1. The program editor: typing source code

 2.1.2. The homescreen: your canvas for input and output

 2.2. Output: displaying text

 2.2.1. Displaying text and numbers on the homescreen

 2.2.2. Positioning text with the Output command

 2.3. Input from users: the Prompt and Input commands

 2.3.1. Prompting for numbers

 2.3.2. Fancier Input for numbers and strings

 2.3.3. Exercise: making conversation

 2.4. Troubleshooting tips

 2.4.1. Easy-to-spot errors: TI-OS error messages

 2.4.2. The subtle errors: why isn’t my program working the way I want?

 2.5. Summary

 Chapter 3. Conditionals and Boolean logic

 3.1. Introduction to comparisons

 True and False in TI-BASIC

 3.2. Conditional statements

 3.2.1. The one-statement conditional: If

 3.2.2. Conditional blocks: Then/End

 3.2.3. Conditionals with alternatives: Else

 3.3. Boolean logic

 3.3.1. Truth of logical operators

 3.3.2. Using logical grouping parentheses

 3.3.3. Applying Boolean logic: bounds checking

 3.4. Summary

 Chapter 4. Control structures

 4.1. Labels and Goto

 4.1.1. Understanding Lbl and Goto

 4.1.2. Exercise: convert the guessing game to use Lbl/Goto

 4.2. Menus

 4.2.1. Using the Menu command

 4.2.2. Example: add a menu to the guessing game

 4.3. For, While, and Repeat

 4.3.1. Repetition with For loops

 4.3.2. Using While to loop

 4.3.3. The Repeat loop

 4.4. Subprograms and termination

 4.4.1. Putting repeated code in subprograms

 4.4.2. Termination: Return and Stop

 4.5. Summary

 Chapter 5. Theory interlude: problem solving and debugging

 5.1. Introduction: idea to program

 5.1.1. High-level design: features and interface

 5.1.2. Structuring your code: diagrams to commands

 5.1.3. Testing and debugging

 5.2. Planning a program’s structure

 5.2.1. Idea and details: first steps

 5.2.2. Diagrams and pseudocode

 5.3. Headache-free coding and testing

 5.3.1. Flowchart to code chunks

 5.3.2. Performing unit and full testing

 5.3.3. The final Pythagorean Triplet solver

 5.4. Understanding TI-BASIC errors

 5.5. Tracing malfunctioning code

 Tracing: Which Line is it, Anyway?

 Resolving Bugs: Breadcrumbs and Other Techniques

 5.6. Summary

 2. Becoming a TI-BASIC master

 Chapter 6. Advanced input and events

 6.1. Event loop concepts

 Event Loop Skeleton

 A Real Event Loop

 6.2. getKey

 6.2.1. Using getKey for nonblocking input

 6.2.2. Learning getKey keycodes: the chart and the memorization

 6.2.3. Exercise: eight-directional movement

 6.3. The Mouse and Cheese game

 6.3.1. Writing and running the game

 6.3.2 Understanding the game

 6.3.3. Tweaking the game

 6.3.4. Exercise: going further by moving the cheese

 6.4. getKey odds and ends

 6.4.1. Quirks and limitations of getKey

 6.4.2. What about modifier keys?

 6.5. Summary

 Chapter 7. Pixels and the graphscreen

 7.1. Introducing the graphscreen

 7.2. Drawing text: first steps on the graphscreen

 7.2.1. Introducing Text: a MOVETEXT program

 7.2.2. The Text command

 7.3. Playing with pixels

 7.3.1. Pixel commands

 7.3.2 Drawing a cursor

 7.3.3. Exercise: the moveable mouse cursor

 7.4. A painting program

 Coding a Painting Program

 7.5. Summary

 Chapter 8. Graphs, shapes, and points

 8.1. Another coordinate system: points versus pixels

 8.1.1. Pixel-point coordinate system conversion

 8.2. Graphing from programs

 8.2.1. Creating graphs

 8.2.2. Manipulating graphs and functions

 8.2.3. Other graph tools and tricks

 8.3. Drawing with points

 8.3.1. Example: a point-drawing screensaver

 8.4. Lines and shapes

 8.4.1. The drawing commands

 8.4.2. Using lines to draw polygons

 8.4.3. Extras: Text and the polygon

 8.5. Working with pictures

 8.5.1. What’s a picture?

 8.5.2. Interfaces, optimization, and layering with pictures

 8.6. Summary

 Chapter 9. Manipulating numbers and data types

 9.1. Using strings

 9.1.1. Defining and manipulating strings

 9.1.2. String sub example: Xth letter of the alphabet

 9.2. Lists and matrices

 9.3. Working with integers and complex numbers

 Complex Numbers

 9.4. Revisiting randomness

 9.4.1. Generating random numbers

 9.4.2. Applying the random number commands

 9.5. Fun with data types: a single-screen RPG

 Matrix Rpg: Your Challenge

 9.6. Summary

 3. Advanced concepts; what’s next

 Chapter 10. Optimizing TI-BASIC programs

 10.1. Implicit conditionals

 10.1.1. Converting explicit conditionals to implicit conditionals

 10.1.2. Implicit conditionals for four-directional movement

 10.2. Exploiting Ans

 10.2.1. Ans to save variables and conditionals

 10.2.2. Ans with subprograms

 10.3. Compressing numbers and choices

 10.3.1. Compressing numbers

 10.3.2. Compressing string options

 10.3.3. Compressing or and and

 10.4. Space-saving tips and tricks

 10.4.1. Shortening your programs

 10.5. Summary

 Chapter 11. Using hybrid TI-BASIC libraries

 11.1. Introducing hybrid TI-BASIC

 11.1.1. Downloading the hybrid libraries

 11.1.2. Calling hybrid functions

 11.2. Working with hybrid sprites

 11.2.1. Defining and drawing sprites

 11.2.2. Sprites as hexadecimal

 11.2.3. The hybrid BASIC mouse: CURSORH

 11.3. Tilemapping and scrolling

 11.3.1. Expanded TI-BASIC tilemapping with scrolling

 11.3.2. Hybrid tilemapping

 11.4. Finding and executing programs

 11.4.1. Finding files

 11.4.2. Running subprograms from Archive

 11.5. Other hybrid tools

 11.5.1. Manipulating files and data

 11.5.2. Hybrid TI-BASIC I/O and GUIs

 11.6. Summary

 Chapter 12. Introducing z80 assembly

 12.1. What is assembly?

 12.1.1. z80 assembly versus TI-BASIC

 12.1.2. z80 assembly programming tools

 12.2. “Hello, World”

 12.2.1. Running Hello World

 12.3. Bases and registers

 12.3.1. Working with binary, hex, and registers

 12.3.2. The stack: saving registers

 12.3.3. Integers in memory: long-term storage

 12.4. z80 math with registers

 12.4.1. Register math and flags

 12.4.2. Masking and using bits

 12.5. Functions and control flow

 12.5.1. Using bcalls and ASM functions

 12.5.2. Conditionals and jumps

 12.5.3. Loops in z80 assembly

 12.6. Summary

 Chapter 13. Now what? Expanding your programming horizons

 13.1. Taking your calculator programming further

 13.1.1. Continuing with TI-83+/SE and TI-84+/SE programming

 13.1.2. Programming other graphing calculators

 13.2. Expanding your programming horizons

 13.3. Working with hardware

 13.3.1. Calculator hardware and modifications

 13.3.2. The wonderful world of microcontrollers

 13.4. Final thoughts

 Appendix A. Review: using your calculator

 A.1. Navigation and menus

 A.1.1. Changing modes

 A.2. Simple math, variables, and data types

 A.2.1. Math, Ans, and numeric variables

 A.2.2. Working with lists and matrices

 A.3. Graphing and the graphscreen

 A.3.1. Zooming and modifying the window

 A.4. Uploading and downloading programs and files

 A.4.1. Installing and using linking software

 A.5. Summary

 Appendix B. TI-BASIC command reference

 B.1. Input and output

 B.2. Conditionals and control flow

 B.3. Working with graphics

 B.4. Number and data type commands

 B.4.1. Numbers

 B.4.2. Strings

 B.4.3. Lists and matrices

 B.5. Hybrid BASIC commands

 Appendix C. Resource list

 C.1. Programming and project help and discussions

 C.2. Tools and emulators

 C.3. Downloads and tutorials

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 As a professional computer software developer, I can tell you that some of the greatest programmers start with the simplest
 of hardware and the most fervent determination.

 Mastering a small computer system (such as the Texas Instruments graphing calculator) not only feels fantastic, but also teaches
 core programming concepts and solidifies ways of thinking that mediocre programmers seldom grasp. I have been in the TI graphing
 calculator community for well over a decade, as has Christopher (known among us as “Kerm Martian”). Throughout that time we
 have watched each other’s humble beginnings, been amazed as our successful (and at times overly ambitious) projects flourished,
 and even watched others learn from us. I can think of no one more capable of teaching the basics of programming the TI-83
 Plus series graphing calculators, and ensuring you have fun along the way, than Christopher “Kerm Martian” Mitchell.

 My own fascination with graphing calculators, and particularly the TI-83 and TI-84 Plus series, began in the late 1990s, when
 only cripplingly slow dial-up and mailing lists bound us together. The TI-GRAPH LINK cable allowing connection between a computer
 and a graphing calculator had only recently made its debut, eliminating the need to painstakingly hand-type TI-BASIC games
 and utilities. At the time, I thought the program editor was merely for typing notes. It wasn’t until I discovered the programming
 chapter of the thick, cryptic TI-83 manual that I realized it could do so much more.

 I spent many days reading the entire manual over and over, striving to understand every command I could execute from within
 a TI-BASIC program. I became enamored with the concept of taking a limited set of instructions and transforming the calculator
 into anything I could imagine. Before I knew it, I was spending 7th grade math class happily playing my own random number
 guessing game while others struggled to stay awake at their desks. The idea of sculpting complex applications (and let’s face
 it, games) in my own mind and then pouring them out onto the calculator keys captivated me and pulled me into the world of
 software development.

 Once I had mastered TI-BASIC, my curiosity did not cease. How does TI-BASIC work? What happens when the calculator executes
 a TI-BASIC command? What happens behind the scenes? How does the calculator know how to display graphs, or what to do when
 a key is pressed or a menu item chosen? I discovered that the answers lay within a mysterious second programming language
 that was all the rage—assembly language. This language consists of the raw instructions that the calculator’s processor executes;
 it was used to write the calculator’s OS and the interpreter that makes TI-BASIC possible.

 For years, programmers had been writing in assembly language to create programs even more powerful and flexible than what
 TI-BASIC allowed. To share in the fun and understand all of the TI-83 Plus’ inner workings, I knew I had to learn it. From
 that moment on, I made it my goal to learn everything there was to learn about the underlying software that makes the TI-83
 Plus series tick. Even after years of reverse engineering the OS (and, on occasion, exploiting some of its more interesting
 security vulnerabilities), it remains an elusive goal.

 For as long as I can remember, Christopher (or Kerm) has humbly granted himself the title of “world’s most prolific calculator
 programmer,” which as it turns out, is a well-deserved description. Despite TI-BASIC’s reputation as a relatively limited
 language compared to the calculator’s native assembly language, Christopher started cranking out programs soon after learning
 it and has never stopped—from TI-BASIC to assembly programs to FLASH applications.

 Christopher’s crowning achievement in the world of programming TI-83 Plus applications is Doors CS, a powerful, versatile
 calculator shell (a program that provides a user interface for running other programs). I can still recall the first version
 of Doors CS, written in pure TI-BASIC and requiring tedious manual configuration to overcome some (but not all) of TI-BASIC’s
 shortcomings. As a calculator shell requires total access to the calculator’s memory and the variables contained within for
 management and execution of programs, TI-BASIC is not a language conducive to producing a great shell. Despite this and a
 bit of negative criticism, Christopher persevered and strove to improve upon it no matter the cost, eventually implementing
 it in assembly language and adding many useful features and tight integration with the TI operating system. Some of my favorite
 memories are of staying up very late at night (and into the early morning) with Christopher, reverse engineering some of the
 more mysterious parts of the OS to diagnose lingering issues in Doors CS’ interaction with existing calculator functionality.

 Today, Christopher has produced one of the community’s leading shells, software to allow using a calculator over the internet
 for chatting and playing calculator games with others, and other projects too numerous to mention. Cemetech.net has evolved
 from his personal website into a haven for anyone interested in programming TI graphing calculators or receiving help in doing
 so.

 Some of the greatest members of the calculator community—longtime developers like Dan Englender, Michael Vincent, Benjamin
 Moody, and countless others—made calculator programming the great learning experience and joy it is for so many, and it is
 safe to say that Christopher stands with them.

 I have no doubt that Christopher’s unique understanding of the TI-83 Plus series, the TI-BASIC language, and all that lies
 beyond will prove to be a valuable asset as you go through this book. It will teach you all there is to know about TI-BASIC,
 assembly language, and everything in between. And it will help you explore the wonder and awe that can be found in calculator
 programming.

 Enjoy!

 BRANDON WILSON
SENIOR SOFTWARE DEVELOPER
ADVANCED CALL CENTER TECHNOLOGIES (ACT)

Preface

 When I was 13 years old, I received my first graphing calculator. It was Christmas, and my biggest present under the tree
 was a TI-83. I was thrilled. I first used it just for math, but over several months, I became more curious and discovered
 that I could write programs directly on the calculator. The guidebook included with the calculator didn’t really help with
 programming, other than demonstrating an interesting Sierpinski Triangle. Undeterred, I set off to teach myself calculator
 programming, although I never thought of it in such definite terms.

 I first learned to display text on the screen and then to make simple animations. I discovered that I could also ask the user
 for input and thus make simple math programs to check my homework results. Soon classmates began passing around arcade games
 they had found for their calculators, so I dug into the source code for those games and found out how they worked, using my
 new skills to create games of my own. Over the years I grew more competent, including learning to write z80 assembly, a more
 complex but much more powerful language than TI-BASIC. I started an online community around graphing calculator programming
 called Cemetech (pronounced “KEH-meh-tek”) that thrives as a hardware and software development haven to this day. I continued
 to pursue programming as well as my lifelong love of hardware and electronics. I earned two degrees in electrical engineering
 and one in computer science; I’m now working toward my doctorate. I credit much of my love of programming and engineering
 to those first faltering steps with my graphing calculator.

 Having helped new calculator programmers to learn the tricks of the trade for close to 13 years on Cemetech’s forum, I’ve
 heard countless variations on my story. I’ve worked with students who got a calculator and started to play with its math features,
 only to discover it was programmable. I’ve helped others who downloaded games from their peers, then took the games apart
 to see what made them tick. I’ve seen like-minded students form small programming groups to make math programs and games for
 their friends. Many of these students are now in college or graduate school, studying engineering or computer science; others
 work in the industry as professional programmers or as teachers and professors. Almost all of them credit their first forays
 into calculator coding for their current love of technology and programming.

 When I show off my latest projects, there’s bound to be at least one person who asks, “why?” Why would I bother working with
 such a low-powered, primitive device, when I have the equipment and skills to write more complex software for vastly more
 capable systems? The answer is that I love the utility of graphing calculators as an introductory programming platform and
 I love a challenge. When I’m writing a TI-83+ program, every byte of the calculator’s 24 K of RAM is important, and every
 cycle of its 6 MHz processor must be carefully rationed.

 When I wear my other hats as an electrical engineer, a computer scientist, a webmaster, and a researcher, I work with systems
 that have many more capabilities. These systems provide their own performance and design challenges, but none are quite as
 simultaneously simple and complex as graphing calculators. From a teaching perspective, I believe calculators are an accessible
 platform on which to learn the problem-solving skills vital to becoming a good programmer. You can write and test code directly
 on a device that many students already own, and, with only the capabilities built into your $100 calculator, create surprisingly
 complex projects. In a very real sense, you’re working with a full-fledged if slightly antiquated computer.

 These dual attractions of graphing calculator programming have driven me to continue to pursue my own calculator projects
 and to build a community of like-minded coders and teachers. Throughout the years, I’ve sporadically hoped to document my
 extensive calculator programming experience in some way. In 2003, I wrote a rudimentary TI-BASIC tutorial. Two years later,
 I wrote and published a guide to advanced TI-BASIC optimizations with a fellow Cemetech administrator, which 14,000 coders
 have read to date. Between 2005 and 2006, I attempted to motivate the community to document their TI-BASIC knowledge in a
 wiki, a project that never gained much traction, but I continued to wish there was a way to write an exhaustive, thorough
 guide to TI-BASIC programming.

 So it was with excitement that I received Manning’s request that I write a book about graphing calculator programming. I’ve
 tried to transcribe as many of the lessons that I learned over the years onto these pages, from basic lessons to advanced
 tips and tricks. I’ve found that calculator programming has helped me to think more critically as a programmer and as an engineer
 and made it easier for me to pick up other languages. I’ve tried to pass along many of the general problem-solving lessons
 I’ve accumulated in these pages, and I hope that regardless of whether you are learning calculator programming as its own
 goal or as a stepping-stone toward another language, you’ll have as much fun reading the coming chapters as I had writing
 them.

 Any good programmer, engineer, or scientist knows that there’s always more to learn, so I hope to hear from many of you and
 find out what role calculators played in your life and how this book helped you. Perhaps you’ll show off some tips and projects
 of your own on Cemetech or in the larger programming community. I hope in the future to continue to help you with your programming,
 through other books, Cemetech, or indirectly through the rest of the programming community.

 Good luck, and enjoy!

Acknowledgments

 Thanks must first go to the friends, family, and loved ones who’ve supported my programming and engineering career throughout
 the years. I’d especially like to acknowledge my mother, Maria Mitchell, for getting me my first calculator, always supporting
 my education, and offering moral support during this book’s creation. My friends and loved ones have been patient with my
 hobbies and projects and have always been ready with words of encouragement; my girlfriend, Sara Nodroff, was there for me
 throughout the many hours I spent on this project. I’m also grateful to teachers and advisers current and past who helped
 me get where I am today, especially to Jinyang Li, who was understanding of my threading the writing of this book around my
 PhD research.

 Although my first forays into calculator programming took place on my own, the members of the worldwide graphing calculator
 enthusiast community have been my colleagues and friends for close to a decade. It’s hard to name all of the individuals who
 have made a difference for me, so if I don’t specifically acknowledge you, know that I treasure your help, inspiration, and
 camaraderie nonetheless. I must first tip my hat to my Cemetech administrators, staff, and friends, who have stood by me through
 my technical and personal struggles and achievements. Thomas “Elfprince13” Dickerson and Daniel “TIFreak8x” Thorneycroft have
 been with Cemetech since its early days and have encouraged my projects for more than seven years. Shaun “Merthsoft” Mcfall
 and Jon “Jonimus/TheStorm” Sturm, more recent additions to Cemetech, have become my valued friends and colleagues. Other Cemetech
 staff past and present have been my teachers, students, and friends, including Theodore Davis, Alex Glanville, Kenneth Hammond,
 Catherine Hobson, Peter Marheine, Jonathan Pezzino, and John Reck. I’m grateful to all of the Cemetechians who provided feedback
 and corrections for this book, including Dan “Shkaboinka” Cook, the technical proofreader.

 The staff of the community mainstay website www.ticalc.org have over the years been advisers and friends, including Travis Evans, Nikky Southerland, and Michael Vincent; Ryan Boyd
 and Duncan Smith also assisted in this book’s review process. Many of my assembly accomplishments would have been a more painful
 struggle without the vast knowledge of Brandon Wilson and Ben Ryves, and the prior work of Joe Wingbermuehle on Ion and other
 programs, Dan Englender and Jason Kovacs on Doors CS’s archrival MirageOS, Sean McLaughlin on his excellent ASM tutorial,
 and James Matthews on the first ASM tutorial I ever read. Thanks also to Brandon for penning the foreword to my book.

 Special thanks to the following reviewers who read the manuscript at different stages during its development and provided
 invaluable feedback: Amethyst Ramsey, David Robertson, Gabriel Martin, Jared McNeil, Jonathan Walker, Julien Savard, Kyle
 Beck, Louis Becquey, Peter Beck, Travis Evans, and Xavier Andréani.

 This book would have been impossible without the tireless efforts of many at Manning. Thanks to my publisher, Marjan Bace,
 and to Michael Stephens, who first found me for this project. In chronological order, Bert Bates, Renae Gregoire, and Elizabeth
 Lexleigh contributed a great deal of their time and effort to make this work the best that it could be. My gratitude also
 goes to the Manning marketing, editorial, and production teams for every aspect of their contributions that combined to make
 the virtual or physical pages you now hold in your hand possible.

About this Book

 Graphing calculator programming is a rewarding way to get started in computer programming, to develop your existing skills,
 or just to have fun with the challenge of working with such a device. If you’re a student or teacher, especially of math or
 science, the programs you write for your calculator can speed up annoying, repetitive calculations or help you check your
 work. You can enjoy the feeling of accomplishment from completing a useful utility or a fast-paced game for your calculator.

 From this book, you’ll learn everything you need to know to progress from a nonprogrammer to a TI-BASIC pro. If you have programming
 experience, or even TI-BASIC skills, it will teach you advanced tricks and hopefully help you see the language in a new way.
 The problem-solving skills in each chapter can be applied to almost any programming language that you might encounter.

 If you’re a beginner, I recommend that you read this book front to back, starting from the first chapter and working your
 way to the end. If you have some experience or are looking for answers to specific questions, you can skip to the relevant
 chapter. I assume beginning in chapter 2 that every reader has the same basic set of calculator skills and knows how to perform math, draw graphs, and use lists and
 matrices. If you’re uncomfortable with any of those concepts, I strongly recommend that you read through appendix A before you get to chapter 2. In case you forget the syntax for any TI-BASIC command that you learn, you can look at appendix B, which is arranged to parallel the organization of the chapters. No programmer should have to code in a vacuum, so when you
 get stuck, be sure to visit the Author Online forum, Cemetech, or any of the other forums and websites listed in appendix C.

 Throughout this book, you’ll look at both educational and fun programs that test each new idea and cobble it together with
 the things that you’ve already learned. In many places, I’ll talk about some program that you might want to write but don’t
 yet know how to create and then introduce new concepts that will provide those skills.

Roadmap

 This book consists of 13 chapters, divided into three parts. It also has three appendixes, which summarize skills, commands,
 and resources that any calculator programmer might need. Part 1 focuses on introducing programming skills that are important for TI-BASIC programming but apply to almost any language you
 might want to learn.

	
Chapter 1 introduces graphing calculators and calculator programming, outlining why learning TI-BASIC is important and relevant. It
 presents your first three programs: a Hello World program, a guessing game, and a quadratic equation solver.

 	
Chapter 2 presents input and output on the homescreen, including displaying text and numbers and getting strings and values from the
 user.

 	
Chapter 3 covers conditionals and comparisons, the building blocks for creating programs that make decisions.

 	
Chapter 4 completes the picture of controlling program flow in TI-BASIC with labels, loops, menus, and subprograms, all of the structural
 features that you’ll need to create arbitrarily complex programs.

 	
Chapter 5 steps back to detail the process of designing, creating, and debugging a program in any language. It illustrates each step
 with a running TI-BASIC example.

Part 2 takes the basic framework from part 1 and teaches additional commands and features necessary for more professional and complete
 programs. These include graphics, interactivity, and the proper use of the many data types your calculator understands, such
 as matrices, lists, strings, and pictures.

	
Chapter 6 teaches you how to create fun, interactive programs and games with event loops. As with many other lessons, it wraps the
 TI-BASIC focus in skills you’ll be able to bring to many other languages. This chapter culminates in a full Mouse and Cheese
 game for your edification.

 	
Chapter 7 discusses your first true graphics tools, presenting the concepts and commands for turning individual pixels on and off.
 It shows how to draw small and large text anywhere on the screen and reinforces the lessons of the chapter with two demo programs:
 a painting tool and a mouse cursor subprogram.

 	
Chapter 8 expands further on graphics and graphing, covering creating and manipulating graphs from inside programs, as well as drawing
 with points, lines, circles, and other shapes. It introduces the commands for storing and recalling pictures on the graphscreen.

 	
Chapter 9 rounds out part 2 with an overview of the many data types your calculator can handle and the important commands for manipulating
 each. It walks through strings, lists, matrices, real and complex numbers, and random numbers, and it concludes with a complete
 framework for a role-playing game (RPG) that you can expand and enhance on your own.

Part 3 goes into advanced concepts and may be particularly engaging even if you have prior TI-BASIC or programming experience. It
 covers optimization, hybrid BASIC, and the rudiments of assembly.

	
Chapter 10 details how to optimize your programs for speed and size, presenting TI-BASIC–specific tips without losing sight of the more
 general programming lessons for proper optimization.

 	
Chapter 11 shows hybrid TI-BASIC and the hybrid BASIC libraries and includes a discussion of the major libraries, where to find them,
 and how to use them.

 	
Chapter 12 introduces a new programming language, z80 assembly, giving you enough detail about binary, decimal, hexadecimal, and assembly
 commands and program flow to spur you to explore it more on your own.

 	
Chapter 13 concludes with ideas about where you can go with programming and calculator programming from here. It also discusses hardware
 development and hacking and how such a hobby ties into calculator programming.

The appendixes provide a quick reference to material supplementing and coalescing the contents of the chapters:

	
Appendix A is a crash course in using your graphing calculator. Chapters 2 onward assume a basic set of general calculator skills, and appendix A reviews all of these skills in case you don’t feel entirely comfortable with your device.

 	
Appendix B summarizes all of the commands found throughout the chapters and includes usage examples and syntax.

 	
Appendix C lists valuable resources for seeking programming help, finding additional programs for inspiration and source code examination,
 and tools to facilitate BASIC and assembly programming.

Who should read this book

 Who are you? You might be a student who is getting a graphing calculator for the first time or recently started using one
 and wants to unlock your device’s full potential. Perhaps you are a teacher, an engineer, a programmer, or just curious. If
 you’ve never before programmed anything, you have a whole world of amazing things that programming can enable you to do and
 learn in front of you, and I’ll be honored to guide you forward. This book is primarily aimed at you, the budding programmer.
 I’ll lead you through graphing calculator programming, but I’ll also help you keep an eye on programming in general and teach
 you concepts you can apply to almost any language.

 If you’ve toyed with programming before, for calculators, computers, or another platform, I hope this book can teach you how
 to learn more, to write and understand complete programs, and to have fun doing so. If you’re an advanced programmer, either
 for calculators or something else, I want to provide you with a great reference guide for calculator programming, advanced
 topics and optimization tricks, perhaps get you interested in z80 assembly programming, and give you another perspective on
 programming as a hobby and as a career.

 I’ll teach you everything you need to know to write complete programs for your graphing calculator (and everyone else’s);
 I assume that you have no prior knowledge of calculator programming or any sort of programming. I’ll teach you how to think
 like a programmer and how to apply problem-solving skills to take any program you might want to write, break it down into
 pieces, and code each one. If you have some prior programming skill, great; if you have previous graphing calculator programming
 skill, all the better. The chapters ahead are designed to teach you everything you need to know, from the basics up to the
 most advanced tricks for creating very fast, very small, very fancy programs. If you have some experience, you may end up
 skimming sections, but even if you feel like you know your way around a simple TI-BASIC program, you’re likely to run across
 new tricks and features that you hadn’t previously played with.

 Why write calculator programs; why not just jump straight to programming a computer? The short answer: the opportunity to
 learn quickly, have fun, surmount the challenges of a programming platform, and get started right away. If you’re reading
 this book, chances are you already have a graphing calculator. If you don’t, then you can get one for less than $100. The
 TI-83+, TI-83+ Silver Edition, TI-84+, and TI-84+ Silver Edition covered in this book are all cheap, widely available, and
 widely owned graphing calculators and can all run each other’s programs. The TI-83 can run very similar programs and is similarly
 inexpensive and ubiquitous. Although their programming languages are somewhat different, many of the same skills can be applied
 to programming other TI graphing calculators and to Casio calculators such as the color-screen Casio Prizm. Calculators are
 small and portable, great to carry around and whip out when you have some downtime to work on your programming but don’t have
 or want to carry around a laptop. They last for months, not a few hours, on a single charge or set of batteries.

Typographic conventions and code

 Looking at code examples as you learn is vital to a full understanding of a language. Examples large and small, along with
 occasional exercises, are scattered far and wide through this text. Full programs are often presented in listings, though
 shorter programs may be interspersed between paragraphs in monospaced font. Several other conventions are followed:

	All keypresses are enclosed in square brackets, such as [ENTER] or [2nd]. The text between the brackets is the text printed
 on your calculator’s keys. Chapter 2 explains more about the key convention used and how to type key combinations.

 	Commands and tokens are mentioned in the text by their name in monospaced font, like Disp or For or Line. Some commands have parentheses after them, such as For(and Line(, but for neatness in text, these parentheses are often omitted. The requisite parentheses are shown in code examples and
 when each such command is first presented.

 	All code herein applies to the TI-83+, TI-83+ Silver Edition, TI-84+, and TI-84+ Silver Edition. These calculator families
 are formally named TI-83 Plus and TI-84 Plus, respectively, but I’ll call them the TI-83+ and TI-84+ throughout, because that
 has become accepted parlance in the programming community. I strongly recommend that you have one of these four calculators
 to accompany your adventure through this book. Much of the code and almost all of the concepts also apply to the TI-82 and
 TI-83 and to a lesser extent to the TI-85 and TI-86. The TI-89 uses a different, more complex variant of the TI-BASIC language.

The code for all of the programs presented in this book can be found on the publisher’s website, www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus. Each program can be tested on your calculator or emulator; a list of the top TI calculator emulation software packages is
 included in appendix C. You can also view the source of programs on your computer using SourceCoder, at http://sc.cemetech.net.

 All screenshots in this book were taken with the Wabbitemu or jsTIfied emulators and adjusted and annotated in GIMP. All source
 code listings were generated from the original programs by SourceCoder or written in that IDE and checked in an emulator.

Online resources

 The purchase of Programming the TI-83 Plus/TI-84 Plus includes free access to a private web forum run by Manning Publications, where you can make comments about this book, ask
 technical questions, and receive help from both the author and from other readers. The Author Online forum can be found at
 www.manning.com/ProgrammingtheTI-83Plus/TI-84Plus. This page contains information on how to register on and use the forum, what kind of help is available, and the rules of
 conduct.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

 You can also ask technical questions on the author’s forum, Cemetech, which has a special subforum for this book at www.cemetech.net/forum/f/70 (or http://cemete.ch/f70). Appendix C lists many more online resources, including places to download and publish programs, development tools, and emulators.

About the author

 Christopher Mitchell is a graduate student of computer science and electrical engineering, a teacher, and a recognized leader
 in the TI and Casio graphing calculator programming communities. Christopher started programming Logo and QBasic when he was
 seven years old, taught himself TI-BASIC at the age of 13, and has since branched out into hardware and software development
 for many platforms. He is the graphing calculator community’s most prolific author, with well over 300 completed programs.
 Today, Christopher hosts discussions and collaboration on calculator programs and projects at his website, Cemetech. Christopher
 is proud to be a born-and-raised New Yorker. He has bachelor’s and master’s degrees in electrical engineering from Cooper
 Union and is now pursuing a PhD in computer science at the Courant Institute of NYU.

About the title

 While we refer to the calculator by its shortened name TI-83+/TI-84+ throughout the book in order to save space and avoid
 repetition, the official name of the calculator is TI-83 Plus/TI-84 Plus and we do use this name written out in full in the
 title and in other official references to the book or the calculator.

About the cover

 Manning has a tradition of using illustrations from 18th- and 19th-century collections of regional dress customs on their
 covers. After feedback from many students in this book’s target audience, however, an alternative was created for this book,
 combining classical art with the instantly recognizable outline of a TI-83+ graphing calculator. The final design on the cover
 of this book, refined through many creative iterations, is inspired by Leonardo da Vinci’s “Vitruvian Man,” in which the human
 figure is replaced with calculators.

Part 1. Getting started with programming

 Graphing calculator programming is a great way to dive into the world of programming, to learn more about your calculator,
 and to enhance your academic prowess and problem-solving skills.

 The five chapters in part 1 immerse you in everything you need to know to start writing full, powerful programs. It begins
 with your first three graphing calculator programs, shows you how to input and output numbers and text, and teaches you conditional
 and structural commands. By the end of this part, you’ll be able to write programs and games that can interact with the user,
 make decisions, display menus, perform calculations, and call other programs. In each chapter, you’ll see examples large and
 small that you can test and play with to cement your understanding of each new concept, and you’ll occasionally be challenged
 to write your own application.

 Chapter 1 introduces your calculator as a math and programming tool. You’ll see how closely it resembles a full computer, and you’ll
 explore a Hello World program, a quadratic equation solver, and a guessing game. Chapter 2 shows you a systematic approach to writing, editing, and running programs on your calculator, then teaches you commands to
 interact with the user. Chapters 3 and 4 show increasingly complex program-flow tools, from performing comparisons and using the results to make decisions, to jumping
 from place to place inside a program, to creating loops and calling subprograms.

 If you have a vested interest in learning other programming languages besides TI-BASIC, you’ll find chapter 5 particularly enlightening. It takes you through the process of imagining, designing, writing, and debugging a program from
 start to finish in any language. In the process, you’ll learn to design your programs’ interfaces, sketch flowcharts of program
 structure, and turn those diagrams into code.

 If you’re comfortable using a graphing calculator for math and graphing and have previously used lists and matrices, then
 you can jump directly from chapter 1 to chapter 2. If you want to make sure you understand the nonprogramming basics, you should review appendix A for a crash course in using your calculator as a math and science tool before beginning chapter 2.

Chapter 1. Diving into calculator programming

	

 This chapter covers

	Why you should program graphing calculators

 	How calculator programming skills apply to computer coding

 	Three sample programs so you can dive right in

	

In the past 40 years, programming has gone from being a highly specialized niche career to being a popular hobby and job.
 Today’s programmers write applications and games for fun and profit, creating everything from the programs that run on your
 phone to the frameworks that underpin the entire internet. When you think of programming, however, you probably don’t envision
 a graphing calculator. So why should you read this book, and why should you learn to program a graphing calculator?

 Simply put, graphing calculators are a rewarding and easy way to immerse yourself in the world of programming. Graphing calculators
 like the ones in figure 1.1 can be found in almost every high school and college student’s backpack, and though few of them know it, they’re carrying
 around a full-fledged computer. Directly on your calculator, with nothing else required, you can write games, math programs
 that will help you check your work, and science programs to solve hard problems. You’ll learn to think like a programmer,
 to apply problem-solving skills to surmount obstacles, and to optimize and streamline your software. But you might be asking yourself why you should bother
 learning calculator programming instead of starting with a computer language like Java or Python or C.

 Figure 1.1. Common Texas Instruments graphing calculators, the TI-83+ (left) and TI-84+ Silver Edition; the lessons in this book apply
 to these calculators as well as the TI-83+ Silver Edition, the TI-84+, the TI-Nspire with a TI-84+ keypad, and, to a large
 extent, the TI-83.

 [image:]

 The answer is that besides offering a simple yet powerful way to get started with programming and besides being a portable
 computer you can slip into your pocket, your calculator will make it much easier for you to learn computer programming. To
 a large extent, you’ll be applying the same set of critical thinking skills to any programming language that you write, and
 the TI-BASIC calculator language you’ll learn throughout this book is a rewarding and easy way to learn those skills. By the
 end of this chapter, you’ll have already written three programs, including a game and a math program.

 Just from using your graphing calculator for math, you already know some programming. The math operations in TI-BASIC programs
 are identical to the math operations you type at the homescreen, and with many operations, such as manipulating graphs, you
 can build off the skills you’ve already learned using your calculator for school or work. The programming commands have names
 taken directly from English, such as Input, Repeat, and many others. The calculator even makes it easy to track down your programming mistakes, taking you directly to errors
 it finds so that you can correct them.

	

 Why program, and why program calculators?
 Programming is a fun and rewarding career or hobby. It’s great to hone problem-solving skills and to learn to think more analytically.
 It’s gratifying to develop an idea for a program and, after planning and hard work, to successfully bring that idea to fruition.
 You may find that you enjoy the satisfaction of surmounting challenges, of learning to optimize your programs to make them
 small and fast, and of sharing your finished work with friends and with users around the world.

 Programming calculators is a great pursuit on its own and will teach you most of the skills you’ll need to easily pick up
 computer programming languages. Many of the past and present graphing calculator programming stars started as bored or curious
 students and now have advanced degrees or high-paying jobs in programming and engineering. This book will teach you everything
 you need to know to think like a programmer, instilling an intuition for translating an idea into a program and thinking your
 way around challenges that you’ll find useful in a wide variety of technical pursuits.

	

In this chapter, you’ll take your first programming steps, diving right in with your first three calculator programs. After
 we discuss how similar your calculator and a computer are, you’ll meet your calculator’s ancestors and proceed to your first program. You’ll learn to display the text “Hello, World”
 on your calculator’s screen and then create a math program to solve the quadratic equation and a number-guessing game. Ready?
 Let’s get started!

1.1. Your calculator: the pocket computer you already own

 To understand how a graphing calculator is a small, handheld computer and can be programmed to do many of things that a computer
 can be made to do, you must look at what exactly a computer is. The traditional idea of a computer terminal with a tower,
 a monitor, a keyboard, and a mouse is your first clue. A computer has input and output devices, a processor, and long-term
 and short-term storage, as you can see in the top half of figure 1.2. The dashed line indicates the portion of the computer inside the box on your desk, while the input and output devices are
 usually attached via cables. The processor at the center of everything mediates communication between long-term memory, short-term
 memory, and input and output devices. The role of each component is summarized in table 1.1.

 Figure 1.2. The basic building blocks of a computer and a calculator. Both have input and output; both have long-term and short-term storage.
 Both have a processor (CPU) that acts as the brains and mediates communication between the other pieces. The two types of
 devices are similar; the ovals highlight the main differences, such as that a calculator has flash memory for long-term storage
 instead of a hard drive.

 [image:]

 Table 1.1. A side-by-side comparison of a calculator and computer

	
 	
 Calculator

 	
 Computer

	Input devices
 	Mouse/keyboard to control operating system and programs
 	Built-in keypad to control operating system and programs

	Output devices
 	Monitor to display graphics and text
 	LCD screen to display graphs, text, and images

	Inside the box
 	Power supply, processor, RAM (short-term storage), hard drive (long-term storage)
 	Batteries, processor, RAM (short-term storage), Flash/Archive (long-term storage)

	When you run a program
 	Copied from hard drive to RAM, executed by processor from RAM
 	May be copied from Flash to RAM; run by processor from RAM

As you can see in the bottom half of figure 1.2, a graphing calculator also contains these major blocks. Table 1.1 compares each aspect of a calculator with its computer counterpart.

 So why is a graphing calculator a computer, and a simple four-function calculator, like the cheap nongraphing calculator that
 you probably have in a desk drawer and that can only perform the simplest math, is not? The difference is that the simple
 calculator can only run its built-in software, which tells it how to do basic math. A graphing calculator also has a built-in
 OS that tells it how to do math, draw graphs, and store and recall variables but can accept brand-new programs that you or
 others create.

 These programs can be loaded from other calculators, written on a computer using one of several applications designed for
 the purpose, or most conveniently and importantly, written by you, directly on the calculator itself. The programs you add
 to your calculator can do almost anything, including augmenting or supplementing the calculator’s math and graphing tools
 and providing full suites for math, science, word processing, and more. Games can make graphing calculators a lot more fun:
 Arcade games, role-playing games (RPG), puzzle and board games, and thousands of others are possible with the calculator you
 have right now!

 These are fun applications to write and use, but why bother writing calculator programs when you have more powerful computers
 available to you? Why learn to make programs that look good on a 96- by 64-pixel screen when even the lowest end modern laptop
 has 100 times as many pixels, or to fit a program into 20 KB of RAM when your computer has at least 50 million times as much?
 The answer is that calculators offer a much easier learning experience to budding programmers and a more rewarding challenge
 for seasoned coders. They’ll give you a fun hobby, provide more control over your math and science tool, and can act as a
 stepping-stone to other programming languages. I’d like to introduce you to some of your calculator’s extended family, including
 its shared ancestors with modern computers.

The Evolution of the Modern Graphing Calculator

 The graphing calculator as a popular tool for math, science, and programming is now entering its fourth decade of widespread
 usage. Calculators for simple math gained public traction in the 1970s, and the first programmable calculators such as the
 TI-59 (programmed using punched cards) were produced in the late 1970s. But graphing calculators are distinguished by having a much bigger screen, suitable for displaying graphs, and have much more powerful
 math and programming features than their nongraphing counterparts. Texas Instruments, currently leading Casio and HP in modern
 graphing calculator market share, released the TI-81 in 1990, with a 2 MHz processor and 2.4 KB (2400 bytes) of RAM. To put
 that in perspective, this paragraph up to the end of this sentence would already take 20% of a TI-81’s memory. Other models
 were released in the following five years with gradually increasing capabilities. The TI-83+ (introduced in 1999) and TI-84+
 (first available in 2004), were the predecessors to the TI-83+ Silver Edition and TI-84+ Silver Edition; I’ll be focusing
 on these four models throughout the coming chapters.

 The TI-83+, TI-83+ Silver Edition, TI-84+, and TI-84+ Silver Edition are similar calculators; their technical specifications
 are summarized in table 1.2. All four models run a Zilog z80 processor. They all have about 24 KB of RAM to store programs and data and between 163 KB
 and 1.5 MB of Archive, longer-term permanent storage. All four models have a 96- x 64-pixel monochrome (black-and-white) LCD
 screen. To put these sorts of technical specifications in perspective, a popular personal computer from 1982, the ZX Spectrum,
 had a 3.5 MHz z80 processor, between 16 KB and 128 KB of RAM, and used a TV as a 256 x 192 display. The Spectrum had about
 20,000 software titles published for it, whereas over 38,000 programs and projects have been published for TI graphing calculators.

 Table 1.2. Specifications of the modern graphing calculators taught in the coming chapters. You’ll need at least one of these to be able
 to follow along.

 [image:]

	

Tip

 You’ll need at least one of the calculators in table 1.2 to work through the material in this book. It’s recommended that you have a physical calculator, so you can work wherever
 the mood strikes you. But if you so choose, you could use one of the emulators listed in appendix C instead.

	

Specifications and numbers are all well and good, but they can’t teach you nearly as much as getting your hands dirty with
 concrete examples. In the next sections, you’ll work through your first programs: a Hello World program, a math program, and
 a game. You can type the code for each program directly into your calculator or read the descriptions and look at the screenshots
 to see some of the simplest (yet useful) programs your calculator can run. First up, Hello World.

1.2. Hello World: your first program

 No instruction in a new language would be complete without plenty of well-annotated example programs to demonstrate each new
 concept learned. To jump directly into TI-BASIC programming, this section shows you the TI-BASIC version of the simplest program
 imaginable, universally called Hello World because it prints that phrase on the screen. I’ll present an overview of the two
 major types of programming languages, interpreted languages and compiled languages, while showing you TI-BASIC, the language
 you’ll learn in most of the coming chapters. You’ll see the source code for the program, and I’ll teach you how to test it
 on your own calculator. First, you need to know a few background details about the TI-BASIC language and how it compares to
 other languages you may know or have heard about.

 1.2.1. Before you begin: notes on the TI-BASIC language

 The programming language that’s commonly known as TI-BASIC isn’t officially called by any name by Texas Instruments itself
 and isn’t technically a variant of the BASIC (Beginners All-Purpose Symbolic Instruction Code) language. But like BASIC, it’s
 an interpreted language and shares many traits with that inspiration, so the name TI-BASIC has stuck.

 Almost every language can be classified either as an interpreted or a compiled language; a high-level comparison of the two
 is provided in table 1.3 along with a few representative examples of each. See the sidebars “What’s an interpreted language?” and “What’s a compiled
 language?” for more details.

 Table 1.3. Interpreted versus compiled programming languages

	
 	
 Interpreted language

 	
 Compiled language

	Execution speed
 	Slower
 	Faster

	Preprocessing
 	None needed
 	Source code compilation

	Syntax error checking
 	During execution
 	Before execution

	Executed by
 	Interpreter program
 	Computer’s processor

	Examples
 	TI-BASIC, JavaScript, Java, Python
 	C, C++, Haskell, Fortran

For both types of languages, programmers type in the series of commands that will make up the program in a list of lines,
 a list called the program’s source code. For both types, execution generally proceeds from the top of the program downward,
 although you’ll see in section 1.4 and in later chapters how conditional commands, loops, and jumps can redirect execution.

	

 What’s an interpreted language?
 A calculator or computer directly reads these programs, interpreting on the fly what the program will do. It reads each line
 of the program, figures out what that line is directing it to do, acts on it, and moves to the next line. If there are syntactical
 errors, such as sequences of commands that don’t make sense, missing pieces of commands, and the like, the interpreter won’t
 find these until it reaches the error while running the program. Interpreted programs are generally slower than compiled programs,
 because the interpreter must translate each line of the program into a form the computer’s processor can understand and make
 sure the line has no errors before it gives that line of the program to the processor.

	

You’ll now see the first of three TI-BASIC programs meant to immerse you in the basics of the language. I’ll present the source
 code of a Hello World program and explain it. I’ll walk you through the steps to type it and test it on your own calculator.
 If you have prior experience with TI-BASIC, some of the details in the coming examples may be extraneous, but you’ll certainly
 still learn more about each command, its proper use, and special tricks and features of each as you read. Appendix A and the beginning of chapter 2 review using your calculator’s menus and features, typing and editing programs, and other basic calculator skills, so don’t
 worry if some of the concepts seem foreign. Let’s jump into your first program: Hello World.

	

 What’s a compiled language?
 A compiled program goes through an intermediate process called compilation before being run. A compiler’s job is to take the
 code the programmer has typed and convert it into a program that can be run directly by the computer or calculator’s processor
 before it’s run. Because the compiler must examine a program for errors and translate it, much as an interpreter does, it
 can find some programming errors during the compilation process. After they’re compiled, these programs generally run faster,
 because they’re directly executed by the processor with no interpreter spending processor time.

	

1.2.2. Displaying “Hello, World”

 The source code for the Hello World program in TI-BASIC is among the simplest programs you can write, consisting of a single
 line of code. In any language, Hello World is traditionally the first program presented, and it shows “Hello, World” or some variation thereof on the screen; our version
 of this program is shown in action in figure 1.3.

 Figure 1.3. Output of Hello World program

 [image:]

 Even though it’s a tiny toy program, it’s useful for introducing the fundamentals of what a program is, how you create a program,
 and what happens when you run a program. Without further ado, here’s the source code for Hello World.

 [image:]

	

 Why “HIWORLD”, not “HELLO WORLD”?
 In the example code, you can see that the Hello World program is named HIWORLD rather than HELLO WORLD, which seems a bit
 confusing. There’s a good reason: calculator programs can have only uppercase names of at most eight characters, containing
 letters and numbers (but no spaces). Every program name must also start with a letter. Therefore, a name like HELLO or HELLOWOR
 or HIWORLD is allowed, but 1HELLO and HELLOWORLD and HELLO WORLD are all invalid.

	

The program shown consists of two pieces: the name of the program (the first line) and the source code for the program (in
 this case, the second line). Every command has a one-word name and takes zero, one, or more arguments. The command here is
 Disp, short for display, and instructs the calculator to display a line of text on the screen. I give it one argument here, the text to be displayed:
 “HELLO, WORLD.” In programming parlance, a piece of text to be used or displayed is called a string. This line displays the string “HELLO, WORLD” on the screen. Notice that there’s no explicit instruction telling the calculator
 to stop executing the program. Instead, whenever the interpreter reaches the end of a program, it takes that as an implicit
 command to end the program.

Typing the Program on Your Calculator

 If you’d like to type this program into your calculator to try it, you’ll first need to create a program named HIWORLD. Start
 at the homescreen of the calculator, the area where the cursor flashes, and where you can type math and perform the following
 steps:

	Press [PRGM] to get to the Program menu, where you’ll spend much of your time as you learn to program your calculator.

 	Press [[image:]][[image:]] (the right arrow key twice) to switch to the NEW tab, and press [ENTER].

 	
The calculator will ask you for a name for your new program; you can type HIWORLD with the keys [^][x2][–][7][×][)][x–1], the keys over which the letters H, I, W, O, R, L, D are written in green.

 	Press [ENTER] again to create a blank program with the name HIWORLD, as shown in figure 1.4.
 Figure 1.4. Creating a program named HIWORLD

 [image:]

You’ll then be able to type lines into your program.

	

 Typing out tokens: Disp vs. “D” “i” “s” “p”
 As I will remind you several times in your early experiences with TI-BASIC, commands are something called tokens, which means that the “Disp” command is a single entity, not the series of characters “D,” “I,” “s,” “p,” and a following space. One important side effect
 of this is that you can’t type out DISP as letters and expect it to work; the calculator won’t understand what you’re trying
 to do. You must use the tokens found in each of the menus.

	

To type the one line of code in this particular program after you created the new, blank program, continue to follow these
 steps:

	Press [PRGM] from the program editor, which brings up a menu full of programming commands that you can use. It has three tabs,
 labeled CTL (Control), I/O (Input/Output), and EXEC (Execute program). You can press the left- and right-arrow keys to switch
 which of the three tabs is visible and the up and down arrows to scroll through each menu. You first need Disp, which is the third item in I/O. Press [[image:]] to go to the I/O tab; then press [[image:]][[image:]][ENTER] or just [3] to select 3:Disp. In every menu, you can either move the highlight over the number of the item you want
 and press [Enter] or press the number itself on the keypad, in this case [3]. This will paste the Disp command into your program.

 	After you have the Disp in the program editor, you need to type the string you want it to display. To type “HELLO, WORLD”, you’ll first need the
 quotation mark, [ALPHA][+]. HELLO is [ALPHA][^], [ALPHA][SIN], [ALPHA][)], [ALPHA][)], [ALPHA][7]. Notice that unlike a computer
 keyboard, you don’t hold down [ALPHA] and tap the key from which you want a letter; instead, you press and release [ALPHA]
 and then press and release the other key. Chapter 2 will review typing and editing on your calculator if you’re confused. The space character is [ALPHA][0]; see if you can find
 the letters for “WORLD” on your own, and don’t forget the ending quotation mark. When you’ve finished, your program should
 look like figure 1.5.
 Figure 1.5. The source of HIWORLD, on a calculator

 [image:]

OEBPS/01fig03.jpg
Done

OEBPS/f0010-01.jpg
PROGRAM : HIWORLD — Name of the program, not a line of code

Disp "HELLO, WORLD" < Aline of code, with a command (Disp)
taking one argument ("HELLO, WORLD")

OEBPS/01fig02_alt.jpg
. Memory (RAM)
Keyboard, Short-term
| mouse, etc.__{| “memory
Processor
(cPu)
The -
Ward d
ol CD/DVD dr
{~Fonitor, printer; T
speakers, etc. pid
RSy memory

INSIDE THE COMPUTER

m—
[o] o
—T— w5

Flash

Output [ROM/Archive)

e L Comomione |

‘memory

L e e

¥3ILNdWOD

”YOLYINDIVO

OEBPS/f0007-01_alt.jpg
83+ TI83+ SE T8as T84+ SE

Zilog 780 processor | 6 MHz 15 MHz 15 MHz 15 MHz
Screen 96-x 64-pixel monochrome passive-matrx liquid crystal display
RAM 24 KB user/ 24 KB user/ 24 KB user/ 24 KB user/
32 KB total 128 KB total 128 KB total 128 KB total
Archive/flash 163 KB user/ 1.5 MB user/ 480 KBuser/1 | 1.5 MB user/
512 KB total 2 M8 total M8 total 2MB total
Communication | 9.6 Kbps serial | 9.6 Kbps serial | 9.6 Kbps serial, | 9.6 Kbps serial,

mini USB mini USB

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/common.jpg

OEBPS/common1.jpg

OEBPS/01fig04.jpg
ame=HIWORLDA

OEBPS/cover.jpg
Programmmg the

Christopher R. Mitchell

Foreword by Brandon Wilson

M yaninG

OEBPS/01fig05.jpg

