

 inside front cover

Tips for applying investigation techniques

 	
Always look for the root cause of a problem before deciding how to solve it. Focusing on the apparent problem might only be sweeping it under the rug.

 	
An exception thrown at run time is not always in itself the problem. It could be a consequence of the real problem. Always look for the root cause.

 	
No one investigation technique applies to every troubleshooting situation. Remember that for most scenarios, you'll have to apply a combination of investigation techniques.

 	
The more you are aware of all the investigation techniques, the easier it will be for you to find the proper combination to quickly solve a scenario.

 	
In most cases, complex investigation techniques can help, but always remember that sometimes a simple log line in the right place can do miracles.

 	
Sometimes a good night’s sleep is better than any troubleshooting technique.

 [image:]

 [image:]

 Troubleshooting Java

 Read, debug, and optimize JVM applications

 Laurențiu Spilcă

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Nick Watts

 	
 Review editor:

 	
 Marina Michaels

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Jean-François Morin

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299773

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. The basics of investigating a codebase

 1 Revealing an app’s obscurities

 1.1 How to more easily understand your app

 1.2 Typical scenarios for using investigation techniques

 Demystifying the unexpected output

 Learning certain technologies

 Clarifying slowness

 Understanding app crashes

 What you will learn in this book

 2 Understanding your app’s logic through debugging techniques

 2.1 When analyzing code is not enough

 2.2 Investigating code with a debugger

 What is the execution stack trace, and how do I use it?

 Navigating code with the debugger

 2.3 When using the debugger might not be enough

 3 Finding problem root causes using advanced debugging techniques

 3.1 Minimizing investigation time with conditional breakpoints

 3.2 Using breakpoints that don’t pause the execution

 3.3 Dynamically altering the investigation scenario

 3.4 Rewinding the investigation case

 4 Debugging apps remotely

 4.1 What is remote debugging?

 4.2 Investigating in remote environments

 The scenario

 Finding issues in remote environments

 5 Making the most of logs: Auditing an app’s behavior

 5.1 Investigating issues with logs

 Using logs to identify exceptions

 Using exception stack traces to identify what calls a method

 Measuring time spent to execute a given instruction

 Investigating issues in multithreaded architectures

 5.2 Implementing logging

 Persisting logs

 Defining logging levels and using logging frameworks

 Problems caused by logging and how to avoid them

 5.3 Logs vs. remote debugging

 Part 2. Deep analysis of an app’s execution

 6 Identifying resource consumption problems using profiling techniques

 6.1 Where would a profiler be useful?

 Identifying abnormal usage of resources

 Finding out what code executes

 Identifying slowness in an app’s execution

 6.2 Using a profiler

 Installing and configuring VisualVM

 Observing the CPU and memory usage

 Identifying memory leaks

 7 Finding hidden issues using profiling techniques

 7.1 Sampling to observe executing code

 7.2 Profiling to learn how many times a method executed

 7.3 Using a profiler to identify SQL queries an app executes

 Using a profiler to retrieve SQL queries not generated by a framework

 Using the profiler to get the SQL queries generated by a framework

 Using the profiler to get programmatically generated SQL queries

 8 Using advanced visualization tools for profiled data

 8.1 Detecting problems with JDBC connections

 8.2 Understanding the app’s code design using call graphs

 8.3 Using flame graphs to spot performance problems

 8.4 Analyzing queries on NoSQL databases

 9 Investigating locks in multithreaded architectures

 9.1 Monitoring threads for locks

 9.2 Analyzing thread locks

 9.3 Analyzing waiting threads

 10 Investigating deadlocks with thread dumps

 10.1 Getting a thread dump

 Getting a thread dump using a profiler

 Generating a thread dump from the command line

 10.2 Reading thread dumps

 Reading plain-text thread dumps

 Using tools to better grasp thread dumps

 11 Finding memory-related issues in an app’s execution

 11.1 Sampling and profiling for memory issues

 11.2 Using heap dumps to find memory leaks

 Obtaining a heap dump

 Reading a heap dump

 Using the OQL console to query a heap dump

 Part 3. Finding problems in large systems

 12 Investigating apps’ behaviors in large systems

 12.1 Investigating communication between services

 Using HTTP server probes to observe HTTP requests

 Using HTTP client probes to observe HTTP requests the app sends

 Investigating low-level events on sockets

 12.2 The relevance of integrated log monitoring

 12.3 Using deployment tools in investigations

 Using fault injection to mimic hard-to-replicate issues

 Using mirroring to facilitate testing and error detection

 Appendix A. Tools you’ll need

 Appendix B. Opening a project

 Appendix C. Recommended further reading

 Appendix D. Understanding Java threads

 Appendix E. Memory management in Java apps

 index

 front matter

preface

 What does a software developer actually do for a living? “Implement software” is the most common answer to this question. But what does that mean? Is it only writing code? Well, no. While it is true that code is the result of everything a software developer does, the activity of writing code takes only a small part of a software developer’s working time. Most of a software developer’s time is actually used designing solutions, reading existing code, understanding how it executes, and learning new things. Writing code is the result of a software developer successfully accomplishing all of these tasks. Therefore, a programmer spends most of their time reading existing solutions rather than effectively writing new capabilities.

 Clean coding as a subject has, in the end, the same purpose: teaching developers how to write easier-to-read solutions. Developers realize that it’s more efficient to write an easier-to-read solution from the beginning than spend time trying to understand it later. But we need to be honest and admit that not all solutions are clean enough to quickly comprehend. We’ll always face scenarios in which we will need to understand the execution of some foreign capability.

 The reality is that software developers spend a lot of time investigating how apps work. They read and examine code in their app’s codebases and associated dependencies to figure out why something doesn’t work the way they expect. Developers sometimes read code only to learn about or better understand a given dependency. In many cases, reading code isn’t enough, and you have to find alternative (sometimes more complicated) ways to figure out what your app does. To understand how the environment affects your app or the JVM instance your Java app runs on, you may use a combination of profiling, debugging, and log investigations. If you know your options well and how to choose from among them, you will save valuable time. Remember, this is what developers spend most of their time doing. This development activity can be very beneficial.

 I designed this book to help people optimize the way they investigate software development challenges. In it, you’ll find the most relevant investigation techniques, which are applied with examples. We’ll discuss debugging, profiling, using logs, and efficiently combining these techniques. Throughout the book, I’ll give you valuable tips and tricks that will help you to become more efficient and solve problems (even the most difficult of them) faster. In other words, this book’s purpose, overall, is to make you more efficient as a developer.

 I hope this book brings significant value to you and helps you to become more efficient in quickly finding the root causes of issues you investigate.

acknowledgments

 This book wouldn’t be possible without the many smart, professional, and friendly people who helped me out throughout its development process.

 I want to say a big thanks to my wife Daniela, who was there for me, helped with valuable opinions, and continuously supported and encouraged me. I’d also like to send special thanks to all the colleagues and friends whose valuable advice helped me with the very first table of contents and proposal.

 I’d like to thank the entire Manning team for their huge help in making this a valuable resource. I’d especially want to call out Marina Michaels, Nick Watts, and Jean-François Morin for being incredibly supportive and professional. Their advice brought great value to this book. Thans go as well to Deirdre Hiam, my project manager; Michele Mitchell, my copyeditor; and Katie Tennant, my proofreader.

 I’d like to thank my friend Ioana Göz for the drawings she created for the book. She turned my thoughts into the cartoons you’ll see throughout the book.

 I’d also like to thank everyone who reviewed the manuscript and provided useful feedback that helped me improve the content of this book. I’d like to specifically call out the reviewers from Manning—Alex Gout, Alex Zuroff, Amrah Umudlu, Anand Natarajan, Andres Damian Sacco, Andriy Stosyk, Anindya Bandopadhyay, Atul Shriniwas Khot, Becky Huett, Bonnie Malec, Brent Honadel, Carl Hope, Cătălin Matei, Christopher Kardell, Cicero Zandona, Cosimo Damiano Prete, Daniel R. Carl, Deshuang Tang, Fernando Bernardino, Gabor Hajba, Gaurav Tuli, Giampiero Granatella, Giorgi Tsiklauri, Govinda Sambamurthy, Halil Karaköse, Hugo Figueiredo, Jacopo Biscella, James R. Woodruff, Jason Lee, Javid Asgarov, Jean-Baptiste Bang Nteme, Jeroen van Wilgenburg, Joel Caplin, Jürg Marti, Krzysztof Kamyczek, Latif Benzzine, Leonardo Gomes da Silva, Manoj Reddy, Marcus Geselle, Matt Deimel, Matt Welke, Michael Kolesidis, Michael Wall, Michal Owsiak, Oliver Korten, Olubunmi Ogunsan, Paolo Brunasti, Peter Szabós, Prabhuti Prakash, Rajesh Balamohan, Rajesh Mohanan, Raveesh Sharma, Ruben Gonzalez-Rubio, Aboudou SamadouSare, Simeon Leyzerzon, Simone Cafiero, SravanthiReddy, Sveta Natu, Tan Wee, Tanuj Shroff, Travis Nelson, Yakov Boglev, and Yuri Klayman—as well friends who advised me: Maria Chițu, Adrian Buturugă, Mircea Vacariuc, Cătălin Matei.

about this book

Who should read this book

 Since you opened this book, I assume you are a developer using a JVM language. You might use Java, but you could also use Kotlin or Scala. Regardless of the JVM language you’re using, you’ll find this book’s content valuable. It teaches you relevant investigation techniques you can use to identify the root causes of problems (i.e., bugs) and how to easily learn new technologies. As a software developer, you may have already noticed how much time you spend understanding what an app does. Like other developers, you probably spend more time reading code, debugging, or using logs than writing code. So why not become more efficient in what you do most during your working day?

 In this book, we’ll discuss, and apply examples to, the following topics:

 	
 Simple and advanced debugging techniques

 	
 Efficiently using logs to understand app behaviors

 	
 Profiling CPU and memory resource consumption

 	
 Profiling to find executing code

 	
 Profiling to understand how an app works with persisted data

 	
 Analyzing how apps communicate with one another

 	
 Monitoring system events

 Regardless of your experience, you will find this book helpful in learning new investigation techniques, or, if you’re already an experienced developer, you will find this is a good refresher.

 The prerequisite for reading this book is understanding the basics of the Java language. I intentionally designed all the examples with Java (even if they apply to any JVM language) for consistency. If you understand Java at a basic level (classes, methods, basic instructions such as decisional or repetitive instructions and declaring variables), you should be able to understand the discussions in the book.

How this book is organized: A roadmap

 The book is divided into three parts that cover 12 chapters. We’ll start our discussion (in the first part of the book) with debugging techniques. We’ll discuss and apply both simple and more advanced debugging techniques and where you can use them to save time when investigating various scenarios. I chose to start our discussion with debugging because this is usually the first step in investigating how some capability of an app behaves during its development phase. Some people asked me why I didn’t start with logs first, since they are the first investigation technique for production issues. While this is true, a developer has to deal with a debugger when they start implementing features, so I figured a better arrangement of the chapters would be to begin with debugging techniques.

 In the first chapter, we discuss the relevance of the investigation techniques the book discusses and figure out a plan for learning them. Chapters 2, 3, and 4 focus on debugging and teach you relevant skills, from adding a simple breakpoint to debugging apps in remote environments. Chapter 5, which is the last chapter in part 1, discusses logging. Debugging and using logs are the simplest (and most frequently used) investigation techniques for building an application.

 The second part of the book discusses profiling techniques. The popular opinion is that profiling is more advanced and less used with modern apps than debugging and researching logs. While I agree that profiling is more advanced, I demonstrate that you can use many profiling techniques to be more efficient when investigating issues in modern JVM apps or studying frameworks considered essential.

 Chapter 6, which begins the book’s second part, discusses identifying whether your app has faults in its management of CPU and memory resources. Chapter 7 goes into detail on this topic and shows you how to get to the part of the app that causes specific latencies and how to observe what your app executes at a given time. In chapters 6 and 7, we use VisualVM, a free tool. Chapter 8 continues the discussion from chapter 7 with more advanced visualization tools that you typically only get with a licensed profiling tool. For the details discussed in this chapter, we use JProfiler, which is not free to use.

 Chapters 9 and 10 focus on more subtle profiling techniques. You’ll learn skills that can save you time when dealing with issues deeply hidden in the multithreaded architecture behind an app’s execution. Chapter 11 ends part 2 by addresssing how to investigate an app’s memory management.

 The book ends with part 3, which has just one chapter: chapter 12. In it, we go beyond an app’s borders to discuss investigating issues in an extensive system composed of multiple apps.

 The chapters are in the order in which I recommend you read them, but each focuses on a different topic. So, if you are interested in a specific topic, you can jump directly to that chapter. For example, if you’re interested in investigating issues with memory management, you can go straight to chapter 11.

About the code

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings and highlight important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/troubleshooting-java. The complete code for the examples in the book is available for download from the Manning website at www.manning.com.

liveBook discussion forum

 Purchase of Troubleshooting Java includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s easy to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/troubleshooting-java/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Author online

 I recommend you keep in touch with me online. You’ll definitely find plenty of good learning material related to troubleshooting Java apps on my YouTube channel: youtube.com/c/laurentiuspilca, and you can follow me on Twitter @laurspilca.

about the author

 [image:]

 Laurenţiu Spilcă is a dedicated development lead and trainer at Endava, where he is responsible for leading and consulting on multiple projects from various locations in Europe, the United States, and Asia. He has been working in software development since 2007. Laurenţiu believes it’s essential to not only deliver high-quality software but to also share knowledge and help others upskill. This belief has driven him to design and teach courses related to Java technologies and deliver presentations and workshops. Laurenţiu is also the author of Spring Security in Action (Manning, 2020), and he recently finished Spring Start Here (Manning, 2021).

about the cover illustration

 The figure on the cover of Troubleshooting Java is “Homme de l’Istrie,” or “Man from Istria,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. The basics of investigating a codebase

 As a software developer, working on real-world apps often involves investigating how your code works. You have to understand the app’s behavior when fixing problems as well as when implementing new features. You use several techniques for this purpose, such as debugging, logging, profiling, and so on, which we will analyze deeply in this book.

 In part 1, we start with the first techniques a developer is exposed to: debugging and logging. When working on an app, a developer must often engage in debugging. For example, say you have a small piece of code, and you need to understand how it works. You use the debugger to pause the application’s execution and dive deep into how the app processes the data. Then, when your app runs in an environment, you can rely a lot on logs, which give you needed clues about where something could go wrong.

 In chapter 1, we’ll discuss the need for knowing investigation techniques and obtain a big-picture view of them, which we’ll detail throughout the rest of the book. We’ll then take these techniques in the order a developer is exposed to them. In chapters 2 through 4, we discuss debugging. In chapter 5, we go through essential details about implementing and using logs in investigations.

 [image:]

1 Revealing an app’s obscurities

 This chapter covers

 	
The definition of a code investigation technique

 	
What code investigation techniques we use to understand Java apps

 A software developer has various responsibilities—most of which depend on how they understand the code they are working with. Software developers spend much of their time analyzing code to figure out how to correct issues, implement new capabilities, and even learn new technologies. And time is precious, so developers need efficient investigation techniques to be productive. Learning how to be efficient in understanding your code is the main topic of this book.

 NOTE Software developers generally spend more time understanding how the software works than writing code to implement new features or correct errors.

 [image:]

 Often, software developers use the word debugging for any investigation techniques; however, this is only one of the various tools available for examining logic implemented as code. While debugging should mean “finding issues and solving them,” developers use it to name different purposes for analyzing how code works:

 	
 Learning a new framework

 	
 Finding the root cause of a problem

 	
 Understanding existing logic to extend it with new capabilities

1.1 How to more easily understand your app

 First, it is important to understand what investigating code is and how developers do it. In this next section, we look at several commonly encountered scenarios in which you can apply the techniques you’ll learn in this book.

 I define investigating code as being the process of analyzing a software capability’s specific behavior. You might wonder, “Why such a generic definition? What is the investigation’s purpose?” Early in the history of software development, looking through code had one precise purpose: finding and correcting software errors (i.e., bugs). This is why many developers still use the term debugging for these techniques. Look at the way the word debug is formed:

 de-bug = take out bugs, eliminate errors

 In many cases today, we still debug apps to find and correct errors. But unlike the early days of software development, apps today are more complex. In many cases, developers find themselves investigating how a particular software capability works, simply to learn a specific technology or library. Debugging is no longer only about finding a particular issue; it is also about correctly understanding its behavior (figure 1.1; see also http://mng.bz/M012).

 [image:]

 Figure 1.1 Code investigation is not only about finding problems in software. Today, apps are complex. We often use investigation techniques to understand an app’s behavior or simply to learn new technologies.

 Why do we analyze code in apps?

 	
 To find a particular issue

 	
 To understand how a particular software capability works so we can enhance it

 	
 To learn a specific technology or library

 Many developers also investigate code for fun, because exploring how code works is fun. It can sometimes become frustrating as well, but nothing compares to the feeling of finding the root cause of an issue or finally understanding how things work (figure 1.2).

 [image:]

 Figure 1.2 Investigating code doesn’t require much physical effort, but debugging sometimes makes you feel like Lara Croft or Indiana Jones. Many developers enjoy the unique sensation of solving the puzzle of a software issue.

 There are various investigation techniques we can apply to investigate how software behaves. As we’ll discuss later in the chapter, developers (especially beginners) often wrongly consider debugging equivalent to using a debugger tool. The debugger is a software program you can use to read and more easily understand the source code of an application, usually by pausing the execution on specific instructions and running the code step by step. It is a common way to investigate software behavior (and usually the first one a developer learns). But it is not the only technique you can use, and it doesn’t help you in every scenario. We’ll discuss both standard and more advanced ways of using a debugger in chapters 2 and 3. Figure 1.3 presents the various investigation techniques you’ll learn throughout this book.

 [image:]

 Figure 1.3 Code investigation techniques. Depending on the case, a developer can choose from one or more of these techniques to understand how a certain capability works.

 When a developer solves a bug, they spend most of their time on understanding a particular feature. The changes they end up making sometimes reduce the problem to a single line of code—a missing condition, a missing instruction, or a misused operator. It’s not writing the code but rather understanding how the app works that occupies most of a developer's time.

 In some cases, simply reading the code is enough to understand it, but reading code is not like reading a book. When we read code, we don’t read nice short paragraphs written in a logical order from top to bottom. Instead, we step from one method to another, from one file to another; we sometimes feel like we advance in a vast labyrinth and get lost. (On this subject, I recommend the excellent book The Programmer’s Brain by Felienne Hermans [Manning, 2021]).

 In many cases, the source code is written in a way that doesn’t make it easy to read. Yes, I know what you are thinking: it should be. And I agree with you. Today, we learn many patterns and principles for code design and how to avoid code smells, but let’s be honest: developers still don’t use these principles properly in too many cases. Moreover, legacy apps usually don’t follow these principles, simply because the principles didn’t exist many years ago when those capabilities were written. But you still need to be able to investigate such code.

 Look at listing 1.1. Suppose you find this piece of code while trying to identify the root cause of a problem in an app you’re working on. This code definitely needs refactoring. But before you can refactor it, you need to understand what it is doing. I know some developers out there can read through this code and immediately understand what it does, but I’m not one of them.

 To easily understand the logic in listing 1.1, I use a debugger—a tool that allows me to pause the execution on specific lines and manually run each instruction while observing how the data changes—to go through each line to observe how it works with the given input (as we’ll discuss in chapter 2). With a bit of experience and some tricks (that we’ll discuss in chapters 2 and 3), you will find, by parsing this code a few times, that it calculates the maximum between the given inputs. This code is part of the project da-ch1-ex1 provided with the book.

 Listing 1.1 Hard-to-read logic that requires use of a debugger

 public int m(int f, int g) {
 try {
 int[] far = new int[f];
 far[g] = 1;
 return f;
 } catch(NegativeArraySizeException e) {
 f = -f;
 g = -g;
 return (-m(f, g) == -f) ? -g : -f;
 } catch(IndexOutOfBoundsException e) {
 return (m(g, 0) == 0) ? f : g;
 }
}

 Some scenarios don’t allow you to navigate through the code, or they make navigating it more challenging. Today, most apps rely on dependencies such as libraries or frameworks. In most cases, even when you have access to the source code (when you use an open source dependency), it’s still difficult to follow the source code that defines a framework’s logic. Sometimes, you don’t even know where to start. In such cases, you must use different techniques to understand the app. For example, you could use a profiler tool (as you’ll learn in chapters 6 through 9) to identify what code executes before deciding where to start the investigation.

 Other scenarios will not give you the chance to have a running app. In some cases, you’ll have to investigate a problem that made the app crash. If the application that encountered problems and stopped is a production service, you need to make it available again quickly. So, you need to collect details and use them to identify the problem and improve the app to avoid the same problem in the future. This investigation, which relies on collected data after the app crashes, is called a postmortem investigation. For such cases, you can use logs, heap dumps, or thread dumps—troubleshooting instruments that we’ll discuss in chapters 10 and 11.

1.2 Typical scenarios for using investigation techniques

 Let’s discuss some common scenarios for using code investigation approaches. We must look at some typical cases from real-world apps and analyze them to emphasize the importance of this book’s subject matter:

 	
 To understand why a particular piece of code or software capability provides a different result than expected

 	
 To learn how the technologies the app uses as dependencies work

 	
 To identify causes for performance issues such as app slowness

 	
 To find out root causes for cases in which an app suddenly stops

 For each presented case, you’ll find one or more techniques helpful in investigating the app’s logic. Later, we’ll dive into these techniques and demonstrate, with examples, how to use them.

1.2.1 Demystifying the unexpected output

 The most frequent scenario in which you’ll need to analyze code is when some logic ends up with a different output than expected. This might sound simple, but it isn’t necessarily easy to solve.

 First, let’s define output. This term might have many definitions for an app. Output could be some text in the app’s console, or it could be some records changed in a database. We can consider output an HTTP request the app sends to a different system or some data sent in the HTTP response to a client’s request.

 definition Any result of executing a piece of logic that might result in data change, the exchange of information, or action against a different component or system is an output.

 How do we investigate a case in which a specific part of the app doesn’t have the expected execution result? We do so by choosing the proper technique based on the expected output. Let’s look at some examples.

 Scenario 1: The simple case

 Suppose an app should insert some records into a database. Yet, the app adds only part of the records. That is, you expected to find more data in the database than the app actually produces.

 The simplest way to analyze this is to use a debugger tool to follow the code execution and understand how it works (figure 1.4). You’ll learn about the main features of a debugger in chapters 2 and 3. The debugger adds a breakpoint to pause the app execution at a specific line of code of your choosing, and then it allows you to continue the execution manually. You run code instructions one by one so you can see how the values of the variables change and evaluate expressions on the fly.

 [image:]

 Figure 1.4 Using a debugger, you can pause the execution before a particular instruction and then observe how the app’s logic changes the data by manually running the instructions step by step.

 This scenario is the simplest, and by learning how to use all the relevant debugger features properly, you can find solutions to such issues in no time. Unfortunately, other cases are more complex, and a debugger tool isn’t always enough to solve the puzzle and find the cause of the problem.

 TIP In many cases, one investigative technique isn’t enough to understand the app’s behavior. You’ll need to combine various approaches to more quickly understand more complex behavior

 [image:]

 Scenario 2: The where-should-I-start-debugging case?

 Sometimes you won’t be able to use a debugger simply because you don’t know what to debug. Suppose your app is a complex service with many lines of code. You investigate an issue in which the app doesn’t store the expected records in a database. It’s definitely a problem of output, but out of the thousands of lines of code defining your app, you don’t know what part implements the capability you need to fix.

 I remember a colleague who was investigating such a problem. Stressed from not being able to find where to start, he exclaimed: “I wish debuggers had a way for you to add a breakpoint on all the lines of an app so you could see what it actually uses.”

 My colleague’s statement was funny, but having such a feature in a debugger wouldn’t be a solution. We have other ways to approach this problem. You would most likely narrow the possibilities of lines where you could add a breakpoint by using a profiler.

 A profiler is a tool you can use to identify what code executes while the app is running (figure 1.5). This is an excellent option for our scenario because it would give you an idea of where to start the investigation with a debugger. We’ll discuss using a profiler in chapters 6 through 9, where you’ll learn that you have more options than simply observing the code in execution.

 [image:]

 Figure 1.5 Identifying code in execution with a profiler. If you don’t know where to start debugging, the profiler can help you to identify the code that is running and give you an idea of where you can use the debugger.

 Scenario 3: A multithreaded app

 Situations become even more complicated when dealing with logic implemented through multiple threads, or a multithreaded architecture. In many such cases, using a debugger is not an option because multithreaded architectures tend to be sensitive to interference.

 In other words, the way the app behaves is different when you use the debugger. Developers call this characteristic a Heisenberg execution or Heisenbug (figure 1.6). The name comes from the twentieth-century physicist Werner Heisenberg, who formulated the uncertainty principle, which states that once you interfere with a particle, it behaves differently, so you cannot accurately predict both its velocity and position simultaneously (https://plato.stanford.edu/entries/qt-uncertainty/). A multithreaded architecture might change the way it behaves if you interfere with it, just like if you interfere with a quantum mechanics particle.

 [image:]

 Figure 1.6 A Heisenberg execution. In a multithreaded app, when a debugger interferes with the app’s execution, it might change how the app behaves. This change doesn’t allow you to correctly investigate the initial app behavior that you wanted to research.

 For multithreaded functionality, we have a large variety of cases. That’s what makes such scenarios, in my opinion, the most difficult to test. Sometimes a profiler is a good option, but even the profiler might interfere with the app’s execution, so that may not work either. Another alternative is to use logging (which we discuss in chapter 5) in the app. For certain issues, you can find a way to reduce the number of threads to one so that you can use a debugger for the investigation.

 Scenario 4: Sending the wrong calls to a given service

 You may need to investigate a scenario in which the app doesn’t correctly interact with another system component or an external system. Suppose your app sends HTTP requests to another app. You get notified by the maintainers of the second app that the HTTP requests don’t have the right format (maybe a header is missing or the request body contains wrong data). Figure 1.7 visually presents this case.

 [image:]

 Figure 1.7 A wrong output can be your app sending erroneous requests to another system component. You may be asked to investigate such a behavior and find its root cause.

 This is a wrong output scenario. How could you approach it? First, you need to identify what part of the code sends the requests. If you already know, you can use a debugger to investigate how the app creates the request and identify what is going wrong. If you need to find what part of the app sends a request, you may need to use a profiler, as you’ll learn in chapters 6 through 9. You can use a profiler to determine what code acts at a given time in the execution process.

 Here’s a trick I always use when I have to deal with a complex case like this one, in which, for some reason, I can’t straightforwardly identify where the app sends the request to/from: I replace the other app (the one my app wrongly sends requests to) with a stub. A stub is a fake application that I can control to help me identify the issue. For example, to determine what part of the code sends the requests, I can make my stub block the request so my app indefinitely waits for a response. Then, I simply use a profiler to determine what code is being stuck by the stub. Figure 1.8 shows the usage of a stub. Compare this figure to figure 1.7 to understand how the stub replaced the real app.

 [image:]

 Figure 1.8 You can replace the system component your app calls with a stub. You control the stub to quickly determine where your app sends the request from. You can also use the stub to test your solution after you correct the issue.

1.2.2 Learning certain technologies

 Another use of investigative techniques for analyzing code is learning how certain technologies work. Some developers joke that 6 hours of debugging can save 5 minutes of reading the documentation. While it’s true that reading documentation is also essential when learning something new, some technologies are too complex to learn just from reading books or the specifications. I always advise my students to dive deeper into a specific framework or library to understand it properly.

 TIP For any technology (framework or library) you learn, spend some time reviewing the code you write. Always try to go deeper and debug the framework’s code.

 [image:]

 I’ll start with my favorite, Spring Security. At first glance, Spring Security may seem trivial. It’s just implementing authentication and authorization, isn’t it? In fact, it is—until you discover the variety of ways to configure these two capabilities into your app. You mix them wrong, and you may get in trouble. When things don’t work, you have to deal with what isn’t working, and the best choice to deal with what isn’t working is by investigating Spring Security’s code.

 More than anything else, debugging helped me to understand Spring Security. To help others, I put my experience and knowledge into a book, Spring Security in Action (Manning, 2020). In it, I provide more than 70 projects for you to not only re-create and run, but also for you to debug. I invite you to debug all examples provided with books you read to learn various technologies.

 The second example of a technology I learned mostly through debugging is Hibernate. Hibernate is a high-level framework used for implementing an app’s capability to work with a SQL database. Hibernate is one of the best-known and most-used frameworks in the Java world, so it’s a must-learn for any Java developer.

 Learning Hibernate’s basics is easy, and you can do this by simply reading books. But in the real world, using Hibernate (the how and the where) includes so much more than the basics. And for me, without digging deep into Hibernate’s code, I definitely wouldn’t have learned as much about this framework as I know today.

 My advice for you is simple: for any technology (framework or library) you learn, spend some time reviewing the code you write. Always try to go deeper and debug the framework’s code. This will make you a better developer.

1.2.3 Clarifying slowness

 Performance issues occur now and then in apps, and, like any other problem, you need to investigate them before you know how to solve them. Learning the proper use of different debugging techniques to identify the causes of performance issues is vital.

 In my experience, the most frequent performance issues that occur in apps are related to how quickly an app responds. However, even if most developers consider slowness and performance equal, that’s not the case. Slowness problems (situations in which an app responds slowly to a given trigger) are just one kind of performance issue.

 For example, I once had to debug a mobile app that was consuming the device’s battery too quickly. I had an Android app using a library that connected to an external device via Bluetooth. For some reason, the library was creating lots of threads without closing them. These threads, which remain open and run without purpose, are called zombie threads and typically cause performance and memory issues. They are also usually challenging to investigate.

 However, this type of issue in which the battery is being consumed too fast is also an app performance issue. An app using too much network bandwidth while transferring data over the network is another good example of a performance issue.

 Let’s stick to slowness problems, which are the most often encountered. Many developers fear slowness problems. Usually, that’s not because those problems are difficult to identify, but because they can be challenging to solve. Finding the cause of a performance problem is usually an easy job with a profiler, as you’ll learn in chapters 6 through 9. In addition to identifying which code executes, as discussed in section 1.2.1, a profiler also displays the time the app spends on each instruction (figure 1.9).

 [image:]

 Figure 1.9 Investigating slowness problems with a profiler. The profiler shows you the time spent on each instruction during code execution. This profiler feature is excellent for identifying the root causes of performance problems.

 In many cases, slowness problems are caused by I/O calls, such as reading or writing from a file or a database or sending data over the network. For this reason, developers often act empirically to find the cause of the problem. If you know what capability is affected, you can focus on the I/O calls that capability executes. This approach also helps in minimizing the scope of the problem, but you usually still need a tool to identify its exact location.

1.2.4 Understanding app crashes

 Sometimes apps completely stop responding for various reasons. These kinds of problems are usually considered more challenging to investigate than others. In many cases, app crashes occur only under specific conditions, so you can’t reproduce (make the problem happen on purpose) them in the local environment.

 Every time you investigate a problem, you should first try to reproduce it in an environment where you can study the problem. This approach gives your investigation more flexibility and helps you to confirm your solution. However, we’re not always lucky enough to be able to reproduce a problem. And app crashes are usually not easy to reproduce.

 We find app crash scenarios in two main flavors:

 	
 The app completely stops.

 	
 The app still runs but doesn’t respond to requests.

 When the app completely stops, it’s usually because it encountered an error from which it couldn’t recover. Most often, a memory error causes such behavior. For a Java app, the situation in which the heap memory fills and the app no longer works is represented by an OutOfMemoryError message.

 To investigate heap memory issues, we use heap dumps, which provide a snapshot of what the heap memory contains at a specific time. You can configure a Java process to automatically generate such a snapshot when an OutOfMemoryError message occurs and the app crashes.

 Heap dumps are powerful tools that give you plenty of details about how an app internally processes the data. We’ll discuss more about how to use them in chapter 11. But let’s take a quick look at a short example.

 Listing 1.2 shows you a small code snippet that fills the memory with instances of a class named Product. You can find this app in project da-ch1-ex2 provided with the book. The app continuously adds Product instances to a list, causing an intended OutOfMemoryError message.

 Listing 1.2 An app example causing an OutOfMemoryError message

 public class Main {

 private static List<Product> products = ❶
 new ArrayList<>();

 public static void main(String[] args) {
 while (true) {
 products.add(❷
 new Product(UUID.randomUUID().toString())); ❸
 }
 }
}

 ❶ We declare a list that stores references of Product objects.

 ❷ We continuously add Product instances to the list until the heap memory completely fills.

 ❸ Each Product instance has a String attribute. We use a unique random identifier as its value.

 Figure 1.10 shows a heap dump created for one execution of this app. You can easily see that Product and String instances fill most of the heap memory. A heap dump is like a map of the memory. It gives you many details, including the relationships between instances as well as values. For example, even if you don’t see the code, you can still notice a connection between the Product and the String instances based on how close the numbers of these instances are. Don’t worry if these aspects look complex. We’ll discuss in detail everything you need to know about using heap dumps in chapter 11.

 [image:]

 Figure 1.10 A heap dump is like a map of the heap memory. If you learn how to read it, it gives you invaluable clues about how the app internally processes data. A heap dump helps you investigate memory problems or performance issues. In this example, you can easily find which object fills most of the app’s memory and that the Product and String instances are related.

 If the app still runs but stops responding to requests, then a thread dump is the best tool to analyze what is happening. Figure 1.11 shows you an example of a thread dump and some of the details this tool provides. In chapter 10, we’ll discuss generating and analyzing thread dumps to investigate code.

 [image:]

 Figure 1.11 A thread dump provides details about the threads that were running when the dump was taken. It includes thread states and the stack traces, which tell you what the threads were executing or what blocked them. These details are valuable for investigating why an app is stuck or is having performance problems.

1.3 What you will learn in this book

 This book is for Java developers with various levels of experience, from beginners to experts. You’ll learn various code investigation techniques, the best scenarios in which to apply them, and how to apply them to save you troubleshooting and investigation time.

 If you are a junior developer, you’ll most likely learn many things from this book. Some developers master all these techniques only after years of experience; others never master them. If you are already an expert, you may find many things you already know, but you still have a good chance of finding new and exciting approaches you may not have had the opportunity to encounter.

 When you finish the book, you will have learned the following skills:

 	
 Applying different approaches to using a debugger to understand an app’s logic or find an issue

 	
 Investigating hidden functionality with a profiler to better understand how your app or a specific dependency of your app works

 	
 Analyzing code techniques to determine whether your app or one of its dependencies causes a certain problem

 	
 Investigating data in an app’s memory snapshot to identify potential problems with how the app processes data

 	
 Using logging to identify problems in an app’s behavior or to identify security breaches

 	
 Using remote debugging to identify problems you can’t reproduce in a different environment

 	
 Correctly choosing what app investigation techniques to use to make your investigation faster

Summary

 	
 You can use various investigation techniques to analyze software behavior.

 	
 Depending on your situation, one investigation technique may work better than another. You need to know how to choose the correct approach to make your investigation more efficient.

 	
 For some scenarios, using a combination of techniques helps you to identify a problem faster. Learning how each analyzing technique works gives you an excellent advantage in dealing with complex problems.

 	
 In many cases, developers use investigation techniques to learn new things rather than to solve problems. When learning complex frameworks such as Spring Security or Hibernate, simply reading books or the documentation isn’t enough. An excellent way to accelerate your learning is to debug examples that use a technology you want to better understand.

OEBPS/OEBPS/Images/CH01_F02_Spilca3.png
How | feel when | investigate code

What | really look like

OEBPS/OEBPS/Images/CH01_F03_Spilca3.png
profile.ifPresentorelse(Reading code Profiling
Dt =
«
healthetric. setprofile(p);
healthietricRepository. save (heal thifetric)
3
0 >t
ow new NonExistentHealtherofileException();
Thread
Debugging state
analysis
Log T Memory
analysis (7 state

Mocking
and
Stubbing

OEBPS/OEBPS/Images/PART1_UN01_Spilca3.png
Starting to build an app

Reading code
profile. ifPresentorElse(
b >

healthMetric.setProfile(p);
healthietricRepository. save (healthietric) ;

ph
0 -

throw new NonExistentHealthProfileException();
N

Debugging

Log
analysis

A &3

Profiling

OEBPS/cover.jpeg
and optimize JVM applications

Laurentiu Spilca

/l. MANNING

OEBPS/OEBPS/Images/CH01_F05_Spilca3.png
The sampling capability of a profiling tool
shows the code in execution.

Name

B == JPS event loop
= ¥ java.lang.Thread.run ()
[¥ io.netty.utilinternal. ThreadExecutorMap$2run ()
(= ¥ io.netty.util.concurrent.SingleThreadEventExecutor$4run ()
[=- ¥ io.netty.channel.nio.NioEventLooprun ()
= ¥4 io.netty.channel.nio.NioEventLoopselect ()
(® sun.nio.ch.SelectorImplselect ()
@ self time
@ self time
@ self time
- (D self time
@ self time

OEBPS/OEBPS/Images/spilca.png

OEBPS/OEBPS/Images/CH01_F04_Spilca3.png
You can mark an instruction with a breakpoint to tell
the debugger to pause the execution before executing.

10 public int m(int f, int @) { f: 106 g: 5

14 return f;

15 } catch(NegativeArraySizeException e) {
16 f=-f;

17 9= -a9;

18 @ return (-m(f, g) == -f) ? -g : -f;

19 } catch(IndexOut0fBoundsException e) {
20 @ return (m(g, 9:0) ==0) ? f : g;

21 +

22 ¥

The debugger shows the value in each
variable, which you can use to understand
how the app execution changes the data.

OEBPS/OEBPS/Images/CH01_F06_Spilca3.png
When nothing interferes with the app

Instruction A on thread T1 most likely
happens before instruction B on thread T2.

T :,///

T2

[
A\l

When a debugger interferes with the app

With a breakpoint, you pause the execution
before instruction A on thread T1. Because
of this interference, instruction B on thread
T2 executes before A on thread T1. The app’s
behavior changes, and you can no longer

/ investigate the initial scenario.

- 4
T breakpoint A /
PY o -

T2

o
i/

OEBPS/OEBPS/Images/CH01_F09_Spilca3.png
A profiler shows you the execution time

for each instruction, which allows you

to easily identify where a slowness problem
comes from.

Name
= ¥ java.lang.Thread.run ()
= ¥ io.netty.utilinternal. ThreadExecutorMap$2run ()
= 9 io.netty.util.concurrent.SingleThreadEventExecutor$4run ()
& M fo.netty.channel.nio.NioEventLooprun)
= ¥ io.netty.channelnio.NioEventLoopselect ()
(© sun.nio.ch.SelectorImpl select ()
@ selftime
@ selftime
@ self time
© self time
@ self time

Total Time

s (100%

15,812 ms
15,812 ms
15812 ms
15812 ms
15812 ms
15812 ms
0.0 ms
0.0 ms
0.0ms
0.0ms
0.0ms

(100%)
(100%)
(100%)
(100%),
(100%)
(100%),
(0%)
(0%)
(0%)
(0%)
(0%)

OEBPS/OEBPS/Images/CH01_F08_Spilca3.png
You can create a fake app to replace
the component your app calls.

This is called a stub. You control the
stub to make your investigation easier.

Sends a wrong
HTTP request Stub

For example, you can make the stub
indefinitely block the HTTP request.
In such a case, your app will remain
blocked right on the instruction that
sends the request. You can easily use
a profiler to identify that instruction.

OEBPS/OEBPS/Images/CH01_F07_Spilca3.png
You have to investigate why
the app sends an HTTP request
with incorrect data to another
system component.

Sends a wrong
HTTP request

OEBPS/OEBPS/Images/icon_guy.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/IFC_F02_Spilca3.png
In an app that behaves normally,

you will see this type of a pattern.
Normal behavier /—\ The memory fills, and at a certain
point the GC cleans the unneeded

e Metaspoce * data, freeing up the memory.

pes These are moments in which the GC
B esp sze B usea Ty cleaned the unneeded data, making
space for new data to be added in
memory.

Heap | Metaspace x

106) When an app has a memory leak,
you will see the used memory
continuously grows. The GC makes
_/ efforts to free the memory but can’t
deallocate enough objects since the
app holds the references for most

2:46:00 M 246:30 M 247:0 of them.
Heapsize M Usedheap

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F01_Spilca3.png
Finding issues Understanding ’. Learning

software

. &=

OEBPS/OEBPS/Images/CH01_F11_Spilca3.png
You can also
easily see

what the thread
was doing when
the dump was
taken.

Name

= &3 "main” prio="

A thread dump clearly
shows the state of each
thread.

o= {Ronnasic)

at sun.security.provider. SHAZimpICompressCheck (51142.java:205)

) at sun.security.provider.SHAZIm pICom press (142, java:195)

- at sun.security.provider. SHA2Im pIDigest (SHAZ jova:111)

) at sun.security.provider.Digest8eseengineDigest (Digesiose java:21

- at sun.security.provider.DigestBase engineDigest (0igestsase java:189)
at jova.security.MessageD igest$D elegate.engineDigest (MessageDig

#)- at jova.security.MessageDigest.digest (MessageDigest jova:385)

3t sun.security.provider.HashDrbggenerateAlgorithm (3¢ rb.java:224)
at sun.security.provider.AbstractDrbgenginell extBytes (Abstracid tbg java:394)
at sun.security.provider.AbstractDrbgenginell extBytes (Ab<troctD bg jova:334)
at sun.security.provider.DRBGenginell extBytes (0 REG jova:233)
at Java.security.SecureRandom nextBytes (SecurcRandom java:751)

2t Jova.utiLUUID randomUUID (UUID java:150)

- at Mainmain (ain_java:11)

["Reference Handler” daemon prio=10 tid
at Jova.lang.ref Reference. waitf orReferencePendingList (112 e Mthod)
at jova.lang.ref Reference. processPendingReferences (cfcrence jov

- at Jova.Jang.ref Reference$ReferenceHandler. run (Reference jova:213

& "Finalizer" daemon prio=8 tid
at java.lang.Object wait (Native Method)

- at Java.Jang.ref ReferenceQueue. remove (ReferenceQueve java:155)

- at Jova.lang.ref ReferenceQueue. remove (ReferenceQueue jova:176)

- at java.Jang.ref.FinalizersFinalizerThread. run (Finalizer java:170)
&1 "signal Dispatcher” daemon prio=9 tid:

. java:6:

241)

OEBPS/OEBPS/Images/icon_girl.png

OEBPS/OEBPS/Images/CH01_F10_Spilca3.png
The number of String instances

is close to the number of Product
instances, so a relationship
between them is possible.

Most of the memory is filled with
String and Product objects.

Main (pid 8908)

esp bump

& obseas - | (| presets At Obgects+| Aqgregavon: B @ © oetai
cout

& 6 byt

10,690,482

% (0 Product] 10678411 (3

(& jvalangObjectl) 4005 (%) 111205208 (8:4%)
B 6 ovalang efct. Method o0 @ nes08 (on
4 (5 jvautiHashmapstiode 3629 (0% 1596768 (0%
(@ jvoutiHashMapsHodel] 26 © o

4 & sautloncent ConcurentiashiapsHode 20 ow
e ~yerrrpr——— T

