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foreword


  For most of its history, quantum computing was a field for physicists—perhaps a few having a proclivity for computer science, but not necessarily so. The popular textbook, Quantum Computation and Quantum Information, by Michael A. Nielsen and Isaac L. Chuang, is still considered the go-to textbook, and was written by two quantum physicists. To be sure, computer scientists have always been around, but some theoreticians wear how few lines of code they have written as a badge of honor. This is the quantum world myself, Kaiser, and Granade came of age in. I could easily shake my fist at the new cohort of students and yell, “When I was your age, we didn’t write code—we choked on chalk dust!”


  I met Chris Granade while we were both graduate students. Back then we wrote academic journal articles for physics journals that contained lines of code which were rejected for being “not physics.” But we were not deterred. And now, many years later, this book represents for me the ultimate vindication! This is a book that teaches you everything you’ll ever want and need to know about quantum computing, without the need for physics—though, if you really want to know the connection back to physics, Kaiser and Granade offer that as well [image: ]? There are also emojis [image: ]!


  I’ve come a long way since then, and I owe much to Granade, as does the field of quantum computing, for showing many of us that between the “quantum” and the “computing,” there is more than just theorems and proofs. Kaiser has also taught me more than I thought existed about the need for the software engineer’s touch in developing quantum technology. Kaiser and Granade have turned their expertise into words and lines of code so all can benefit from it, as I have.


  Though the goal was to create “not a textbook,” this book could certainly be used as such in a university lecture as introductions to quantum computing shift from physics departments to schools of computer science. There is immense growing interest in quantum computing, and the majority of it is not coming from physics—software developers, operations managers, and financial executives all want to know what quantum computing is about and how to get their hands on it. Gone are the days of quantum computing as a purely academic pursuit. This book serves the needs of the growing quantum community.


  Though I’ve alluded to the decreasing proportion of physicists in the field of quantum computing, I don’t want to discount them. Just as I was once a software development Luddite, this book is really for anyone—especially those already in the field who want to learn about the software side of quantum computing in a familiar setting.


  Fire up your favorite code editor and get ready to print (“Hello quantum world!”).


    


  Chris Ferrie, PhD


  Associate Professor, Centre for Quantum Software and Information


  Sydney, NSW, Australia


  
preface


  Quantum computing has been our jam for more than 20 years combined, and we are passionate about taking that experience and using it to help more folks get involved in quantum technologies. We completed our doctoral degrees together, and while doing so, we struggled through research questions, pun competitions, and board games, helping to push the boundaries of what was possible with qubits. For the most part, this meant developing new software and tools to help us and our teams do better research, which was a great bridge between the “quantum” and “computing” parts of the subject. However, while developing various software projects, we needed to teach our developer colleagues what we were working on. We kept wondering, “Why isn’t there a good book for quantum computing that’s technical but not a textbook?” What you are currently looking at is the result. [image: ]


  We’ve written the book to be accessible to developers, rather than writing it in the textbook style that is so typical in other quantum computing books. When we were learning quantum computing ourselves, it was very exciting but also a bit scary and intimidating. It doesn’t have to be that way, as a lot of what makes quantum computing topics confusing is the way they are presented, not the content.


  Unfortunately, quantum computing is often described as “weird,” “spooky,” or beyond our understanding, when the truth is that quantum computing has become quite well understood during its 35-year history. Using a combination of software development and math, you can build up the basic concepts you need to make sense of quantum computing and explore this amazing new field.


  Our goal with this book is to help you learn the basics about the technology and equip you with tools you can use to build the quantum solutions of tomorrow. We focus on hands-on experience with developing code for quantum computing. In part 1, you’ll build your own quantum device simulator in Python; in part 2, you’ll learn how to apply your new skills to writing quantum applications with Q# and the Quantum Development Kit; and in part 3, you’ll learn to implement an algorithm that factors integers exponentially faster than the best-known conventional algorithm—and throughout, you are the one doing it, and this is your quantum journey.


  We have included as many practical applications as we can, but the truth is, that’s where you come in! Quantum computing is at a cusp where to go forward, we need a bridge between the immense amount that’s known about what quantum computers can and can’t do and the problems that people need to solve. Building that bridge takes us from quantum algorithms that make for great research to quantum algorithms that can impact all of society. You can help build that bridge. Welcome to your quantum journey; we’re here to help make it fun!
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about this book


  Welcome to Learn Quantum Computing with Python and Q#! This book will introduce you to the world of quantum computing by using Python as a comfortable starting point, building to solutions written in Q#, a domain-specific programming language developed by Microsoft. We take an example- and game-driven approach to teaching quantum computing and development concepts that get you hands-on with writing code right away.


  
    Deep dive: It’s OK to snorkel!


    Quantum computing is a richly interdisciplinary area of study, bringing together ideas from programming, physics, mathematics, engineering, and computer science. From time to time throughout the book, we’ll take a moment to point to how quantum computing draws on ideas from these other fields to put the concepts we’re learning about into that richer context.


    While these asides are meant to spark curiosity and further exploration, they are by nature tangential. You’ll get everything you need to enjoy quantum programming in Python and Q# from this book regardless of whether you plunge into these deep dives. Taking a deep dive can be fun and enlightening, but if deep dives aren’t your thing, that’s OK; it’s perfectly fine to snorkel.

  


  
Who should read this book


  This book is intended for people who are interested in quantum computing and have little to no experience with quantum mechanics but do have some programming background. As you learn to write quantum simulators in Python and quantum programs in Q#, Microsoft’s specialized language for quantum computing, we use traditional programming ideas and techniques to help you out. A general understanding of programming concepts like loops, functions, and variable assignments will be helpful.


  Similarly, we use some mathematical concepts from linear algebra, such as vectors and matrices, to help us describe quantum concepts; if you’re familiar with computer graphics or machine learning, many of the concepts are similar. We use Python to review the most important mathematical concepts along the way, but familiarity with linear algebra will be helpful.


  
How this book is organized: A roadmap


  This text aims to enable you to start exploring and using practical tools for quantum computing. The book is broken into three parts that build on each other:


  
    	
      Part 1 gently introduces the concepts needed to describe qubits, the fundamental unit of a quantum computer. This part describes how to simulate qubits in Python, making it easy to write simple quantum programs.

    


    	
      Part 2 describes how to use the Quantum Development Kit and the Q# programming language to compose qubits and run quantum algorithms that perform differently from any known classical algorithms.

    


    	
      In part 3, we apply the tools and methods from the previous two parts to learn how quantum computers can be applied to real-world problems such as simulating chemical properties.

    

  


  There are also four appendixes. Appendix A has all the installation instructions for setting up the tools we use in the book. Appendix B is a quick reference section with a quantum glossary, notation reminders, and code snippets that may be helpful as you progress through the book. Appendix C is a linear algebra refresher, and appendix D is a deep dive into one of the algorithms you will be implementing.


  
About the code


  All the code used in this book can be found at https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp. Full installation instructions are available at the repository for this book and in appendix A.


  The book’s samples can also be run online without installing anything, using the mybinder.org service. To get started, go to https://bit.ly/qsharp-book-binder.


  
liveBook discussion forum


  Purchase of Learn Quantum Computing with Python and Q#, includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid).We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
Other online resources


  As you start your quantum computing journey by reading this book and working through the provided sample code, you may find the following online resources helpful:


  
    	
      Quantum Development Kit documentation (https://docs.microsoft.com/azure/quantum/)—Conceptual documentation and a full reference to everything about Q#, including changes and additions since this book was printed

    


    	
      Quantum Development Kit samples (https://github.com/microsoft/quantum)—Complete samples for using Q#, both on its own and with host programs in Python and .NET, covering a wide range of different applications

    


    	
      QuTiP.org (http://qutip.org)—Full user’s guide for the QuTiP package we used to help with the math in this book

    

  


  There are also some great communities for quantum computing experts and novices alike. Joining a quantum development community like the following can help resolve questions you have along the way and will also let you assist others with their journeys:


  
    	
      qsharp.community (https://qsharp.community)—A community of Q# users and developers, complete with chat room, blog, and project repositories

    


    	
      Quantum Computing Stack Exchange (https://quantumcomputing.stackexchange .com/)—A great place to ask for answers to quantum computing questions, including any Q# questions you may have

    


    	
      Women in Quantum Computing and Applications (https://wiqca.dev)—An inclusive community for people of all genders to celebrate quantum computing and the people who make it possible

    


    	
      Quantum Open Source Foundation (https://qosf.org/)—A community supporting the development and standardization of open tools for quantum computing

    


    	
      Unitary Fund (https://unitary.fund/)—A nonprofit working to create a quantum technology ecosystem that benefits the most people

    

  


  
Going further


  Quantum computing is a fascinating new field that offers new ways of thinking about computation and new tools for solving difficult problems. This book can help you get a start in quantum computing so that you can continue to explore and learn. That said, this book isn’t a textbook and isn’t intended to prepare you for quantum computing research all on its own. As with classical algorithms, developing new quantum algorithms is a mathematical art as much as anything else; while we touch on math in this book and use it to explain algorithms, a variety of textbooks are available that can help you build on the ideas we cover.


  Once you’ve read this book and gotten started with quantum computing, if you want to continue your journey into physics or mathematics, we suggest one of the following resources:


  
    	
      The Complexity Zoo (https://complexityzoo.net/Complexity_Zoo)

    


    	
      The Quantum Algorithm Zoo (http://quantumalgorithmzoo.org)

    


    	
      Complexity Theory: A Modern Approach by Sanjeev Arora and Boaz Barak (Cambridge University Press, 2009)

    


    	
      Quantum Computing: A Gentle Introduction by Eleanor G. Rieffel and Wolfgang H. Polak (MIT Press, 2011)

    


    	
      Quantum Computing since Democritus by Scott Aaronson (Cambridge University Press, 2013)

    


    	
      Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang (Cambridge University Press, 2000)

    


    	
      Quantum Processes Systems, and Information by Benjamin Schumacher and Michael Westmoreland (Cambridge University Press, 2010)
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about the cover illustration
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  At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.


  
    
Part 1. Getting started with quantum

  


  This part of the book helps set the stage for the rest of our quantum journey. In chapter 1, we gain more context about quantum computing, the approach to learning quantum computing in this book, and where we can expect to use this to apply the skills we learn. In chapter 2, we start getting into writing code by developing a quantum simulator in Python. We then use the simulator to program a quantum random number generator. Next, in chapter 3, we extend the simulator to program cryptographic applications of quantum technology, such as the BB84 quantum key exchange protocol. In chapter 4, we use nonlocal games to learn about entanglement and extend the simulator once again to support multiple qubits. In chapter 5, we learn how to use a new Python package to help implement quantum strategies for playing the nonlocal games from chapter 4. Finally, in chapter 6, we extend the simulator one last time, adding new quantum operations so that we can simulate techniques like quantum teleportation and practice moving data in our quantum devices.


  
    
1 Introducing quantum computing

  


  This chapter covers


  
    	
Why people are excited about quantum computing


    	
What a quantum computer is


    	
What a quantum computer can and cannot do


    	
How quantum computers relate to classical programming

  


  Quantum computing has been an increasingly popular research field and source of hype over the last few years. By using quantum physics to perform computation in new and wonderful ways, quantum computers can impact society, making it an exciting time to get involved and learn how to program quantum computers and apply quantum resources to solve problems that matter.


  In all the buzz about the advantages quantum computing offers, however, it is easy to lose sight of the real scope of those benefits. We have some interesting historical precedent for what can happen when promises about a technology outpace reality. In the 1970s, machine learning and artificial intelligence suffered from dramatically reduced funding, as the hype and excitement around AI outstripped its results; this would later be called the “AI winter.” Similarly, internet companies faced the same danger when trying to overcome the dot-com bust.


  One way forward is to critically understand the promise offered by quantum computing, how quantum computers work, and what is and is not in scope for quantum computing. In this chapter, we help you develop that understanding so that you can get hands-on and write your own quantum programs in the rest of the book.


  All that aside, though, it’s just really cool to learn about an entirely new computing model! As you read this book, you’ll learn how quantum computers work by programming simulations that you can run on your laptop today. These simulations will show many essential elements of what we expect real commercial quantum programming to be like while useful commercial hardware is coming online. This book is intended for folks who have some basic programming and linear algebra experience but no prior knowledge about quantum physics or computing. If you have some quantum familiarity, you can jump into parts 2 and 3, where we get into quantum programming and algorithms.


  
1.1 Why does quantum computing matter?


  Computing technology is advancing at a truly stunning pace. Three decades ago, the 80486 processor allowed users to execute 50 MIPS (million instructions per second). Today, small computers like the Raspberry Pi can reach 5,000 MIPS, while desktop processors can easily reach 50,000 to 300,000 MIPS. If we have an exceptionally difficult computational problem we’d like to solve, a very reasonable strategy is to simply wait for the next generation of processors to make our lives easier, our videos stream faster, and our games more colorful.


  For many problems that we care about, however, we’re not so lucky. We might hope that getting a CPU that’s twice as fast will let us solve problems that are twice as big, but as with so much in life, “more is different.” Suppose we sort a list of 10 million numbers and find that it takes about 1 second. Later, if we want to sort a list of 1 billion numbers in 1 second, we’ll need a CPU that’s 130 times faster, not just 100 times. When solving some kinds of problems, this gets even worse: for some graphics problems, going from 10 million to 1 billion points would take 13,000 times longer.


  Problems as widely varied as routing traffic in a city and predicting chemical reactions become more difficult much more quickly. If quantum computing was about making a computer that runs 1,000 times as fast, we would barely make a dent in the daunting challenges that we want to solve. Fortunately, quantum computers are much more interesting. We expect that quantum computers will be much slower than classical computers but that the resources required to solve many problems will scale differently, such that if we look at the right kinds of problems, we can break through “more is different.” At the same time, quantum computers aren’t a magic bullet—some problems will remain hard. For example, while it is likely that quantum computers can help us immensely with predicting chemical reactions, they may not be much help with other difficult problems.


  Investigating exactly which problems we can obtain such an advantage in and developing quantum algorithms to do so has been a large focus of quantum computing research. Up until this point, it has been very difficult to assess quantum approaches this way, as doing so required extensive mathematical skill to write out quantum algorithms and understand all the subtleties of quantum mechanics.


  As industry has started developing platforms to help connect developers to quantum computing, however, this situation has begun to change. By using Microsoft’s entire Quantum Development Kit, we can abstract away most of the mathematical complexities of quantum computing and begin actually understanding and using quantum computers. The tools and techniques taught in this book allow developers to explore and understand what writing programs for this new hardware platform will be like.


  Put differently, quantum computing is not going away, so understanding what problems we can solve with it matters quite a lot indeed! Independent of whether a quantum “revolution” happens, quantum computing has factored—and will continue to factor—heavily into decisions about how to develop computing resources over the next several decades. Decisions like these are strongly impacted by quantum computing:


  
    	
      What assumptions are reasonable in information security?

    


    	
      What skills are useful in degree programs?

    


    	
      How can we evaluate the market for computing solutions?

    

  


  For those of us working in tech or related fields, we increasingly must make such decisions or provide input for them. We have a responsibility to understand what quantum computing is and, perhaps more important, what it is not. That way, we will be best prepared to step up and contribute to these new efforts and decisions.


  All that aside, another reason quantum computing is such a fascinating topic is that it is both similar to and very different from classical computing. Understanding both the similarities and differences between classical and quantum computing helps us understand what is fundamental about computing in general. Both classical and quantum computation arise from different descriptions of physical laws such that understanding computation can help us understand the universe in a new way.


  What’s absolutely critical, though, is that there is no one right or even best reason to be interested in quantum computing. Whatever brings you to quantum computing research or applications, you’ll learn something interesting along the way. 


  
1.2 What is a quantum computer?


  Let’s talk a bit about what actually makes up a quantum computer. To facilitate this discussion, let’s briefly talk about what the term computer means.


  Definition A computer is a device that takes data as input and does some sort of operations on that data.


  There are many examples of what we have called a computer; see figure 1.1 for some examples.
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  Figure 1.1 Several examples of different kinds of computers, including the UNIVAC mainframe operated by Rear Admiral Hopper, a room of “human computers” working to solve flight calculations, a mechanical calculator, and a LEGO-based Turing machine. Each computer can be described by the same mathematical model as computers like cell phones, laptops, and servers. Sources: Photo of “human computers” by NASA. Photo of LEGO Turning machine by Projet Rubens, used under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).


  All of these have in common that we can model them with classical physics—that is, in terms of Newton’s laws of motion, Newtonian gravity, and electromagnetism. This will help us tell apart the kinds of computers we’re used to (e.g., laptops, phones, bread machines, houses, cars, and pacemakers) and the computers we’re learning about in this book. To tell the two apart, we’ll call computers that can be described using classical physics classical computers. What’s nice about this is that if we replace the term classical physics with quantum physics, we have a great definition for what a quantum computer is!


  Definition A quantum computer is a device that takes data as input and does some sort of operations on that data with a process that can only be described using quantum physics.


  Put differently, the distinction between classical and quantum computers is precisely that between classical and quantum physics. We will get into this more later in the book. But the primary difference is one of scale: our everyday experience is largely with objects that are large enough and hot enough that even though quantum effects still exist, they don’t do much on average. While quantum mechanics works even at the scale of everyday objects like coffee mugs, bags of flour, and baseball bats, it turns out that we can do a very good job of describing how these objects interact using classical physics alone.


  
    Deep dive: What happened to relativity?


    Quantum physics applies to objects that are very small and very cold or well isolated. Similarly, another branch of physics called relativity describes objects that are large enough for gravity to play an important role or that are moving very fast—near the speed of light. Many computers rely on relativistic effects; indeed, global positioning satellites depend critically on relativity. So far, we have primarily been comparing classical and quantum physics, so what about relativity?


    As it turns out, all computation that is implemented using relativistic effects can also be described using purely classical models of computing such as Turing machines. By contrast, quantum computation cannot be described as faster classical computation but requires a different mathematical model. There has not yet been a proposal for a “gravitic computer” that uses relativity in the same way, so we’re safe to set relativity aside in this book.

  


  If we focus on a much smaller scale where quantum mechanics is needed to describe our systems, then quantum computing is the art of using small, well-isolated devices to usefully transform data in ways that cannot be described in terms of classical physics alone. One way to build quantum devices is to use small classical computers such as digital signal processors (DSPs) to control the properties of exotic materials.


  
    Physics and quantum computing


    The exotic materials used to build quantum computers have names that can sound intimidating, like superconductors and topological insulators. We can take solace, though, from how we learn to understand and use classical computers.


    We can program classical computers without knowing what a semiconductor is. Similarly, the physics behind how we build quantum computers is a fascinating subject, but it’s not required for us to learn how to program and use quantum devices.

  


  Quantum devices may differ in the details of how they are controlled, but ultimately all quantum devices are controlled from and read out by classical computers and control electronics of some kind. After all, we are interested in classical data, so there must eventually be an interface with the classical world.


  Note Most quantum devices must be kept very cold and well isolated, since they can be extremely susceptible to noise.


  By applying quantum operations using embedded classical hardware, we can manipulate and transform quantum data. The power of quantum computing then comes from carefully choosing which operations to apply in order to implement a useful transformation that solves a problem of interest. 


  
1.3 How will we use quantum computers?
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  Figure 1.2 Ways we wish we could use quantum computers. Comic used with permission from xkcd.com.


  It is important to understand both the potential and the limitations of quantum computers, especially given the hype surrounding quantum computation. Many of the misunderstandings underlying this hype stem from extrapolating analogies beyond where they make any sense—all analogies have their limits, and quantum computing is no different. Simulating how a quantum program acts in practice can be a great way to help test and refine the understanding provided by analogies. Nonetheless, we will still use analogies in this book, as they can help provide intuition for how quantum computation works.


  Tip If you’ve ever seen descriptions of new results in quantum computing that read like “We can teleport cats that are in two places at once using the power of infinitely many parallel universes all working together to cure cancer,” then you’ve seen the danger of extrapolating too far from where analogies are useful.


  One especially common point of confusion regarding quantum computing is how users will use quantum computers. As a society, we’ve come to understand what a computer is: something you can use to run web applications, write documents, and run simulations. In fact, classical computers do so many different things in our life that we don’t always even notice what is and isn’t a computer. Cory Doctorow made this observation by noting that “Your car is a computer you sit inside of” (DrupalCon Amsterdam 2014 keynote, www.youtube.com/watch?v=iaf3Sl2r3jE).


  Quantum computers, however, are likely to be much more special-purpose—we expect quantum computers to be pointless for some tasks. A great model for how quantum computing will fit into our existing classical computing stack is GPUs. GPUs are specialized hardware devices designed to speed up particular types of calculations like graphics drawing, machine learning tasks, and anything easily parallelizable. You want a GPU for those specific tasks but likely do not want to use it for everything, as we have much more flexible CPUs for general tasks like checking email. Quantum computers will be exactly the same: they will be good at accelerating specific types of tasks but will not be appropriate for broad use.


  Note Programming a quantum computer comes with some restrictions, so classical computers will be preferable when there’s no particular quantum advantage to be found.


  Classical computing will still be around and will be the primary way we communicate and interact with each other, as well as our quantum hardware. Even to get the classical computing resource to interface with the quantum devices, in most cases, we will also need a digital-to-analog signal processor, as shown in figure 1.3.
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  Figure 1.3 An example of how a quantum device might interact with a classical computer through the use of a digital signal processor (DSP). The DSP sends low-power signals into the quantum device and amplifies very low-power signals coming back to the device.


  Moreover, quantum physics describes things at very small scales (both size and energy) that are well isolated from their surroundings. This puts some hard limitations on the environments in which we can run a quantum computer. One possible solution is to keep quantum devices in cryogenic fridges, often near absolute 0 K (–459.67°F, or –273.15°C). While this is not a problem in a data center, maintaining a dilution refrigerator isn’t really something that makes sense on a desktop, much less on a laptop or a cell phone. For this reason, quantum computers will likely be used through the cloud, at least for quite a while after they first become commercially available.


  Using quantum computers as a cloud service resembles other advances in specialized computing hardware. By centralizing exotic computing resources like the following in data centers, it’s possible to explore computing models that are difficult for all but the largest users to deploy on-premises:


  
    	
      Specialized gaming hardware (PlayStation Now, Xbox One)

    


    	
      Extremely low-latency, high-performance computing (e.g., Infiniband) clusters for scientific problems

    


    	
      Massive GPU clusters

    


    	
      Reprogrammable hardware (e.g., Catapult/Brainwave)

    


    	
      Tensor processing unit (TPU) clusters

    


    	
      High-permanence, high-latency archival storage (e.g., Amazon Glacier)

    

  


  Going forward, cloud services like Azure Quantum (https://azure.com/quantum) will make the power of quantum computing available in much the same way.


  Just as high-speed, high-availability internet connections have made cloud computing accessible for large numbers of users, we will be able to use quantum computers from the comfort of our favorite WiFi-blanketed beach or coffee shop or even from a train as we view majestic mountain ranges in the distance.


  
1.3.1 What can quantum computers do?


  As quantum programmers, if we have a particular problem, how do we know it makes sense to solve it with a quantum computer?


  We are still learning about the exact extent of what quantum computers are capable of, and thus we don’t have any concrete rules to answer this question yet. So far, we have found some examples of problems where quantum computers offer significant advantages over the best-known classical approaches. In each case, the quantum algorithms that have been found to solve these problems exploit quantum effects to achieve the advantages, sometimes referred to as a quantum advantage. The following are two useful quantum algorithms:


  
    	
      Grover’s algorithm (discussed in chapter 11) searches a list of N items in √N steps.

    


    	
      Shor’s algorithm (chapter 12) quickly factors large integers, such as those used by cryptography to protect private data.

    

  


  We’ll see several more in this book, but Grover’s and Shor’s are good examples of how quantum algorithms work: each uses quantum effects to separate correct answers to computational problems from invalid solutions. One way to realize a quantum advantage is to find ways of using quantum effects to separate correct and incorrect solutions to classical problems.


  
    What are quantum advantages?


    Grover’s and Shor’s algorithms illustrate two distinct kinds of quantum advantages. Factoring integers might be easier classically than we suspect. Many people have tried very hard to factor integers quickly and haven’t succeeded, but that doesn’t mean we can prove that factoring is difficult. On the other hand, we can prove that Grover’s algorithm is faster than any classical algorithm; the catch is that it uses a different kind of input.


    Finding a provable advantage for a practical problem is an active area of research in quantum computing. That said, quantum computers can be powerful tools for solvingproblems, even if we can’t prove that there will never be a better classical algorithm. After all, Shor’s algorithm challenges the assumptions underlying large swaths of information security—a mathematical proof is necessary only because we haven’t yet built a quantum computer large enough to run Shor’s algorithm.

  


  Quantum computers also offer significant benefits for simulating properties of quantum systems, opening up applications to quantum chemistry and materials science. For instance, quantum computers could make it much easier to learn about the ground-state energies of chemical systems. These ground-state energies then provide insight into reaction rates, electronic configurations, thermodynamic properties, and other properties of immense interest in chemistry.


  Along the way to developing these applications, we have also seen significant advantages in spin-off technologies such as quantum key distribution and quantum metrology, some of which we will see in the next few chapters. In learning to control and understand quantum devices for the purpose of computing, we have also learned valuable techniques for imaging, parameter estimation, security, and more. While these are not applications for quantum computing in a strict sense, they go a long way toward showing the values of thinking in terms of quantum computation.


  Of course, new applications of quantum computers are much easier to discover when we have a concrete understanding of how quantum algorithms work and how to build new algorithms from basic principles. From that perspective, quantum programming is a great resource to learn how to discover entirely new applications. 


  
1.3.2 What can’t quantum computers do?


  Like other forms of specialized computing hardware, quantum computers won’t be good at everything. For some problems, classical computers will simply be better suited to the task. In developing applications for quantum devices, it’s helpful to note what tasks or problems are out of scope for quantum computing.


  The short version is that we don’t have any hard-and-fast rules to quickly decide which tasks are best run on classical computers and which tasks can take advantage of quantum computers. For example, the storage and bandwidth requirements for Big Data–style applications are very difficult to map onto quantum devices, where we may only have a relatively small quantum system. Current quantum computers can only record inputs of no more than a few dozen bits, and this limitation will become more relevant as quantum devices are used for more demanding tasks. Although we expect to eventually build much larger quantum systems than we can now, classical computers will likely always be preferable for problems that require large amounts of input/output to solve.


  Similarly, machine learning applications that depend heavily on random access to large sets of classical inputs are conceptually difficult to solve with quantum computing. That said, there may be other machine learning applications that map much more naturally onto quantum computation. Research efforts to find the best ways to apply quantum resources to solve machine learning tasks are still ongoing. In general, problems that have small input and output data sizes but require large amounts of computation to get from input to output are good candidates for quantum computers.


  In light of these challenges, it might be tempting to conclude that quantum computers always excel at tasks that have small inputs and outputs but very intense computation between the two. Notions like quantum parallelism are popular in media, and quantum computers are sometimes even described as using parallel universes to compute.


  Note The concept of “parallel universes” is a great example of an analogy that can help make quantum concepts understandable but can lead to nonsense when taken to its extreme. It can sometimes be helpful to think of the different parts of a quantum computation as being in different universes that can’t affect each other, but this description makes it harder to think about some of the effects we will learn in this book, such as interference. When taken too far, the parallel-universes analogy also lends itself to thinking of quantum computing in ways that are closer to a particularly pulpy and fun episode of a sci-fi show like Star Trek than to reality.


  What this fails to communicate, however, is that it isn’t always obvious how to use quantum effects to extract useful answers from a quantum device, even if the state of the quantum device appears to contain the desired output. For instance, one way to factor an integer N using a classical computer is to list each potential factor and check whether it’s actually a factor or not:


  
    	
      Let i = 2.

    


    	
      Check if the remainder of N / i is zero.


      
        	
          If so, return that i factors N.

        


        	
          If not, increment i and loop.

        

      

    

  


  We can speed up this classical algorithm by using a large number of different classical computers, one for each potential factor that we want to try. That is, this problem can be easily parallelized. A quantum computer can try each potential factor within the same device, but as it turns out, this isn’t yet enough to factor integers faster than the classical approach. If we use this approach on a quantum computer, the output will be one of the potential factors chosen at random. The actual correct factors will occur with probability about 1/√N, which is no better than the classical algorithm.


  As we’ll see in chapter 12, though, we can use other quantum effects to factor integers with a quantum computer faster than the best-known classical factoring algorithms. Much of the heavy lifting done by Shor’s algorithm is to make sure that the probability of measuring a correct factor at the end is much larger than the probability of measuring an incorrect factor. Canceling out incorrect answers this way is where much of the art of quantum programming comes in; it’s not easy or even possible to do for all problems we might want to solve.


  To understand more concretely what quantum computers can and can’t do and how to do cool things with quantum computers despite these challenges, it’s helpful to take a more concrete approach. Thus, let’s consider what a quantum program even is, so that we can start writing our own. 


  
1.4 What is a program?


  Throughout this book, we will often find it useful to explain a quantum concept by first reexamining the analogous classical concept. In particular, let’s take a step back and examine what a classical program is.


  Definition A program is a sequence of instructions that can be interpreted by a classical computer to perform a desired task. Tax forms, driving directions, recipes, and Python scripts are all examples of programs.


  We can write classical programs to break down a wide variety of different tasks for interpretation by all sorts of different computers. See figure 1.4 for some example programs.
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  Figure 1.4 Examples of classical programs. Tax forms, map directions, and recipes are all examples in which a sequence of instructions is interpreted by a classical computer such as a person. These may look very different, but each uses a list of steps to communicate a procedure.


  Let’s take a look at what a simple “hello, world” program might look like in Python:

  >>> def hello():
...     print("Hello, world!")
...
>>> hello()
Hello, world!


  At its most basic, this program can be thought of as a sequence of instructions given to the Python interpreter, which then executes each instruction in turn to accomplish some effect—in this case, printing a message to the screen. That is, the program is a description of a task that is then interpreted by Python and, in turn, by our CPU to accomplish our goal. This interplay between description and interpretation motivates calling Python, C, and other such programming tools languages, emphasizing that programming is how we communicate with our computers.


  In the example of using Python to print “Hello, world!” we are effectively communicating with Guido van Rossum, the founding designer of the Python language. Guido then effectively communicates on our behalf with the designers of the operating system we are using. These designers in turn communicate on our behalf with Intel, AMD, ARM, or whatever company designed the CPU we are using, and so forth.


  
1.4.1 What is a quantum program?


  Like classical programs, quantum programs consist of sequences of instructions that are interpreted by classical computers to perform a particular task. The difference, however, is that in a quantum program, the task we wish to accomplish involves controlling a quantum system to perform a computation.


  As a result, the instructions used in classical and quantum programs differ as well. A classical program may describe a task such as loading some cat pictures from the internet in terms of instructions to a networking stack and eventually in terms of assembly instructions such as mov (move). By contrast, quantum languages like Q# allow programmers to express quantum tasks in terms of instructions like M (measure). When run using quantum hardware, these programs may instruct a digital signal processor to send microwaves, radio waves, or lasers into a quantum device and amplify signals coming out of the device.


  Throughout the rest of this book, we will see many examples of the kinds of tasks a quantum program is faced with solving, or at least addressing, and what kinds of classical tools we can use to make quantum programming easier. For example, figure 1.5 shows an example of writing a quantum program in Visual Studio Code, a classical integrated development environment (IDE).
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  Figure 1.5 Writing a quantum program with the Quantum Development Kit and Visual Studio Code. We will get to the content of this program in chapter 7, but you can see at a high level that it looks similar to other software projects you may have worked on.


  We will build up the concepts we need to write quantum programs chapter by chapter; figure 1.6 shows a roadmap. In the next chapter, we kick things off by learning about the basic building blocks that make up a quantum computer and using them to write our first quantum program. 
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  Figure 1.6 This book builds up the concepts we need to write quantum programs. We start in part 1 with lower-level descriptions of simulators and intrinsic operations (think hardware API) by building our own simulator in Python. Part 2 examines the Q# language and quantum development techniques that will help us develop our own applications. Part 3 shows some known applications for quantum computing and the challenges and opportunities we have with this technology moving forward.


  
Summary


  
    	
      Quantum computing is important because quantum computers potentially will allow us to solve problems that are too difficult to solve with conventional computers.

    


    	
      Quantum computers can provide advantages over classical computers for some kinds of problems, such as factoring large numbers.

    


    	
      Quantum computers are devices that use quantum physics to process data.

    


    	
      Programs are sequences of instructions that can be interpreted by a classical computer to perform tasks.

    


    	
      Quantum programs are programs that perform computation by sending instructions to quantum devices.

    

  


  
    
2 Qubits: The building blocks

  


  This chapter covers


  
    	
Why random numbers are an important resource


    	
What is a qubit?


    	
What basic operations can we perform on a qubit?


    	
Programming a quantum random number generator in Python

  


  In this chapter, we’ll start to get our feet wet with some quantum programming concepts. The main concept we will explore is the qubit, the quantum analogue of a classical bit. We’ll use qubits as an abstraction or model to describe the new kinds of computing that are possible with quantum physics. Figure 2.1 shows a model of using a quantum computer as well as the simulator setup that we use in this book. Real or simulated qubits will live on the target machine and interact with the quantum programs that we will be writing! Those quantum programs can be sent by various host programs that then wait to receive the results from the quantum program.
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  Figure 2.1 A mental model for how we can use a quantum computer. The top half of the figure is the general model for a quantum computer. We will be using local simulators for this book, and the bottom half represents what we will be building and using.


  To help learn about what qubits are and how we interact with them, we will use an example of how they are used today: random number generation. While we can build up much more interesting devices from qubits, the simple example of a quantum random number generator (QRNG) is a good way to get familiar with the qubit.


  
2.1 Why do we need random numbers?


  Humans like certainty. We like it when pressing a key on our keyboard does the same thing every time. However, there are some contexts in which we want randomness:


  
    	
      Playing games

    


    	
      Simulating complex systems (such as the stock market)

    


    	
      Picking secure secrets (for example, passwords and cryptographic keys)

    

  


  In all of these situations where we want randomness, we can describe the chances of each outcome. For random events, describing the chances is all we can say about the situation until the die is cast (or the coin is flipped or the password is reused). When we describe the chances of each example, we say things like this:


  
    	
      If I roll this die, then I will get a six with probability 1 out of 6.

    


    	
      If I flip this coin, then I will get heads with probability 1 out of 2.

    

  


  We can also describe cases where the probabilities aren’t the same for every outcome. On Wheel of Fortune, (figure 2.2), the probability that if we spin the wheel, then we will get a $1,000,000 prize is much smaller than the probability that if we spin the wheel, then we will go bankrupt.
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  Figure 2.2 Probabilities of $1,000,000 and Bankrupt on Wheel of Fortune. Before spinning the wheel, we don’t know exactly where it will land, but we do know by looking at the wheel that the probability of getting Bankrupt is much larger than the probability of winning big.


  As on game shows, there are many contexts in computer science where randomness is critical, especially when security is required. If we want to keep some information private, cryptography lets us do so by combining our data with random numbers in different ways. If our random number generator isn’t very good—that is to say, if an attacker can predict what numbers we use to protect our private data—then cryptography doesn’t help us much. We can also imagine using a poor random number generator to run a raffle or a lottery; an attacker who figures out how our random numbers are generated can take us straight to the bank.


  
    What are the odds?


    We can lose a lot of money by using random numbers that our adversaries can predict. Just ask the producers of Press Your Luck!, a popular 1980s game show.


    A contestant found that he could predict where the game’s new electronic “wheel” would land, which allowed him to win more than $250,000 in today’s money. To learn more, read “The Man Who Got No Whammies” by Zachary Crockett at https:// priceonomics.com/the-man-who-got-no-whammies.

  


  As it turns out, quantum mechanics lets us build some really unique sources of randomness. If we build them right, the randomness of our results is guaranteed by physics, not an assumption about how long it would take for a computer to solve a difficult problem. This means a hacker or adversary would have to break the laws of physics to break the security! This does not mean we should use quantum random numbers for everything; humans are still the weakest link in security infrastructure [image: ].


  
    Deep dive: Computational security and information theoretic security


    Some ways of protecting private information rely on assumptions about what problems are easy or hard for an attacker to solve. For instance, the RSA algorithm is a commonly used encryption algorithm and is based on the difficulty of finding prime factors for large numbers. RSA is used on the web and in other contexts to protect user data, under the assumption that adversaries can’t easily factor very large numbers. So far, this has proven to be a good assumption, but it is entirely possible that a new factoring algorithm may be discovered, undermining the security of RSA. New models of computation like quantum computing also change how reasonable or unreasonable it is to make computational assumptions like “factoring is hard.” As we’ll see in chapter 11, a quantum algorithm known as Shor’s algorithm allows for solving some kinds of cryptographic problems much faster than classical computers can, challenging the assumptions that are commonly used to promise computational security.


    By contrast, if an adversary can only ever randomly guess at secrets, even with very large amounts of computing power, then a security system provides much better guarantees about its ability to protect private information. Such systems are said to be informationally secure. Later in this chapter, we’ll see that generating random numbers in a hard-to-predict fashion allows us to implement an informationally secure procedure called a one-time pad.

  


  This gives us some confidence that we can use quantum random numbers for vital tasks, such as to protect private data, run lotteries, and play Dungeons and Dragons. Simulating how quantum random number generators work lets us learn many of the basic concepts underlying quantum mechanics, so let’s jump right in and get started!


  As mentioned earlier, one great way to get started is to look at an example of a quantum program that generates random numbers: a quantum random number generator (QRNG). Don’t worry if the following algorithm (also shown in figure 2.3) doesn’t make a lot of sense right now—we’ll explain the different pieces as we go through the rest of the chapter:


  
    	
      Ask the quantum device to allocate a qubit.

    


    	
      Apply an instruction called the Hadamard instruction to the qubit; we learn about this later in the chapter.

    


    	
      Measure the qubit, and return the result.
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  Figure 2.3 Quantum random number generator algorithm. To sample random numbers with a quantum computer, our program will prepare a fresh qubit and then use a Hadamard instruction to prepare the superposition we need. Finally, we can measure and return the random result that we get at the end.


  In the rest of the chapter, we’ll develop a Python class called QuantumDevice to let us write programs that implement algorithms like this one. Once we have a QuantumDevice class, we’ll be able to write QRNG as a Python program similar to classical programs that we’re used to.


  Note Please see appendix A for instructions on how to set up Python on your device to run quantum programs.


  Note that the following sample will not run until you have written the simulator in this chapter [image: ].


  Listing 2.1 qrng.py: a quantum program that generates random numbers

  def qrng(device : QuantumDevice) -> bool:    ❶
 
    with device.using_qubit() as q:          ❷
 
        q.h()                                ❸
 
        return q.measure()                   ❹


  ❶ Quantum programs are written just like classical programs. In this case, we’re using Python, so our quantum program is a Python function qrng that implements a QRNG.


  ❷ Quantum programs work by asking quantum computing hardware for qubits: quantum analogues of bits that we can use to perform computations.


  ❸ Once we have a qubit, we can issue instructions to that qubit. Similar to assembly languages, these instructions are often denoted by short abbreviations; we’ll see what h() stands for later in this chapter.


  ❹ To get data back from our qubits, we can measure them. In this case, half of the time, our measurement will return True, and the other half of the time, we’ll get back False.


  That’s it! Four steps, and we’ve just created our first quantum program. This QRNG returns true or false. In Python terms, this means we get a 1 or a 0 each time we run qrng. It’s not a very sophisticated random number generator, but the number it returns is truly random.


  To run the qrng program, we need to give the function a QuantumDevice that provides access to qubits and implements the different instructions we can send to qubits. Although we need only one qubit, to start, we’re going to build our own quantum computer simulator. Existing hardware could be used for this modest task, but what we will look at later will be beyond the scope of available hardware. It will run locally on a laptop or desktop and behave like actual quantum hardware. Throughout the rest of the chapter, we’ll build the different pieces we need to write our own simulator and run qrng. 


  
2.2 What are classical bits?


  When learning about the concepts of quantum mechanics, it often helps to step back and reexamine classical concepts to make the connection to how they are expressed in quantum computing. With that in mind, let’s take another look at what bits are.


  Suppose we’d like to send our dear friend Eve an important message, such as “[image: ]”. How can we represent our message in a way that it can be easily sent?


  We might start by making a list of every letter and symbol that we could use to write messages. Fortunately, the Unicode Consortium (https://unicode.org) has already done this for us and assigned codes to an extensive variety of characters used for communication around the world. For instance, I is assigned the code 0049, while [image: ] is denoted by A66E, [image: ] by 2E0E, and [image: ] by 1F496. These codes may not seem helpful at first glance, but they’re useful recipes for how to send each symbol as a message. If we know how to send two messages (let’s call them “0” and “1”), these recipes let us build more complicated messages like “[image: ]”, “[image: ]”, and “[image: ]” as sequences of “0” and “1” messages:


  
    
      	
        0

      

      	
        0000

      

      	
        8

      

      	
        1000

      
    


    
      	
        1

      

      	
        0001

      

      	
        9

      

      	
        1001

      
    


    
      	
        2

      

      	
        0010

      

      	
        A

      

      	
        1010

      
    


    
      	
        3

      

      	
        0011

      

      	
        B

      

      	
        1011

      
    


    
      	
        4

      

      	
        0100

      

      	
        C

      

      	
        1100

      
    


    
      	
        5

      

      	
        0101

      

      	
        D

      

      	
        1101

      
    


    
      	
        6

      

      	
        0110

      

      	
        E

      

      	
        1110

      
    


    
      	
        7

      

      	
        0111

      

      	
        F

      

      	
        1111

      
    

  


  Now we can send whatever we want if we know how to send just two messages to Eve: a “0” message and a “1” message. Using these recipes, our message “[image: ]” becomes “0001 1111 0100 1001 0110” or Unicode 1F496.


  Tip Don’t send “0001 1111 0100 1001 0100” by mistake, or Eve will get a [image: ] from you!


  We call each of the two messages “0” and “1” a bit.


  Note To distinguish bits from the quantum bits we’ll see throughout the rest of the book, we’ll often emphasize that we’re talking about classical bits.


  When we use the word bit, we generally mean one of two things:


  
    	
      Any physical system that can be completely described by answering one true/false question

    


    	
      The information stored in such a physical system

    

  


  For example, padlocks, light switches, transistors, the left or right spin on a curveball, and wine in wine glasses can all be thought of as bits, as we can use all of them to send or record messages (see table 2.1).


  Table 2.1 Examples of bits


  
    
      	
        Label

      

      	
        Padlock

      

      	
        Light switch

      

      	
        Transistor

      

      	
        Wine glass

      

      	
        Baseball

      
    


    
      	
        0

      

      	
        Unlocked

      

      	
        Off

      

      	
        Low voltage

      

      	
        Contains white wine

      

      	
        Rotating to the left

      
    


    
      	
        1

      

      	
        Locked

      

      	
        On

      

      	
        High voltage

      

      	
        Contains red wine

      

      	
        Rotating to the right

      
    

  


  These examples are all bits because we can fully describe them to someone else by answering a single true/false question. Put differently, each example lets us send either a 0 or a 1 message. Like all conceptual models, a bit has limitations—how would we describe a rosé wine, for instance?


  That said, a bit is a useful tool because we can describe ways of interacting with a bit that are independent of how we actually build the bit.


  
2.2.1 What can we do with classical bits?


  Now that we have a way of describing and sending classical information, what can we do to process and modify it? We describe the ways that we can process information in terms of operations, which we define as the ways of describing how a model can be changed or acted upon.


  To visualize the NOT operation, let’s imagine labeling two points as 0 and 1, as shown in figure 2.4. The NOT operation is then any transformation that turns 0 bits into 1 bits and vice versa. In classical storage devices like hard drives, a NOT gate flips the magnetic field that stores our bit value. As shown in figure 2.5, we can think of NOT as implementing a 180° rotation between the 0 and 1 points we drew in figure 2.4.


  [image: ]


  Figure 2.4 A classical bit can be in one of two different states, typically called 0 and 1. We can depict a classical bit as a black dot in either the 0 or 1 position.


  [image: ]


  Figure 2.5 The classical NOT operation flips a classical bit between 0 and 1. For instance, if a bit starts in the 0 state, NOT flips it to the 1 state.


  Visualizing classical bits this way also lets us extend the notion of bits slightly to include a way to describe random bits (which will be helpful later). If we have a fair coin (that is, a coin that lands heads half the time and tails the other half), then it wouldn’t be correct to call that coin a 0 or a 1. We only know what bit value our coin bit has if we set it with a particular side face up on a surface; we can also flip it to get a random bit value. Every time we flip a coin, we know that eventually, it will land, and we will get heads or tails. Whether it lands heads or tails is governed by a probability called the bias of the coin. We have to pick a side of the coin to describe the bias, which is easy to phrase as a question like “What is the probability that the coin will land heads?” Thus a fair coin has a bias of 50% because it lands with the value heads half of the time, which is mapped to the bit value 0 in figure 2.6.


  [image: ]


  Figure 2.6 We can use the same picture as before to extend our concept of a bit to describe a coin. Unlike a bit, a coin has a probability of being either 0 or 1 each time it is tossed. We graphically represent that probability as a point between 0 and 1.


  Using this visualization, we can take our previous two dots indicating the bit values 0 and 1 and connect them with a line on which we can plot our coin’s bias. It becomes easier to see that a NOT operation (which still works on our new probabilistic bit) doesn’t do anything to a fair coin. If 0 and 1 occur with the same probability, then it doesn’t matter if we rotate a 0 to a 1 or a 1 to a 0: we’ll still wind up with 0 and 1 having the same probability.


  What if our bias is not in the middle? If we know that someone is trying to cheat by using a weighted or modified coin that almost always lands on heads, we can say the bias of the coin is 90% and plot it on our line by drawing a point much closer to 0 than to 1.


  Definition The point on a line where we would draw each classical bit is the state of that bit.


  Let’s consider a scenario. Say I want to send you a bunch of bits stored using padlocks. What is the cheapest way I can do so?


  One approach is to mail a box containing many padlocks that are either open or closed and hope that they arrive in the same state in which I sent them. On the other hand, we can agree that all padlocks start in the 0 (unlocked) state, and I can send you instructions on which padlocks to close. This way, you can buy your own padlocks, and I only need to send a description of how to prepare those padlocks using classical NOT gates. Sending a piece of paper or an email is much cheaper than mailing a box of padlocks!


  This illustrates a principle we will rely on throughout the book: the state of a physical system can also be described in terms of instructions for how to prepare that state. Thus, the operations allowed on a physical system also define what states are possible.


  Although it may sound completely trivial, there is one more thing we can do with classical bits that will turn out to be critical for how we understand quantum computing: we can look at them. If I look at a padlock and conclude, “Aha! That padlock is unlocked,” then I can now think of my brain as a particularly squishy kind of bit. The 0 message is stored in my brain by my thinking, “Aha! That padlock is unlocked,” while a 1 message would be stored by my thinking, “Ah, well, that padlock is locked [image: ].” In effect, by looking at a classical bit, I have copied it into my brain. We say that the act of measuring the classical bit copies that bit.


  More generally, modern life is built around the ease with which we copy classical bits by looking at them. We copy classical bits with truly reckless abandon, measuring many billions of classical bits every second that we copy data from our video game consoles to our TVs.


  On the other hand, if a bit is stored as a coin, then the process of measuring involves flipping it. Measuring doesn’t quite copy the coin, as I might get a different measurement result the next time I flip. If I only have one measurement of a coin, I can’t conclude the probability of getting heads or tails. We didn’t have this ambiguity with padlock bits because we knew the state of the padlocks was either 0 or 1. If I measured a padlock and found it to be in the 0 state, I would know that it would always be in the 0 state unless I did something to the padlock.


  The situation isn’t precisely the same in quantum computing, as we’ll see later in the chapter. While measuring classical information is cheap enough that we complain about precisely how many billions of bits a $5 cable lets us measure, we have to be much more careful with how we approach quantum measurements.


  
2.2.2 Abstractions are our friend


  Regardless of how we physically build a bit, we can (fortunately) represent them the same way in both math and code. For instance, Python provides the bool type (short for Boolean, in honor of the logician George Boole), which has two valid values: True and False. We can represent transformations on bits such as NOT and OR as operations acting on bool variables. Importantly, we can specify a classical operation by describing how that operation transforms each possible input, often called a truth table.


  Definition A truth table is a table describing the output of a classical operation for every possible combination of inputs. For example, figure 2.7 shows the truth table for the AND operation.


  [image: ]


  Figure 2.7 Truth table for the logical operation AND. If we know the entire truth table for a logical operation, then we know what that operation does for any possible input.


  We can find the truth table for the NAND (short for NOT-AND) operation in Python by iterating over combinations of True and False.


  Listing 2.2 Using Python to print out a truth table for NAND

  >>> from itertools import product
>>> for inputs in product([False, True], repeat=2):
...     output = not (inputs[0] and inputs[1])
...     print(f"{inputs[0]}\t{inputs[1]}\t->\t{output}")
False   False   ->      True
False   True    ->      True
True    False   ->      True
True    True    ->      False


  Note Describing an operation as a truth table holds for more complicated operations. In principle, even an operation like addition between two 64-bit integers can be written as a truth table. This isn’t very practical, though, as a truth table for two 64-bit inputs would have 2128 ≈ × 1038 entries and would take 1040 bits to write. By comparison, recent estimates put the size of the entire internet at closer to 1027 bits.


  Much of the art of classical logic and hardware design is making circuits that can provide very compact representations of classical operations rather than relying on potentially massive truth tables. In quantum computing, we use the name unitary operators for similar truth tables for quantum bits, which we will expand on as we go along.


  In summary:


  
    	
      Classical bits are physical systems that can be in one of two different states.
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