

 [image: cover]

 Lift in Action: The Simply Functional Web Framework for Scala

 Timothy Perrett

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editors: Katharine Osborne
Copyeditor: Andy Carroll
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

Dedication

 To my Dad for teaching me that hard work and dedication can triumph over any problem

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Getting started

 Chapter 1. Introducing Lift

 Chapter 2. Hello Lift

 2. Application tutorial

 Chapter 3. The auction application

 Chapter 4. Customers, auctions, and bidding

 Chapter 5. Shopping basket and checkout

 3. Lift in detail

 Chapter 6. Common tasks with Lift WebKit

 Chapter 7. SiteMap and access control

 Chapter 8. HTTP in Lift

 Chapter 9. AJAX, wiring, and Comet

 Chapter 10. Persistence with Mapper

 Chapter 11. Persistence with Record

 Chapter 12. Localization

 Chapter 13. Distributed messaging and Java enterprise integration

 Chapter 14. Application testing

 Chapter 15. Deployment and scaling

 Appendix A. Introduction to Scala

 Appendix B. Configuring an IDE

 Appendix C. Options and boxes

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Getting started

 Chapter 1. Introducing Lift

 1.1. What is Scala?

 1.2. What is Lift?

 1.2.1. Lift design goals

 1.2.2. View-first design

 1.2.3. Community and team

 1.3. Lift features

 1.3.1. Lift Core and Lift Web

 1.3.2. Lift Persistence

 1.3.3. Lift Modules

 1.4. Summary

 Chapter 2. Hello Lift

 2.1. Getting started with SBT

 2.2. Your first Lift application

 2.2.1. Creating the project

 2.2.2. Inspecting the project

 2.2.3. Booting the application

 2.3. Snippets and templating overview

 2.3.1. Snippets

 2.3.2. Templating overview

 2.4. Summary

 2. Application tutorial

 Chapter 3. The auction application

 3.1. Application requirements

 3.1.1. Frontend

 3.1.2. Administration

 3.2. Template structure

 3.2.1. Design workflow

 3.2.2. Template setup

 3.3. Data models

 3.3.1. Schema definition

 3.3.2. Connecting to the database

 3.4. Scaffolding

 3.4.1. Prototype traits

 3.4.2. CRUD generation

 3.5. Validation

 3.5.1. Definitions

 3.5.2. Displaying field errors

 3.6. Summary

 Chapter 4. Customers, auctions, and bidding

 4.1. Building an auction catalog

 4.1.1. Listing auctions

 4.1.2. Adding to SiteMap

 4.2. Displaying auctions

 4.2.1. Auction detail URLs

 4.2.2. The AJAX bidding interface

 4.2.3. Real-time bidding

 4.3. Summary

 Chapter 5. Shopping basket and checkout

 5.1. Order creation

 5.1.1. Order models

 5.1.2. Attributing auctions to customers

 5.2. Implementing the basket and checkout process

 5.2.1. Implementing the basket

 5.2.2. Implementing the checkout

 5.3. Collecting payment with PayPal

 5.3.1. Environment setup

 5.3.2. The Buy Now button

 5.4. Summary

 3. Lift in detail

 Chapter 6. Common tasks with Lift WebKit

 6.1. Templates, snippets, and views

 6.1.1. Templates

 6.1.2. Snippets

 6.1.3. Views

 6.2. Managing state

 6.2.1. Request and session state

 6.2.2. Cookies

 6.3. Forms with LiftScreen and Wizard

 6.3.1. LiftScreen

 6.3.2. Wizard

 6.4. Widgets

 6.4.1. AutoComplete widget

 6.4.2. Gravatar widget

 6.5. Summary

 Chapter 7. SiteMap and access control

 7.1. Menus and locations

 7.1.1. Understanding and implementing locations

 7.1.2. Rendering menus

 7.2. Location parameters

 7.2.1. Default location parameters

 7.2.2. Authentication parameters

 7.3. Customizing SiteMap

 7.3.1. Creating a custom Loc

 7.3.2. When to customize SiteMap?

 7.4. Summary

 Chapter 8. HTTP in Lift

 8.1. HTTP pipeline

 8.1.1. HTTP abstraction

 8.1.2. Application lifecycle

 8.1.3. Request lifecycle

 8.2. URL rewriting

 8.2.1. Defining a RewritePF

 8.2.2. Advanced rewriting

 8.3. Dispatching and web services

 8.3.1. Using the HTTP dispatch DSL

 8.3.2. Basic REST service

 8.3.3. Advanced multiformat REST service

 8.4. Summary

 Chapter 9. AJAX, wiring, and Comet

 9.1. AJAX

 9.1.1. JavaScript abstractions

 9.1.2. AJAX 101

 9.1.3. Sophisticated AJAX

 9.1.4. Using JSON forms with AJAX

 9.1.5. AJAX with LiftScreen

 9.2. Wiring

 9.2.1. Formula wiring

 9.3. Comet

 9.3.1. What are actors?

 9.3.2. Basic Comet usage

 9.3.3. Comet-based rock-paper-scissors

 9.4. Summary

 Chapter 10. Persistence with Mapper

 10.1. Setting up a database

 10.1.1. Installation and connectivity

 10.1.2. Defining Mappers

 10.1.3. Relationships

 10.1.4. Schema creation and control

 10.2. Interacting with Mapper

 10.2.1. Creating data

 10.2.2. Querying data

 10.2.3. Updating and deleting data

 10.2.4. Validation and lifecycle callbacks

 10.2.5. Display functionality

 10.3. Advanced Mapper

 10.3.1. Query logging

 10.3.2. Transactions

 10.3.3. Custom mapped fields

 10.4. Summary

 Chapter 11. Persistence with Record

 11.1. Common Record functionality

 11.1.1. Common Record fields

 11.1.2. Integration with LiftScreen and Wizard

 11.2. Record for relational databases

 11.2.1. Connecting and querying with Squeryl

 11.2.2. A bookstore with Squeryl

 11.3. Record for NoSQL stores

 11.3.1. NoSQL support in Lift

 11.3.2. Bookstore with MongoDB

 11.4. Summary

 Chapter 12. Localization

 12.1. Implementing localization

 12.1.1. Implementing locale calculator

 12.1.2. Localizing templates and code

 12.2. Defining localized resources

 12.2.1. Using XML resources

 12.2.2. Using Java properties resources

 12.2.3. Using custom resource factories

 12.3. Summary

 Chapter 13. Distributed messaging and Java enterprise integration

 13.1. Distributed programming

 13.1.1. Messaging with AMQP

 13.1.2. Messaging with Akka

 13.2. Integrating Lift into existing Java infrastructure

 13.2.1. JPA and Scala EntityManager

 13.3. Summary

 Chapter 14. Application testing

 14.1. Scala testing frameworks

 14.1.1. ScalaTest

 14.1.2. Scala Specs

 14.1.3. ScalaCheck

 14.1.4. Code coverage reports

 14.2. Writing testable code

 14.2.1. Complexities of testing state

 14.2.2. Dependency injection

 14.3. Testing strategies

 14.3.1. Testing snippets

 14.3.2. Testing web services

 14.3.3. Testing with Mapper

 14.3.4. Testing Comet and AJAX

 14.4. Summary

 Chapter 15. Deployment and scaling

 15.1. Choosing a servlet container

 15.2. Handling state

 15.2.1. Sticky session strategies

 15.2.2. Distributing critical state

 15.3. Choosing a configuration

 15.3.1. Single server

 15.3.2. Multiple servers

 15.4. Deployment tools and techniques

 15.4.1. Built-in assistance

 15.4.2. Monitoring

 15.5. Case studies

 15.5.1. Foursquare

 15.5.2. Novell Vibe

 15.6. Summary

 Appendix A. Introduction to Scala

 A.1. Variables, values, and immutability

 A.2. Classes, methods, traits, and functions

 A.2.1. Classes

 A.2.2. Traits

 A.2.3. Methods

 A.2.4. Functions

 A.3. Collections

 A.4. Pattern matching

 A.5. Implicits

 Appendix B. Configuring an IDE

 B.1. IntelliJ

 B.2. Eclipse

 Appendix C. Options and boxes

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 The web has completely revolutionized the way we live our lives—the average person in the UK now does an average of six Google
 searches a day. Within the lifetime of one generation, our entire society has changed, and it continues to be catalyzed by
 technology in a very fundamental way. For me, this is the most fascinating thing to observe and an even more interesting thing
 to be a part of.

 The web development industry has seen sweeping change over the past five or six years as it has attempted to cope with these
 new social habitats and behaviors. Probably one of the most notable changes was the way in which Ruby on Rails altered developers’
 outlook toward building applications and the manner in which they approached problems. Massive enterprise architecture was
 out the window and small, iterative, agile processes became all the rage. At the beginning of 2006, I had been coding Ruby
 on Rails for quite some time and had built several large systems with the Ruby stack. Although I was blown away by the productivity
 gains that Rails supplied, taking code to production was a comparative nightmare. I specifically recall Zed Shaw’s “Rails
 is a Ghetto” rant and how that was very similar to my own views at the time. It was then that I started to look for something
 else, something new.

 Before long, I came across Lift, which felt “right” from the very beginning. Scala and Lift’s elegant fusion of the functional
 and object-oriented paradigms was a breath of fresh air when compared to other languages and frameworks. It was great to have
 all the security features baked right into a framework, and not have to worry about many things that typically cause a lot
 of headaches for developers. These kinds of choices make a great developer-oriented framework: focusing on removing work from
 the developer in a pragmatic and logical way while using as little runtime magic as possible.

 Having been involved with Lift from an early stage, seeing it grow and evolve in an organic fashion has been very rewarding.
 Even with an intimate understanding of Lift, writing this book has been far more difficult than I could have ever anticipated.
 As a framework, Lift is growing at an exponential rate, and I’ve tried to cover as much of it as possible and keep it up-to-date
 with the latest advancements, all while providing you with a base from which to understand the Lift way of solving problems.

Acknowledgments

 Many people contributed to this book, both in the tangible sense of giving reviews and feedback, and also in a more intangible
 regard by giving me the encouragement and positive words to continue with the project, even when there was seemingly no end
 in sight.

 Throughout the course of writing, I was fortunate enough to receive feedback from a wide range of sources, but there are several
 people that I specifically need to single out and thank. First, I would like to thank Jon-Anders Teigen and Ross Mellgren
 for being such amazing sounding boards for ideas, and for often providing a much-needed sanity check late at night. In addition,
 I would like to thank the following people from the Scala community who have had an influence on me during the writing of
 this book; your blogs, screencasts, and personal discussions have been a source of inspiration and always remind me there
 is so much more to learn: Martin Odersky, Debasish Ghosh, Tony Morris, Rúnar Bjarnason, Mark Harrah, Jeppe Nejsum Madsen,
 Jeppe Cramon, Vassil Dichev, Marius Danicu, Derek Chen-Becker, Jorge Ortiz, and Josh Suereth.

 I would also like to thank the companies that use Scala commercially and who have constructively given their feedback; particular
 thanks go to Harry Heymann and all the Foursquare engineers, Daniel Spiewak and David LaPalomento at Novel, Steve Jenson and
 Robey Pointer at Twitter, and Jonas Bonér and Viktor Klang at Typesafe.

 Writing Lift in Action has without doubt been one of the most difficult things I’ve ever done, and it’s been a huge personal challenge. During the
 writing of this book, I’ve circumnavigated the globe nearly twice, severely broken my hand, learned Italian, and still found
 time for a day job. None of those things would have been achievable without the support of my family and three best friends:
 Robert Dodge, Paul Dredge, and Michael Edwards. I simply couldn’t wish for closer friends or a more supportive family. You
 guys are awesome.

 I’d also like to say thank you to all the amazing people who have contributed to Lift over the years, and also to David Pollak
 for founding the project in the first place. Working on Lift and being a part of the community has truly been one of the highlights
 of my career to date.

 The team at Manning has also been a huge, huge help. Working with such a professional group of people has been a joy end-to-end.
 I would specifically like to thank Michael Stephens for bringing me on board to write this book: his words from our first
 call together, “...writing a book is completely survivable,” are something I have thought about often. Additionally, Katharine
 Osbourne has been a legendary development editor; without her support and consultation, this book would likely have never
 made it to completion. Thanks also to the production team of Andy Carroll, Melody Dolab, Dennis Dalinnik, and Mary Piergies;
 and to Jon Anders Teigen, Graham Tackley, and Phil Wells for their careful technical proofread of the manuscript, shortly
 before it went to press.

 Finally, my thanks to the reviewers who read the manuscript numerous times during development and who provided invaluable
 feedback: Andy Dingley, Paul Stusiak, Guillaume Belrose, John Tyler, Ted Neward, Andrew Rhine, Jonas Bandi, Tom Jensen, Ross
 Mellgren, Richard Williams, Viktor Klang, and Dick Wall.

About this Book

 Lift is an advanced, next-generation framework for building highly interactive and intuitive web applications. Lift aims to
 give you a toolkit that scales with both your needs as a developer and the needs of your applications. Lift includes a range
 of features right out of the box that set it apart from other frameworks in the marketplace: namely security, statefulness,
 and performance.

 Lift also includes a range of high-level abstractions that make day-to-day development easy and powerful. In fact, one of
 the main driving forces during Lift’s evolution has been to include only features that have an actual production use. You,
 as the developer, can be sure that the features you find in Lift are distilled from real production code.

 Lift in Action is a step-by-step exploration of the Lift web framework, and it’s split into two main parts: chapters 1 through 5 introduce Lift and walk you through building a small, sample application, and then chapters 6 through 15 take a deep dive into the various parts of Lift, providing you with a deep technical reference to help you get the best out
 of Lift.

Roadmap

 Chapter 1 introduces Lift and sets the scene with regard to how it came into existence. It also covers the various modules of the framework
 to give you an appreciation for the bigger picture.

 Chapter 2 shows you how to get up and running with the Scala build tool SBT and start making your first web application with Lift.
 This chapter focuses on small, incremental steps covering the concepts of development that you’ll need in the rest of the
 book.

 Chapter 3, 4, and 5 walk you through the construction of a real-time auction application to cover as many different parts of Lift as possible.
 This includes creating templates, connecting to a database, and implementing basic AJAX and Comet.

 Chapter 6 takes a dive into the practical aspects of Lift WebKit, showing you how to work with the sophisticated templating system,
 snippets, and form building through LiftScreen and Wizard. Additionally, this chapter introduces Lift’s own abstraction for handling application state in the form of RequestVar and SessionVar. This chapter concludes with an overview of some useful extension modules, known as widgets, that ship with the Lift distribution.

 Chapters 7 focuses on Lift’s SiteMap feature, which allows you to control access and security for particular resources.

 Chapter 8 covers the internal working of Lift’s HTTP pipeline, detailing the various hooks that are available and demonstrating several
 techniques for implementing HTTP services.

 Chapter 9 explores Lift’s sophisticated AJAX and Comet support, demonstrating these technologies in practice by assembling a rock-paper-scissors game. This chapter also covers Lift’s AJAX abstraction called wiring, which allows you to build chains of AJAX interaction with ease.

 Chapters 10 and 11 cover Lift’s persistence systems, Mapper and Record. Mapper is an active-record style object-relational mapper (ORM) for
 interacting with SQL data stores, whereas Record is store-agnostic and can be used with any backend system from MySQL to modern
 NoSQL stores such as MongoDB.

 Chapter 12 demonstrates Lift’s localization toolkit for building applications that can work seamlessly in any language. This includes
 the various ways in which you can hook in your ResourceBundles to store localized content.

 Chapter 13 is all about the enterprise aspects often associated with web application development. Technologies such as JPA are prevalent
 within the enterprise space, and companies often want to reuse them, so this chapter shows you how to implement JPA with Lift.
 Additionally, this chapter covers messaging using the Akka framework.

 Chapter 14 covers testing with Lift and shows you some different strategies for testing snippets. More broadly, it demonstrates how
 to design code that has a higher degree of decoupling, so your general coding lends itself to testing.

 Finally, chapter 15 consolidates all that you’ve read in the book and shows you how to take your application into production. This includes an
 overview of various servlet containers, a demonstration of implementing distributed state handling, and a guide to monitoring
 with Twitter Ostrich.

Who should read this book?

 Primarily, this book is intended to demonstrate how to get things done using Lift. With this in mind, the book is largely
 slanted toward users who are new to Lift, but who have experience with other web development frameworks. Lift has its own
 unique way of doing things, so some of the concepts may seem foreign, but I make conceptual comparisons to things you may
 be familiar with from other popular frameworks or libraries to smooth the transition.

 If you’re coming to Lift with little or no knowledge of Scala, you should know that Lift makes use of many Scala language
 features. This book includes a Scala rough guide to get you up and running within the context of Lift as quickly as possible.

 The book largely assumes that you have familiarity with XML and HTML. Lift’s templating mechanism is 100 percent based on
 XML, and although it’s straightforward to use, it’s useful to have an understanding of structured XML that makes use of namespaces.

 Finally, because Lift is primarily a web framework designed for browser-based experiences, JavaScript is inevitably part of
 the application toolchain. Lift includes a high-level Scala abstraction for building JavaScript expressions, but having an
 understanding of JavaScript and client-side scripting can greatly improve your understanding of the client-server interactions
 supplied by Lift.

Code conventions and examples

 This book includes a wide range of examples and code illustrations from Scala code and HTML templates, to plain text configurations
 for third-party products. Source code in the listings and in the text is presented in a fixed width font to separate it from ordinary text. Additionally, Scala types, methods, keywords, and XML-based markup elements in text are
 also presented using fixed width font. Where applicable, the code examples explicitly include import statements to clarify which types and members originate from
 which packages. In addition, functions and methods have explicitly annotated types where the result type is not clear.

 Although Scala code is typically quite concise, there are some listings that needed to be reformatted to fit in the available
 page space in the book. You are encouraged to download the source code from the online repository, in order to see the sample
 code in its original form (https://github.com/timperrett/lift-in-action). In addition to some reformatting, all the comments have been removed for brevity. You can also download the code for the
 examples in the book from the publisher’s website at www.manning.com/LiftinAction.

 Code annotations accompany many of the source code listings, highlighting important concepts. In some cases, numbered bullets
 link to explanations in the subsequent text.

 Lift itself is released under the Apache Software License, version 2.0, and all the source code is available online at the
 official Github repository (https://github.com/lift/framework/). Reading Lift’s source code can greatly speed your efforts at becoming productive in using Lift for your own applications.

Author Online

 Purchase of Lift in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/Liftin Action or www.manning.com/perrett. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 [image:]

 Timothy Perrett is a technical specialist at a business unit of Xerox Corporation and has been a member of the Lift core team
 since early 2008. He has a wealth of experience programming in different languages and platforms but has now settled on Scala
 as his language (and community) of choice for nearly all production activities. Timothy is a specialist in enterprise integration
 and automation systems for manufacturing and marketing workflows.

 When not speaking at conferences or blogging about Scala and Lift, Timothy lives by the river in the beautiful city of Bath,
 England, where he enjoys socializing with friends and drinking the local ale.

About the Cover Illustration

 The figure on the cover of Lift in Action is captioned “A Water Carrier.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume compendium
 of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of
 Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated
 from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify
 where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Getting started

 The first two chapters of this book introduce the Lift framework and demonstrate how you can get everything set up and ready
 for your first development.

 Chapter 1 starts by introducing both Scala and Lift concepts, complete with high-level explanations and samples. The aim is to give
 you grounding in what is a fundamentally different way of thinking. In chapter 2, you’ll be building upon the basis laid down in chapter 1 by constructing your very first Hello World application, which will involve the most basic Lift steps. In these chapters,
 you’ll see first-hand how Lift leverages a view-first architecture and how easy it is to get up and running with the Lift web framework.

Chapter 1. Introducing Lift

	

 This chapter covers

	An overview of Scala and Lift

 	Lift’s history and design rationale

 	An overview of Lift’s structure

	

Lift is an exciting new way of building web applications that feature rich, highly interactive user experiences. Lift is built
 atop the powerful functional programming language Scala, which lends itself to writing exceedingly concise but powerful code.
 By leveraging Scala, Lift aims to be expressive and elegant while stressing the importance of maintainability, scalability,
 and performance.

 The first section of this chapter will introduce Scala and functional programming, including some examples of how the language
 compares and contrasts to the more familiar style of imperative programming. The second section introduces Lift and discusses
 how it differs from other web programming tools available today. Lift is largely a conceptual departure from many of the traditional
 approaches to building web frameworks; specifically, Lift doesn’t have a controller-dispatched view system and opts for an
 idea called view first. This chapter discusses these core design goals and introduces these new ideas at a high level. Throughout the course of
 the book, the concepts outlined here will be expanded on in much greater detail, and you’ll see concrete examples to assist you in getting up to speed.

 If you’re reading this book but are new to Scala programming, you can find a rough guide in appendix A that will show you the ropes and give you a foundation for making use of Lift. If you want to get serious with Scala, I highly
 recommend looking at the other Scala titles published by Manning: Scala in Action by NilanjanRaychaudhuri, and then the more advanced Scala in Depth by Joshua Suereth.

1.1. What is Scala?

 Scala (http://www.scala-lang.org/) is a powerful, hybrid programming language that incorporates many different concepts into an elegant fusion of language
 features and core libraries. Before delving any deeper, let’s just consider how functional programming differs from imperative
 programming with languages such as Java and Ruby, and what a functional programming language actually is.

 As the name implies, functional programming languages have a single basic idea at their root: functions. Small units of code
 are self-contained functions that take type A as an argument and return type B as a result; this is expressed more directly in Scala notation: A => B. How this result is achieved is an implementation detail for the most part; as long as the function yields a value of type
 B, all is well.

	

Note

 Functional programming languages often derive from a mathematical concept called lambda calculus. You can read more about
 it on Wikipedia: http://en.wikipedia.org/wiki/Lambda_calculus.

	

With this single concept in mind, it’s possible to boil down complex problems into these much smaller functions, which can
 then be composed to tackle the larger problem at hand; the result of function one is fed into function two and so on, ad infinitum. The upshot
 of such a language design is that once you wrap your head around this base level of abstraction, many of the language features
 can be thought of as higher levels built upon this foundation of basic functions.

 Immutability is another trait that marks out functional languages against their imperative cousins. Specifically, within functional
 languages the majority of data structures are immutable. That is to say, once they’re created there is no changing that instance; rather, you make a copy of that instance and alter
 your copy, leaving the original unaltered.

 Martin Odersky, however, wanted to fuse object orientation and functional programming together in one unified language that
 could compile and run on the Java Virtual Machine (JVM). From here, Scala was born, and consequently Scala compiles down to
 Java bytecode, which means that it can run seamlessly on the JVM and inter-operate with all your existing Java code, completely
 toll free. In practical terms, this means that your existing investment in Java isn’t lost; simply call that code directly
 from your Scala functions and vice versa.

 With this fusion of programming styles, Scala gives you the ability to write code that’s typically two or three times more
 concise than the comparative Java code. At the same time, the Scala code is generally less error-prone due to the heavy use
 of immutable data constructs, and it’s also more type-safe than Java, thanks to Scala’s very sophisticated type system.

 These are the general concepts that make up functional programming, and upon which Scala is built. To further exemplify these
 differences, table 1.1 presents some examples that illustrate the differences in Scala’s approach compared to imperative code. If you don’t know
 Java, don’t worry: the examples here are pretty easy to follow, and the syntax should be fairly readable for anyone familiar
 with Ruby, PHP, or similar languages.

 Table 1.1. Comparing Java and Scala styles of coding

	
 Java

 	
 Scala

	When building class definitions, it’s common to have to build so-called getter and setter methods in order to set the values
 of that instance. This typically creates a lot of noise in the implementation (as seen in the Java example that follows).
 Scala combats this by using the case modifier to automatically provision standard functionality into the class definition.
 Given an instance of the Person case class, calling person.name would return the name value.

	
 public class Person {
 private int _age;
 private String _name;
 public Person(String n, int a){
 _age = a;
 _name = n;
 }
 String name(){ return _name; }
 int age(){ return _age; }
}

 	
 case class Person(
 name: String, age: Int)

	Most applications at some point have to deal with collections. The examples that follow create an initial list and then produce
 a new list instance that has the same animal names, but in lowercase. The Java example on the left creates a list of strings,
 then creates a second empty list, which then has its contents mutated by looping through the first list and calling toLowerCase()
 on each element. The Scala version achieves the exact same result by defining a function that should be executed on each element
 of the list. The Scala version is a lot more concise and does the exact same thing without the code noise.

	
 List<String> in = Arrays.asList(
 "Dog", "Cat", "Fish");

List<String> out =
 new ArrayList<String>();

for(String i : in){
 out.add(i.toLowerCase());
}

 	
 List("Dog","Cat","Fish")
 .map(_.toLowerCase)

These are just some of the ways in which Scala is a powerful and concise language. With this broad introduction to Scala and
 functional programming out of the way, let’s learn about Lift.

1.2. What is Lift?

 First and foremost, Lift (http://liftweb.net/) is a sophisticated web framework for building rich, vibrant applications. Secondly, Lift is a set of well-maintained Scala
 libraries that are used by many other projects within the broader Scala ecosystem. For example, the Dispatch HTTP project
 (http://dispatch.databinder.net/Dispatch.html) uses Lift’s JSON-handling library extensively for parsing JSON within the context of standalone HTTP clients. This book,
 however, really focuses on Lift as a web framework, and it’s here that our story begins.

 User behavior online in recent years has changed; people now spend more time than ever online, and this means they want the
 way they interact with online services to be more intuitive and natural. But building such rich applications has proven to
 be tough for many developers, and this often results in interfaces and infrastructures that aren’t really up to the job or
 user expectations. Lift aims to make building real-time, highly interactive, and massively scalable applications easier than
 it has ever been by supporting advanced features like Comet, which allow you to push data to the browser when it’s needed,
 without the user having to make any kind of request for it.

 In fact, Lift has been designed from the ground up to support these kinds of systems better than anything else. Building interactive
 applications should be fun, accessible, and simple for developers. Lift removes a lot of the burdens that other frameworks
 place on developers by mixing together the best ideas in the marketplace today and adding some unique features to give it
 a component set and resume that are unlike any other framework you have likely come across before. Lift brings a lot of new
 ideas to the web framework space, and to quote one of the Lift community members, “it is not merely an incremental improvement
 over the status quo; it redefines the state of the art” (Michael Galpin, Developer, eBay). This departure from traditional
 thinking shouldn’t worry you too much, though, because Lift does adopt tried and tested, well-known concepts, such as convention
 over configuration, to provide sensible defaults for all aspects of your application while still giving you a very granular
 mechanism for altering that behavior as your project dictates.

 One of the areas in which Lift is radically different is in how it dispatches content for a given request. Unlike other frameworks,
 such as Rails, Django, Struts, and others, Lift doesn’t use the traditional implementation of Model-View-Controller (MVC),
 where view dispatching is decided by the controller. Rather, Lift uses an approach called view first. This is one of the key working concepts within Lift, and it affects nearly everything most developers are used to when working
 with a framework. Specifically, it forces you to separate the concerns of content generation from content rendering markup.

 In the early days of web development, it was commonplace to intermingle the code that did business computations with the code
 that generated the HTML markup for the user interface. This can be an exceedingly painful long-term strategy, as it makes
 maintaining the code problematic and tends to lead to a lot of duplication within any given project. Conceptually, this is
 where the MVC pattern should shine, but most implementations still give the developer the ability to write real code within
 the presentation layer to generate dynamic markup; this can add accidental complexity to a project when the developer unwittingly
 adds an element of business or process logic to the presentation layer. It takes programmers who are very disciplined to ensure
 that none of the business or application logic seeps into the view. Lift takes the standpoint that being able to write interpreted
 code within markup files can lead to all manner of issues, so it’s outlawed completely; this ensures that your templates contain
 nothing but markup.

 The view-first idea in Lift really inherits from the broader design goals upon which Lift was conceived. The following sections
 will cover these design goals, provide some details about Lift’s architecture, and give you an overview of the Lift project
 structure and community.

 1.2.1. Lift design goals

 The design goals upon which Lift was based have remained fairly constant features of the project. For example, the belief
 that complex problems, such as security, should be the responsibility of a framework, and not of the developer, have remained
 central ideals. In short, Lift’s design goals are security, conciseness, and performance. Let’s just take a look at these
 in closer detail and consider how they impact you when using Lift as a general-purpose web development framework.

Security

 The web can be a dangerous place for developers who don’t fully appreciate the potential attacks their applications could
 come under. There are whole rafts of malicious techniques, including cross-site request forgery (CSRF), cross-site scripting
 (XSS), SQL injection, and lots, lots more. Many developers can’t keep up with the constantly changing world of security threats,
 let alone fully understand how to effectively and securely protect their applications.

 To this end, Lift provides protection against common malicious attacks without the need for the developer to do any additional
 work or configuration; Lift just does the right thing. Whenever you make an AJAX call, use Comet, or even build a simple form,
 Lift is right there in the background securing the relevant processing from attack. Lift typically does this by replacing
 input names and URLs with opaque GUIDs that reference specific functions on the server; this essentially completely eliminates
 tampering, because there is no way for an attacker to know what the right GUID might be. This comprehensive security is covered
 in more detail in chapters 6 and 9.

 A nice illustration of Lift’s security credentials is the popular social media site Foursquare.com, which runs on Lift. Even RasmusLerdorf, the inventor of PHP and infamous security pundit, was impressed by not being able to find a single security flaw![1]

 1 Tweet on Rasmus Lerdorf’s Twitter stream: http://twitter.com/rasmus/status/5929904263

Conciseness

 If you have spent any time coding in a moderately verbose imperative programming language like Java, you’ll be more than familiar
 with the value of conciseness. Moreover, studies have shown that fewer lines of code mean statistically fewer errors, and
 overall it’s easier for the brain to comprehend the intended meaning of the code.[2]

 2 For more information, see Gilles Dubochet’s paper, “Computer Code as a Medium for Human Communication: Are Programming Languages
 Improving?” (ÉcolePolytechniqueFédérale de Lausanne, 2009). http://infoscience.epfl.ch/record/138586/files/dubochet2009coco.pdf?version=2

 Fortunately, Scala assists Lift in many aspects with the goal of conciseness; Scala has properties, multiple inheritance via
 traits, and as was touched on earlier, it has a complex type system that can infer types without explicit type annotations, which
 gives an overall saving in character tokens per line of code that you write. These are just some of the ways in which Scala
 provides a concise API for Lift, and these savings are coupled with the design of the Lift infrastructure, which aims to be
 short and snappy where possible, meaning less typing and more doing.

Performance

 No matter what type of application you’re building for use on the web, no developer wants his or her work to be slow. Performance
 is something that Lift takes very seriously, and as such, Lift can be very, very quick. As an example, when using the basic
 Lift project, you can expect upward of 300 requests per second on a machine with only 1 GB of RAM and a middle-of-the-road
 processor. In comparison, you should see upwards of 2,000 requests per second on a powerful 64-bit machine with lots of RAM.
 Whatever your hardware, Lift will give you really great throughput and blistering performance.

 1.2.2. View-first design

 Lift takes a different approach to dispatching views; rather than going via a controller and action, which then select the
 view template to use based upon the action itself, Lift’s view-first approach essentially does the complete opposite. It first
 chooses the view and then determines what dynamic content needs to be included on that page. For most people new to Lift,
 trying not to think in terms of controllers and actions can be one of the most difficult parts of the transition. During the
 early phases of Lift development, there was a conscious choice taken to not implement MVC-style controller-dispatched views.

 In a system where views are dispatched via a controller, you’re essentially tied to having one primary call to action on that
 page, but with modern applications, this is generally not the case. One page may have many items of page furniture that are
 equally important.

 Consider a typical shopping-cart application: the cart itself might feature on multiple pages in a side panel, and a given
 page could contain a catalog listing with the mini shopping cart on the left. Both are important, and both need to be rendered
 within the same request. It’s at this very point that the MVC model becomes somewhat muddy, because you’re essentially forced
 to decide which is the primary bit of page content. Although there are solutions for such a situation, the concept of having
 a primary controller action for that request immediately becomes less pure.

 In an effort to counter this problem, Lift opts for the view-first approach. Although it’s not a pattern you may have heard
 about before, the three component parts are view, snippet, and model—VSM for short. This configuration is illustrated in figure 1.1.

 Figure 1.1. A representation of the view-first design. The view invokes the snippets, which in turn call any other component of the application
 business logic.

 [image:]

 Figure 1.1 shows that the view is the initial calling component within this architecture, and this is where the view-first name comes
 from. Let’s now take a moment to review each element within the view-first setup.

View

 Within the context of view-first, the view refers primarily to the HTML content served for a page request. Within any given
 Lift application, you can have two types of view:

	Template views that bind dynamic content into a predefined markup template

 	Generated views in which dynamic content is created, typically with Scala XML literals

Template views are the most commonly used method of generating view content, and they require that you have a well-formed
 XHTML or HTML5 template. It’s important to note that Lift doesn’t allow you to use view code that’s invalid; this means that
 when you’re working with a design team, if their templates are W3C-validate, you know they’ll work with Lift because the snippet
 invocations are also part of the markup. This ensures that designers don’t inadvertently introduce problems by altering framework-specific code within the template, which is a common problem with other frameworks.

 Generated views are far less common, but sometimes they’re used for quick prototyping by using Scala XML literals.

 Whichever route you choose to take, the view is the calling component in the architecture, and as such you can invoke as many
 different (and completely separate) snippets as you like from within any given view. This is a core idea within Lift: views
 can have more than a single concrete purpose. This helps to minimize the amount of code duplication within an application
 and lends itself nicely to a pure model of component encapsulation.

Snippet

 Snippets are rendering functions that take XML input from within a given page template and then transform that input based
 upon the logic within the snippet function. For example, when rendering a list of items, the template could contain the markup
 for a single item, and then the snippet function would generate the markup for an entire list of items, perhaps by querying
 the database and then iterating over the result set to produce the desired list of items.

 There’s a very tight and deliberate coupling between the snippet and the XML output. The snippet isn’t intended to be a controller,
 such as those found in the MVC design pattern, nor is it meant to take on any control-flow responsibilities. The snippet’s
 sole purpose within Lift is to generate dynamic content and mediate changes in the model back to the view.

Model

 In this context, the model is an abstract notion that could represent a number of different things. But for most applications,
 it will represent a model of persistence or data (irrespective of the actual process it undertakes to get that data). You
 ask the model for value x, and it returns it.

 In terms of Lift’s view-first architecture, the snippet will usually call the model for some values. For example, the snippet
 might request a list of all the current products in an ecommerce application or ask the model to add an item to the user’s
 shopping cart. Whatever the operation, when the model is asked to do something, it applies whatever business logic it needs
 to and then responds appropriately to the snippet. The response could include validation errors that the snippet then renders
 to the view.

 The actual mechanism for updating the view isn’t important for this discussion (full page load, AJAX, or some other method).
 Rather, the model responds and the response is passed to the view via the snippet.

 1.2.3. Community and team

 Since the very beginning, the Lift team has always been very diverse; right from the early days, the team grew in a very organic
 fashion and has continued to do so over recent years. Today the Lift core team consists of professional and highly talented
 individuals not only from all over the world but in a bewildering array of different market sectors. This gives Lift its vibrancy
 and overall well-rounded approach.

 If you’re new to the Lift community, welcome. It’s a very stimulating place, and you’ll find that the majority of our team
 members on the mailing list or hanging out in IRC will assist you if you get stuck with something. Although I hope that this
 book will cover most of the things you might want to know about Lift, there will inevitably be things you wonder about as
 you continue to use Lift in your own projects. To that end, take a look at the resources listed in table 1.2.

 Table 1.2. Helpful Lift resources that can be found online

	
 Resource

 	
 Description

	Main Lift site
 	
http://liftweb.net
 First and foremost is the main Lift homepage. Here you’ll find the latest news about Lift, regularly updated as time goes
 by. This page also has links to the source code, the issue tracker, and the wiki.

	Assembla
 	
https://www.assembla.com/wiki/show/liftweb
 Lift moved to the Assembla platform for its wiki and bug-tracking requirements some time ago, and since then it has accumulated
 a fair amount of community-created articles.

	Mailing list
 	
http://groups.google.com/group/liftweb
 The Google group is the official support channel for Lift. If you have a question, you can come to the mailing list and find
 a friendly, responsive community that will be more than happy to answer your questions.

	IRC channel
 	#lift on freenode.net
 IRC isn’t as popular as it once was, but you’ll still find some of the Lift team hanging out in IRC from time to time.

Now that you’ve had a brief overview of the Lift framework and its evolution, let’s get into some technical details as to
 what it can actually do and how it can help you be more productive and produce higher quality applications.

1.3. Lift features

 During the past three years, the Lift codebase has exploded in size and now features all manner of functionality, from powerful
 HTTP request-response control, right through to enterprise extensions like a monadic transaction API and Actor-based wrappers
 around AMQP and XMPP.

 Lift is broken down into three top-level subprojects: Lift Core and Lift Web, Lift Persistence, and Lift Modules. We’ll now
 take a closer look at each module to give you an overview of its structure and functionality.

 1.3.1. Lift Core and Lift Web

 There are two modules that make up the central framework: Core and Web. The Core consists of four projects that build to separate libraries that you can use both with and without Lift’s Web module.
 The Web module itself builds upon the Core and supplies Lift’s sophisticated components for building secure and scalable web
 applications. The Web module itself is made up of three projects: the base web systems and two additional projects that provide
 specialized helpers. Figures 1.2 and 1.3 depict the various modules and their layering.

 Figure 1.2. An illustration of the module dependencies within the Lift Core and Web subprojects

 [image:]

 Figure 1.3. Dependency structure of persistence within Lift

 [image:]

 Let’s spend some time going through each module in figure 1.2, working from the bottom up, and discuss their key features and functionality.

Lift Common

 The Lift Common module contains a few base classes that are common to everything else within Lift. Probably most important
 of all, Lift Common can be used in projects that aren’t even web applications. Utilities like Box, Full, and Empty (discussed more in appendix C) can be exceedingly useful paradigms for application development, even if the application isn’t using any other part of Lift.
 Lift Common also includes some base abstractions that make working with the logging facade SLF4J (http://www.slf4j.org/) much simpler.

Lift Actor

 Actors are a model for concurrent programming whereby asynchronous messaging is used in place of directly working with threads
 and locks. There are several actor implementations within the Scala ecosystem, and Lift has its own for the specific domain
 of web development. To that end, Lift Actor provides concrete implementations of the base actor traits that are found within
 Lift Common (more information on traits can be found in appendix A).

Lift Utilities

 During the development of web applications, there are invariably things that can be reused because there are common idioms
 in both your and other peoples’ work. Lift Utilities is a collection of classes, traits, and objects that are designed to
 save you time or provide convenience mechanisms for dealing with common paradigms.

 A good example is the handling of a time span. Consider the following code, which defines a pair of TimeSpan instances by way of implicitly converting a regular integer value into a TimeSpanBuilder:

 10 seconds
1 hour

 Simplistic helpers provide an easy-to-use dialect for handling even complex subjects like time and duration. This example
 shows both hour and second helpers, where both lines result in net.liftweb.util.Helpers.TimeSpan instances.

 Here’s another example from the SecurityHelpers trait. It hashes the string “hello world” with an MD5 algorithm:

 md5("hello world")

 Once again, Lift Utilities provides simple-to-use helper methods for common use cases found within web development—everything
 from handling time to hashing and encrypting values and much more.

Lift JSON

 Probably one of the most popular additions to the Lift Core grouping, Lift JSON provides an almost standalone package for
 handling JSON in a highly performant way. Needless to say, JSON is becoming one of the standards within the emerging online
 space, so having great support for it is quite critical for any web framework. The parser included within Lift JSON is approximately
 350 times faster than the JSON parser that’s included in the Scala standard library—this gives Lift blisteringly fast performance
 when serializing back and forth to JSON.

 You might be wondering if Lift can only parse JSON quickly, or if it also provides a means to construct JSON structures. Well,
 Lift JSON provides a slick domain-specific language (DSL) for constructing JSON objects.

 Let’s take a quick look at a basic example:

 val example = ("name" -> "joe") ~ ("age" -> 35)
compact(JsonAST.render(example))

 This example defines a value in the first line, which represents a JSON structure with Scala tuples. This structure is then
 rendered to JSON by using the compact and render methods from the JsonAST object in the second line. Here’s the output:

 {"name":"joe","age":35}

 As you can see, this is a straightforward String and Int construction from the DSL, but we’ll cover more in-depth details of Lift-JSON in chapter 9. All you need to know for now is that Lift’s JSON provisioning is fast and very versatile.

Lift Webkit

 Finally we get to the central part of Lift’s web toolkit. The WebKit module is where Lift holds its entire pipeline, from
 request processing right down to localization and template rendering. For all intents and purposes, it’s the main and most
 important part of Lift.

 Rather than covering the various parts of WebKit in detail here, table 1.3 gives an extremely brief overview of each of the core components and notes the chapter that addresses it in more detail.

 Table 1.3. Features of Lift WebKit

	
 Feature

 	
 Description

 	
 Chapter

	Snippet processing
 	Snippets are the core of Lift’s rendering and page-display mechanism.
 	6

	SiteMap
 	SiteMap provides a declarative model for defining security and access control to page resources.
 	7

	HTTP abstraction
 	Although Lift typically operates within a Java servlet container, it’s totally decoupled from the underlying implementation
 and can run anywhere.

 	8

	Request-response pipeline processing
 	The whole request and response pipeline is contained within WebKit, as are the associated configuration hooks.
 	8

	REST components
 	REST features allow you to hook into the request-response pipeline early on and deliver stateless or stateful web services.
 	8

	Secure AJAX
 	All the AJAX processing and function mapping infrastructure lives in WebKit.
 	9

	Rich Comet support
 	The Comet support Lift provides is one of the main features WebKit offers.
 	9

Although you aren’t familiar with Lift syntax or classes just yet, the following listing shows an example of a real-time Comet
 clock to give you a flavor of the kinds of things contained within the WebKit project.

 Listing 1.1. CometActor clock

 [image:]

 With only a few lines of code, you get a clock that pushes the updated time to the browser, so it will appear as if there’s
 a live clock in the user’s browser. All the complexities associated with Comet, like connection handling, long polling, and general
 plumbing are handled by Lift right out of the box!

 1.3.2. Lift Persistence

 The vast majority of applications will at some point want to save their data for later use. This typically requires some kind
 of backend storage, and this is where Lift Persistence comes into play. Lift provides you with a number of options for saving
 your data, whether it’s a relational database management system (RDBMS) or one of the new NoSQL solutions.

 There are three foundations for persistence, as depicted in figure 1.3; the following subsections take a look at these base components.

Lift DB and Mapper

 The vast majority of applications you’ll write will no doubt want to communicate with an RDBMS of some description, be it
 MySQL, SQL Server, or one of the other popular storage systems. When you’re working with Lift, Mapper provides you with a
 unified route for persistence.

 At a high level, Mapper takes a design direction that’s similar, but not completely faithful to the Active Record pattern.
 Mapper provides you with an object-relational mapping (ORM) implementation that handles all the usual relationship tasks,
 such as one-to-one, one-to-many, and many-to-many, so that you don’t have to write SQL join queries manually. But when you
 want to write that raw SQL, perhaps for performance reasons or by preference, you can easily pull back the covers and write
 SQL directly.

 Mapper is unified into many parts of Lift and thus has several advantages out of the box over other solutions that are available
 within the Scala ecosystem. Consider this very basic example of the Mapper API and how it can be used:

 User.find(By(User.email, "foo@bar.com"))
User.find(By(User.birthday, new Date("Jan 4, 1975")))

 Notice that this code is quite readable, even without a prior familiarity with the Mapper API. For example, in the first line,
 you want to find a user by their email address. In the second line, you’re finding a user by their birthday.

Lift JPA

 The Java Persistence API is well known in the wider Java space, and, being Java, it can work right out of the box from the
 Scala runtime, which shares the common JVM platform. Unfortunately, because JPA is Java, its idiomatic implementation gives
 it a lot of mutable data structures and other things that are typically not found within Scala code—so much so that you might
 well choose to avoid writing Java-like code when you’re working with Scala.

 To that end, a module was added to Lift’s persistence options to wrap the JPA API and give it a more idiomatic Scala feel.
 This module significantly reduces the Java-style code that you need to write when working with JPA and the associated infrastructure.
 This is covered in more detail in chapter 13.

Lift Record

 This is one of the most interesting aspects of Lift Persistence. Record was designed with the idea that persistence has common
 idioms no matter what the actual backend implementation was doing to interact with the data. Record is a layer that gives
 users create, read, update, and delete (CRUD) semantics and a set of helpers for displaying form fields, operating validation,
 and so forth. All this without actually providing the connection to a concrete persistence implementation.

 Currently, Record has three backend implementation modules as part of the framework: one for working with the NoSQL document-orientated
 storage system CouchDB (http://couchdb.apache.org/), a second for the NoSQL data store MongoDB (http://www.mongodb.org/), and finally a layer on top of Squeryl (http://squeryl.org/), the highly sophisticated functional persistence library. These implementations could not be more different in their underlying
 mechanics, but they share this common grounding through Record because of the abstract semantics the Record infrastructure
 provides.

 At the time of writing, Record is still fairly new. As time goes by, more and more backend implementations will come online,
 and perhaps eventually the Mapper RDBMS code will also be merged with Record.

 Here is a sample from the CouchDB implementation that queries a CouchDB people_by_age JavaScript view:

 Person.queryView("test", "people_by_age", _.key(JInt(30)))

 It’s important to note that third-party backend implementations for Record are starting to appear in the Scala ecosystem,
 and although they aren’t a bona fide part of Lift, they’re available on github.com and similar services.

Understanding Your Use Case

 As you’ve probably grasped from the framework overview, Lift has many different components, some of which overlap in their
 intended usage. This isn’t a legacy growing pain, quite the opposite: it’s deliberate. With Lift there’s often more than one
 way to reach an acceptable solution, and the factors that dictate which route you take are largely application-specific and
 depend on the particular problem domain you’re working with.

 Throughout the course of this book, you’ll see a range of different approaches to solving problems with Lift. Often the different
 methods are equally as good, and which you choose is a matter of preference or style. For example, in chapter 14 you’ll learn about three different approaches to dependency injection with Scala. These approaches ultimately achieve very
 similar results, but depending upon your team, environment, or application, one may be a better fit than the others. That’s
 something you must experiment with for yourself to get a feel for which is going to work best for you.

 The next section discusses some plugins, or modules of ancillary code that are also available as part of the Lift project.
 They may help you in building your applications and getting up to speed with less plumbing.

 1.3.3. Lift Modules

 Lift Modules is where the project houses all the extensions to the core framework. Unlike the other groups of subprojects
 within Lift, the modules are more organic and have little or no relation to one another. Each module is generally self-contained
 regarding the functionality it provides.

 Rather than go through each module in detail here, table 1.4 lists the modules available at the time of writing.

 Table 1.4. Available add-on modules supplied as part of Lift

	
 Module

 	
 Description

	Advanced Message Queue Protocol (AMQP)
 	Actor-based wrapper system on AMQP messaging

	Facebook integration
 	API integration module for the popular social networking site

	Imaging
 	Selection of helper methods for manipulating images

	Java Transaction API (JTA) integration
 	Functional style wrapper around the Java Transaction API

	Lift state machine
 	State machine tightly integrated with WebKit and Mapper

	OAuth
 	Building blocks for creating the server component of OAuth

	OAuth Mapper
 	Extension to the OAuth module to use Mapper as a backend

	Open ID
 	Integration module for using OpenID federated providers

	OSGi
 	For those who want to run their Lift app within an OSGI container

	PayPal
 	Integration module for PayPal PDT and IPN services

	Test kit
 	Helpers for writing tests concerning the HTTP operations in Lift

	Textile
 	Scala implementation of a Textile markup parser

	Widgets
 	Selection of helpful widgets (such as calendaring, Gravatar, and JavaScript autocomplete)

	XMPP
 	Actor-based wrappers around XMPP message exchange

At the time of writing, the available modules are located within a separate Git repository (https://github.com/lift/modules), and the community is discussing making the addition of new modules available to non–core team committers.

 If you want to create your own modules, it’s just a case of depending upon the parts of Lift that you wish to extend. Typically
 this means creating a small library of your own that depends upon WebKit and extends or implements the relevant types. To
 use this custom module within another application, you only have to provide some kind of initialization point that will wire
 the relevant materials into that Lift application during startup. That’s all there is to it.

1.4. Summary

 In this chapter, we’ve taken a look at both Scala and Lift and outlined their major conceptual differences from more traditional
 web frameworks. Lift provides developers with a very capable toolkit for building interactive, scalable, and highly performant
 real-time web applications. These themes really underpin the core design goals of Lift: security, conciseness, and performance.

 As the author of a Lift application, you don’t need to worry about the bulk of security issues prevalent in other systems:
 Lift does that for you. The framework is always there securing element names and URIs without you having to intervene. In
 addition to security, idiomatic Lift application code tends to be brief and make use of powerful Scala language features to
 create an API that’s readable, maintainable, and performant.

 Lift also differs quite wildly from other frameworks available today in that it doesn’t implement controller-dispatched views
 as many MVC frameworks do. Instead, Lift implements its own view-first architecture that gives you a far purer model for creating
 components and modularity within your code. Your rendering logic takes the form of neat, maintainable functions rather than
 monolithic stacks of special classes.

 Finally, the majority of the code contained within the Lift framework is either running in production, or is a distillation
 from live production code. To that end, you can have absolute confidence in Lift when building your enterprise applications.

 Without further ado, let’s move on to setting up your environment and getting your very first Lift-powered application up
 and running.

Chapter 2. Hello Lift

	

 This chapter covers

	An introduction to the SBT build tool

 	Creating your first Lift-powered application

 	Snippet and templating overview

	

In this chapter, you’ll be creating your first Lift application, but before getting to that, you need to set up your environment
 so you can compile and run your application code. In order to run on the JVM, Scala code must be compiled before it can be
 executed. Although it’s possible to compile Scala source code manually, it’s a good idea to have an automated build tool that does this for you.

 If you’re coming from a dynamic language such as Ruby or PHP, you may never have needed a build tool. Essentially, build tools
 automate parts of your development and deployment processes. Typical tasks include compiling and packaging code into deployable
 binaries, generating code documentation, and lots of other things.

 In this chapter, you’ll be setting up the Simple Build Tool (SBT) that you’ll use throughout this book. You’ll also see how
 you can get SBT to speed up your development by generating starting points for projects, classes, and markup templates.

 Once you have your environment configured, you can get to work making your first Lift application. Section 2.2 walks you through creating this first project and explains the various component parts, their purposes, and how you can add to them.

 The final section builds upon this introduction and explains how you can put together your own snippets and templates.

 First, though, let’s get you set up and working with SBT.

2.1. Getting started with SBT

 SBT is primarily a command-line tool and is shipped as an executable JAR file. This section will show you how to configure
 that executable as a command-line system tool, but it’s also possible to leverage it from within your IDE if that’s how you
 prefer to work. For more information on setting up an IDE to work with Scala, see appendix B.

	

Note

 Scala is fully interoperable with Java, which means that Scala is also very conversant with the range of Java build tools,
 such as Maven (http://maven.apache.org) and Ant (http://ant.apache.org). These tools have fair support, and you can use them within your IDE of choice if you prefer.

	

Even though there are a variety of tools available to build your Scala code, SBT is the most prevalent in the community, and
 it’s what you’ll find the majority of projects using (including Lift). Broadly speaking, SBT is relatively fast at compiling
 code, it has a simple command interface, and it’s easy to extend with simple Scala plugins, which is likely why it has proven
 so popular.

 In order to set up SBT, you need to take a moment to make sure you have several things in place. As discussed in chapter 1, Scala runs inside the Java runtime, so you’ll need to have Java Runtime Edition (JRE) 1.5 or greater installed to work with
 Lift. At the time of writing, Lift will work equally well with either Java 1.5 or 1.6, but in future versions Java 1.5 will
 likely be dropped in order to tighten up the Lift API. You can verify your Java version by opening a console window and running
 the following command:

 java -version

 If you have Java installed, this will output something like: java version "1.6.0_17". If you don’t have Java, head over to the main download site (http://www.java.com/en/download/index.jsp) and follow the instructions to install it.

 Provided Java is on your system, the first thing to do is download the SBT launcher JAR and place it somewhere on the environment
 path ($PATH on Unix and %PATH% on Windows). SBT is provided as an executable JAR file, which essentially means that the JAR file is like a mini application;
 it’s a compiled archive that has the ability to be run as a program or process. Invoking it from the command line will load
 Java and then load the SBT shell.

 To get SBT, head over to the SBT downloads page and grab the latest release (http://code.google.com/p/simple-build-tool/downloads/list). At the time of writing 0.7.7, was the latest stable build of the 0.7.x series of SBT, but the instructions that follow should make sense with subsequent
 versions of SBT.

	

Note

 As this book was being finished, the SBT project was starting to release early versions of a completely redesigned version
 of SBT under the 0.10+ branches. Currently this series is so radically different that the configuration and setup will differ
 from what is described here. The 0.7 series will continue to be supported for the foreseeable future, so using it is fine,
 and, when the time comes, migrating to the official 1.0 version of SBT shouldn’t be too difficult.

	

SBT is a command-line application and has no out-of-the-box graphical user interface (GUI) to speak of, so it must be executed
 from a console window and interacted with from the SBT shell. In order to make executing SBT easy, it’s best to wrap it in
 a small shell script (or .cmd file on Windows) that will let you execute the JAR with the simple command sbt. This small extra step will pay dividends in your development cycle, so let’s take a moment to set up the wrapper script,
 as shown in table 2.1.

 Table 2.1. Setting up SBT on your development machine

	
 Configuring SBT

	
 Step

 	
 Action

 	
 Result

	1
 	Download SBT, place it in a well-known location, and name it sbt-launch-VERION.jar.
 Unix: We recommend putting the file in /usr/local/bin
 Windows: We recommend putting the file in C:\scala\sbt

 	The downloaded SBT launcher should have executable permissions and be in a well-known file location.

	2
 	Create a file in the same directory called “sbt” and give it executable permissions.
 Note: Windows users will need to call their file “sbt.bat” or “sbt.cmd”.

 	
 [image:]

	3
 	Populate that file with the correct execution command for your operating system.
 	

	
 	Unix
 	
 java -XX:+CMSClassUnloadingEnabled
-XX:MaxPermSize=1024m -Xmx2048M -
Xss4M -jar `dirname $0`/sbt-
launch.jar "$@"

	
 	Windows
 	
 set SCRIPT_DIR=%~dp0
java -XX:+CMSClassUnloadingEnabled
-XX:MaxPermSize=1024m -Xmx2048M -
Xss4M -jar "%SCRIPT_DIR%sbt-
launch.jar" %*

With your SBT script set up and available on your environment path, it should be possible to open a console window, type sbt, and see the following:

 $ sbt
Project does not exist, create new project? (y/N/s)

 If you’re prompted to create a new project, SBT has successfully been installed! For the moment you can simply enter n as the answer to quit the shell; you’ll be creating an application in the next section. But if you don’t see a prompt similar
 to the preceding snippet of terminal output, please refer to the SBT installation documentation (http://code.google.com/p/simple-build-tool/wiki/Setup).

 Providing your install went well, from here on you’ll only work with SBT from its interactive console to execute tasks and
 actions. Without further ado, let’s get on with creating your first Lift application with your fresh install of SBT!

2.2. Your first Lift application

 Throughout the course of the next few chapters, you’ll be building an auction-style application. The next chapter discusses
 in detail the application’s functionality, so for the moment we’ll focus on the fundamental building blocks that form the
 basis of any Lift project. This will involve creating an empty SBT project and then populating that with the configuration
 required to run a Lift application. This will give you a fully functioning (albeit very basic) Lift application that you can
 take forward to subsequent chapters. You’ll also be able to use it as a guide for building your own applications, both in
 terms of the steps used to create the project and in terms of the interaction within the SBT shell.

 The next section will walk you through the commands and options involved in creating a new SBT project and also introduce
 a Lift community tool called Lifty (http://lifty.github.com/Lifty/), which you can use to speed the setup of new projects. With the project structure in place, the subsequent two sections
 will discuss the various components of the default Lift application and then demonstrate how to boot the built-in web server
 so you can interact with the application on your local computer.

 2.2.1. Creating the project

 To get started, open a console window switch, with cd, into a new working directory of your choosing. Here you should invoke the sbt command. After doing so, SBT will check to see if a project is already in place, and if not, it will then prompt you to create
 a new SBT project. SBT determines whether a project already exists by checking for a project directory containing a build.properties
 file.

 When creating a new SBT project, you’ll be prompted to answer several questions about the new project configuration. SBT displays
 the defaults in square brackets next to the question. For each line, just enter the value you would like to use, and press
 the Enter key. Table 2.2 lists the things SBT will ask for and describes them, providing some suggested values.

 Table 2.2. SBT prompts and suggested values

	
 Prompt

 	
 Description

	Name
 	This value defines the name of your project. It’s also used as the artifact identifier for the published binary. For example,
 having a name of “Sample” will result in a binary named Sample.jar.

	Organization
 	This is typically the group identifier of the output application binary. For example, Lift’s WebKit module has organization
 set as net.liftweb.

	Version [1.0]
 	This is the version number you want to start your project with.

	Scala version [2.8.1]

