
[image: Cover: Progressive Delivery: Build the Right Thing for the Right People at the Right Time, by James Governor and Kimberly Harrison. James Governor, Kimberly Harrison, Heidi Waterhouse & Adam Zimman.]

PRAISE FOR PROGRESSIVE DELIVERY

“Progressive Delivery is one of those practices that seems simple on the surface but whose waters run deep.…Come for the practices, stay for the reframing of how to think about and improve your organization. Progressive Delivery just might be the catalyst that enables organizations to change.”

—Nathen Harvey, DORA Lead and Developer Advocate, Google Cloud

“Progressive Delivery presents a working guide for people who are interested in building adaptively, responsibly, and agentically in the midst of rapid change.…This approach centers human decision-making, clarity of purpose, and collaborative goals, which have too often been lacking from out-of-the-box technology approaches.”

—Dr. Cat Hicks, Software Research Scientist, Catharsis Consulting

“This book is written by the strategists who pioneered Progressive Delivery…The text steps between the four pillars of a delivery framework and corresponding case studies from big real-world teams. Ultimately, this is a call to action on why tech has to serve up customer happiness and not just process metrics.”

—Alexis Richardson, CEO and Cofounder, ConfigHub

“This book builds on existing paradigms and sage wisdom to introduce the concept of Progressive Delivery. Get your highlighter ready, there’s some good stuff in here!”

—Katie McLaughlin, Senior Developer Relations Engineer, Google Cloud

“From thought leaders in the industry, an invigorating new model for how (and why) to deliver software.”

—Rachel Chalmers, Cofounder of Generationship.ai

[image: Progressive Delivery: Build the Right Thing for the Right People at the Right Time, by James Governor and Kimberly Harrison, Heidi Waterhouse & Adam Zimman. IT Revolution. Portland, Oregon.]

Dedication

To our families, for putting up with us.

To our friends, for encouraging us.

To our colleagues, for inspiring us.

PREFACE

Like many good stories, this one begins with rage.

It’s a Tuesday evening at 6:17 p.m. You’re making dinner. Your phone rings and you answer. Your parents are in hysterics. “We’re trying to transfer money between accounts, and we can’t figure out how to log in to the bank website!” After a few minutes of calming them down and trying to understand the situation, you realize their bank rolled out a new website, moved the location of the login screen, and implemented mandatory multi-factor authentication. You spend the next two hours helping them navigate the new interface and set up an authenticator app on their phone. By this point your dinner has burned and cooled into a charred mass. Technology has jerked your parents forward.

It’s Friday at 9:52 p.m. You open the app on your phone to adjust the alarm on the “smart” speakers in your bedroom and your children’s rooms. You need to ensure you’re all up to make it to the airport on time the next day for your flight to Boston. When the app opens, it’s different. You think, “Oh, cool, a new update. Looks nice, lots of rounded corners, etc.” Then you start looking for the alarm control settings. After twenty minutes of tapping on every section of the screen, you finally go to Google to find out where the alarm control moved to, only to learn through numerous Reddit threads that the new app removed all ability to see or change alarms in your system. The comments then inform you there is no way to revert or roll back the app version. You spend the next hour trying to set up alarm clocks in all the bedrooms without waking the kids, your partner, or the dog. Technology has jerked your family forward.

It’s Monday at 8:27 a.m. You need to hop on a video call at 9 a.m. to prep your boss’s boss for a meeting with the CEO about budget justification. You open the app for your video conference, and there is a pop-up window informing you that you need to update the app before continuing. You download the update, install it, and restart the app. You’re able to get into the meeting at 9:06 a.m. and apologize for being late. You share a recap of the situation and are about to share your proposal when another pop-up window appears on your screen with the message, “For security and compliance, your computer will shut down and update in 3…2…1.” By the time your laptop finishes updating, it is now 9:12 a.m. Your budget request was not approved. Why can’t technology do a better job delegating control of when changes occur?

It’s Wednesday at 9:41 a.m., and your CEO just flipped a feature flag for that cool new idea your team implemented from the main stage of your company’s conference in front of a live audience of over five thousand users. Instantaneously, the user interface for hundreds of thousands of users changes. You’ve spent months working on this redesign, building and testing in production to ensure everything would work and had 100% feature parity. Over the next few hours, the reactions and reviews from users start to appear online. Half of the reviews are from happy users who love the new interface and find the enhancements intuitive. But the other half are from users who are frustrated because you changed the workflow they used. Some are even having legal challenges because of contractual obligations around training timelines. Within days you hear this divide is showing up in sales meetings with customers as well. Some companies love the new vision and direction, while others are threatening to cancel contracts because of the disruption the change caused to their business. You could roll back the new user experience for everyone, but then the happy users would be angry (they really like the new design). On the other hand, keeping it on risks losing the users who were not ready for the change. You want to deliver the right product, but the readiness for something new varies across your user base.

It’s Friday at 04:09 UTC, and you push out a routine content configuration change to 100% of your globally distributed enterprise customers. Due to a bug in your content validation system, your change passed validation despite containing problematic content data. Within hours your change has caused the crash of 8.5 million devices. The resulting economic impact from this incident is estimated at $5.4 billion. Your development practices would benefit from a more progressive approach to software delivery.

These are just a few stories that we have lived where the rapidly increasing rate of change has led to a technological jerk felt by users. Where some might be justified in their frustration, we want to channel the rage and start to build the right product for the right people at the right time.

INTRODUCTION

For the past thirty years, technologists have spent an immense amount of time and effort getting better at making software. We have refined how we deliver it, how we support it, how we build it, how we store it, how we run it, and even how we talk about it. The cloud is our environment, and the network is our foundational metaphor.

Technologists can create miracles and wonders with software, but without a user, none of that matters. Without users, we can’t make money, change the world, or provide anyone with any value. Users are the other side of the software delivery equation, and they often get overlooked or undervalued in the process.

All of the work we’ve done to improve the software creation and deployment process in the last thirty years is effectively invisible to the user. On one hand, this is good. We don’t want to share our struggles with our customers. But what does this evolution in the software development life cycle look like from the user’s perspective? Let’s flip the mirror.

What looks like deployment from our side looks like a release from the user side. This release is essentially a demand, a push, from us to them that requires a change in their behavior. We may ask them to update, or we may thrust updates upon them. But unlike greatness, update notifications are very persistent. The more often we want users to accept our changes, the more change we ask them to adapt to, even if it’s very tiny.

Progressive Delivery takes the DevOps idea of breaking the wall between silos to its logical conclusion: We need to knock down the wall between software users and software makers.

We already have the tools we need for this demolition—automation across all layers of the stack, configuration as code, monitoring, observability, telemetry, feature flags, security built into the software development life cycle (SDLC), and, yes, data collection.

We can see how people use our software, or don’t, if we only care to look. Once we understand how users truly engage with our software, we can package and parse that knowledge and use it to create software that better fits the user’s needs and desires. In other words, we can understand software in the context of it actually being used, not just designed.

In our thirty years of improving software delivery, the part we’ve been missing is how our software affects the people who use it. Figure 0.1 condenses all the very real and important technical advances of coding, testing, and shipping as “making software” (on the left) and expands out all the ways our users can interact with what we’ve made (on the right). On top are user behaviors and on the bottom are the tools we share with users to make those behaviors possible.

[image: A flowchart illustrates the layers of flexibility in software development, starting from foundational processes to advanced integration.]
FIGURE 0.1: Software Acceptance and Use After Delivery

We, as software developers, are at the core, pushing or offering deployments and our users accepting them. Feature flags can customize the behavior of forcing or accepting changes. Settings can modify the software’s environment. APIs can extend the program’s data and behavior to a different format. Integration occurs when the user elects to use other software to interact with our software to meet their needs.

This progression reflects how the control point of software behavior shifts further away from the software creator (developer) and more toward the software consumer (user). It may seem counterintuitive that the “integrate/change process” is on the outer loop, since this seems pretty technical, but that’s actually the point where our software interacts with the user’s software. After all, our software is not the only tool our users are using to get their work done, so this ripple intersects with the ripples of dozens of other software products in the user’s unique ecosystem (see Figure 0.2).

[image: A diagram of overlapping concentric circles with “US” labeled in the center of the largest circle.]
FIGURE 0.2: User’s Software Ecosystem Has Many Interactions

Why We Wrote This

Any new way of describing the world requires context. It requires a community. It is a set of ideas and practices that are packaged up and it often has a moment that helps to crystallize things. The software industry has spent the last thirty years trying to get better at writing software.

We (the developer community) have talked about continuous delivery and Agile. We have gotten much better at testing and shifted testing left. We have done many things, but we have never managed to do them for everybody. We’re always promising a bright future…if only. The community working on user-centricity in the future already needs to make it a mainstream phenomenon. To make this new model accessible, we must name it and talk about it.

In 2017, James Governor had an intuition based on a conversation with Sam Guckenheimer, who worked at Microsoft. After hearing about the application routing processes Microsoft used for rolling out services, James realized that one part of the puzzle, which Microsoft called “progressive experimentation,” was really about a broader phenomenon—Progressive Delivery. The impact of a basket of technologies and approaches applies to the entire SDLC. From there, our group came together—James Governor, Adam Zimman, Heidi Waterhouse, and Kimberly Harrison—and began to talk about, contextualize, and advance these ideas.

We all have a history of communicating with multiple stakeholders in the industry, helping them understand complex ideas and make them more broadly applicable. We have decades of experience and now we’re bringing it together to bear on this new idea. Progressive Delivery takes all the goodness of the cloud and all the things that were not there when some of the original works in continuous integration/continuous delivery (CI/CD) were written and makes them applicable for now and into the future.

With continuous delivery and even late-stage Agile, there was the idea of the separation of deployment from release. With Progressive Delivery, though, we are adding that larger community in the context of our consumer. In Progressive Delivery, we now have deployment, release, and adoption. (See Figure 0.3.) That user cycle is representative of adoption, and that is the part we need to incorporate back into how we’re thinking about our software delivery. We’ve gotten significantly better at shipping software, but helping people adopt that software and feel good about it…that’s where we need to do a lot of work.

[image: A flowchart illustrates the continuous cycle of development, operations, and user adoption in a DevOps process.]
FIGURE 0.3: Deployment vs. Release and Who’s Impacted

As Dr. Cat Hicks notes, “A successful software builder wants to create a successful, positive relationship to the change they’re introducing.”1 We want users involved and happy. The truth is that different people are going to adopt software at different paces, and we’re always going to be in an environment that is a mixture of the old and the new.

The first key breakthrough is understanding that the cloud changed everything because of its opportunities to increase autonomy, alignment, abundance, and automation. Particularly abundance. There are things we could do with the cloud that we could never do before. But the second most important breakthrough, the crucial breakthrough, is closing the third loop. It’s not enough to have DevOps as two loops; we need to bring the user into the heart of what we are doing. That is the prize and the opportunity. That’s what makes Progressive Delivery different.

Who Should Read This Book

Progressive Delivery is a holistic framework for an entire organization. It is intended to bring together the business, the builders, and the users in a way that honors everyone. But change really starts at the source, the builders. This book is primarily written from the perspective of enabling software developers, who are at the front line of creating change, to create an environment where the right software gets delivered to the right people at the right time.

We say, “build the right thing for the right users at the right time.” We start with “build” because until you build the software you can’t deliver it. And how you build directly impacts your options at the time of delivery and your ability to observe adoption. Generative AI and vibe coding may be shifting the cost of building all variations to a nominal fee, but the cycle still starts with understanding the right thing to build. We need to start the conversation around how we are building to properly enable our teams to deliver to the right users at the right time.

Whether you are an engineering lead, a product owner, or an executive, this book is intended to expose you to the latest in software delivery thinking. Throughout the book, we also discuss how software creation and delivery affect other groups, who we call constituents (more on this below). We want to provide some useful ways to change your thinking about software delivery and some practical questions and techniques to make that delivery progressive, inclusive, and future proof.

When we talk about the collective of people who use and make our software and those who market, sell, and distribute it, we could use the traditional expression “stakeholders,” but mostly, we prefer to think about that constellation of people as constituents.

	A stakeholder is a person who cares about the outcomes. In a very literal sense, stakeholders have a stake in the success of the product. This can be a developer whose job performance is tied to the product, an investor, or company management.

	A constituent is someone who contributes to success. This can include developers, support, marketing, users, and IT departments.

We need to treat users as participants in our work rather than as objects. We’re doing something with them, not to them.

How to Read This Book

This book is a layer cake of theory and practice. The theory chapters provide explanations for what we are seeing in the industry, what you can look for in your organization, and questions to ask yourself about your alignment with Progressive Delivery. The corresponding case study chapters demonstrate a particular aspect of Progressive Delivery in action, but, of course, other elements also make their way in. Read through the book and focus on the parts that line up with your current experience. Then go through and use the questions at the end of the chapters to consider how you want to tweak the practices and behaviors in your organization.

Tools and Patterns

These tools and patterns are ways that we have seen organizations practice Progressive Delivery. Many of them flow into each other or relate to each other, but we are listing them in alphabetical order for ease of reference. We’re introducing these concepts here as they’ll come up throughout the book and form a foundation to engage in moving toward a Progressive Delivery approach.

Blast Radius

This is a way to describe how much effect a change will have. It is often coupled with ring deployment or canary deployments. Changes with a small blast radius limit the impact of changes since only a few people will be affected. Limiting the blast radius also provides an early feedback loop on changes from the user perspective.

Blue-Green Deployments

Blue-green deployments are often used in a “breaking change” scenario. If a software change is going to change how data is stored and communicated, the blue-green pattern helps prevent data loss. A second full system is set up that mirrors the original system, and traffic is directed to both systems simultaneously to check that the data is all being stored properly and that the new system is robust. Only then is the older system shut down. Variations on this pattern include load migration and traffic shaping. The pattern is also related to sunsetting.

[image: A flowchart illustrates the process of server load balancing optimization, showing the transition from an initial setup to an improved configuration.]
FIGURE 0.4: Progression of a Blue-Green Deployment

Canary Testing

Derived from the use of canaries in coal mines as an early warning for poor air quality, a canary test rolls out a software change to a small group of monitored users and checks their response and experience. In the coal mining story, the canary stops singing and faints if it loses oxygen. Since canaries are very small, it’s a sensitive indicator. In the same way, canary testing is a sensitive test that can indicate general safety for the group, but only if it is well-monitored. Canary tests are often administered by feature flags and may be part of a ring deployment strategy.

[image: Two network setups: one with a single router connected to three servers and users, and another with a similar setup but with grayed-out servers.]

FIGURE 0.5: Canary Deployment

Used to Evaluate Viability of a Change Before Exposing to All Users

Constituents

Software is not just a set of computer instructions. It is a web of relationships between people, processes, and systems. The constituents of a Progressive Delivery system include the developers, the product team, the businesses that create and consume the software, the environment, and the users. For example, a healthcare record system is created by a product team and developers, sold by marketers and salespeople, maintained by operations and support staff, and used by insurance companies, healthcare providers, and patients. All those people are part of the constituency of the healthcare software.

Feature Flags

Feature flags are a way to change the behavior of software at runtime based on conditions that may be external to the code. Feature flags can be used to control software based on conditions such as user ID, browser language, geographic region, software version, security permission level, A/B testing cohort, and server.

Feature flags frequently fall into two categories: ephemeral flags, which are used for a finite period of time and then removed from the code base to prevent inadvertent activation, and long-lived flags, which control aspects of the software that will continue to be variable. For example, an ephemeral flag might control the phased rollout of a new feature. A long-lived flag might control software that has a paid premium tier. Feature management software helps organize, control, and distribute an organization’s feature flags.

[image: A flowchart shows how feature flags control the release of new features to different user segments, including development, quality assurance, and production.]
FIGURE 0.6: Feature Flag Controlling Which User Segments Have Access to a New Feature

Observability

Observability is the combination of gathering high-cardinality data about a system (including its users) and being able to ask unanticipated questions about that data.

Release Impact

Much like blast radius, release impact is a way to understand the effect of a software change. However, release impact also implies that the change may be positive. Some implementations of release impact also include a consideration of monetary effects.

Release vs. Deployment vs. Acceptance/Adoption

Deployment is the act of getting software to a place where it will be available to the users. Release is the point where users can actually use the software and are told about it. Acceptance or adoption is when users make the software a part of their workflows.

Ring Deployments

A ring deployment is the practice of deploying software to increasingly larger groups of people as part of a release strategy. For example, the first ring might be to the team, and the second ring might go to 1% of the users, then 10% of the users, etc. At each stage, the impact is evaluated.

[image: A diagram illustrates the progression of a product or feature rollout, starting with developers and expanding to all users.]
FIGURE 0.7: Ring Deployment

Rollbacks

One way to make changes less dangerous is to ensure that they can be reverted cleanly. Controlling releases with feature flags makes it faster and easier to roll back to a previous state without needing to change code, especially in an urgent situation. As Thomas Dohmke, CEO of GitHub, said in an interview with us: “The feature flag is only really useful if you can’t only progressively roll out, but you also need to be able to aggressively roll back. That’s actually the key feature.”2

Test in Production

In a complex modern software environment, it is impossible to fully test every scenario before software is released. However, production is a test environment from which we can obtain valuable information if we choose to record and integrate it.

Sunsetting

All software has a lifespan. When software needs to be retired, some users are ready to move on to the next thing, and some aren’t, for business or personal reasons. Sunsetting is the act of retiring software or versions using feature flags so there is not an abrupt cutoff but a mindful wind down.

[image: A flowchart illustrates the lifecycle of a product or feature, from general availability to the removal of code.]
FIGURE 0.8: Software End-of-Life Diagram

Progressive Delivery Is a Mindset

Empowering the user to change their experience of software is an extension of the Agile, DevOps, and CI/CD philosophies. Our collaboration circle grows wider as our ability to understand and incorporate data increases. From the organizational side, abundance, autonomy, alignment, and automation make it easier for organizations to create and sustain software that is flexible, responsive, and useful.

We believe that with this guide, you will be able to look at your own organization and see places where you can improve one of the four A’s and thus deliver value a little sooner or more accurately or make the work with others easier.

Chapter 1 PROGRESSIVE DELIVERY

“Well, in our country,” said Alice, still panting a little, “you’d generally get to somewhere else—if you run very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!”

—Lewis Carroll, Through the Looking-Glass and What Alice Found There

In physics, a jerk isn’t just someone cutting you off in traffic—it’s the rate at which acceleration changes. Technically known by physicists as the third derivative of position, it’s the feeling that makes you grab for the subway pole when the train lurches or brace yourself during an elevator’s sudden start. It’s that moment when steady, predictable motion becomes a jolt, defying your expectations of smooth acceleration.

jerk (/jurk/): The rate of change of an object’s acceleration over time.

We feel this same jerk in our digital lives, where change itself is accelerating. The history of technology has been hallmarked by an ever-increasing velocity of transformation.

As Alvin Toffler warned in 1970, change is “a concrete force that reaches deep into our personal lives, compels us to act out new roles, and confronts us with the danger of a new and powerfully upsetting psychological disease.” He called this phenomenon “future shock,”1 and nothing in our current environment suggests the pace Toffler found dizzying fifty years ago will slow down.

These technological jerks reshape our personal worlds in profound ways. For someone born in the 1940s, a telephone represents stable technology—pick it up, dial, talk. For those born in the 2000s, the “phone” function might be the least-used app on their device. Everything from how we get our news to how we pay for coffee has become a digital experience that updates without warning, consent, or control. The global infrastructure we built in the twentieth century—networks of satellites, fiber-optic cables, and physical goods transfer—has compressed adoption timelines from decades to months. (See Figure 1.1.)

[image: A line graph showing the adoption rates of various technologies in the United States from 1900 to 2010.]

FIGURE 1.1: Adoption Rate of New Technologies from 1900 to 2012

Source: “The Topic We Should All Be Paying Attention to (in 3 Charts),” BlackRock Blog, December 11, 2015, https://web.archive.org/web/20160304140915/ https://www.blackrockblog.com/2015/12/11/economic-trends-in-charts/.

Description 1

In 1962, Everett Rogers captured the varied human response to this technological acceleration in Diffusion of Innovations, mapping out how new technologies ripple through society—from eager innovators who embrace the bleeding edge to early adopters, then the early and late majorities, and, finally, the cautious laggards who hold onto the familiar.2 Geoffrey Moore later expanded this insight in Crossing the Chasm, revealing the treacherous gap between early enthusiasm and mainstream acceptance.3

Yet our relationship with change isn’t simple. A developer might be the earliest adopter of a new operating system on their phone but continue to use a code editor that was built in 1976.I We are all early adopters in one area but laggards in another, picking our way through an increasingly complex technological landscape.

In our professional lives, these jerks multiply. Software dashboards proliferate—one for time tracking, another for performance metrics, and yet another for project management. Each makes perfect sense to its creators, but collectively they create a dizzying acceleration. When we ask colleagues to adapt to interface changes, we’re asking them to absorb another jerk in their already dynamic workflow.

Organizations feel these forces of change even more acutely. They must innovate rapidly to stay competitive—ask Sears about the cost of failing to adapt to Amazon—while managing the increased risks of outages, user frustration, and business disruption. Traditional change management systems excel at handling smooth, predictable acceleration but falter when confronting these technological jerks.

The solution isn’t to slow down—it’s to give people more control over their rate of change. Every time we allow users choice, whether in personal tools or workplace software, we enable them to manage their own acceleration. Some choices can be elegantly wrapped—such as advanced settings hidden behind a simplified interface—making people partners in the software experience rather than subjects of it.

This is where Progressive Delivery comes in: a methodology that recognizes different users need different rates of change. As software builders, we can release as quickly as we want while letting users choose when to incorporate changes into their lives and workflows. It’s about building systems that are both dynamic and respectful, systems that recognize the human need to sometimes grab the pole and steady ourselves before the next technological jerk arrives.

The cost of mismanaging rollouts is all around us. Microsoft found itself forced to extend Windows 10 support when organizations balked at upgrading to Windows 11.

A tiny npm package called left-pad created a cascading failure that affected thousands of projects. A security company called CrowdStrike, which tens of thousands of organizations relied on, caused a major outage by pushing a breaking misconfiguration to 100% of their audience all at once. The cost of poor software delivery practices can run into the billions. It gets kind of expensive when the entire airline industry is grounded. These cases demonstrate what happens when rollouts are not effectively managed. And, really, as an industry, we should be doing better by now.

The signs of this mismatch are clear in any organization: declining user engagement, unused new features, the proliferation of third-party workarounds, and spikes in support requests. But these symptoms also point toward solutions. By understanding how different users and organizations absorb change—from early adopters to cautious laggards—we can create systems that respect their varying needs for stability and innovation.

Over the past century, we’ve seen adoption rates for new technologies compress dramatically. While television, computing, and other technologies required decades to reach mass adoption, the latest software-driven innovations can become mainstream in months (see Figure 1.2). This acceleration isn’t slowing down—just look at ChatGPT.

As software builders, we’re both agents and victims of this acceleration. Our code is just one thread in a vast tapestry of interdependent systems, each evolving at its own pace. When we push changes too fast or too frequently, we risk creating that jarring moment—that technological jerk—for our users. The impact depends on how quickly they’re already adapting to change: What feels like a gentle nudge to an early adopter might throw a late majority user off balance entirely. We are not the only ones asking our users to adapt to changes—they use more than just our software, both at work and at home.

Throughout this chapter, we’ll explore how Progressive Delivery provides a framework for managing technological change that respects both the need for innovation and the human experience of adaptation. By understanding how to deliver the right changes to the right users at the right time, we can turn the jarring experience of technological jerk into a more controlled and intentional acceleration. Let’s start by examining exactly what Progressive Delivery means in practice and how it emerged as a response to these challenges.

[image: A line graph showing the percentage of ownership of various technologies over time, measured in years since their invention.]

FIGURE 1.2: Years Since Technology Introduction to Reach Mass Ownership

Source: Federal Reserve Bank of Dallas, 1996 Annual Report: The Economy at Light Speed, https://web.archive.org/web/20161224074319/https://www.dallasfed.org/~/media/documents/fed/annual/1999/ar96.pdf.

Description 2

Toward a Practice of Progressive Delivery

Everywhere we look, we find new devices and services that offer replacements or enhancements to every aspect of our lives. But with these improvements come new challenges. If your device or application doesn’t work, how does it get fixed? How long does it take? What if that software is running in your car? Or the locks on your house? Or the pump for your insulin? Is your software doing what you need, when you need it?

Different stakeholders want to move at different rates—factories want to run consistently all year, but consumers have times when they want to buy back-to-school clothes or holiday presents. Software developers want to be able to show delivered products before their performance reviews. Sales teams are driving toward quarterly and yearly goals. These stakeholders need a way to collaborate, not just coexist.

At its core, Progressive Delivery is a set of software delivery practices to deliver the right software to the right users at the right time in a way that is sustainable for everyone. Yes, everyone. This includes executives in the boardroom, leaders managing departments, engineers, designers, product teams, marketers, partners, and, most importantly, the actual product users. While this book is focused on software developers and how they can benefit from Progressive Delivery methods, Progressive Delivery is for all these stakeholders and constituents.

Progressive Delivery is not about tools or certifications. It’s about what you care about and where your organization places focus. It’s more of a lens than a prescription. Products are not static entities but thriving conversations where building, use, and retirement are all visible and trackable.

From a more nuanced perspective, Progressive Delivery can mean different things for different constituents:

	For the user or consumer of technology, Progressive Delivery is a user experience that minimizes technological jerk.

	For the company delivering a digital experience, Progressive Delivery is a set of practices that enable teams to move at a sustainable pace.

	For those tasked with building and delivering modern software, Progressive Delivery is a development practice that builds upon the core tenets of continuous integration and continuous delivery (CI/CD).

Progressive Delivery specifically adds two core tenets to that of CI/CD:

	
Release progression: progressively increasing the number of users who can see (and are impacted by) new features.

	
Radical delegation: progressively delegating the control of access to a feature to the owner who is closest to the outcome.

In essence, Progressive Delivery is the practice of delegating control to the user while retaining a clear vision and plan for the product. It’s a way to understand what you’re already doing regardless of the technology change happening in front of you, so you can do it more effectively.

Progressive Delivery asks the following key questions:

	What is “finished?” When is a product or feature truly complete, and how do we define success?

	What do we expect to happen? What are our hypotheses about how users will interact with the new features?

	What if users want a different cadence of change? How do we accommodate diverse user preferences?

	How are we stewarding the information we collect? How do we gather and analyze user feedback?

	How are we incorporating feedback? How do we use feedback to improve the product?

	Who are all of our constituents? We must recognize and consider the needs of all stakeholders, not just the loudest voices.

In the history of software development, Progressive Delivery represents the logical next step in a long line of improvements. According to Carlos Sanchez, who wrote the following while working at CloudBees:

Progressive Delivery is the next step after Continuous Delivery, where new versions are deployed to a subset of users and are evaluated in terms of correctness and performance before rolling them to the totality of the users and rolled back if not matching some key metrics.4

Figure 1.3 shows the evolution of software development methods. While not comprehensive, it shows how our understanding of delivery can be additive. Specification-driven delivery (also known as waterfall) plus Agile gets us test-driven delivery (TDD). When we add operations and maintenance into the scope of TDD, we get DevOps. Adding automation to DevOps results in CI/CD. Progressive Delivery includes all the former models the way a pearl encapsulates its former layers.

[image: A series of concentric circles labelled from centre to outer edge: Specification-Driven Delivery, Test-Driven, DevOps, CI/CD, and Progressive Delivery.]
FIGURE 1.3: The Evolution of Software Development Methods

Of course, as software makers have been optimizing how to build software—through innovations in tooling and craft with continuous delivery and DevOps practices—they have exacerbated the problem of user adoption. Even if a team can deploy on demand, a user probably will not adopt releases multiple times a day.

This is the crux of why users are feeling the technological jerk now more than ever—adoption is about release cadence, not build cadence, but not all our systems are designed to separate those. The essential added ingredient in Progressive Delivery is delegation closer to the user.

This is how we continue down the path of high developer autonomy. We build systems that decouple deployment from release, and release from adoption, so users can operate at a more comfortable speed.

Once you start seeing the world in terms of Progressive Delivery, you see it everywhere—ripe mangoes in Midwest supermarkets and tap-to-pay parking meters, Calendly links, and same-day electronics delivery. User demand drives and encourages changes to delivery infrastructure. Consider Calendly: Setting up a meeting with someone used to require several steps, including figuring out availability for each person. By creating software to allow each user to independently choose a time, booking meetings has become faster and easier.

On the provider side, this coordination requires calendar rules, time zone awareness, email integration, and meeting location options. Similarly, delivering fresh tropical fruit to Minnesota in February requires a sophisticated transportation and distribution network and fruit varietals that are sturdy enough to ship and store. To the user, Progressive Delivery looks like convenience. But to a provider, Progressive Delivery takes a combination of investment, will, and effort.

The Four A’s: A Framework for Progressive Delivery

The evolution of Progressive Delivery has been shaped by technological advances, much as physics has evolved to measure and manage forces of motion. Just as physicists use measurements of jerk to understand sudden changes in acceleration, there are four essential factors that help us measure and manage the technological jerks in our system: the four A’s—abundance, autonomy, alignment, and automation. The rise of virtualization, containerization, and cloud computing led to the abundance of computing and storage resources. This abundance of resources led to increased developer autonomy, which was further accelerated by Git, distributed contribution, feature flags, and the architecture trend from monoliths toward microservices.

As autonomy increased, so did the need for focus and alignment. Teams began to prioritize—and value—API-first development and enhanced observability. This more loosely coupled architecture led to both the opportunity and the need for more automation and better feedback loops to manage the vast increase in the scale of systems and the opportunity to better understand user behavior and needs.

We can express this relationship as an equation:

[image: Progressive Delivery equals StartFraction left parenthesis Abundance times Autonomy right parenthesis Over left parenthesis Alignment times Automation right parenthesis EndFraction]

Abundance and autonomy form the foundation of the developer experience, much like the electrical grid supports our modern life. The fluctuations of power generation and conduction are smoothed out, and we get steady, reliable resources to use. We then get to choose how to apply the power streaming into our homes and businesses so abundantly. In the same way, abundance and autonomy in software development allow us to think about more difficult and interesting problems. However, just as we use everything from circuit breakers to dimmer switches to control the flow of power, the forces of abundance and autonomy also need to be well- regulated to be useful and safe.

Your “goal” for Progressive Delivery is to balance your abundance and autonomy by leveraging alignment and automation. If abundance and autonomy are too pronounced compared to alignment and automation, teams tend to build brittle systems filled with features that never get used. Conversely, if you focus too much on the user experience without addressing developer needs, you end up knowing what the users need, but you are unable to deliver it quickly enough.

In this way, abundance and autonomy are all about the developer experience, or the building side of a product, while alignment and automation are centered on the user experience, or the delivery of the product. We could simplify this as:

[image: Progressive Delivery equals fraction with numerator Developer Experience and denominator User Autonomy]

If abundance and autonomy are the electrical grid, delivering us power and potential, then alignment and automation are the appliances that transform that energy into value. Voltage on a power line is not useful until we can convert it into light, heat, work, or video gaming minutes. Too much power and there’s a risk to safety and property. Too little and we can’t turn on a light or keep food cold. Alignment is what directs the current the way we want it. Automation makes our homes run without intervention and keeps us safe from mistakes or sudden surges. Without alignment and automation, we would be at risk of surprises or unwanted changes.

Let’s examine each of these four pillars in detail:

Abundance

Abundance is a very large quantity of all the resources required to accomplish a task. In the context of Progressive Delivery, this centers around the developer experience. When building digital systems, this can be divided into compute resources, network bandwidth, and storage.

We can measure abundance both quantitatively (for example, how long it takes to provision a server or database for a new project) and qualitatively (for example, through developer surveys and interviews). Developer experience and abundance are interlinked. Abundance enables developers to work without friction and without waiting for permission to access resources.

Autonomy

Autonomy is the ability of an individual to act independently from others. When developing software, this independence means access to all necessary resources to complete a desired task. To have a Progressive Delivery environment, developers need to be able to innovate and build at their own pace.

To measure autonomy quantitatively, we can track how frequently developers are “blocked” or waiting for others to do their work. During some stages of growth or product expansion, the rate of blocking may naturally increase. We can also gain qualitative assessment through internal surveys.

Alignment

Alignment means focusing human and organizational resources responsible for developing software to work in the same direction. In Progressive Delivery, alignment is one of the two ways to wrangle abundance and autonomy. Both alignment and automation are centered around the user experience.

We can measure alignment through qualitative user surveys and interviews, as well as by monitoring usage rates and patterns in feature adoption and workflow completion. The exact method for gathering quantitative and qualitative data about user impact will vary with the software and the users, but it should be as broad as the team can afford, in order to capture multiple insights.

Automation

Automation is the identification and implementation of programmatic processes for repetitive tasks. For Progressive Delivery, automation is the second way to focus on abundance and autonomy. Automation supports alignment by intentionally looking for repetitive manual tasks and creating code to reduce effort while ensuring consistency. After all, one of the goals of computing, and now AI, is to make automation easier and more effective. Adoption is easier when it’s automated and part of the workflow.

Measuring automation can be done quantitatively through observability tooling, which looks at the frequency of pattern repetition as users navigate a workflow. Qualitatively, user surveys can target questions about repetition and “too many steps” to accomplish frequent tasks.

Balancing Developer and User Experience

The benefit to adopting Progressive Delivery is that it is not an abrupt transformative moment but an evolution that works with what you’re already doing well and gives you pointers to what could be improved. The cost of a “transformation initiative” is often denoted in millions, and the outcome may not be at all aligned to benefit the people who are implementing the changes and those consuming the result.

Just as electrical engineers need to balance variable generation and transmission with safe, reliable, controlled delivery, Progressive Delivery works to balance the surge and ebb of developer innovation with the measured and incremental pace of user acceptance. The goal is not to eliminate change or even acceleration, but to make it as smooth and acceptable as possible. The separation between deployment and release acts as a transformer, modulating the flow down to something a household can use safely, while still retaining the capacity to serve other households.

Progressive Delivery addresses the challenge of the pace of innovation by making a hard separation between the deployment of code to the production environment and the release of features to users. This separation allows for the business to have two priorities that are loosely coupled: developer autonomy and user adoption. (See Figure 1.4.)

[image: A quadrant diagram comparing software development methodologies based on developer autonomy and user alignment.]
FIGURE 1.4: How Software Development Life Cycles Balance Developer Autonomy with User Adoption Description 3

Motivation and Sustainable Growth

Similarly, product teams as a whole need to know that there is a user demand for what they are building, and companies need to be able to situate themselves in an ecosystem of production and consumption. All of this alignment is much easier when the goal is something that can be communicated to everyone.

Dan Pink’s Drive posited that humans are intrinsically motivated by autonomy, mastery, and purpose.5 This theory fits well with what we know about burnout from Dr. Christina Maslach’s work, where lack of autonomy and purpose and conflicts in moral values create a kind of moral injury.6 Being able to connect our labor to the value that other people find in our work is a known way to stay engaged and happy.

We know that stasis is dangerous for companies—if you’re not in touch with how your environment is changing, you’re at a high risk of being passed by a competitor or becoming irrelevant. We also know that growth at all costs is a risky goal, especially in a post-ZIRPII world. Company growth needs to be sustainable or have sustainability on the horizon.

Finding the Middle Road

There are so many business metrics out there, and while we will give you a few more, the metric is not the goal any more than the map is the territory. If we measure people on something easily measured without repeatedly asking why they need to increase that measurement and the intended effect, then we get compliance but not cooperation.

So how do we find that middle road of making something useful, flexible, and sustainable?

	By delivering the right product to the right person at the right time.

	
By avoiding overbuilding and over-optimizing.

	By working with the resources easily available.

	By making sure that we are addressing real needs our users value, not just what the loudest people are asking for.

If change is an inevitable part of our lives, both as producers and consumers, how do we make that change meaningful and useful instead of pointless motion without progress? To answer that question, we need to know what the point is—what are we trying to accomplish with what we’re making, and what are the people who use it trying to accomplish? Without these purposes clearly in mind, we can never be sure that we’re making the right thing.

Conclusion

Each of the four A’s of Progressive Delivery reinforces and enables progress in the others. None of them is something that can be fully finished. Moore’s Law continues to provide an abundance of resources. You can always automate a little more, or a realignment will reveal a way for a team to become more autonomous. Even autonomy continues to increase and expand in the face of coding assistants.

Change is a part of our lives every day. We tend to think of it as good change, like increases in capacity or learning, or bad change, like aging and decay. Change is stressful because it forces us to learn new habits and patterns and ways of doing things. The larger and faster a change is from a single point of view, the harder it is to adapt to it. Jared Spool, cofounder of Center Centre, said in the article “The Quiet Death of the Major Re-Launch,”

There’s another way to build a new architecture with a whole new site without the risks of a re-launch.…I explained that re-launches are a thing of the past. There was a time when sites launched in cycles, living from one major redesign to the next. Each new redesign would bring a whole new look, a whole new user experience.…However, the best sites have replaced this process of revolution with a new process of subtle evolution. Entire redesigns have quietly faded away with continuous improvements taking their place.7

The way we build software has evolved to make it trivial to push changes to our users. But just because it’s easy to change things doesn’t always mean it’s the right time or situation to do so. This is where Progressive Delivery shines—by providing a framework that balances capability with responsibility, speed with sustainability.

In physics, understanding jerk helps engineers design better systems—from elevator controls to autonomous vehicles. Similarly, understanding the forces of technological change through Progressive Delivery helps us build better software systems that respect both the need for rapid innovation and users’ capacity to adapt to change. Modern software delivery works because we have an abundance of software and network resources, the autonomy to find the best path to solve a problem, the alignment to work within a distributed system, and the automation to preserve our energy for novel and challenging tasks. Through Progressive Delivery, we can ensure that this malleability serves both the creators and consumers of technology, making change not just possible but purposeful.

	
I. Both “vi” and “Emacs” were first created in 1976 and remain two of the most popular code editing applications today.

	
II. ZIRP: zero-interest-rate phenomenon. In this case, the behavior of companies when it is effectively free to borrow money. Although associated with the economic term zero-interest-rate policy, it is specific to how low borrowing costs affected risk estimation around investing in software and venture-backed startups.

OEBPS/e9781950508983/images/f0002-01.jpg
Adoption Rate

s Telephone

100%

———— Electricity

s G2T'S
Radio
Fridge

80%
s Tel@ViSiON
s pir Travel

Color Television
Credit Card
......... Microwave

60%

sssssssss\jdeo Games

40%
Cell Phone

Internet
----- Digital Camera
««« .« MP3 Player

20%
..... HDTV
Social Media
..... Smartphone
. = = = =Tahlet

OEBPS/e9781950508983/fonts/ChaparralPro-Regular.otf

OEBPS/e9781950508983/images/f0008-01.jpg
progressive Delive,y

s\,\“\VEH De/,‘,e’

m
Specification-
\ Driven Delivery

+Agile

+Delivery
+Automatio®

+Delegation

OEBPS/e9781950508983/images/fxxiii-01.jpg
o 1111
B o

o —[I]
0 m

OEBPS/e9781950508983/fonts/ITCFranklinGothicStd-MdCd.otf

OEBPS/e9781950508983/fonts/ChaparralPro-Italic.otf

OEBPS/e9781950508983/images/f0xix-01.jpg
Deploy Release Adopt

OEBPS/e9781950508983/images/fxxiv-01.jpg
New Features

Feature Flag

— @

— @l

—— (OFF

User Segments

— 7R

—
—— %A

Development

Quality
Assurance

Production

OEBPS/e9781950508983/images/f0010-01.jpg
) . (Abundance x Autonomy)
Progressive Delivery =

(Alignment x Automation)

OEBPS/e9781950508983/images/f0010-02.jpg
. , Developer Experience
Progressive Delivery =

User Autonomy

OEBPS/e9781950508983/xhtml/nav.xhtml

CONTENTS

		Cover

		Title Page

		Dedication

		Preface

		Introduction

		Chapter 1: Progressive Delivery

		Chapter 2: Abundance

		Chapter 3: Case Study: Sumo Logic

		Chapter 4: Autonomy

		Chapter 5: Case Study: GitHub

		Chapter 6: Alignment

		Chapter 7: Case Study: Adobe

		Chapter 8: Automation

		Chapter 9: Case Study: AWS

		Chapter 10: Future Proofing

		Chapter 11: Case Study: Disney

		Chapter 12: Ouroboros

		Acknowledgments

		About the Authors

		Notes

		Bibliography

		Image Descriptions

		Copyright

Guide

		Cover

		Start of Content

		Title Page

		Dedication

		Preface

		Introduction

		Acknowledgments

		About the Authors

		Notes

		Bibliography

		Image Descriptions

		Copyright

		I

		II

		III

		IV

		V

		VII

		VIII

		IX

		X

		XI

		XII

		XIII

		XIV

		XV

		XVI

		XVII

		XVIII

		XIX

		XX

		XXI

		XXII

		XXIII

		XXIV

		XXV

		XXVI

		XXVII

		XXVIII

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		206

		207

		208

		209

		210

		211

		212

		203

		204

		205

		198

		199

		200

		201

		202

		VI

OEBPS/e9781950508983/fonts/ChaparralPro-Light.otf

OEBPS/e9781950508983/images/f0xxii-01.jpg
B o w
ﬂ M B
: EE L] EE

[

&= o
- ER— Q R O QM
o

OEBPS/e9781950508983/fonts/ChaparralPro-Semibold.otf

OEBPS/e9781950508983/images/f0005-01.jpg
Percent Ownership
Television Airplane Telephone
90 Radio
Microwave B/
80 S _
| Electricity
VGR Automobile
70 A
60 A
50 +
40 P ; —
30 Internet !
20 —
-"/ Cell Phone
10 rr
[} - 2.
1 10 20 30 40 50 60 70 80 90 100 110

Years Since Product Invented

120

OEBPS/e9781950508983/images/fxxvi-01.jpg
General
Availability

End of
Sales

* No more

. customer
- usage of
* feature/
. product

OEBPS/e9781950508983/images/9781950508983.jpg
Build The
Right Thing

For The
Right People

At The
Right Time

OEBPS/e9781950508983/images/f0013-01.jpg
High Developer Autonomy

Continuous Progressive
Delivery Delivery

Low Alignment High Alignment
with User Adoption with User Adoption

Waterfall Agile

Low Developer Autonomy

OEBPS/e9781950508983/fonts/ChaparralPro-LightIt.otf

OEBPS/e9781950508983/images/title.jpg
PROGRESSIVE
DELIVERY

Build The For The At The
Right Thing Right People Right Time

James Governor, Kim Harrison,
Heidi Waterhouse & Adam Zimman

IT Revolution
Portland, Oregon

OEBPS/e9781950508983/images/f0xvi-01.jpg
\ntegrate

Extend

Making Software

Settings

Change proces®

OEBPS/e9781950508983/images/f0xvii-01.jpg

OEBPS/e9781950508983/images/f0xxv-01.jpg
Early All
Adopters Users

OEBPS/e9781950508983/fonts/ITCFranklinGothicStd-BkCd.otf

