

 [image: cover]

Neo4j in Action

 Aleksa Vukotic and Nicki Watt with Tareq Abedrabbo, Dominic Fox, and Jonas Partner

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 	Special Sales Department
	Manning Publications Co.
	20 Baldwin Road
	PO Box 761
	Shelter Island, NY 11964
	Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Karen Miller
Technical development editor Gordon Dickens
Copyeditor: Andy Carroll
Proofreader: Elizabeth Martin
Technical proofreader: Craig Taverner
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617290763

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Introduction to Neo4j

 Chapter 1. A case for a Neo4j database

 Chapter 2. Data modeling in Neo4j

 Chapter 3. Starting development with Neo4j

 Chapter 4. The power of traversals

 Chapter 5. Indexing the data

 2. Application Development with Neo4j

 Chapter 6. Cypher: Neo4j query language

 Chapter 7. Transactions

 Chapter 8. Traversals in depth

 Chapter 9. Spring Data Neo4j

 3. Neo4j in Production

 Chapter 10. Neo4j: embedded versus server mode

 Chapter 11. Neo4j in production

 Appendix A. Installing Neo4j server

 Appendix B. Setting up and running the sample code

 Appendix C. Setting up your project to use SDN

 Appendix D. Getting more help

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Introduction to Neo4j

 Chapter 1. A case for a Neo4j database

 1.1. Why Neo4j?

 1.2. Graph data in a relational database

 1.2.1. Querying graph data using MySQL

 1.3. Graph data in Neo4j

 1.3.1. Traversing the graph

 1.4. SQL joins versus graph traversal on a large scale

 1.5. Graphs around you

 1.6. Neo4j in NoSQL space

 1.6.1. Key-value stores

 1.6.2. Column-family stores

 1.6.3. Document-oriented databases

 1.6.4. Graph databases

 1.6.5. NoSQL categories compared

 1.7. Neo4j: the ACID-compliant database

 1.8. Summary

 Chapter 2. Data modeling in Neo4j

 2.1. What is a data model for Neo4j?

 2.1.1. Modeling with diagrams: a simple example

 2.1.2. Modeling with diagrams: a complex example

 2.2. Domain modeling

 2.2.1. Entities and properties

 2.3. Further examples

 2.3.1. Underground stations example

 2.3.2. Band members example

 2.4. Summary

 Chapter 3. Starting development with Neo4j

 3.1. Modeling graph data structures

 3.2. Using the Neo4j API

 3.2.1. Creating nodes

 3.2.2. Creating relationships

 3.2.3. Adding properties to nodes

 3.2.4. Node type strategies

 3.2.5. Adding properties to relationships

 3.3. Node labels

 3.4. Summary

 Chapter 4. The power of traversals

 4.1. Traversing using the Neo4j Core Java API

 4.1.1. Finding the starting node

 4.1.2. Traversing direct relationships

 4.1.3. Traversing second-level relationships

 4.1.4. Memory usage considerations

 4.2. Traversing using the Neo4j Traversal API

 4.2.1. Using Neo4j’s built-in traversal constructs

 4.2.2. Implementing a custom evaluator

 4.3. Summary

 Chapter 5. Indexing the data

 5.1. Creating the index entry

 5.2. Finding the user by their email

 5.3. Dealing with more than one match

 5.4. Dealing with changes to indexed data

 5.5. Automatic indexing

 5.5.1. Schema indexing

 5.5.2. Auto-indexing

 5.6. The cost/benefit trade-off of indexing

 5.6.1. Performance benefit of indexing when querying

 5.6.2. Performance overhead of indexing when updating and inserting

 5.6.3. Storing the index

 5.7. Summary

 2. Application Development with Neo4j

 Chapter 6. Cypher: Neo4j query language

 6.1. Introduction to Cypher

 6.1.1. Cypher primer

 6.1.2. Executing Cypher queries

 6.2. Cypher syntax basics

 6.2.1. Pattern matching

 6.2.2. Finding the starting node

 6.2.3. Filtering data

 6.2.4. Getting the results

 6.3. Updating your graph with Cypher

 6.3.1. Creating new graph entities

 6.3.2. Deleting data

 6.3.3. Updating node and relationship properties

 6.4. Advanced Cypher

 6.4.1. Aggregation

 6.4.2. Functions

 6.4.3. Piping using the with clause

 6.4.4. Cypher compatibility

 6.5. Summary

 Chapter 7. Transactions

 7.1. Transaction basics

 7.1.1. Adding in a transaction

 7.1.2. Finishing what you start and not trying to do too much in one go

 7.2. Transactions in depth

 7.2.1. Transaction semantics

 7.2.2. Reading in a transaction and explicit read locks

 7.2.3. Writing in a transaction and explicit write locks

 7.2.4. The danger of deadlocks

 7.3. Integration with other transaction management systems

 7.4. Transaction events

 7.5. Summary

 Chapter 8. Traversals in depth

 8.1. Traversal ordering

 8.1.1. Depth-first

 8.1.2. Breadth-first

 8.1.3. Comparing depth-first and breadth-first ordering

 8.2. Expanding relationships

 8.2.1. StandardExpander

 8.2.2. Ordering relationships for expansion

 8.2.3. Custom expanders

 8.3. Managing uniqueness

 8.3.1. NODE_GLOBAL uniqueness

 8.3.2. NODE_PATH uniqueness

 8.3.3. Other uniqueness types

 8.4. Bidirectional traversals

 8.5. Summary

 Chapter 9. Spring Data Neo4j

 9.1. Where does SDN fit in?

 9.1.1. What is Spring and how is SDN related to it?

 9.1.2. What is SDN good for (and not good for)?

 9.1.3. Where to get SDN

 9.1.4. Where to get more information

 9.2. Modeling with SDN

 9.2.1. Initial POJO domain modeling

 9.2.2. Annotating the domain model

 9.2.3. Modeling node entities

 9.2.4. Modeling relationship entities

 9.2.5. Modeling relationships between node entities

 9.3. Accessing and persisting entities

 9.3.1. Supporting Spring configuration

 9.3.2. Neo4jTemplate class

 9.3.3. Repositories

 9.3.4. Other options

 9.4. Object-graph mapping options

 9.4.1. Simple mapping

 9.4.2. Advanced mapping based on AspectJ

 9.4.3. Object mapping summary

 9.5. Performing queries and traversals

 9.5.1. Annotated queries

 9.5.2. Dynamically derived queries

 9.5.3. Traversals

 9.6. Summary

 3. Neo4j in Production

 Chapter 10. Neo4j: embedded versus server mode

 10.1. Usage modes overview

 10.2. Embedded mode

 10.2.1. Core Java integration

 10.2.2. Other JVM-based integration

 10.3. Server mode

 10.3.1. Neo4j server overview

 10.3.2. Using the fine-grained Neo4j server REST API

 10.3.3. Using the Cypher Neo4j server REST API endpoint

 10.3.4. Using a remote client library to help access the Neo4j server

 10.3.5. Server plugins and unmanaged extensions

 10.4. Weighing the options

 10.4.1. Architectural considerations

 10.4.2. Performance considerations

 10.4.3. Other considerations

 10.5. Getting the most out of the server mode

 10.5.1. Avoid fine-grained operations

 10.5.2. Using Cypher

 10.5.3. Server plugins

 10.5.4. Unmanaged extensions

 10.5.5. Streaming REST API

 10.6. Summary

 Chapter 11. Neo4j in production

 11.1. High-level Neo4j architecture

 11.1.1. Setting the scene ...

 11.1.2. Disks

 11.1.3. Store files

 11.1.4. Neo4j caches

 11.1.5. Transaction logs and recoverability

 11.1.6. Programmatic APIs

 11.2. Neo4j High Availability (HA)

 11.2.1. Neo4j clustering overview

 11.2.2. Setting up a Neo4j cluster

 11.2.3. Replication—reading and writing strategies

 11.2.4. Cache sharding

 11.2.5. HA summary

 11.3. Backups

 11.3.1. Offline backups

 11.3.2. Online backups

 11.3.3. Restoring from backup

 11.4. Topics we couldn’t cover but that you should be aware of

 11.4.1. Security

 11.4.2. Monitoring

 11.5. Summary

 11.6. Final thoughts

 Appendix A. Installing Neo4j server

 A.1. Installing and configuring a single Neo4j server

 A.2. Neo4j browser

 A.3. Neo4j Web Admin Console

 Appendix B. Setting up and running the sample code

 B.1. Setting up your environment

 Download the sample code

 Install JDK (Oracle SE 7)

 Install Maven (3.0.5+)

 B.2. Running the demos and samples

 General instructions

 Chapter 10 instructions

 Appendix C. Setting up your project to use SDN

 C.1. Maven configuration

 C.2. Spring configuration

 Core XML configuration

 Repository configuration

 Appendix D. Getting more help

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 The database world is experiencing an enormous upheaval, with the hegemony of relational databases being challenged by a plethora
 of new technologies under the NoSQL banner. Among these approaches, graphs are gaining substantial credibility as a means
 of analyzing data across a broad range of domains.

 Most NoSQL databases address the perceived performance limitations of relational databases, which flounder when confronted
 with the exponential growth in data volumes that we’ve witnessed over the last few years. But data growth is only one of the
 challenges we face. Not only is data growing, it’s also becoming more interconnected and more variably structured. In short,
 it’s becoming far more networked.

 In addressing performance and scalability, NoSQL has generally given up on the capabilities of the relational model with regard
 to interconnected data. Graph databases, in contrast, revitalize the world of connected data, outperforming relational databases
 by several orders of magnitude. Many of the most interesting questions we want to ask of our data require us to understand
 not only that things are connected, but also the differences between those connections. Graph databases offer the most powerful
 and best-performing means for generating this kind of insight.

 Connected data poses difficulties for most NoSQL databases, which manage documents, columns, or key/value pairs as disconnected
 aggregates. To create any semblance of connectedness using these technologies, we must find a way to both denormalize data
 and fudge connections onto an inherently disconnected model. This is not a trivial undertaking, as we have discovered in building
 Neo4j itself!

 Neo4j has come to fruition over the same timeframe as the other frontrunners in the NoSQL world. (In fact, Neo4j predates
 many other NoSQL technologies by several years.) Neo4j provides traditional database-like support (including transactional
 safety) for highly connected data, while also providing orders of magnitude (“minutes to milliseconds”) better performance
 than relational databases. For domains as varied as social computing, recommendation engines, telecoms, authorization and
 access control, routing and logistics, product catalogs, datacenter management, career management, fraud detection, policing,
 and geospatial, Neo4j has demonstrated it’s an ideal choice for tackling complex data.

 Because Neo4j is by far the most popular graph database, it’s the one that most developers will encounter. We know that this
 “first contact” with a new technology like Neo4j can be bewildering. The tyranny of choice regarding different APIs, bindings,
 query languages, and frameworks can be daunting, and it’s easy to be put off.

 Neo4j in Action addresses these concerns by getting developers up and running quickly with Neo4j. It takes a pragmatic programmatic tour
 through Neo4j’s APIs and its query language, and provides examples based on the authors’ extensive real-world use of the database.
 Complementing this development advice, the authors also discuss deployment options and solution architectures. The result
 is a rounded, holistic view of Neo4j as seen in the context of the full systems development lifecycle.

 As Neo4j contributors and authors ourselves, we value Neo4j in Action for its no-nonsense, hands-on approach, and its willingness to back its assertions using reproducible tests. The authors
 are some of the most experienced Neo4j users around, and we’re very pleased to see their authority and knowledge made available
 to all developers through this book.

 JIM WEBBER

 CHIEF SCIENTIST, NEO TECHNOLOGY

 IAN ROBINSON

 ENGINEER, NEO TECHNOLOGY

Preface

 Graph issues are some of the most common problems in computer programming, and have been since the early days. Back then,
 hierarchy trees, access control lists, and mapping tables were built, typically, in code. When it came time to store the graphs,
 programmers transformed them into tables and used the relational database as underlying storage. We had to do a lot of plumbing
 to save the most basic graph data, but there was no other option—until graph databases, with Neo4j leading the parade, entered
 the scene.

 Neo4j started its journey more than a decade ago, with the first official version, the 1.0 release, coming out in 2010, and
 the more recent 2.0 release coming out in December 2013. Most of us have been involved with actively using Neo4j and watching
 it evolve over this period on various projects for clients. The hype and excitement around graph databases, and Neo4j in particular,
 have been gaining more and more traction, with many people and companies realizing that Neo4j is uniquely placed in the graph
 database space to provide a robust and solid solution capable of solving complex and challenging, interconnected business
 problems.

 It is with great pleasure that we tried to distill much of this real-world experience and knowledge into this hands-on book
 in a way that lays solid foundations and then builds on those to help you get up and running with Neo4j as soon as possible.

Acknowledgments

 This book has been some time in the making, so first and foremost a big thank you goes out to all of our families and friends
 who tirelessly stood by us, put up with us, and made those late evening coffees to keep us going through the many additional
 late hours of work required to write this book. Thank you!

 First, we’d like to thank Open Credo, the company for whom we currently work (or worked) while writing this book, for the
 opportunity afforded us to be able to share and contribute our experiences to this book—mostly after hours, but for those
 precious paid hours as well. This was most appreciated!

 A big thanks to the Neo4j guys, Jim Webber and Ian Robinson in the UK, Michael Hunger in Germany, and the whole clan, for
 their continued work on Neo4j, but most importantly, for their useful comments and feedback in helping us fine-tune this book
 appropriately. It was great having the UK guys just down the hall from our Open Credo office so we could call on them for
 help with some of those “interesting” challenges.

 Thanks to Karen Miller, our development editor at Manning, for her endless patience and understanding over this period, plus
 the entire Manning team for the fantastic effort they put out to finally get us to this point. It was hard work, and we ended
 up doing a fair few rounds, but we are grateful for their support and guidance and for the solid product that has emerged
 as a result.

 Many thanks to our MEAP readers, who posted corrections and comments in the Author Online forum, and to the following reviewers,
 who read the manuscript during development and provided invaluable feedback: Adam Frankl, Bill LaPrise, Brian Gyss, Christoph
 Jasinski, Frank Uzzolino, Fred Patton, Janeen Johnson, John D. Lewis, Joshua White, Mark Watson, Philippe Lamote, Pouria Amirian,
 Rikke Willer, Robert Gimbel, Rod Hilton, and Stephen Kitt.

 Thanks also to Jim Webber and Ian Robinson for contributing the foreword to our book, and to Craig Taverner for his technical
 expertise as he reviewed the manuscript and code examples one more time, just before production.

 There are many others who contributed in various ways as well. We cannot mention everyone by name as this would mean that
 the acknowledgments would roll on and on, but we’d like to send a big thank you to everyone else who had a hand in helping
 make this book possible!

About this Book

 Neo4j as a graph database has evolved quite a bit over the last decade or so. Starting as a database operating purely within
 the Java-based world, it has since evolved to cater to many languages and frameworks.

 When we first embarked on writing this book, it was targeting the then-latest 1.9 release. The Neo4j 2.0 release was a real
 game changer, introducing new features, including the much-desired (built-in) concept of node labels. Though there is still
 some 1.x related material, you will be pleased to know that the content of this book has indeed been updated to cover 2.0
 features, with all the associated sample code and examples having been specifically validated against the 2.0.1 release. No
 doubt there will be later releases by the time this book hits the printing press; however, the deliberate step-by-step approach
 taken by Neo4j in Action should provide you with the core foundational knowledge and skills necessary to learn about, and get up and running with,
 any Neo4j 2.0+ release—subject to any unforeseen breaking changes introduced, of course.

 With Java being the language used to give birth to Neo4j, we decided to use Java as the primary language for demonstrating
 the various techniques and approaches in this inaugural Neo4j book. Besides the fact that this was previously one of the only
 options available, the language choice has also afforded us the ability to include chapters and sections detailing how you
 can explicitly take advantage of some of the native core Neo4j APIs for performing certain tasks. This certainly has major
 benefits for Java-based clients. However, if we were starting from scratch again, more time and attention would probably have
 been given to Cypher. Using Cypher where possible to interact with the graph promotes easier integration regardless of the
 client—Java, shell, or something else. In any case, we leave this for a potential second edition as we still believe there
 are many core fundamental concepts and approaches in this book that need to be conveyed first. The book assumes the latest
 version of JDK 7 is being used. Additionally, the sample code that accompanies this book makes use of Maven as our build dependency
 tool of choice. For those unfamiliar with Maven, we provide a quick getting started section in appendix B to help get you up and running.

 It should be noted that this is not meant to be a reference book; it would be a lot longer if that were the case. It does
 aim to arm you with enough knowledge and understanding in each area to be relatively proficient before moving on. Links are
 provided to appropriate content where you can get more information should you want to explore any specific area further.

Roadmap

 This book is divided into three parts. Part 1 is an introduction and covers data modeling, starting development with Neo4j, and the power of transversals. Part 2 takes on application development and covers Cypher and Spring. Part 3 covers Neo4j in production.

 Chapter 1 introduces graph database concepts in general, including looking at some of Neo4j’s key aspects and the typical use cases
 which it is well suited to address. The chapter goes on to address some of the questions about where Neo4j fits within the
 so-called NoSQL space, including comparing it with more traditional relational databases.

 Chapter 2 examines how and why we model data in Neo4j, including common approaches to data modeling scenarios in a graph database.
 Examples from a variety of domains are also presented, giving you a sense for just how flexible data modeling in Neo4j can
 be.

 Chapter 3 is where we really start getting our hands dirty. This chapter introduces you to the Neo4j Core Java API, where you are taken
 through the steps of creating a graph representing a social network of users and the movies they like. This chapter covers
 creating and connecting nodes and capturing additional information against these nodes. It also looks at strategies for differentiating
 between types of nodes, including the use of labels.

 Chapter 4 builds on this social network domain, exploring the core API in more depth and focusing specifically on traversals—in this
 case the Neo4j Traversal API—as a powerful way of querying graph data.

 Chapter 5 introduces the indexing strategies available in Neo4j. Creating and traversing graph data is great, but you will need a strategy
 for finding the starting point, or points, in your graph from which to begin. This chapter covers these options. You will
 begin by looking at the manual (legacy) indexing options, before moving on to the built-in indexing options available from
 Neo4j 2.0 onward.

 Chapter 6 introduces Cypher, Neo4j’s human-readable query language. The nature of Cypher is explained, its basic syntax for graph operations
 is demonstrated, and advanced features that can be useful in day-to-day development and maintenance of Neo4j databases are
 also covered.

 Chapter 7 focuses on one of the unique selling points of Neo4j in the NoSQL space—the fact that it fully supports ACID-based transactions,
 providing examples of different uses as well as taking a more in-depth look at certain aspects.

 While chapter 4 provides your initial foray into the world of traversals, writing efficient traversals is the key to successfully querying
 graph data. In chapter 8 we dig deeper into the inner workings of the Traversal API so you can learn how to solve the most complex graph problems
 in an efficient manner with the native API.

 Chapter 9 looks at Spring Data Neo4j library (SDN), the object graph-mapping library. Though not an official Neo4j offering, this chapter
 focuses on demonstrating how the Neo4j-specific open source framework can be used as a library to provide a robust and seamless
 mapping experience between a rich object graph model and data backed by Neo4j. Once again our trusty social network of users
 and their favorite movies is used to demonstrate these points.

 Chapter 10 explores the two main usage modes in Neo4j, namely embedded and server. Much of the book has focused on demonstrating core
 concepts using the embedded mode. This chapter additionally introduces the server mode, which can be used by just about any
 client, and explores each mode in a bit more depth, weighing the pros and cons of each, including how to get the most out
 of your server if you choose to use this option.

 Chapter 11 finishes off with an overview of the high-level Neo4j architecture. Framed with this knowledge, the chapter explores what
 should be considered when you want to take Neo4j to production, including scaling and other requirements for making Neo4j
 highly available, finishing off with instructions for how to back up and restore your database should it be required.

 The four appendixes guide you through installing, setting up, and running Neo4j, Maven, and SDN, and offer guidance for seeking
 more help.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code.

 Most of the code shown in the book can be found in various forms in the sample source code that accompanies it. The sample
 code can be downloaded free of charge from the Manning website at www.manning.com/Neo4jinAction, as well as at https://github.com/opencredo/neo4j-in-action.

 The sample code is structured as a set of JUnit style tests that aim to highlight and/or demonstrate the particular code under
 discussion. Instructions for how you can run the sample code are provided in appendix B.

Author Online forum

 Purchase of Neo4j in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/Neo4jinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the AO remain voluntary (and unpaid). We suggest you ask the authors challenging questions lest their
 interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 ALEKSA VUKOTIC started out as a data management practice lead at Open Credo, and now works as the Head of Platform Development at Noble
 Group. Aleksa is a software architect and developer, agile advocate, author, and trainer, and has been a developer on a number
 of Neo4j projects that leverage the graph-data model to solve complex access control list and recommendation engine problems.

 NICKI WATT is a lead consultant at Open Credo. Pragmatic, hands on, and a techie at heart, she’s a problem solver who enjoys using “the
 right tool for the job.” Nicki has been involved on various projects using Neo4j and other open source tools and frameworks,
 including insight and recommendation engine-based problems. She’s also a contributor on the Spring Data Neo4j project.

 TAREQ ABEDRABBO is the CTO of Open Credo. Tareq has a strong interest in programming languages, ranging from Scala and Python to Google Go.
 He has expert knowledge in a number of NoSQL technologies, including Neo4j, MongoDB, and Redis. Tareq has been actively involved
 with the Spring project since the early days, and has been a committer on Spring Web Services.

 DOMINIC FOX is a consultant at Open Credo, with a particular interest in translating the insights of programming language theory into
 practice. His varied career as a developer has included work in the domains of document management, telecommunications, and
 finance, and also involves training people in Neo4j. Constant throughout his career has been a desire to build tools and libraries
 that make the everyday tasks of programming more intuitive and reliable.

 JONAS PARTNER is CEO of Open Credo, a service partner of Neo Technology, and an expert in solving complex data-centric problems. He’s also
 the coauthor of Spring Integration in Action (Manning, 2012).

About the Cover Illustration

 The figure on the cover of Neo4j in Action is captioned a “Man from Šibenik, Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of Croatian
 traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia,
 in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in
 the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
 The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of
 the costumes and of everyday life.

 Šibenik, unlike other cities along the Adriatic coast which were established by Greeks, Illyrians, and Romans, was founded
 by Croats. It is the oldest native Croatian town on the eastern shores of the Adriatic. The figure on the cover is wearing
 red woolen pants and a red woolen jacket over a black vest, all richly embroidered in the blue and green colors typical for
 this region.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Introduction to Neo4j

 What is Neo4j? What is it good for? Is it the right database for your problem domain and what kind of things can it do? In
 part 1 of Neo4j In Action, we’ll answer these questions and more.

 Chapter 1 introduces general graph database concepts, and begins to explore some of Neo4j’s key aspects. Chapter 2 continues looking at general graph-related problems and domains, with a focus on graph data modeling techniques and approaches
 for various circumstances. Chapters 3 to 5 are where we really start getting our hands dirty. Using an example social network of users and the movies they like, we
 begin exploring Neo4j starting with how to use the core API to perform the basic functionality of creating and connecting
 nodes, and techniques for identifying different types of nodes. Traversing graph data is also a key feature of Neo4j and chapter 4 addresses this by investigating the Neo4j Traversal API.

 Chapter 5 introduces the various “indexing” strategies and options available in Neo4j, beginning by looking at the manual (legacy)
 option, before moving on to the built-in indexing option available from Neo4j 2.0 onward.

Chapter 1. A case for a Neo4j database

 This chapter covers

 	Use cases for Neo4j graph databases

 	How Neo4j compares with more traditional relational databases

 	Neo4j’s place in the larger NoSQL world

 	Key characteristics of Neo4j

 Computer science is closely related to mathematics, with a lot of its concepts originally coming from mathematical philosophy.
 Algorithms, cryptography, computation, automation, and even basic theories of mathematical logic and Boolean algebra are all
 mathematical concepts that closely couple these two disciplines. Another mathematical topic can often be found in computer
 science books and articles: graph theory. In computer science, graphs are used to represent specific data structures, such as organizational hierarchies, social networks,
 and processing flows. Typically, during the software design phase, the structures, flows, and algorithms are described with
 graph diagrams on a whiteboard. The object-oriented structure of the computer system is modeled as a graph as well, with inheritance,
 composition, and object members.

 But although graphs are used extensively during the software development process, developers tend to forget about graphs when
 it comes to data persistence. We try to fit the data into relational tables and columns, and to normalize and renormalize
 its structure until it looks completely different from what it’s trying to represent.

 An access control list is one example. This is a problem solved over and over again in many enterprise applications. You’d
 typically have tables for users, roles, and resources. Then you’d have many-to-many tables to map users to roles, and roles
 to resources. In the end, you’d have at least five relational tables to represent a rather simple data structure, which is
 actually a graph. Then you’d use an object-relational mapping (ORM) tool to map this data to your object model, which is also
 a graph.

 Wouldn’t it be nice if you could represent the data in its natural form, making mappings more intuitive, and skipping the
 repeated process of “translating” the data to and from a storage engine? Thanks to graph databases, you can. Graph databases
 use the graph model to store data as a graph, with a structure consisting of vertices and edges, the two entities used to model any graph.

 In addition, you can use all the algorithms from the long history of graph theory to solve graph problems more efficiently
 and in less time than using relational database queries.

 Once you’ve read this book, you’ll be familiar with Neo4j, one of the most prominent graph databases available. You’ll learn
 how a Neo4j graph database helps you model and solve graph problems in a better-performing and more elegant way, even when
 working with large data sets.

1.1. Why Neo4j?

 Why would you use a graph database, or more specifically Neo4j, as your database of choice? As mentioned earlier, it’s often
 quite natural for people to logically try to model, or describe, their particular problem domain using graph-like structures
 and concepts, even though they may not use a graph database as their ultimate data store. Choosing the right data store (or
 data stores—plural, in today’s polyglot persistence world) to house your data can make your application soar like an eagle;
 it can come crashing to the ground just as easily if the wrong choice is made.

 A good way to answer this question, then, is to take a problem that naturally fits very well into the graph-based world and
 compare how a solution using Neo4j fares against one using a different data store. For comparison purposes, we’ll use a traditional
 relational database, as this is generally the lowest common denominator for most people when it comes to understanding data
 storage options. More importantly, it’s what most people have turned to—and sometimes still turn to—to model such problems.

 The example we’re going to explore is a social network—a set of users who can be friends with each other. Figure 1.1 illustrates the social network, where users connected with arrows are friends.

 Figure 1.1. Users and their friends represented as a graph data structure

 [image:]

 	

 Note

 To be semantically correct, the friendship relationship should be bidirectional. In Neo4j, bidirectionality is modeled using
 two relationships, with one direction each. (In Neo4j, each relationship must have a well-defined direction, but more on that
 later.) So you should see two separate friendship relationships for each pair of friends, one in each direction. For simplicity
 we have modeled friendships as single, direct relationships. In chapters 2 and 3 you’ll learn why this data model is actually more efficient in Neo4j.

 	

 Let’s look at the relational model that would store data about users and their friends.

1.2. Graph data in a relational database

 In a relational database, you’d typically have two relational tables for storing social network data: one for user information,
 and another for the relationships between users (see figure 1.2).

 Figure 1.2. SQL diagram of tables representing user and friend data

 [image:]

 The following listing shows the SQL script for creating tables using a MySQL database.

 Listing 1.1. SQL script defining tables for social network data

 [image:]

 Table t_user contains columns with user information, while table t_user_friend simply has two columns referencing table t_user
 using a foreign key relation. The primary key and foreign key columns have indexes for quicker lookup operations, a strategy
 typically employed when modeling relational databases.

 1.2.1. Querying graph data using MySQL

 How would you go about querying relational data? Getting the count for direct friends of a particular user is quite straightforward.
 A basic select query such as the following would do the trick:

 select count(distinct uf.*) from t_user_friend uf where uf.user_1 = ?

 	

 Note

 We’re counting the friends in all examples, so we don’t overload the CPU or memory by loading the actual data.

 	

 How about finding all friends of a user’s friends? This time you’d typically join the t_user_friend table with itself before
 querying:

 select count(distinct uf2.*) from t_user_friend uf1
[image:] inner join t_user_friend uf2 on uf1.user_1 = uf2.user_2
[image:] where uf1.user_1 = ?

 Popular social networks usually have a feature where they suggest people from your friendship network as potential friends
 or contacts, up to a certain degree of separation, or depth. If you wanted to do something similar to find friends of friends
 of friends of a user, you’d need another join operation:

 select count(distinct uf3.*) from t_user_friend uf1
[image:] inner join t_user_friend uf2 on uf1.user_1 = uf2.user_2
[image:] inner join t_user_friend uf3 on uf2.user_1 = uf3.user_2
[image:] where uf1.user_1 = ?

 Similarly, to iterate through a fourth level of friendship, you’d need four joins. To get all connections for the famous six
 degrees of separation problem, six joins would be required.

 There’s nothing unusual about this approach, but there’s one potential problem: although you’re only interested in friends
 of friends of a single user, you have to perform a join of all data in the t_user_friend table, and then discard all rows
 that you’re not interested in. On a small data set, this wouldn’t be a big concern, but if your social network grows large,
 you could start running into serious performance problems. As you’ll see, this can put a huge strain on your relational database
 engine.

 To illustrate the performance of such queries, we ran the friends-of-friends query a few times against a small data set of
 1,000 users, but increased the depth of the search with each invocation and recorded the results each time. On a small data
 set of 1,000 users, where each user has on average 50 friends, table t_user contains 1,000 records, whereas table t_user_friend
 contains 1,000 × 50 = 50,000 records.

 At each depth, we ran the query 10 times—this was simply to warm up any caches that could help with performance. The fastest
 execution time for each depth was recorded. No additional database performance tuning was performed, apart from column indexes
 defined in the SQL script from listing 1.1. Table 1.1 shows the results of the experiment.

 Table 1.1. Execution times for multiple join queries using a MySQL database engine on a data set of 1,000 users

 	
 Depth

 	
 Execution time (seconds) for 1,000 users

 	
 Count result

 	2
 	0.028
 	~900

 	3
 	0.213
 	~999

 	4
 	10.273
 	~999

 	5
 	92.613
 	~999

 	

 Note

 All experiments were executed on an Intel i7–powered commodity laptop with 8 GB of RAM, the same computer that was used to
 write this book.

 	

 	

 Note

 With depths 3, 4, and 5, a count of 999 is returned. Due to the small data set, any user in the database is connected to all
 others.

 	

 As you can see, MySQL handles queries to depths 2 and 3 quite well. That’s not unexpected—join operations are common in the relational world, so most database engines are designed and tuned with this in mind. The use
 of database indexes on the relevant columns also helped the relational database to maximize its performance of these join queries.

 At depths 4 and 5, however, you see a significant degradation of performance: a query involving 4 joins takes over 10 seconds
 to execute, while at depth 5, execution takes way too long—over a minute and a half, although the count result doesn’t change.
 This illustrates the limitation of MySQL when modeling graph data: deep graphs require multiple joins, which relational databases
 typically don’t handle too well.

 	

 Inefficiency of SQL joins
 To find all a user’s friends at depth 5, a relational database engine needs to generate the Cartesian product of the t_user_friend
 table five times. With 50,000 records in the table, the resulting set will have 50,0005 rows (102.4 × 1021), which takes quite a lot of time and computing power to calculate. Then you discard more than 99% to return the just under
 1,000 records that you’re interested in!

 	

 As you can see, relational databases are not so great for modeling many-to-many relationships, especially in large data sets.
 Neo4j, on the other hand, excels at many-to-many relationships, so let’s take a look at how it performs with the same data
 set. Instead of tables, columns, and foreign keys, you’re going to model users as nodes, and friendships as relationships
 between nodes.

1.3. Graph data in Neo4j

 Neo4j stores data as vertices and edges, or, in Neo4j terminology, nodes and relationships. Users will be represented as nodes, and friendships will be represented as relationships between user nodes. If you take
 another look at the social network in figure 1.1, you’ll see that it represents nothing more than a graph, with users as nodes and friendship arrows as relationships.

 There’s one key difference between relational and Neo4j databases, which you’ll come across right away: data querying. There
 are no tables and columns in Neo4j, nor are there any SQL-based select and join commands. So how do you query a graph database?

 The answer is not “write a distributed MapReduce function.” Neo4j, like all graph databases, takes a powerful mathematical
 concept from graph theory and uses it as a powerful and efficient engine for querying data. This concept is graph traversal, and it’s one of the main tools that makes Neo4j so powerful for dealing with large-scale graph data.

 1.3.1. Traversing the graph

 The traversal is the operation of visiting a set of nodes in the graph by moving between nodes connected with relationships. It’s a fundamental
 operation for data retrieval in a graph, and as such, it’s unique to the graph model. The key concept of traversals is that
 they’re localized—querying the data using a traversal only takes into account the data that’s required, without needing to
 perform expensive grouping operations on the entire data set, like you do with join operations on relational data.

 Neo4j provides a rich Traversal API, which you can employ to navigate through the graph. In addition, you can use the REST
 API or Neo4j query languages to traverse your data. We’ll dedicate much of this book to teaching you the principles of and
 best practices for traversing data with Neo4j.

 To get all the friends of a user’s friends, run the code in the following listing.

 Listing 1.2. Neo4j Traversal API code for finding all friends at depth 2

 TraversalDescription traversalDescription =
[image:] Traversal.description()
[image:] .relationships("IS_FRIEND_OF", Direction.OUTGOING)
[image:] .evaluator(Evaluators.atDepth(2))
[image:] .uniqueness(Uniqueness.NODE_GLOBAL);
Iterable<Node> nodes = traversalDescription.traverse(nodeById).nodes();

 Don’t worry if you don’t understand the syntax of the code snippet in listing 1.2—everything will be explained slowly and thoroughly in the next few chapters. Figure 1.3 illustrates the traversal of the social network graph, based on the preceding traversal description.

 Figure 1.3. Traversing the social network graph data

 [image:]

 Before the traversal starts, you select the node from which the traversal will start (node X in figure 1.3). Then you follow all the friendship relationships (arrows) and collect the visited nodes as results. The traversal continues
 its journey from one node to another via the relationships that connect them. The direction of relationships does not affect
 the traversal—you can go up and down the arrows with the same efficiency. When the rules stop applying, the traversal stops.
 For example, the rule can be to visit only nodes that are at depth 1 from the starting node, in which case once all nodes
 at depth 1 are visited, the traversal stops. (The darker arrows in figure 1.3 show the relationships that are followed for this example.)

 Table 1.2 shows the performance metrics for running a traversal against a graph containing the same data that was in the previous MySQL
 database (where the traversal is functionally the same as the queries executed previously on the database, finding friends
 of friends up the defined depth). Again, this is for a data set of 1,000 users with an average of 50 friends per user.

 Table 1.2. The execution times for graph traversal using Neo4j on a data set of 1,000 users

 	
 Depth

 	
 Execution time (seconds) for 1,000 users

 	
 Count result

 	2
 	0.04
 	~900

 	3
 	0.06
 	~999

 	4
 	0.07
 	~999

 	5
 	0.07
 	~999

 	

 Note

 Similar to the MySQL setup, no additional performance tuning was done on the Neo4j instance. Neo4j was running in embedded
 mode, with the default configuration and 2,048 MB of JVM heap memory.

 	

 The first thing to notice is that the Neo4j performance is significantly better for all queries, except the simplest one.
 Only when looking for friends of friends (at depth 2) is the MySQL performance comparable to the performance of a Neo4j traversal.
 The traversal of friends at depth 3 is four times faster than the MySQL counterpart. When performing a traversal at depth
 4, the results are five orders of magnitude better. The depth 5 results are 10 million times faster for the Neo4j traversal
 compared to the MySQL query!

 Another conclusion that can be made from the results in table 1.2 is that the performance of the query degrades only slightly with the depth of the traversal when the count of nodes returned
 remains the same. The MySQL query performance degrades with the depth of the query because of the Cartesian product operations
 that are executed before most of the results are discarded. Neo4j keeps track of the nodes visited, so it can skip nodes it’s
 visited before and therefore significantly improve performance.

 To find all friends at depth 5, MySQL will perform a Cartesian product on the t_user_friend table five times, resulting in
 50,0005 records, out of which all but 1,000 are discarded. Neo4j will simply visit nodes in the database, and when there are no more
 nodes to visit, it will stop the traversal. That is why Neo4j can maintain constant performance as long as the number of nodes
 returned remains the same, whereas there’s a significant degradation in performance when using MySQL queries.

 	

 Note

 Graph traversals perform significantly better than the equivalent MySQL queries (thousands of times better with traversal
 depths of 4 and 5). At the same time, the traversal performance does not decrease dramatically with the depth—the traversal
 at depth 5 is only 0.03 seconds slower than the traversal at depth 2. The performance of the most complex MySQL queries is
 more than 10,000 times slower than the simple ones.

 	

 But how does this graphing approach scale? To get the answer, let’s repeat the experiment with a data set of 1 million users.

1.4. SQL joins versus graph traversal on a large scale

 For this experiment, we used exactly the same data structures as before; the only difference was the amount of data.

 In MySQL we had 1,000,000 records in the t_user table, and approximately 1,000,000 × 50 = 50,000,000 records in the t_user_friend
 table. We ran the same four queries against this data set (friends at depths 2, 3, 4, and 5). Table 1.3 shows the collected results for the performance of SQL queries in this case.

 Table 1.3. The execution times for multiple join queries using a MySQL database engine on a data set of 1 million users

 	
 Depth

 	
 Execution time (seconds) for 1 million users

 	
 Count result

 	2
 	0.016
 	~2,500

 	3
 	30.267
 	~125,000

 	4
 	1,543.505
 	~600,000

 	5
 	Not finished
 	—

 Comparing these results to the MySQL results for a data set of 1,000 users, you can see that the performance of the depth
 2 query has stayed the same, which can be explained by the design of the MySQL engine handling table joins efficiently using indexes. Queries at depths 3 and 4 (which use 3 and
 4 join operations, respectively) demonstrate much worse results, by at least two orders of magnitude. The SQL query for all friends
 at depth 5 did not finish in the hour we ran the script.

 	

 Note

 To store the large amount of data required for these examples, a significant amount of disk space is required. To generate
 the sample data and run examples against it, you’ll need in excess of 10 GB of disk space available.

 	

 These results clearly show that the MySQL relational database is optimized for single join queries, even on large data sets. The performance of multiple join queries on large data sets degrades significantly, to the point that some queries are not even executable (for example, friends
 at depth 5 for a data set of 1 million users).

 	

 Why are relational database queries so slow?
 The results in table 1.3 are somewhat expected, given the way join operations work. As we discussed earlier, each join creates a Cartesian product of all potential combinations of rows, then filters out those that don’t match the where

