

 [image: cover]

 Struts 2 in Action

 Don Brown, Chad Michael Davis & Scott Stanlick

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 Sound View Court 3B fax: (609) 877-8256
 Greenwich, CT 06830 email: orders@manning.com

 ©2008 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Benjamin Berg
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

Dedication

 To world peace and a global redistribution of prosperity

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Title

 About the Cover Illustration

 1. Struts 2: a brand new framework

 Chapter 1. Struts 2: the modern web application framework

 Chapter 2. Saying hello to Struts 2

 2. Core concepts: actions, interceptors, and type conversion

 Chapter 3. Working with Struts 2 actions

 Chapter 4. Adding workflow with interceptors

 Chapter 5. Data transfer: OGNL and type conversion

 3. Building the view: tags and results

 Chapter 6. Building a view: tags

 Chapter 7. UI component tags

 Chapter 8. Results in detail

 4. Improving your application

 Chapter 9. Integrating with Spring and Hibernate/JPA

 Chapter 10. Exploring the validation framework

 Chapter 11. Understanding internationalization

 5. Advanced topics and best practices

 Chapter 12. Extending Struts 2 with plug-ins

 Chapter 13. Best practices

 Chapter 14. Migration from Struts Classic

 Chapter 15. Advanced topics

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Title

 About the Cover Illustration

 1. Struts 2: a brand new framework

 Chapter 1. Struts 2: the modern web application framework

 1.1. Web applications: a quick study

 1.1.1. Using the Web to build applications

 1.1.2. Examining the technology stack

 1.1.3. Surveying the domain

 1.2. Frameworks for web applications

 1.2.1. What’s a framework?

 1.2.2. Why use a framework?

 1.3. The Struts 2 framework

 1.3.1. A brief history

 1.3.2. Struts 2 from 30,000 feet: the MVC pattern

 1.3.3. How Struts 2 works

 1.4. Summary

 Chapter 2. Saying hello to Struts 2

 2.1. Declarative architecture

 2.1.1. Two kinds of configuration

 2.1.2. Two mechanisms for declaring your architecture

 2.1.3. Intelligent defaults

 2.2. A quick hello

 2.2.1. Deploying the sample application

 2.2.2. Exploring the HelloWorld application

 2.3. HelloWorld using annotations

 2.4. Summary

 2. Core concepts: actions, interceptors, and type conversion

 Chapter 3. Working with Struts 2 actions

 3.1. Introducing Struts 2 actions

 3.1.1. What does an action do?

 3.2. Packaging your actions

 3.2.1. The Struts 2 Portfolio application

 3.2.2. Organizing your packages

 3.2.3. Using the components of the struts-default package

 3.3. Implementing actions

 3.3.1. The optional Action interface

 3.3.2. The ActionSupport class

 3.4. Transferring data onto objects

 3.4.1. Object-backed JavaBeans properties

 3.4.2. ModelDriven actions

 3.4.3. Last words on using domain objects for data transfer

 3.5. File uploading: a case study

 3.5.1. Getting built-in support via the struts-default package

 3.5.2. What does the fileUpload interceptor do?

 3.5.3. Looking at the Struts 2 Portfolio example code

 3.6. Summary

 Chapter 4. Adding workflow with interceptors

 4.1. Why intercept requests?

 4.1.1. Cleaning up the MVC

 4.1.2. Reaping the benefits

 4.1.3. Developing interceptors

 4.2. Interceptors in action

 4.2.1. The guy in charge: ActionInvocation

 4.2.2. How the interceptors fire

 4.3. Surveying the built-in Struts 2 interceptors

 4.3.1. Utility interceptors

 4.3.2. Data transfer interceptors

 4.3.3. Workflow interceptors

 4.3.4. Miscellaneous interceptors

 4.3.5. Built-in stacks

 4.4. Declaring interceptors

 4.4.1. Declaring individual interceptors and interceptor stacks

 4.4.2. Mapping interceptors to actions

 4.4.3. Setting and overriding parameters

 4.5. Building your own interceptor

 4.5.1. Implementing the Interceptor interface

 4.5.2. Building the AuthenticationInterceptor

 4.6. Summary

 Chapter 5. Data transfer: OGNL and type conversion

 5.1. Data transfer and type conversion: common tasks of the web application domain

 5.2. OGNL and Struts 2

 5.2.1. What OGNL does

 5.2.2. How OGNL fits into the framework

 5.3. Built-in type converters

 5.3.1. Out-of-the-box conversions

 5.3.2. Mapping form field names to properties with OGNL expressions

 5.4. Customizing type conversion

 5.4.1. Implementing a type converter

 5.4.2. Converting between Strings and Circles

 5.4.3. Configuring the framework to use our converter

 5.5. Summary

 3. Building the view: tags and results

 Chapter 6. Building a view: tags

 6.1. Getting started

 6.1.1. The ActionContext and OGNL

 6.1.2. The ValueStack: a virtual object

 6.2. An overview of Struts tags

 6.2.1. The Struts 2 tag API syntax

 6.2.2. Using OGNL to set attributes on tags

 6.3. Data tags

 6.3.1. The property tag

 6.3.2. The set tag

 6.3.3. The push tag

 6.3.4. The bean tag

 6.3.5. The action tag

 6.4. Control tags

 6.4.1. The iterator tag

 6.4.2. The if and else tags

 6.5. Miscellaneous tags

 6.5.1. The include tag

 6.5.2. The URL tag

 6.5.3. The i18n and text tags

 6.5.4. The param tag

 6.6. Using JSTL and other native tags

 6.7. A brief primer for the OGNL expression language

 6.7.1. What is OGNL?

 6.7.2. Expression language features commonly used in Struts 2

 6.7.3. Advanced expression language features

 6.8. Summary

 Chapter 7. UI component tags

 7.1. Why we need UI component tags

 7.1.1. More than just form elements

 7.2. Tags, templates, and themes

 7.2.1. Tags

 7.2.2. Templates

 7.2.3. Themes

 7.3. UI Component tag reference

 7.3.1. Common attributes

 7.3.2. Simple components

 7.3.3. Collection-backed components

 7.3.4. Bonus components

 7.4. Summary

 Chapter 8. Results in detail

 8.1. Life after the action

 8.1.1. Beyond the page: how to use custom results to build Ajax applications with Struts 2

 8.1.2. Implementing a JSON result type

 8.2. Commonly used result types

 8.2.1. The RequestDispatcher, a.k.a. dispatcher

 8.2.2. The ServletRedirectResult, a.k.a. redirect

 8.2.3. The ServletActionRedirectResult, a.k.a. redirectAction

 8.3. JSP alternatives

 8.3.1. VelocityResult, a.k.a. velocity

 8.3.2. FreemarkerResult, a.k.a. freemarker

 8.4. Global results

 8.5. Summary

 4. Improving your application

 Chapter 9. Integrating with Spring and Hibernate/JPA

 9.1. Why use Spring with Struts 2?

 9.1.1. What can dependency injection do for me?

 9.1.2. How Spring manages objects and injects dependencies

 9.1.3. Using interfaces to hide implementations

 9.2. Adding Spring to Struts 2

 9.2.1. Letting Spring manage the creation of actions, interceptors, and results

 9.2.2. Leveraging autowiring to inject dependencies into actions, interceptors, and results

 9.3. Why use the Java Persistence API with Struts 2?

 9.3.1. Setting your project up for JPA with Hibernate

 9.3.2. Coding Spring-managed JPA

 9.4. Summary

 Chapter 10. Exploring the validation framework

 10.1. Getting familiar with the validation framework

 10.1.1. The validation framework architecture

 10.1.2. The validation framework in the Struts 2 workflow

 10.2. Wiring your actions for validation

 10.2.1. Declaring your validation metadata with ActionClass-validations.xml

 10.2.2. Surveying the built-in validators

 10.3. Writing a custom validator

 10.3.1. A custom validator to check password strength

 10.3.2. Using our custom validator

 10.4. Validation framework advanced topics

 10.4.1. Validating at the domain object level

 10.4.2. Using validation context to refine your validations

 10.4.3. Validation inheritance

 10.4.4. Short-circuiting validations

 10.4.5. Using annotations to declare your validations

 10.5. Summary

 Chapter 11. Understanding internationalization

 11.1. The Struts 2 framework and Java i18n

 11.1.1. Retrieving localized text with ResourceBundle and Locale

 11.1.2. How Struts 2 can ease the pain of i18n

 11.2. A Struts 2 i18n demo

 11.2.1. A quick demo of Struts 2 i18n

 11.2.2. A quick look behind the scenes

 11.3. Struts 2 i18n: the details

 11.3.1. Struts 2 default TextProvider ResourceBundle location algorithm

 11.3.2. Retrieving message texts from your bundles

 11.3.3. Using the i18n tag to specify a bundle

 11.3.4. Parameterizing your localized texts

 11.3.5. Formatting dates and numbers

 11.4. Overriding the framework’s default locale determination

 11.4.1. Letting the user interactively set the locale

 11.4.2. Programmatically setting the locale

 11.5. Summary

 5. Advanced topics and best practices

 Chapter 12. Extending Struts 2 with plug-ins

 12.1. Plug-in overview

 12.1.1. How to find plug-ins

 12.2. Common plug-ins

 12.2.1. SiteMesh

 12.2.2. Tiles

 12.2.3. JFreeChart

 12.3. Internal component system

 12.3.1. Beans

 12.3.2. Constants

 12.3.3. Injection

 12.3.4. Struts internal extension points

 12.4. Writing a breadcrumb plug-in

 12.5. Summary

 Chapter 13. Best practices

 13.1. Setting up your environment

 13.1.1. Setting up your IDE

 13.1.2. Reloading resources

 13.2. Unit-testing your actions

 13.2.1. The advantage of IoC for testing

 13.2.2. JUnit and the tests

 13.2.3. Testing validation.xml files

 13.3. Maximizing reuse

 13.3.1. Componentization with the component tag

 13.3.2. Leveraging the templated tags

 13.3.3. Connecting the UI-to-object dots

 13.4. Advanced UI tag usage

 13.4.1. Overriding existing templates

 13.4.2. Writing custom templates

 13.4.3. Writing custom themes

 13.5. Summary

 Chapter 14. Migration from Struts Classic

 14.1. Translating Struts Classic knowledge

 14.1.1. Actions

 14.1.2. What happened to ActionForms?

 14.1.3. Switching tag libraries

 14.1.4. Breaking up message resources

 14.2. Converting by piecemeal

 14.2.1. Eating an elephant a piece at a time

 14.2.2. The action mappings

 14.2.3. Where the action meets the form

 14.2.4. Turn the page

 14.2.5. No speak English

 14.2.6. The data police

 14.2.7. Can we just get along?

 14.3. Summary

 Chapter 15. Advanced topics

 15.1. Advanced action usage

 15.1.1. Alternative method invocation

 15.2. Dynamic method invocation

 15.2.1. Wildcard method selection

 15.2.2. Dynamic workflows

 15.3. Using tokens to prevent duplicate form submits

 15.3.1. Using the <s:token/> form tag

 15.3.2. Exceptions to the token interceptor rule

 15.4. Displaying wait pages automatically

 15.4.1. When users are impatient

 15.5. A single action for CRUD operations

 15.5.1. That CRUD

 15.5.2. Interceptors and interfaces

 15.5.3. Connecting the parts

 15.6. Tiles and Struts 2

 15.6.1. Taking care of the website look and feel

 15.6.2. Configuring the interplay

 15.6.3. Using the declarative architecture

 15.6.4. Preparing web page content with a tiles controller

 15.7. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 In mid-2006, I started a new project. Since in this case I was developing for myself, under the banner of my own company,
 I had the pleasure of making all the technological choices myself. Most of my previous experience had been with Struts 1,
 a framework that proved to me that you wouldn’t want to work without a framework, but no longer convinced me that I was working
 with the best option available. For my new project, I was going to choose one of the new, second-generation web application
 frameworks.

 To be honest, I can no longer recall why I chose Struts 2. I know that I also considered using Spring’s MVC framework, but
 something made me go with Struts 2. I probably chose Struts 2 because I figured it would be more widely in demand in my contract
 work. At any rate, the choice was not that impassioned. But once I started development, I almost couldn’t believe the power
 of this new framework. It’s the perfect blend of a dedication to software engineering, which yields high levels of architectural
 componentization and flexibility, and a willingness to be influenced by the innovations of others. While many people love
 to compare frameworks and quibble over which is best, we think that any of the serious contenders will quickly absorb the
 strengths of other technologies. The Struts 2 commitment to convention over configuration aptly demonstrates this.

 So I was sold on Struts 2 by the time Manning contacted me later that year to see if I was interested in teaming up with Don
 Brown to write a Struts 2 book for their In Action series. I was looking at a busy upcoming year, but this was, as they say, an offer I couldn’t refuse. It’s been a pleasure
 working with Don, but mostly it’s just nice to be able to pick his brain about the details of Struts 2. That alone is worth
 the price of admission.

 Originally, the project was to rewrite Patrick Lightbody and Jason Carreira’s WebWork in Action. The core architecture of Struts 2, as you’ll learn in this book, was taken directly from WebWork in Action. Before any Struts 2 books were available, many developers, myself included, used that book to learn Struts 2. As we started
 working on our book, it became clear that Struts 2, thanks to its large and highly active community, had moved far beyond
 that core. As it turns out, we wrote an entirely new book. Nonetheless, I learned Struts 2 from reading WebWork in Action, so my indebtedness to that book is nontrivial.

 Things moved pretty fast, narratively speaking, from that time. We spent the better part of the next year writing, revising,
 gathering feedback from reviewers and Manning Early Access Program participants, and revising again. At some point, we realized
 the book would never get done if we didn’t get some help. We were lucky to find Scott Stanlick, a metalhead drummer and Struts
 2 activist, to make a contribution of several strong chapters that helped wrap the project up.

 Now the book is done and you have it in your hot little hands. Enjoy. I hope the work we put in pays off by easing your entry
 into the world of Struts 2. Please visit the Manning Author Online forum to give us feedback and share with the community.

 CHAD DAVIS

Acknowledgments

 We’d like to acknowledge all of the people who played important roles in the creation of this book. First of all, the project
 wouldn’t have even started if not for Jackie Carter, Michael Stephens, and Marjan Bace of Manning Publications. After that,
 any coherence that the book may exhibit is largely to the credit of our developmental editor Cynthia Kane. We’d also like
 to thank Benjamin Berg, Dottie Marsico, Mary Piergies, Karen Tegtmeyer, Katie Tennant, Anna Welles, and any other folks at
 Manning whose efforts we’re less aware of than we probably should be.

 We’d also like to thank all of the developers who’ve spent time reading this manuscript and pointing out all of the problems.
 In particular, we’d like to thank our technical reviewer Wes Wannemacher, who went through the manuscript one last time shortly
 before it went to press. The following reviewers proved invaluable in the evolution of this book from manuscript to something
 worth a reader’s investment of time and money: Christopher Schultz, Jeff Cunningham, Rick Evans, Joseph Hoover, Riccardo Audano,
 Matthew Payne, Bill Fly, Nhoel Sangalang, Matt Michalak, Jason Kolter, Patrick Steger, Kiryl Martsinkevich, Maggie Niemann,
 Patrick Dennis, Horaci Macias Viel, Tony Niemann, Peter Pavlovich, Andrew Shannon, Bas Vodde, and Wahid Sadik.

 Finally, we’d like to extend a sincere thank you to the people who participated in the Manning Early Access Program. In particular,
 those who’ve left feedback in the Author Online forum have had a strong impact on the quality of the final printed product.

 And for providing Spanish translations of the text resources, we’d like to thank Matthew Lindsey.

 Thanks to all!

Don Brown

 This book started life as “Struts in Action, Second Edition,” with new material building on the popular first edition by Ted
 Husted. The talented, now former, Manning editor Jackie Carter was at the helm, and my coauthor was the dependable Nick Heudecker.
 We were about two-thirds through writing the book when I timidly admitted to my editor that I had started work on Struts 2.
 Needless to say, the soon to be outdated material was set aside and this new project begun. Along with an updated topic came
 a highly recommended coauthor, Chad Davis, who has proven time and time again to be worth his weight in gold. To help us get
 the book out the door, the energetic Scott Stanlick joined the team and kept things moving along. Many thanks to our development
 editors and production team, who constantly impressed me with their thoroughness and dedication.

 Struts 2 wouldn’t be where it is today without the hard work of the Struts and WebWork communities. It is the product of one
 of the few mergers in the open source world, and its success is a testament to the quality of both communities. In particular,
 thanks to the project founders Craig R. McClanahan (Struts), Rickard Öberg (WebWork 1), and Jason Carreira and Patrick Lightbody
 (WebWork 2) for their vision and follow-through. When it came time to bring the WebWork 2 code into the Apache Struts project
 to jumpstart Struts 2, the core WebWork 2 developers Rene Gielen, Rainer Hermanns, Toby Jee, Alexandru Popescu, and Ian Roughley,
 in addition to Jason and Patrick, put in the hours to make Struts 2 a reality. Thanks to dependable Struts developers like
 Ted Husted, Martin Cooper, James Mitchell, Niall Pemberton, Laurie Harper, Paul Benedict, and Wendy Smoak for helping with
 the integration process. Since then, committers like Bob Lee, Musachy Barroso, Antonio Petrelli, NilsHelge Garli, Philip Luppens,
 Tom Schneider, Matt Raible, Dave Newton, Brian Pontarelli, Wes Wannemacher, and Jeromy Evans have kept the fire going, developing
 key features like the plug-in system, portlet support, convention-based configuration, and many integration plug-ins.

 Finally, my personal thanks to my best friend and wife Julie, and the constant source of distraction (in a good way) that
 is my son, Makoa. Thank you Mom and Dad for teaching me to constantly challenge myself, yet remain balanced. Thanks to Rudy
 Rania at BAE Systems and the Atlassian cofounders Mike Cannon-Brooks and Scott Farquhar for supporting open source and my
 involvement with Struts. Thanks to all the great volunteers at the Apache Software Foundation and thanks to you, the Struts
 community.

Chad Davis

 I would like to begin by thanking my wife Mary, who actually earned money during the past year, thus keeping the mortgage
 paid and food on the table. I’d also like to thank Dr. Coskun Bayrak, who insisted years ago that I apply my writing skills
 to my knowledge of computers, meager as both are. I am also thankful to my mother and father, who somehow convinced me I could
 do pretty much anything. Finally, I’d like to thank both Don Brown and Scott Stanlick for being such great guys, whom I hope
 to meet someday in person.

Scott Stanlick

 I would like to thank the following for helping me procure, endure, and survive this writing gig:

 The infamous Ted Husted for nominating me for the project and Manning’s very own Michael Stephens for connecting the dots
 to make it happen.

 Cynthia Kane and Chad Davis for helping me reach my Gmail free space threshold. It’s amazing how well you can get to know
 people you couldn’t even pick out of a police lineup! Of course, I have no firsthand knowledge of either one of them tangled
 up with the law.

 Dave (d.), Laurie, Wes, and so many others on the mailing lists for helping me solve the coding problems when few others knew
 what the heck I was talking about.

 My wife Jamie Kay for cheerleading me on and picking up the slack all those nights and weekends while this project had me
 holdup in my office writing, cursing, and coding. She quietly took care of everything and never complained once. Norah Jones,
 Neil Young, and Sheryl Crow for easing me back into sanity when I was about to jump. 54th Street Bar & Grill for providing
 the friendliest brews and BBQ during my late dinner breaks. Our heavenly father who brought the warm breeze through my office
 window so many evenings as I sat there writing. The wonderful Japanese oak Pro-Mark drumsticks that stood up during drum therapy.
 My understanding friends who didn’t freak during the year I did not return their calls. The fine baristas at Starbucks and
 the makers of Red Bull for keeping me wired. Advil, Google and Pizza Hut. And you who are now reading our work as you begin
 your journey to Struts 2. I hope this book makes your travel safe and enjoyable.

About This Book

 Welcome to Struts 2! If you’ve picked up this book, we suspect you’re a Java developer working with web applications who’s
 somehow or other heard about Struts 2. Perhaps you’ve worked with the Struts 1 framework in the past, perhaps you’ve worked
 with another framework, or perhaps this is your first step into Java web application development. Whichever path has led you
 here, you’re probably looking for a good introduction to the new Struts 2 framework. This book intends to give you that introduction
 and much more. If you’ve never heard of Struts 2, we cover the basics in enough depth to keep you in tow. If you know what
 Struts 2 does, but want a deeper understanding of how it does it, we’ll provide that too.

 Struts 2 is a Java web application framework. As you know, the Java world is vast and a Struts 2 application may travel far
 and wide in this world of Java. With that said, one of the biggest challenges faced by a Struts 2 book arises from trying
 to determine what content to include. This book could have been three times as long if we’d taken all of the good advice we
 received about what to include. We apologize to those whose course of normal development takes them outside the boundaries
 of our content. Please believe us when we say that we agonized over what to include and what not to include.

 Struts 2 is much more than a revision of the Struts 1 framework. If you hadn’t yet heard anything about Struts 2, you might
 expect, based upon the name, to find a new release of that proven framework. But this is not the case. Its relationship to
 that older framework is based in philosophy rather than in code base. Struts 1 was an action-oriented framework that implemented
 a Model-View-Controller (MVC) separation of concerns in its architecture. Struts 2 is a brand new implementation of those same MVC principles in an action-oriented
 framework. While the general lay of the land will seem familiar to Struts 1 developers, the new framework contains substantial
 architectural differences that serve to clean up the MVC lines and make the development process all that more efficient. We
 cover the new framework from the ground up, taking time to provide a true introduction to this new technology while also taking
 pains to give an inside view.

 The organization of this book aims to walk you through Struts 2 in a sequence of increasing complexity. We start with a couple
 of preliminary chapters that introduce the technological context of the framework, give a high-level overview of the architecture,
 and present a bare-bones HelloWorld sample application to get your environment up and running. After this brief introduction,
 we set off into a series of chapters that cover the core concepts and components of the framework one by one. We take time
 to explain the functionality of each component in depth. We also provide real code examples as we begin the development of
 our full-featured sample application, the Struts 2 Portfolio. Finally, the later chapters provide some advanced techniques
 for tweaking a bit more out of the core components, as well as introducing some advanced features of the framework such as
 plug-ins and Spring integration. The following summarizes the contents chapter by chapter.

Roadmap

 Chapter 1 gets us started gently. We begin with a quick survey of the context in which Struts 2 occurs, including short studies of
 web applications and frameworks. We then take the obligatory architectural look from 30,000 feet. Unless you’re familiar with
 WebWork, the true code base ancestor of Struts 2, this high-level overview of the framework will be your first look at a fairly
 new and interesting way of doing things. Some advanced readers may feel comfortable skipping this first chapter.

 Chapter 2 revisits the architectural principle of the first chapter as demonstrated in a HelloWorld sample application. We do two versions
 of HelloWorld. First, we show how to use XML to declare your Struts 2 architectural metadata; then we do it again using Java
 annotations for that same purpose. The HelloWorld application both reinforces architectural concepts and gives you a skeleton
 Struts 2 application.

 Chapter 3 kicks off the core portion of the book by introducing and thoroughly covering the Struts 2 action component. Actions are
 at the heart of Struts 2, and it wouldn’t make sense to start anywhere else. In addition to revealing the inner workings of
 this core component, we also begin to develop the full-featured Struts 2 Portfolio sample application in this chapter.

 Chapter 4 continues the core topics by introducing one of the most important components of the framework, the interceptor. Struts 2
 uses interceptors to implement almost all of the important functionality of the framework. We make sure you know what they
 are, how they work, and when you should consider implementing your own.

 Chapter 5 finishes off the discussion of framework fundamentals by covering the data transfer mechanisms of the system. One of the
 most innovative features of Struts 2 is its automatic transfer and conversion of data between the HTTP and Java realms. Elusive
 but important players such as OGNL, the ValueStack, and the ActionContext are fully demystified and put to work for the average workingman developer.

 Chapter 6 starts coverage of the view layer aspects of the framework. In particular, this chapter will introduce the Struts 2 Tag API.
 This introduction explains how to use the OGNL expression language to get your hands on the data in the ValueStack and ActionContext, which we met in the previous chapter. The chapter provides a reference to basic tags that you’ll use to pull data into your
 rendering view pages, as well as tags to control the flow of your rendering view pages. Finally, we wrap up the chapter by
 providing a primer to the OGNL expression language, which will prove useful in your daily tag development.

 Chapter 7 introduces the second major chunk of the Struts 2 tags, the Struts 2 UI components. The UI components are the tags that you
 use to build the user interfaces of your web application. As such, they include form components, text field components, and
 the like. But don’t mistake the Struts 2 UI components for your father’s HTML tags, if you know what I mean.

 Chapter 8 rounds out treatment of the view layer of the framework by introducing the result component. This core component highlights
 the flexible nature of Struts 2. With Struts 2’s highly decoupled result component, you can build results independent of the
 actions. After covering the basics, we show what we mean by building a JSON result that can return a JSON stream based on
 the data prepared by any action, regardless of whether that action knows anything about JSON. We use this example to implement
 some Ajax for the Struts 2 Portfolio.

 Chapter 9 begins to show you how to bring your basic Struts 2 application up to industry standards. In particular, we take the opportunity
 to go off topic by showing you how to use Struts 2’s Spring plug-in to bring dependency injection into your application. We
 then up the ante by showing you how to wield that Spring integration to upgrade your application to a JPA/Hibernate persistence
 layer that’s managed by Spring’s wonderful support for those technologies.

 Chapter 10 continues the trend of making your application more refined by showing how to use Struts 2’s validation framework to gain
 metadata-driven validation of your data.

 Chapter 11 introduces the Struts 2 internationalization and localization support, and carefully walks you through all of the fine-grained
 details.

 Chapter 12 introduces the Struts 2 plug-in architecture. Like any well-designed software, you should be able to extend the functionality
 without modifying existing code, and Struts 2 leverages the plug-in architecture for this very purpose. If you use Firefox
 or Eclipse, you already know how this works. The chapter explores the details and shows you how to write a plug-in from scratch.

 Chapter 13 reveals best practices and tips from the trenches. This chapter presents topics that range from optimizing your development
 environment to registering your web features using a technique known as wildcard mappings. Of course, you will find a mishmash
 of useful tips in between.

 Chapter 14 organizes a migration plan to help you transition from Struts 1.x to the exciting Struts Web 2.0 world. This chapter also
 points out similarities and differences between the two Struts versions.

 Chapter 15 reveals techniques that let you leverage the true spirit of the framework. This chapter contains advanced concepts, and should
 be read several times before starting any large-scale Struts 2 project. It is chock-full of techniques that you’ll be happy
 you leveraged as you look back over your code base.

Code conventions

 The following typographical conventions are used throughout the book:

	
Courier typeface is used in all code listings.

 	
Courier typeface is used within text for certain code words.

 	
Italics are used for emphasis and to introduce new terms.

 	Code annotations are used in place of inline comments in the code. These highlight important concepts or areas of the code.
 Some annotations appear with numbered bullets like this [image:] that are referenced later in the text.

Code downloads

 You can download the sample code for this book via a link found on the book’s homepage on the Manning website, www.manning.com/Struts2inAction or www.manning.com/dbrown. This will get you the SampleApplication.zip archive file, which contains a couple of Java Servlet web application archive
 files-WAR files—as well as some documentation of the source. Instructions on how to install the application are contained
 in a README file in that download.

 We should make a couple of points about the source code. First, all of the sample code for the book is contained in the Struts2InAction.war
 web application. Note that this web application uses a modularized structure to present a subapplication, if you will, for
 each of the chapters of the book. Throughout the book, we develop what we refer to as the Struts 2 Portfolio. This is our
 full-featured demonstration of a Struts 2 sample application. We develop the Struts 2 Portfolio incrementally throughout the
 chapters of the book. This means that the Struts2InAction.war web application contains many versions, in increasing power,
 of the Struts 2 Portfolio. The versions are modularized by chapter number.

 Since we recognize that troubleshooting the deployment of a large application like the full Struts2InAction.war can be daunting
 to developers new to the platform, we’ve also provided a HelloWorld.war web application that contains only the HelloWorld
 portion of the larger sample application. This will help readers more quickly get a Struts 2 application up and running without
 the unwarranted complexity of such things as setting up a database.

Author Online

 The purchase of Struts 2 in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/Struts2inAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember are things they discover during self-motivated
 exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it is exampledriven. It encourages the reader to try things out, to play with new code, and to explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Struts 2 in Action is a shepherd from the moors of Bordeaux, “Berger des Landes de Bordeaux.” The region of Bordeaux in southwestern France
 has sunny hills that are ideal for viniculture, as well as many open and marshy fields dotted with small farms and flocks
 of grazing sheep. Perched on his stilts, the shepherd was better able to navigate the boggy fields and tend to his charges.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides
 such as this one were popular, introducing both the tourist and the armchair traveler to the inhabitants of other regions
 of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. Struts 2: a brand new framework

 Struts 2 is indeed a brand new framework. We see it as one of the second-generation web application frameworks. In addition
 to including all the cutting-edge features one would expect from a new framework, Struts 2 introduces many architectural refinements
 that might not be familiar to some developers. All this means that we need to take the time to properly introduce this new
 framework to our readers. The first two chapters of this book serve that purpose.

 In chapter 1, we provide a high-level introduction and overview. Before introducing the framework itself, we sketch the technological
 context in which a Java web application framework such as Struts 2 resides. This information may be old hat for some users,
 and it probably won’t be adequate for full-on newbies. Our purpose is to provide a quick sketch of the technologies you should
 probably be familiar with if you’re going to develop Struts 2 applications. We quickly get past the background stuff and provide
 a thorough high-level overview of the innovative architecture of Struts 2. This well-engineered architecture is definitely
 one of the framework’s hallmarks.

 Once the abstract preliminaries are out of the way, chapter 2 gets us on track to satisfying our in Action pedigree. Chapter 2 brings the concepts from the high-level overview down to earth with the HelloWorld sample application that gets a running
 Struts 2 application in your hands as early as possible. If you can’t even wait until chapter 2, just skip chapter 1!

Chapter 1. Struts 2: the modern web application framework

 This chapter covers

	Building applications on the web

 	Using web frameworks

 	Exploring the Struts 2 framework

 	Introducing interceptors and the ValueStack

Modern web applications are situated in a complex technological context. Some books that you read might be about a single
 subject, such as the Java language, or a specific API or library. This book is about Struts 2, a full-featured web application
 framework for the Java EE platform. As such, this book must take into account the vast array of technologies that converge
 in the space of the Java EE.

 In response to this complexity, we’ll start by outlining some of the most important technologies that Struts 2 depends on.
 Struts 2 provides some powerful boosts to production through convention over configuration, and automates many tasks that were previously accomplished only by the sweat of the developer. But we think true efficiency comes through understanding
 the underlying technological context, particularly as these technologies become more and more obscured by the opacity of scaffolding
 and the like. That said, the first half of this chapter provides a primer on the Struts 2 environment. If you’re comfortable
 with this stuff, feel free to skim or skip these sections entirely.

 After sketching the important figures of the landscape, we’ll move into a high-level overview of Struts 2 itself. We’ll introduce
 how the Model-View-Controller (MVC) fits into the Struts 2 architecture. After that, we’ll go through a more detailed account of what happens when the framework
 processes a request. When we finish up, you’ll be fully ready for chapter 2’s HelloWorld application.

 Let’s get going!

1.1. Web applications: a quick study

 This section provides a rough primer on the technological context of a web application. We’ll cover the technology stack upon
 which web applications sit, and take a quick survey of common tasks that all web applications must routinely accomplish as
 they service their requests. If you’re quite familiar with this information, you could skip ahead to the Struts 2 architectural
 overview in section 1.3, but a quick study of the following sections would still provide an orientation on how we, the authors, view the web application
 domain.

 1.1.1. Using the Web to build applications

 While many Java developers today may have worked on web applications for most of their careers, it’s always beneficial to
 revisit the foundations of the domain in which one is working. A solid understanding of the context in which a framework such
 as Struts 2 is situated provides an intuitive understanding of the architectural decisions made by the framework. Also, establishing
 a common vocabulary for our discussions will make everything easier throughout the book.

 A web application is simply, or not so simply, an application that runs over the Web. With rapid improvements in Internet
 speed, connectivity, and client/server technologies, the Web has become an increasingly powerful platform for building all
 classes of applications, from standard business-oriented enterprise solutions to personal software. The latest iterations
 of web applications must be as full featured and easy to use as traditional desktop applications. Yet, in spite of the increasing
 variety in applications built on the web platform, the core workflow of these applications remains markedly consistent, a
 perfect opportunity for reuse. Frameworks such as Struts 2 strive to release the developer from the mundane concerns of the
 domain by providing a reusable architectural solution to the core web application workflows.

 1.1.2. Examining the technology stack

 We’ll now take a quick look at two of the main components in the technology stack upon which a web application is built. In
 one sense, the Web is a simple affair: as with all good solutions, if it weren’t simple, it probably wouldn’t be successful. Figure 1.1 provides a simple depiction of the context in which Struts 2 is used.

 Figure 1.1. The Java Servlet API exposes the HTTP client/server protocol to the Java platform. Struts 2 is built on top of that.

 [image:]

 As depicted in figure 1.1, Struts 2 sits on top of two important technologies. At the heart of all Struts 2 applications lie the client/server exchanges
 of the HTTP protocol. The Java Servlet API exposes these low-level HTTP communications to the Java language. Although it’s
 possible to write web applications by directly coding against the Servlet API, this is generally not considered a good practice.
 Basically, Struts 2 uses the Servlet API so that you don’t have to. But while it’s a good idea to keep the Servlet API out
 of your Struts 2 code, it seems cavalier to enter into Struts 2 development without some idea of the underlying technologies.
 The next two sections provide concise descriptions of the more relevant aspects of HTTP and Java Servlets.

Hypertext Transfer Protocol (HTTP)

 Most web applications run on top of HTTP. This protocol is a stateless series of client/server message exchanges. Normally,
 the client is a web browser and the server is a web or application server. The client initiates communication by sending a
 request for a specific resource. The resource can be a static HTML document that exists on the server’s local file system,
 or it can be a dynamically generated document with untold complexity behind its creation.

 Much could be said about the HTTP protocol and the variety of ways of doing things in this domain. We’ll limit ourselves to
 the most important implications as seen from the perspective of a web application. We can start by noting that HTTP was not
 originally designed to serve in the capacity that web application developers demand of it. It was meant for requesting and
 serving static HTML documents. All web applications built on HTTP must address this discrepancy.

 For web applications, HTTP has two hurdles to get over. It’s stateless, and it’s text based. Stateless protocols don’t keep
 track of the relationships among the various requests they receive. Each request is handled as if it were the only request
 the server had ever received. The HTTP server keeps no records that would allow it to track and logically connect multiple
 requests from a given client. The server has the client’s address, but it will only be used to return the currently requested
 document. If the client turns around and requests another document, the server will be unaware of this client’s repeated visits.

 But if we are trying to build more complex web applications with more complicated use cases, this won’t work. Take the simplest,
 most common case of the secure web application. A secure application needs to authenticate its users. To do this, the request
 in which the client sends the user name and password must somehow be associated with all other requests coming from that client
 during that user session. Without the ability to keep track of relationships among various requests, even this introductory use case of modern web applications is impossible. This problem must be addressed by every modern web application.

 Equally as troublesome, HTTP also is text based. Mating a text-based technology to a strongly typed technology such as Java
 creates a significant amount of data-binding work. While in the form of an HTTP request, all data must be represented as text.
 Somewhere along the way, this encoding of data must be mapped onto Java data types. Furthermore, this process must occur at
 both ends of the request-handling process. Incoming request parameters must be migrated into the Java environment, and outgoing
 responses must pull data from Java back into the text-based HTTP response. While this is not rocket science, it can create
 mounds of drudge work for a web application. These tasks are both error-prone and time-consuming.

Java Servlet API

 The Java Servlet API helps alleviate some of the pain. This important technology exposes HTTP to the Java platform. This means
 that Java developers can write HTTP server code against an intuitive object-oriented abstraction of the HTTP client/server
 communications. The central figures in the Servlet API are the servlet, request, and response objects. A servlet is a singleton
 Java object whose whole purpose is to receive requests and return responses after some arbitrary back-end processing. The
 request object encapsulates the various details of the request, including the all-important request parameters as submitted
 via form fields and querystring parameters. The response object includes such key items as the response headers and the output
 stream that will generate the text of the response. In short, a servlet receives a request object, examines its data, does
 the appropriate back-end magic, and then writes and returns the response to the client.

	

Essential Knowledge

 You should know Sun and the Servlet Specification. If you’re unfamiliar with Sun’s way of doing things, here’s a short course.
 Sun provides a specification of a technology, such as the Servlet API. The specifications are generated through a community
 process that includes a variety of interested parties, not the least of which is Sun itself. The specification details the
 obligations and contracts that the API must honor; actual implementations are provided by various third-party vendors. In
 the case of the Servlet Specification, the implementations are servlet containers. These containers can be standalone implementations such as the popular Apache Tomcat, or they can be containers embedded
 in some larger application server. They also run the gamut from open source to fully proprietary. If you’re unfamiliar with
 the Servlet Specification, we recommend reading it. It’s short, to the point, and well written.

	

Before you deploy servlets, you must first package them according to the standards. The basic unit of servlet packaging is
 known as a web application. Though it sounds like a general term, a web application is a specific thing in servlet terminology. The Servlet Specification
 defines a web application as “a collection of servlets, HTML pages, classes, and other resources.” Typically, a web application
 will require several servlets to service its clients’ requests. A web application’s servlets and resources are packaged together in a specific directory
 structure and zipped up in an archive file with a .war extension. A WAR file is a specialized version of the Java JAR file.
 The letters stand for web application archive. When we discuss chapter 2’s HelloWorld application, we’ll see exactly how to lay out a Struts 2 application to these standards.

 Once you’ve packaged the web application, you need to deploy it. Web applications are deployed in servlet containers. A servlet is a special kind of application known as a managed life cycle application. This means that you don’t directly execute a servlet. You deploy it in a container and that container manages its execution
 by invoking the various servlet life cycle methods. When a servlet container receives a request, it must first decide which
 of the servlets that it manages should handle the request. When the container determines which servlet should process a request,
 it invokes that servlet’s service() method, handing it both a request and response object. There are other life cycle methods, but the service() method is responsible for the actual work.

 Figure 1.2 shows the relationship between the key players of the Servlet API: servlets, web applications, and the servlet container.

 Figure 1.2. The organization of the Servlet API: servlets, web applications, and the servlet container

 [image:]

 As you can see, a servlet container can host one or more web applications. In figure 1.2, three web applications have been deployed to a single container. All requests, regardless of which web application they
 ultimately target, must first be handled by the container; it’s the server. The servlet container typically listens on port
 8080 for requests. When a request comes to that port, it must then parse the namespace of the request to discover which web
 application is targeted. From the namespace of the URL, both the web application and the individual servlet targeted therein can be determined. The full details of this parsing
 process aren’t in the scope of this overview, but figure 1.2 gives a rudimentary example of how a URL maps to a specific servlet, assuming the servlet container is listening for requests
 on the localhost network interface.

 In addition to exposing HTTP to the Java language, the Servlet API provides other important high-level functions, such as
 a session mechanism that allows us to correlate groups of requests from a given client. As we explained earlier, HTTP doesn’t
 provide a good sense of state across a set of requests, regardless of whether they all came from the same client. This is
 perhaps the most important benefit, in terms of higher-level functionality, that we receive from servlets. Without it, we’d
 be handling cookies and parsing embedded querystring session keys.

 Apart from the session mechanism, the Servlet API doesn’t provide a lot of higher-level functionality. It directly encapsulates
 the details of the client/sever exchange in a set of object-oriented abstractions. This means that we don’t have to parse
 the incoming HTTP request ourselves. Instead, we receive a tidy request object, already wrapped in Java. We say this to make
 the point that, ultimately, the Servlet API is an infrastructure-level technology in the scope of modern web applications.
 As infrastructure, servlets provide the solid low-level foundation upon which robust web applications can be built. If you
 consider the routine needs of a web application, the Servlet API doesn’t attempt to provide solutions for such things. Now
 that we know what servlets can do, let’s look at what they leave undone. These common tasks of the domain are what a web application
 framework like Struts 2 will need to address.

 1.1.3. Surveying the domain

 With the Servlet API addressing the low-level client/server concerns, we can now focus on the application-level concerns.
 There are many tasks that all web applications must solve as they go about their daily routine of processing requests. Among
 these are

	Binding request parameters to Java types

 	Validating data

 	Making calls to business logic

 	Making calls to the data layer

 	Rendering presentation layer (HTML, and so on)

 	Providing internationalization and localization

We’ll examine each of the concerns briefly in the following paragraphs.

Request Parameter Binding and Data Validation

 Being a text-based protocol, HTTP must represent its request parameters in a text encoding. When these parameters enter our
 application, they must be converted to the appropriate native data type. The Servlet API doesn’t do this for us. The parameters,
 as retrieved from the servlet request objects, are still represented as strings. Converting these strings to Java data types
 is easy enough but can be time-consuming and error-prone. Converting to simple types is tedious; converting to more complex
 types is both complex and tedious. And, of course, the data must also be validated before it can be allowed to enter the system. Note that there are two levels of validation. In the first case, the string must be a
 valid representation of the Java type to which you want to convert; for example, a ZIP code should not have any letters in
 it.

 Then, after the value has been successfully bound to a Java type, the data must be validated against higher-level logic, such
 as whether a provided ZIP code is valid. An application must determine whether the value itself is within the acceptable range
 of values according to the business rules of the application. In addition to checking ZIP code validity, you might verify
 that an email address has the valid structure. Spending too many hours writing this kind of code can certainly make Java Jack
 a dull boy.

Calls to Business Logic and the Data Layer

 Once inside the application, most requests involve calls to business logic and the data layer. While the specifics of these
 calls vary from application to application, a couple of generalizations can be drawn. First, despite variance in the details
 of these calls, they form a consistent pattern of workflow. At its core, the processing of each request consists of a sequence
 of work that must be done. This work is the action of an action-oriented framework. Second, the logic and function of this work represents a clear step outside of the web-related
 domain. If you look back to our list of the common tasks that a web application must do while processing its requests, you’ll
 see that these calls to business logic and the data layer are the only ones that don’t specifically pertain to the fact that
 this is a web application, as opposed to, say, a desktop application. If the application is well designed, the business logic
 and data layers would be completely oblivious to whether they were being invoked from a web application or a desktop application.
 So, while all web applications must make these calls, the notable thing about them is that they are outside the specific workflow
 concerns of a web application.

Presentation Rendering and Internationalization

 It could be said that the presentation tier of a web application is just an HTML document. However, increasing amounts of
 complex JavaScript, fully realized CSS, and other embedded technologies make that no longer accurate. At the same time that
 front-end user interface technology is increasing in complexity, there’s an increasing demand for internationalization. Internationalization
 allows us to build a single web application that can discover the locality of each user and provide locale-specific language
 and formatting of date, time, and currency. Whether an application returns a simple page of static text or a Gmail-esque super
 client, the rendering of the presentation layer is a core domain task of all web applications.

 We’ve outlined the domain tasks that all web applications must address. What now? These tasks, by virtue of being common to
 the processing of nearly every request that comes to a web application, are perfect candidates for reuse. We’d hope that a
 web application framework would provide reusable solutions to such common tasks. Let’s look at how frameworks can help.

1.2. Frameworks for web applications

 Now that we’ve oriented ourselves to the domain in which web applications operate, we can talk about how a framework can alleviate
 the work of building them. To build powerful web applications, most developers need all the help they can get. Unless you want to spend hours upon hours solving
 the tasks outlined in the previous section by hand, you must use a framework, and there are a lot of them. Let’s start with
 a fundamental question.

 1.2.1. What’s a framework?

 A framework is a piece of structural software. We say structural because structure is perhaps a larger goal of the framework than any specific functional requirement. A framework tries to
 make generalizations about the common tasks and workflow of a specific domain. The framework then attempts to provide a platform
 upon which applications of that domain can be more quickly built. The framework does this primarily in two ways. First, the
 framework tries to automate all the tedious tasks of the domain. Second, the framework tries to introduce an elegant architectural
 solution to the common workflow of the domain in question.

	

Definition

 A web application framework is a piece of structural software that provides automation of common tasks of the domain as well as a built-in architectural
 solution that can be easily inherited by applications implemented on the framework.

	

A Framework Automates Common Tasks

 Don’t reinvent the wheel. Any good framework will provide mechanisms for convenient and perhaps automatic solutions to the
 common tasks of the domain, saving developers the effort of reinventing the wheel. Reflecting back on our discussion of the
 common tasks of the web application domain, we can then infer that a web application framework will provide some sort of built-in
 mechanisms for tasks such as converting data from HTTP string representation to Java data types, data validation, separation
 of business and data layer calls from web-related work, internationalization, and presentation rendering. Good frameworks
 provide elegant, if not transparent, mechanisms for relieving the developer of these mundane tasks.

A Framework Provides an Architectural Solution

 While everyone can appreciate automation of tedious tasks, the structural features of frameworks are perhaps more important
 in the big scheme of things. The framework’s structure comes from the workflow abstractions made by the classes and interfaces
 of the framework itself. Being an action-oriented framework, one of the key abstractions at the heart of the Struts 2 architecture
 is the action. We’ll see the others in a few pages. When you build an application on a framework, you are buying into that framework’s
 architecture. Sometimes you can fight against the architectural imperative of the framework, but a framework should offer
 its architecture in a way that makes it hard to refuse. If the architecture of the framework is good, why not let your application
 gracefully inherit that architecture?

 1.2.2. Why use a framework?

 You don’t have to use a framework. You have a few alternatives. For starters, you could forgo a framework altogether. But
 unless your application is quite simple, we suspect that the work involved in rolling your own versions of all the common domain tasks, not to mention solving all the architectural
 problems on your own, will quickly deter you. As the twenty-first century ramps up, various new web application platforms
 boast light-speed development times and agile interfaces. In the world of Java web applications, using a sleek new framework
 is the way to take advantage of these benefits.

 If you want, you could roll your own framework. This is not a bad plan, but it assumes a couple of things. First, it assumes
 you have lots of smart developers. Second, it assumes they have the time and money to spend on a big project that might seem
 off topic from the perspective of the business requirements. Even if you have the rare trinity of smart people, time, and
 money, there are still drawbacks. I’ve worked for a company whose product is built on an in-house framework. The framework
 is not bad, but a couple of glaring points can’t be overlooked. First, new developers will always have to learn the framework
 from the ground up. If you’re using a mainstream framework, there’s a trained work force waiting for you to hire them. Second,
 the in-house framework is unlikely to see elegant revisions that keep up with the pace of industry. In-house frameworks seem
 to be subject to architectural erosion as the years pass, and too many extensions are inelegantly tacked on.

 Ultimately, it’s hard to imagine creating twenty-first century web applications without using a framework of some kind. If
 you have X amount of hours to spend on a project, you might as well spend them on higher-level concerns than common workflow
 and infrastructural tasks. Perhaps it’s not a question of whether to use a framework or not, but of which framework offers
 the solutions you need. With that in mind, it’s time to look at Struts 2 and see what kinds of modern conveniences it offers.

1.3. The Struts 2 framework

 Apache Struts 2 is a brand-new, state-of-the-art web application framework. As we said earlier, Struts 2 isn’t just a new
 release of the older Struts 1 framework. It is a completely new framework, based on the esteemed OpenSymphony WebWork framework.
 By now, you should be tuned in to what a web application framework should offer. In terms of the common domain tasks, Struts
 2 covers the domain well. It handles all the tasks we’ve identified and more. Over the course of the book, you’ll learn how
 to work with the features that address each of those tasks in turn. At this introductory stage, it makes more sense to focus
 on the architectural aspects of the framework. In this section, we’ll see how Struts 2 structures the web application workflow.
 In the next few sections, we’ll look at the roots of Struts 2, see how those roots influence the high-level architecture,
 and take a slightly more detailed look at how the framework handles actual request processing.

 1.3.1. A brief history

 Struts 2 is a second-generation web application framework that implements the Model-View-Controller (MVC) design pattern. Struts 2 is built from the ground up on best practices and proven, community-accepted design patterns. This
 was also true for the first version of Struts. In fact, one of the primary goals of the first Struts was incorporating the MVC pattern from the desktop application world into a web application framework. The resulting pattern
 is occasionally called the Model 2 pattern. This was a critical step in the evolution of well-designed web applications, as it provided the infrastructure for
 easily achieving the MVC separation of concerns. This allowed developers with few resources for such architectural niceties
 to tap into a ready-made best practice solution. Struts 1 can claim responsibility for many of the better-designed web applications
 of the last 10 years.

 At some point, the Struts community became aware of the limitations in the first framework. With such an active community,
 identifying the weak and inflexible points in the framework wasn’t hard to accomplish. Struts 2 takes advantage of the many
 lessons learned to present a cleaner implementation of MVC. At the same time, it introduces several new architectural features
 that make the framework cleaner and more flexible. These new features include interceptors for layering cross-cutting concerns
 away from action logic; annotation-based configuration to reduce or eliminate XML configuration; a powerful expression language,
 Object-Graph Navigation Language (OGNL), that transverses the entire framework; and a mini-MVC–based tag API that supports modifiable and reusable UI components.
 At this point, it’s impossible to do more than name drop. We’ll have plenty of time to fully explore each of these features.
 We need to start with a high-level overview of the framework. First, we’ll look at how Struts 2 implements MVC. Then, we’ll
 look at how the parts of the framework work together when processing a request.

	

Note

 Teaching old dogs new tricks, a.k.a. moving from Struts 1 to Struts 2 — Since we’ve stressed that Struts 2 is truly a new framework, you might be wondering how hard it will be to move from Struts
 1 to Struts 2. There are some things to learn, interceptors and OGNL in particular. But while this is a new framework, it
 is still an action-oriented MVC framework. The whole point of design patterns such as MVC is the reuse of solutions to common
 problems. Reusing solutions at the architectural level provides an easy transferal of experience and knowledge. If you’ve
 worked with Struts 1, you already understand the MVC way of doing things and that knowledge will still be applicable to Struts
 2. Since Struts 2 is an improved implementation of the MVC pattern, we believe that Struts 1 developers will not only find
 it easy to migrate to Struts 2, they’ll find themselves saying, “That’s how it always should’ve been done!”

	

1.3.2. Struts 2 from 30,000 feet: the MVC pattern

 The high-level design of Struts 2 follows the well-established Model-View-Controller design pattern. In this section, we’ll
 tell you which parts of the framework address the various concerns of the MVC pattern. The MVC pattern provides a separation
 of concerns that applies well to web applications. Separation of concerns allows us to manage the complexity of large software
 systems by dividing them into high-level components. The MVC design pattern identifies three distinct concerns: model, view, and controller. In Struts 2, these are implemented by the action, result, and FilterDispatcher, respectively. Figure 1.3 shows the Struts 2 implementation of the MVC pattern to handle the workflow of web applications.

 Figure 1.3. Struts 2 MVC is realized by three core framework components: actions, results, and the FilterDispatcher.

 [image:]

 Let’s take a close look at each part of figure 1.3. We’ll provide a brief description of the duties of each MVC concern and look at how the corresponding Struts 2 component
 fulfills those duties.

Controller—Filterdispatcher

 We’ll start with the controller. It seems to make more sense to start there when talking about web applications. In fact,
 the MVC variant used in Struts is often referred to as a front controller MVC. This means that the controller is out front and is the first component to act in the processing. You can easily see
 this in figure 1.3. The controller’s job is to map requests to actions. In a web application, the incoming HTTP requests can be thought of as
 commands that the user issues to the application. One of the fundamental tasks of a web application is routing these requests
 to the appropriate set of actions that should be taken within the application itself. This controller’s job is like that of
 a traffic cop or air traffic controller. In some ways, this work is administrative; it’s certainly not part of your core business
 logic.

 The role of the controller is played by the Struts 2 FilterDispatcher. This important object is a servlet filter that inspects each incoming request to determine which Struts 2 action should
 handle the request. The framework handles all of the controller work for you. You just need to inform the framework which
 request URLs map to which of your actions. You can do this with XML-based configuration files or Java annotations. We’ll demonstrate
 both of these methods in the next chapter.

	

Note

 Struts 2 goes a long way toward the goal of zero-configuration web applications. Zero-configuration aims at deriving all of an application’s metadata, such as which URL maps to which action,
 from convention rather than configuration. The use of Java annotations plays an important role in this zero-configuration
 scheme. While zero-configuration has not quite been achieved, you can currently use annotations and conventions to drastically
 reduce XML-based configuration.

	

chapter 2’s HelloWorld application will demonstrate both the general architecture and deployment details of Struts 2 web applications.

Model—Action

 Looking at figure 1.3, it’s easy to see that the model is implemented by the Struts 2 action component. But what exactly is the model? I find the
 model the most nebulous of the MVC triad. In some ways, the model is a black box that contains the guts of the application. Everything else is just
 user interface and wiring. The model is the thing itself. In more technical terms, the model is the internal state of the
 application. This state is composed of both the data model and the business logic. From the high-level black box view, the
 data and the business logic merge together into the monolithic state of the application. For instance, if you are logging in to an application, both business logic and data from the database
 will be involved in the authentication process. Most likely, the business logic will provide an authentication method that
 will take the username and password and verify them against some persisted data from the database. In this case, the data
 and the business logic combine to form one of two states, “authenticated” or “unauthenticated.” Neither the data on its own,
 nor the business logic on its own, can produce these states.

 Bearing all of this in mind, a Struts 2 action serves two roles. First, an action is an encapsulation of the calls to business
 logic into a single unit of work. Second, the action serves as a locus of data transfer. It is too early to go into details,
 but we’ll treat the topic in great depth during the course of this book. At this point, consider that an application has any
 number of actions to handle whatever set of commands it exposes to the client. As seen in figure 1.3, the controller, after receiving the request, must consult its mappings and determine which of these actions should handle
 the request. Once it finds the appropriate action, the controller hands over control of the request processing to the action
 by invoking it. This invocation process, conducted by the framework, will both prepare the necessary data and execute the
 action’s business logic. When the action completes its work, it’ll be time to render a view back to the user who submitted
 the request. Toward this end, an action, upon completing its work, will forward the result to the Struts 2 view component.
 Let’s consider the result now.

View—Result

 The view is the presentation component of the MVC pattern. Looking back at figure 1.3, we see that the result returns the page to the web browser. This page is the user interface that presents a representation
 of the application’s state to the user. These are commonly JSP pages, Velocity templates, or some other presentation-layer
 technology. While there are many choices for the view, the role of the view is clear-cut: it translates the state of the application
 into a visual presentation with which the user can interact. With rich clients and Ajax applications increasingly complicating
 the details of the view, it becomes even more important to have clean MVC separation of concerns. Good MVC lays the groundwork
 for easily managing the most complex front end.

	

Note

 One of the interesting aspects of Struts 2 is how well its clean architecture paves the way for new technologies and techniques.
 The Struts 2 result component is a good demonstration of this. The result provides a clean encapsulation of handing off control
 of the processing to another object that will write the response to the client. This makes it easy for alternative responses,
 such as XML snippets or XSLT transformations, to be integrated into the framework.

	

If you look back to figure 1.3, you can see that the action is responsible for choosing which result will render the response. The action can choose from
 any number of results. Common choices are between results that represent the semantic outcomes of the action’s processing,
 such as “success” and “error.” Struts 2 provides out-of-the-box support for using most common view-layer technologies as results.
 These include JSP, Velocity, FreeMarker, and XSLT. Better yet, the clean structure of the architecture ensures that more result
 types can be built to handle new types of responses.

 Since this favored MVC pattern has been around for decades, try visualizing what the MVC playing field would look like if
 the players were in fact nicely separated yet connectible. When I explain this to my students, I call it the Reese’s peanut
 butter cup principle. Is this tasty treat chocolate or peanut butter? After your first bite, you discover it’s both! How could
 you use this peanut butter if all you wanted was a PBJ sandwich? And so it goes with technology: how do you get all the richness
 you desire without actually “combining” the ingredients? Grab some sweets and continue reading to learn about Struts 2 and
 the framework request-processing factory.

 1.3.3. How Struts 2 works

 In this section, we’ll detail processing a request within the framework. As you’ll see, the framework has more than just its
 MVC components. We said that Struts 2 provides a cleaner implementation of MVC. These clean lines are only possible with the
 help of a few other key architectural components that participate in processing every request. Chief among these are the interceptors,
 OGNL, and the ValueStack. We’ll learn what each of these does in the following walkthrough of Struts 2 request processing. Figure 1.4 shows the request processing workflow.

 Figure 1.4. Struts 2 request processing uses interceptors that fire before and after the action and result.

 [image:]

 The first thing we should consider is that the workflow of figure 1.4 still obeys the simpler MVC view of the framework that we saw earlier. In the figure, the FilterDispatcher has already done its controller work by selecting the appropriate action to handle the request. The figure demonstrates what
 really happens when the action is invoked by the controller. As you can see, a few extra parts are added to the MVC basics.
 We’ll explain in the next paragraphs how the interceptors and the ActionContext aid the action and result in their processing of the request.

 Figure 1.4 introduces the following new Struts 2 components: ActionContext, interceptors, the ValueStack, and OGNL. This diagram goes a long way toward showing what really happens in Struts 2. You could say that everything we’ll
 discuss in this book is shown in this diagram. As interceptors come first in the request-processing cycle, we’ll start with
 them. The name seems obvious, but what exactly do they intercept?

Interceptors

 You may have noticed, while studying figure 1.4, that there is a stack of interceptors in front of the action. The invocation of the action must travel through this stack.
 This is a key part of the Struts 2 framework. We’ll devote an entire chapter to this important component later in the book.
 At this time, it is enough to understand that most every action will have a stack of interceptors associated with it. These
 interceptors are invoked both before and after the action, though we should note that they actually fire after the result
 has executed. Interceptors don’t necessarily have to do something both times they fire, but they do have the opportunity.
 Some interceptors only do work before the action has been executed, and others only do work afterward. The important thing
 is that the interceptor allows common, cross-cutting tasks to be defined in clean, reusable components that you can keep separate
 from your action code.

	

Definition

 Interceptors are Struts 2 components that execute both before and after the rest of the request processing. They provide an
 architectural component in which to define various workflow and cross-cutting tasks so that they can be easily reused as well
 as separated from other architectural concerns.

	

What kinds of work should be done in interceptors? Logging is a good example. Logging should be done with the invocation of
 every action, but it probably shouldn’t be put in the action itself. Why? Because it’s not part of the action’s own unit of
 work. It’s more administrative, overhead if you will. Earlier, we charged a framework with the responsibility of providing
 built-in functional solutions to common domain tasks such as data validation, type conversion, and file uploads. Struts 2
 uses interceptors to do this type of work. While these tasks are important, they’re not specifically related to the action
 logic of the request. Struts 2 uses interceptors to both separate and reuse these cross-cutting concerns. Interceptors play
 a huge role in the Struts 2 framework. And while you probably won’t spend a large percentage of your time writing interceptors,
 most developers will find that many tasks are perfectly solved with custom interceptors. As we said, we’ll devote all of chapter 4 to exploring this core component.

The Valuestack and OGNL

 While interceptors may not absorb a lot of your daily development energies, the ValueStack and OGNL will be constantly on your mind. In a nutshell, the ValueStack is a storage area that holds all of the data associated with the processing of a request. You could think of it as a piece
 of scratch paper where the framework does its work while solving the problems of request processing. Rather than passing the
 data around, Struts 2 keeps it in a convenient, central location—the ValueStack.

 OGNL is the tool that allows us to access the data we put in that central repository. More specifically, it is an expression
 language that allows you to reference and manipulate the data on the ValueStack. Developers new to Struts 2 probably ask more questions about the ValueStack and OGNL than anything else. If you’re coming from Struts 1, you’ll find that these are a couple of the more exotic features
 of the new framework. Due to this, and the sheer importance of this duo, we’ll treat them carefully throughout the book. In
 particular, chapters 5 and 6 describe the detailed function of these two framework components.

	

Definition

 Struts 2 uses the ValueStack as a storage area for all application domain data that will be needed during the processing of a request. Data is moved to
 the ValueStack in preparation for request processing, it is manipulated there during action execution, and it is read from there when the
 results render their response pages.

	

The tricky, and powerful, thing about the ValueStack and OGNL is that they don’t belong to any of the individual framework components. Looking back to figure 1.4, note that both interceptors and results can use OGNL to target values on the ValueStack. The data in the ValueStack follows the request processing through all phases; it slices through the whole length of the framework. It can do this because
 it is stored in a ThreadLocal context called the ActionContext.

	

Definition

 OGNL is a powerful expression language (and more) that is used to reference and manipulate properties on the ValueStack.

	

The ActionContext contains all of the data that makes up the context in which an action occurs. This includes the ValueStack but also includes stuff the framework itself will use internally, such as the request, session, and application maps from
 the Servlet API. You can access these objects yourself if you like; we’ll see how later in the book. For now, we just want
 to focus on the ActionContext as the ThreadLocal home of the ValueStack. The use of ThreadLocal makes the ActionContext, and thus the ValueStack, accessible from anywhere in the same thread of execution. Since Struts 2’s processing of each request occurs in a single
 thread, the ValueStack is available from any point in the framework’s handling of a request.

 Typically, it is considered bad form to obtain the contents of the ActionContext yourself. The framework provides many elegant ways to interact with that data without actually touching the ActionContext, or the ValueStack, yourself. Primarily, you’ll use OGNL to do this. OGNL is used in many places in the framework to reference and manipulate data in the ValueStack. For instance, you’ll use OGNL to bind HTML form fields to data objects on the ValueStack for data transfer, and you’ll use OGNL to pull data into the rendering of your JSPs and other result types. At this point,
 you just need to understand that the ValueStack is where your data is stored while you work with it, and that OGNL is the expression language that you, and the framework,
 use to target this data from various parts of the request-processing cycle.

 Now you’ve seen how Struts 2 implements MVC, and you’ve had a brief introduction to all the other important players in the
 processing of actual requests. The next thing we need to do, before getting down to the nuts and bolts of the framework’s
 core components, is to make all of this concrete with a simple HelloWorld application in chapter 2. But first, a quick summary.

1.4. Summary

 We started with a lot of abstract stuff about frameworks and design patterns, but you should now have a good understanding
 of the Struts 2 architecture. If abstraction is not to your taste, you’ll be happy to know that we’ve officially completed
 the theoretical portion of the book. Starting immediately with chapter 2, the book will deal with only the concrete, practical matters of building web applications. But before we move on, let’s
 take a moment to review what we’ve learned.

 We should probably spend a moment to evaluate Struts 2 as a framework. Based upon our understanding of the technological context
 and the common domain tasks, we laid out two responsibilities for a web application framework at the outset of this chapter.
 The first responsibility of a framework is to provide an architectural foundation for web applications. We’ve seen how Struts
 2 does this, and we discussed the design pattern roots that inform the Struts 2 architectural decisions. In particular, we
 have seen that Struts 2 takes the lessons learned from first-generation web application frameworks to implement a brand-new,
 cleaner, MVC-based framework. We have also seen the specific framework components that implement the MVC pattern: the action
 component, the result component, and the FilterDispatcher.

 The other responsibility of frameworks is the automation of many common tasks of the web application domain. These tasks are
 sometimes referred to as cross-cutting concerns because they occur again and again across the execution of a disparate set
 of application-specific actions. Logging, data validation, and other common cross-cutting concerns should be separated from
 the concerns of the action and result. In Struts 2, the interceptor provides an architectural mechanism for removing cross-cutting
 concerns from the core MVC components. As we go further into the book, you’ll see that the framework comes with many built-in
 interceptors to handle all the common tasks of the domain. You’ll see that not only do they handle the bulk of the core framework
 functionality, they also can be just the thing to handle some of your own application-level needs. While you can probably
 avoid writing any interceptors yourself, we hope that the chapter on interceptors will inspire you to write your own.

 We also took a high-level look at the actual request processing of the framework. We saw that each action has a stack of interceptors
 that fire both before and after the action and result have done their work. In addition to the MVC components and the interceptors,
 the ValueStack and the OGNL expression language play critical roles in the storage and manipulation of data within the framework. By now
 you should have a decent grasp of what the framework can do. In the next chapter’s HelloWorld application, you’ll see a concrete
 example of the framework components in action. Once we get that behind us, we’ll move on to explore the core components of
 the framework, starting with chapter 3’s coverage of the Struts 2 action.

Chapter 2. Saying hello to Struts 2

 This chapter covers

	Declaring your architecture

 	Deploying a HelloWorld application

 	Building an XML-based application

 	Using Struts annotations

In the first chapter, we acquainted ourselves with the web application domain, learned how design patterns and frameworks
 help developers do their jobs, and conducted a quick survey of the Struts 2 architecture and request-processing pipeline.
 With that, we’ve now finished the abstract portion of the book. This chapter, which concludes the introductory section of
 the book, provides the practical and concrete details to bring the theoretical concepts from the first chapter down to earth.
 In particular, this chapter will demonstrate the basic Struts 2 architectural components with the HelloWorld sample application.
 This application isn’t intended to demonstrate the full complexity of the framework. As we’ve said, we’ll develop a full-featured
 sample application through the course of the book—the Struts 2 Portfolio application. The purpose of the HelloWorld application
 is just to get a Struts 2 application up and running.

