

 praise for the first edition

 “A comprehensive, clear and very practical guide to making the best use of AWS throughout an application’s lifecycle. Highly recommended for anyone wanting to use AWS for real-life applications!”

 —Alain Couniot, Head of Enterprise Architecture, STIB-MIVB, Belgium

 “Peter’s tome not only dives deep on Lambda, it also covers all the AWS components your apps will need to run serverless. A soup-to-nuts tour de force. Well done!”

 —Sean Hull, Founder, iHeavy, Inc.

 “A great introduction for those using AWS, who want to implement a serverless architecture.”

 —John Huffman, Senior Technical Consultant, Summa Technologies

 “This book is a fantastic introduction to serverless architectures and AWS. I wish every technical book was as well written and easy to read! The book walks you step-by-step through building a video portal, including integrating AWS Lambda, API Gateway, S3, auth0 and Firebase. By the end you feel confident not only that you understand all the pieces and how everything fits together, but also that you are ready to start building your own app.”

 —Kent R. Spillner, Sr. Software Engineer, DRW

 [image:]

 Serverless Architectures on AWS, Second Edition

 Peter Sbarski, Yan Cui, Ajay Nair

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image: Manning_M_small]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Technical development editor:

 	
 Brent Stains

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Niek Palm

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617295423

 dedication

 To my mum and dad, who always supported and encouraged my passion for computing.

 —Peter Sbarski

 To my wife, who always supports and encourages me, and puts up with all my late-night coding sessions.

 —Yan Cui

 To my wife, my kids, my brother, and my parents, thank you for giving me the purpose and time to do this.

 —Ajay Nair

contents

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1 First steps

 1 Going serverless

 1.1 What’s in a name?

 1.2 Understanding serverless architectures

 Service-oriented architecture and microservices

 Implementing architecture the conventional way

 Implementing architecture the serverless way

 1.3 Making the call to go serverless

 1.4 Serverless pros and cons

 1.5 What’s new in this second edition?

 2 First steps to serverless

 2.1 Building a video-encoding pipeline

 A quick note on AWS costs

 Using Amazon Web Services (AWS)

 2.2 Preparing your system

 Setting up your system

 Working with Identity and Access Management (IAM)

 Let’s make a bucket

 Creating an IAM role

 Using AWS Elemental MediaConvert

 Using MediaConvert Role

 2.3 Starting with the Serverless Framework

 Setting up the Serverless Framework

 Bringing Serverless Framework to The 24-Hour Video

 Creating your first Lambda function

 2.4 Testing in AWS

 2.5 Looking at logs

 3 Architectures and patterns

 3.1 Use cases

 Backend compute

 Internet of Things (IoT)

 Data processing and manipulation

 Real-time analytics

 Legacy API proxy

 Scheduled services

 Bots and skills

 Hybrids

 3.2 Patterns

 GraphQL

 Command pattern

 Messaging pattern

 Priority queue pattern

 Fan-out pattern

 Compute as glue

 Pipes and filters pattern

 Part 2 Use cases

 4 Yubl: Architecture highlights, lessons learned

 4.1 The original Yubl architecture

 Scalability problems

 Performance problems

 Long feature delivery cycles

 Why serverless?

 4.2 The new serverless Yubl architecture

 Rearchitecting and rewriting

 The new search API

 4.3 Migrating to new microservices gracefully

 5 A Cloud Guru: Architecture highlights, lessons learned

 5.1 The original architecture

 The journey to 43 microservices

 What is GraphQL

 Moving to GraphQL

 Service discovery

 Security in the BFF world

 5.2 Remnants of the legacy

 6 Yle: Architecture highlights, lessons learned

 6.1 Ingesting events at scale with Fargate

 Cost considerations

 Performance considerations

 6.2 Processing events in real-time

 Kinesis Data Streams

 SQS dead-letter queue (DLQ)

 The Router Lambda function

 Kinesis Data Firehose

 Kinesis Data Analytics

 Putting it altogether

 6.3 Lessons learned

 Know your service limits

 Build with failure in mind

 Batching is good for cost and efficiency

 Cost estimation is tricky

 Part 3 Practicum

 7 Building a scheduling service for ad hoc tasks

 7.1 Defining nonfunctional requirements

 7.2 Cron job with EventBridge

 Your scores

 Our scores

 Tweaking the solution

 Final thoughts

 7.3 DynamoDB TTL

 Your scores

 Our scores

 Final thoughts

 7.4 Step Functions

 Your scores

 Our scores

 Tweaking the solution

 Final thoughts

 7.5 SQS

 Your scores

 Our scores

 Final thoughts

 7.6 Combining DynamoDB TTL with SQS

 Your scores

 Our scores

 Final thoughts

 7.7 Choosing the right solution for your application

 7.8 The applications

 Your weights

 Our weights

 Scoring the solutions for each application

 8 Architecting serverless parallel computing

 8.1 Introduction to MapReduce

 How to transcode a video

 Architecture overview

 8.2 Architecture deep dive

 Maintaining state

 Step Functions

 8.3 An alternative architecture

 9 Code Developer University

 9.1 Solution overview

 Requirements listed

 Solution architecture

 9.2 The Code Scoring Service

 Submissions Queue

 Code Scoring Service summary

 9.3 Student Profile Service

 Update Student Scores function

 9.4 Analytics Service

 Kinesis Firehose

 AWS Glue and Amazon Athena

 QuickSight

 Part 4 The future

 10 Blackbelt Lambda

 10.1 Where to optimize?

 10.2 Before we get started

 How a Lambda function handles requests

 Latency: Cold vs. warm

 Load generation on your function and application

 Tracking performance and availability

 10.3 Optimizing latency

 Minimize deployment artifact size

 Allocate sufficient resources to your execution environment

 Optimize function logic

 10.4 Concurrency

 Correlation between requests, latency, and concurrency

 Managing concurrency

 11 Emerging practices

 11.1 Using multiple AWS accounts

 Isolate security breaches

 Eliminate contention for shared service limits

 Better cost monitoring

 Better autonomy for your teams

 Infrastructure-as-code for AWS Organizations

 11.2 Using temporary stacks

 Common AWS account structure

 Use temporary stacks for feature branches

 Use temporary stacks for e2e tests

 11.3 Avoid sensitive data in plain text in environment variables

 Attackers can still get in

 Handle sensitive data securely

 11.4 Use EventBridge in event-driven architectures

 Content-based filtering

 Schema discovery

 Archive and replay events

 More targets

 Topology

 appendix A Services for your serverless architecture

 appendix B Setting up your cloud

 appendix C Deployment frameworks

 index

 front matter

preface

 Serverless technologies occupy an exciting space at the moment. Products like AWS Lambda and DynamoDB have been around for a few years, yet they still feel new and thrilling, sometimes mysterious or puzzling. Many folks worldwide discuss, learn, and implement systems with serverless architectures, yet we haven’t yet seen a mass level of adoption like that of containers. Cloud providers such as AWS continue to grow. However, individuals and organizations still ask questions such as, is serverless right for me, and how do I architect a system correctly from the myriad of available components and options?

 We’ve written this book to address some of the more interesting questions we’ve seen across the industry and our technical community. We decided to look at use cases for serverless and explore problems that usually wouldn’t seem like a good fit. More importantly, we’ve tried to convey what it is to have a serverless-first mindset. Our recipe is simple: When you have a problem, offload as much of the undifferentiated heavy lifting onto AWS or another provider and apply the principles of serverless architectures. And, if that doesn’t produce a satisfactory answer, only then go and look at other technologies that may help. It’s important to reiterate that you should always use the right tool for the right job. However, having a set of principles and practices, like viewing a potential solution through a serverless prism first, gives you a map and helps make better, more robust decisions.

 This book shows a few examples of us doing it in practice. We discuss how to approach several problems using serverless architectures, what criteria to consider, and how to deal with architectural trade-offs. We also present three real-world companies that have built interesting systems using serverless architectures. These companies dealt with the same kinds of problems you might be solving right now, so it’s worth checking out those chapters to see what potential solutions or ideas exist.

 If you are entirely new to serverless architectures, do not worry! The first three chapters introduce you to serverless and even get you building a small application. If you are an expert already, you will enjoy the last two chapters that go deeper into AWS Lambda and discuss emerging practices. And, before we let you go, one other thing: the vast majority of this second edition is new. If you read our first edition, we think that you will find this a very different book. We hope you find something interesting and helpful in this book and come with us on this exciting serverless journey.

acknowledgments

 The second edition of Serverless Architectures on AWS couldn’t have been written without the encouragement and support from my peers, colleagues, family, and friends. I am lucky to be surrounded by passionate technologists who continuously encourage, give feedback, and provide invaluable advice.

 First and foremost, I want to say thank you to my two co-authors: Yan Cui and Ajay Nair. I am fortunate to know these two fantastic world-class experts to whom education and community is always foremost. I cannot describe how thankful I am to Yan and Ajay for helping to write this book and making it uniquely special among the technical literature available today. I am forever grateful to both of you for being there through this journey, teaching me, and sharing the benefit of your experience.

 Second, I would like to thank our editor, Toni Arritola, who once again made the writing of this book a great experience. Toni did a lot of work on the first edition of this book, and she worked just as hard on the second edition. It bears repeating again that Toni’s thoughtful feedback on the book’s structure, language, and narrative was extraordinarily helpful. And, after all these years of dealing with my slipping deadlines, her attention to detail and enthusiasm kept the book and its authors going.

 It goes without saying that I want to thank Sam Kroonenburg too. Sam originally introduced me to AWS Lambda and the serverless mindset. He co-founded A Cloud Guru, the first truly serverless startup, and gave me the opportunity to hone my skills. If it wasn’t for Sam and my experience at A Cloud Guru, this book wouldn’t exist. I would be amiss if I also didn’t thank Ryan Kroonenburg, the other co-founder of A Cloud Guru and Sam’s brother. Both Sam and Ryan played a big part in the popularization of serverless technologies with A Cloud Guru, and also the founding of the first technology conference focused entirely on serverless called Serverlessconf (ask me for stories over a drink!). Thank you, Sam and Ryan!

 I’d also like to thank a few others who for years have given me great feedback and encouragement. A big thank you to Tim Wagner, Drew Firment, Allan Brown, Nick Triantafillou, Tait Brown, Alicia Cheah, Forrest Brazeal, Peter Hanssens, Kim Bonilla, Ilia Mogilevsky, as well as my fellow AWS serverless heroes and all my colleagues and friends at A Cloud Guru/Pluralsight. I’d also like to thank Mike Stephens from Manning for helping to bring this book to fruition.

 To all the reviewers: Aliaksandra Sankova, Bonnie Malec, Borko Djurkovic, Camal Çakar, Carl Nygard, Chris Kottmyer, Christopher Fry, Daniel Vásquez, Eugene Serdiouk, Giampiero Granatella, Gregory Reshetniak, Javier Collado Cabeza, Jose San Leandro, Julien Pohie, Kelly E. Hair, Kirstie G. McKenzie, Lucian-Paul Torje, Matteo Gildone, Michael Kumm, Michal Rutka, Miguel Montalvo, Mikołaj Wawrzyniak, Patrick Steger, Paul Mcilwaine, Robert Kulagowski, Sal DiStefano, Sau Fai Fong, Shaun Hickson, Steve Hansen, Valeriy Arsentyev, Vignesh Muthuthurai, and William Dixon, your suggestions and feedback made this a better book.

 Finally, I’d like to thank my family, including my dad, my brothers Igor and Dimitri, and their spouses Rita and Alexandra. They’ve had to find more strength to listen to me go on about the book for yet another year. And thank you to Durdana Masud, who helped me greatly throughout my writing, with both the first edition and the second edition.

 —Peter Sbarski

 I would like to thank Peter Sbarski for the opportunity to contribute to this book, and Toni Arritola for her help and guidance every step of the way. It has truly been a pleasure and honor to work with them over the past 12 months.

 I would also like to thank Anahit Pogosova for sharing details of the amazing work that she and her team at Yle have done. The knowledge she shared with me was very valuable and contained so many useful and actional tips for anyone building data pipelines using serverless technologies. I hope I have done her work justice in chapter 6, even though I had to leave out so much. We can easily fill a whole book with the information she shared with me.

 I would also like to thank a few friends and colleagues who have given me opportunities and guidance along the way. I wouldn’t be the man I am today without you, and your friendship means everything to me; I can’t wait to catch up with you all in person soon. Big thanks to Darryl Jennings, Tom Newton, Brett Johansen, Domas Lasauskas, Scott Smethurst, Diana Ionita, Simon Coutts, Bruno Tavares, Heitor Lessa, Erez Berkner, Aviad Mor, John Earner, Simone Basso, and Alessandro Simi.

 Last, but not least, I would like to thank my wonderful wife, Yinan Xue, for all the support and encouragement she has given me and continues to give me over the years. You are my best friend and the love of my life, and I look forward to growing old and wrinkly with you!

 Oh, I almost forgot, I would like to thank my cat, Ada, for bringing so much joy into our lives and all the love she has given us. That scar you left on my thigh five years ago is still visible to this day, I really . . . wait a minute. . . .

 —Yan Cui

 I always hoped to create a lasting contribution to the developer community and am so excited to see that finally happen with the second edition of Ser verless Architectures on AWS. My biggest thanks to Peter Sbarski for making this happen and for the opportunity to create this work with Yan Cui and him. It has been an honor and a pleasure to be a part of the team with these serverless luminaries. Thank you to the crew at Manning, and our editor Toni Arritola, for their everlasting patience, thoroughness, and guidance.

 This book is dedicated to the serverless community. We at AWS and other providers may build the technology, but it is you, the community and the customers, that put it to work to the benefit of the world. I hope this book captures the passion, depth, and breadth that you deserve. Keep raising the bar and changing the world, one event at a time.

 Finally, a special shout out to Tim Wagner for getting the whole serverless universe started.

 —Ajay Nair

about this book

 Serverless technologies and architectures are fascinating and unique. They present a different way of building software in a cloud environment. This is because serverless is about offloading the undifferentiated heavy lifting to others, reducing certain operational concerns, moving toward event-driven computing, and giving yourself space to focus on what’s important—the core goals of your business or project. This book teaches about the serverless approach to the design of systems. You will read how other companies have solved problems using a serverless approach on AWS and dive into numerous discussions about architecture.

 Along the way, you will learn more about event-driven computing, useful design patterns, organizing and deploying your code, and security. This book isn’t a collection of tutorials you can find online. Instead, it is an attempt to share our thinking and understanding of the future of cloud computing, which we think is serverless.

 This book is in four parts. The first part takes you through basic serverless principles as well as crucial architectures and patterns. You will also build a small serverless application in AWS to get your hands dirty. It’ll be a fun one; your application will convert video files from one format to another without running a server.

 The second part focuses on three case studies from Yubl, A Cloud Guru, and Yle. You will read how other companies have solved business and technical challenges with a serverless approach. The third part is about architecture. Here you will learn how to adopt the serverless-first mindset, think about the pros and cons of different architectural implementations, and tackle unexpected challenges. The three examples we present are all different, showing that a serverless approach to the design of systems is versatile and flexible.

 The fourth and final part of the book looks at the internals of AWS Lambda and emerging AWS practices. If you are already an expert on AWS and serverless, you may find this section to be particularly fascinating.

 The second edition of Serverless Architectures on AWS is for serverless veterans and beginners alike. No matter your experience, we think you will find something valuable in these pages. We hope that this book will inspire you to think serverless first. Now, let’s read and build!

About the code

 This book provides many examples of code. These appear throughout the text and as separate code listings. To accommodate long lines of code, listings include line-continuation markers (➥). Code appears in a fixed-width font just like this, so you’ll know when you see it.

 This book is about architecture and, as such, it is not heavy on source code. Chapter 2 is the only practical chapter. The source for chapter is available on GitHub at http://github.com/sbarski/serverless-architectures-aws-2. If you’d like to contribute, open a pull request and we’d be happy to consider your changes. If you see a problem, please file an issue.

liveBook discussion forum

 Purchase of Serverless Architectures on AWS, Second Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/#!/book/serverless-architectures-on-aws-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 Peter Sbarski is VP of Education & Research at A Cloud Guru, AWS Serverless Hero, and the organizer of Serverlessconf, the world’s first conference dedicated entirely to serverless architectures and technologies. His work at A Cloud Guru allows him to research and write about serverless architectures, cloud computing and AWS. Peter is always happy to talk about serverless technologies at conferences and meetups year round. His other passions include technical education, and innovation in technology and cloud computing. Peter holds a Ph.D. in Computer Science from Monash University, Australia. He can be found on Twitter (@sbarski) and LinkedIn (linkedin.com/in/petersbarski).

 Yan Cui is a developer advocate at Lumigo and an independent consultant who helps clients around the world go faster for less by successfully adopting serverless technologies. He has over a decade of experience running production workloads at scale on AWS and has worked as architect and principal engineer within a variety of industries including banking, e-commerce, sports streaming, and mobile gaming. Yan is an AWS Serverless Hero and a regular speaker at conferences internationally. He is the author of Production-Ready Serverless (Manning, 2018) and co-author of F# Deep Dives (Manning, 2014), and he has also self-published several popular courses such as the AppSync Masterclass. He can be found on Twitter (@theburningmonk) and LinkedIn (linkedin.com/in/theburningmonk) and writes regularly on his blog (theburningmonk.com).

 Ajay Nair is a Director of Product and Engineering with Amazon Web Services. He is the founding product leader for AWS Lambda and helped build the AWS serverless portfolio over the last several years. Ajay has spent his career focusing on cloud native platforms, developer productivity, and big data systems. He loves spending his days helping developers do more with less and delighting customers with the power of technology. Ajay holds a Masters in Information Systems Management from Carnegie Mellon, USA, with a Bachelors in Electrical and Electronics Engineering from Kerala University, India. You can find Ajay sharing thoughts on everything from serverless to product management on Twitter (@ajaynairthinks) or on LinkedIn (linkedin.com/in/ajnair).

about the cover illustration

 The figure on the cover of Serverless Architectures on AWS, Second Edition is “Man from Stupno/Sisak, Croatia,” from a book by Nikola Arsenović, published in 2003. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of today’s computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 First steps

 If you are new to serverless architectures, you’ve come to the right place. The first three chapters of this book will give you an introduction to this exciting technology and even get you to build a small serverless application of your own. The first chapter provides an overview of serverless technologies and a discussion about where we are today. The second chapter is more practical; it focuses on giving you a hands-on experience with AWS and services such as AWS Lambda. The third chapter describes popular and useful serverless patterns. Let’s get started!

1 Going serverless

 This chapter covers

 	
Traditional system and application architectures

 	
Key characteristics and benefits of serverless architectures

 	
How serverless architectures and microservices fit into the picture

 	
Considerations when transitioning from server to serverless

 	
What’s new in this second edition?

 If you ask software developers what software architecture is you might get answers ranging from “it’s a blueprint or a plan” to “a conceptual model” to “the big picture.” This book is about an emerging architectural approach that has been adopted by developers and companies around the world to build their modern applications—serverless architectures.

 Serverless architectures have been described as somewhat of a “nirvana” for an application architectural approach. It promises developers the ability to iterate as fast as possible while maintaining business critical latency, availability, security, and performance guarantees, with minimal effort on the developers’ part.

 This book teaches you how to think about serverless systems that can scale and handle demanding computational requirements without having to provision or manage a single server. Importantly, this book describes techniques that can help developers quickly deliver products to market while maintaining a high level of quality and performance by using services and architectures offered by today’s cloud platforms.

1.1 What’s in a name?

 Before going in any further, we think it’s important to come to terms with the word serverless. There are various attempts at this already, including an official one from AWS (https://aws.amazon.com/serverless/) and a community favorite from Martin Fowler (https://martinfowler.com/articles/serverless.html). Here’s how we define it:

 Definition Serverless is a qualifier that can be applied to any software or service offering, which requires that it is consumed as a utility service and incurs cost only when used.

 Simple enough, right? But there’s a lot to unpack in that simple definition. Let’s dive into each of the following two required criteria to call something serverless:

 	
 Consumed as a utility service—The “software as a service” consumption model is well understood. It means that anyone using the software uses a prescribed application programming interface (API) or web interface to use the software and customize it, while staying within any published constraints for the software and usage policies for the API. Salesforce, Office365, and Google Maps are well-known software packages delivered as a service. What’s key here is that the actual infrastructure (servers, networking, storage, etc.) hosting the software and powering the API is completely abstracted from you as the consumer; all that is visible (and all that matter) is what the API permits.

 A service also typically comes with accompanying availability, reliability, and performance guarantees from the service provider. A utility service, further, has the billing characteristics that we’d expect from any utility computing offering; that is, you pay for usage not for reservation, subscriptions, or provisioning. All existing public cloud offerings have some form of utility billing associated with them. For example, Amazon Elastic Compute Cloud (EC2) allows you to pay by the second for the rent of virtual machines.

 	
 Incurs cost only when used—This means there’s zero cost for having the software deployed and ready to use. Think of this as the same cost model we expect from our public utilities like electricity and water. You, as the consumer, pay a per granular usage unit cost if you use any, but you pay zero if you use nothing. This aspect of pure usage-based pricing is a distinguishing criterion of serverless offerings from the other utility services that came before it.

 In the rest of the book, we will use the “serverless” qualifier only for software that fits these criteria. For example, software that requires you to provide a server to host a website (like the Apache web server) would not qualify because it does not meet the first criterion. Software that is available as a service but requires you to pay by subscription (like Salesforce) would not qualify as well because it does not meet the second criterion. A serverless architecture, by extension, is one composed entirely of serverless components. But which components of an architecture need to be serverless for it to be called as such? Let’s look at this next with an example.

 Just to clear up any misperceptions . . .

 One of the common misunderstandings is that the “-less” in “serverless” implies “absence of or without” (think “sugarless,” “boneless,” and so on), which leads to some colorful debates on social media on how any application architecture can claim to run without servers. We think “-less” here means “invisible in context of usage” (think “wireless,” “tasteless”). There obviously are servers somewhere! The difference is that these servers are hidden from you. There’s no infrastructure for you to think about and no way to tweak the underlying operating system or virtual hardware configuration. Someone else takes care of the nitty-gritty details of infrastructure management, freeing you from that operational overhead and giving back to you the most expensive commodity there is—time.

1.2 Understanding serverless architectures

 Let’s take the example of a typical data-driven web application, not unlike the systems powering most of today’s web-enabled software. These typically consist of a backend (server) that accepts requests from a client and then processes the requests.

 The backend server performs various forms of computation, and the frontend client provides an interface for users to operate via their browser, mobile, or desktop device. Data might travel through numerous application layers before being saved to a database. The backend then generates a response that could be in the form of JSON or in fully rendered markup, which is sent back to the client (figure 1.1). These kinds of applications are conventionally architected as tiers (a presentation tier that controls how the information is captured and provided to the user, an application tier that controls the business logic of the application, and a data tier with the database and corresponding access controls).

 [image: CH01_F01_Sbarski2]

 Figure 1.1 A basic request-response (client-server) message-exchange pattern that most developers are familiar with. There’s only one web server and one database in this figure. Most systems are much more complex.

 Software architectures have evolved from the days of code running on a mainframe to a multitier architecture where the presentation, data, and application/logic tiers are traditionally separated. Within each tier, there may be multiple logical layers that deal with the particular aspects of functionality or domain. There are also cross-cutting components such as logging or exception handling systems that can span numerous layers. The preference for layering is understandable. Layering allows developers to decouple concerns and have more maintainable applications. Figure 1.2 shows an example of a tiered architecture with multiple layers including the API, the business logic, the user authentication component, and the database.

 [image: CH01_F02_Sbarski2]

 Figure 1.2 A typical three-tier application is usually made up of presentation, application, and data tiers. A tier can have multiple layers with specific responsibilities.

 Tiers vs. layers

 There is some confusion among developers about the difference between layers and tiers. A tier is a module boundary that provides isolation between major components of a system. For example, a presentation tier that’s visible to the user is separate from the application tier, which encompasses the business logic. In turn, a data tier is another separate system that manages, persists, and provides access to data. Components grouped in a tier can physically reside on different infrastructures.

 Layers are logical slices that carry out specific responsibilities in an application. Each tier can have multiple layers that are responsible for different elements of functionality, such as domain services.

1.2.1 Service-oriented architecture and microservices

 One blunt approach would be to combine all the layers (the API, the business logic, the user authentication) into one single, monolithic code base. This may sound like an antipattern today, but that was indeed the approach we adopted in the early days of cloud-based development. Most modern approaches, however, dictate that you architect with reusability, autonomy, composability, and discoverability in mind.

 Among the veterans of our industry, service-oriented architecture (SOA) is a well-known buzzword. SOA encourages an architectural approach in which developers create autonomous services that communicate via message passing and often have a schema or a contract that defines how messages are created or exchanged.

 The modern incarnation of the service-oriented approach is often referred to as microservices architecture. Modern application architectures are composed of services communicating through events and APIs with business logic inserted as appropriate. We define microservices as small, standalone, fully independent services built around a particular business purpose or capability. Ideally, microservices should be easy to replace, with each service written in an appropriate framework and language.

 The mere fact that microservices can be written in a different general-purpose language or a domain-specific language (DSL) is a drawing card for many developers. Benefits can be gained from using the right language or a specialized set of libraries for the job. Each microservice can maintain state and store data. And if microservices are correctly decoupled, development teams can work and deploy microservices independently from one another. This approach of building and deploying applications as a collection of loosely coupled services is considered the default approach to development in the cloud today (the “cloud native” approach, if you will).

 Microservices all the time?

 Microservice approaches aren’t all a bed of roses. Having a mix of languages and frameworks can be hard to support and, without strict discipline, can lead to confusion down the road. Eventual consistency, coordination, discovery, and complex error recovery can make things difficult in a microservices universe.

 Software engineering is always a game of tradeoffs. Because something is in fashion (like microservices) doesn’t make it universally right for all problems and use cases. What matters is knowing about the different architectural options, understanding their pros and cons, and, importantly, understanding the requirements and needs of your own problem. (And, yes, in some cases and situations, having a monolith is OK.)

1.2.2 Implementing architecture the conventional way

 Once you have decided how your application is going to be architected, and all the software required for each of the layers is ready to go, you would think the hardest part is done. The truth is, that’s when some of the more complex tasks begin. Developing your desired services traditionally requires servers running in data centers or in the cloud that need to be managed, maintained, patched, and backed up. Today, you would pick from a few options:

 	
 Directly build on VMs—The physical deployment of each service requires you to have a set of instances with additional tasks to address required activities such as load balancing, transactions, clustering, caching, messaging, and data redundancy. Provisioning, managing, and patching of these servers is a time-consuming task that often requires dedicated operations people.

 A non-trivial environment is hard to set up and operate effectively. Infrastructure and hardware are necessary components of any IT system, but they’re often also a distraction from what should be the core focus—solving the business problem. In our simple web application example, you would have to become an expert in building distributed systems and cloud infrastructure management. In a cloud environment, this form of computing is often referred to as infrastructure as a service (IaaS).

 	
 Use a PaaS—Over the past few years, technologies such as platform as a service (PaaS) and containers have appeared as potential solutions to the headache of inconsistent infrastructure environments, conflicts, and server management overhead. PaaS is a form of cloud computing that provides a platform for users to run their software while hiding some of the underlying infrastructure.

 To make effective use of PaaS, developers need to write software that targets the features and capabilities of the platform. Moving a legacy application designed to run on a standalone server to a PaaS service often leads to additional development effort because of the ephemeral nature of most PaaS implementations. Still, given a choice, many developers would understandably choose to use PaaS rather than more traditional, manual solutions thanks to reduced maintenance and platform support requirements.

 	
 Use containers—Containerization is considered ideal for microservices architectures because it is a way of isolating an application with its own environment. It’s a lightweight alternative to full-blown virtualization that traditional cloud servers use.

 Containers are an excellent deployment and packaging solution especially when dependencies are in play (although they can come with their own housekeeping challenges and complexities). Containers are isolated and lightweight, but they need to be deployed to a server, whether in a public or private cloud or on site.

 While each of these models are perfectly valid and offer varying degrees of simplicity and speed of development for your service, your costs are still driven by the lifecycle of the infrastructure or servers you own, not to your application usage. If you purchase a rack at the data center, you pay for it 24/7. If you purchase a cloud instance (wrapped in a PaaS or running containers or otherwise), you pay for it when it runs, independent of whether it is serving traffic for your web app or not.

 This leads to an entire discipline of engineers investing in improving server efficiency or trying to match infrastructure lifecycle to application usage and server sizes to traffic patterns. This also means that all the effort spent on these tasks is time taken away from improving the functionality and differentiating aspects of your application. This is equivalent to asking for a place to plug in your appliance and having to pay for a share of the power generators at your utility company, as well as configuring the generator to deliver the power in the phase, frequency, and wattage you desire no matter how much you use. The actual outcome (plug in your appliance) is dwarfed by the effort and cost for the infrastructure required (the generators). This is where the serverless approach comes in. It aims for the moral equivalent of the utility approach we know and love today—there when you need it, complexity abstracted away, and you only pay for when you use it.

1.2.3 Implementing architecture the serverless way

 A serverless architecture for our sample application could be composed of different layers. For example, to build the API, we would use a service that does not cost us anything if there are no API calls. To build the authentication service, we would use a service that does not cost us anything if there are no authentication calls. To build the storage service, we would use . . . you get the picture.

 Much like the public cloud approach that offered virtual infrastructure Lego to assemble our cloud stack in the early days, a serverless architecture uses existing services from cloud providers like AWS to implement its architectural components. As an example, AWS offers services to build our application primitives like APIs (Amazon API Gateway), workflows (AWS Step Functions), queues (Amazon Simple Queue Service), databases (Amazon DynamoDB and Amazon Aurora), and more.

 The idea of using off-the-shelf services to implement parts of our architecture is not new; indeed, it’s been a best practice since the days of SOA. What’s changed in the last few years is the capability to also implement the custom aspects of our applications (like the business logic) in a serverless manner. This ability to run arbitrary code without having to provision infrastructure to run it as a service or to pay for the infrastructure is referred to as functions as a service (FaaS).

 FaaS allows you to provide custom code, associated dependencies, and some configuration to dictate your desired performance and access control characteristics. FaaS then executes this unit (referred to as a function) on an invisible compute fleet with each execution of your code receiving an isolated environment with its own disk, memory, and CPU allocation. You pay only for the time your code runs. A function is not a lightweight instance; instead, think of it as akin to processes in an OS, where you can spawn as many as needed by your application and then spin them down when your application isn’t running.

 Serverless architectures are really the culmination of shifts that have been going on for a long time: from monoliths to services and from managing infrastructure to increasingly delegating the undifferentiating responsibilities. Serverless architectures can help with the problem of layering and having to update too many things. There’s room for developers to remove or minimize layering by breaking the system into functions and allowing the frontend to securely communicate with services and even the database directly. A well-planned serverless architecture can make future changes easier, which is an important factor for any long-term application.

 To recap, a serverless architecture leverages a serverless implementation for each of its components, using FaaS (like AWS Lambda) for custom logic. This means each component is built as a service, with utility pricing that incurs cost only when used. Each component is a service and exposes no configuration or cost related to the infrastructure it is running on, which means these architectures don’t rely on direct access to a server to work. By making use of various powerful single-purpose APIs and web services, developers can build loosely coupled, scalable, and efficient architectures quickly. Moving away from servers and infrastructure concerns, as well as allowing the developer to primarily focus on code, is the ultimate goal behind serverless.

 More on FaaS

 AWS’s FaaS offering is called AWS Lambda and is one of the first from the major cloud providers. Note that Lambda isn’t the only game in town. Microsoft Azure Functions (http://bit.ly/2DWx5Gn), IBM Cloud Functions (http://bit.ly/2l1PWbd), and Google Cloud Functions (http://bit.ly/2CbzOem) are other FaaS services you might want to look at.

 Many developers conflate serverless with FaaS offerings like AWS Lambda, which often leads to confusing arguments around the adoption of containers or serverless when they really mean containers or functions. We like how TJ Hallowaychuk, the creator of the Apex framework, defines what serverless is about. He once tweeted, “serverless != functions, FaaS == functions, serverless == on-demand scaling and pricing characteristics (not limited to functions).” We couldn’t agree more.

 An emerging trend is that of serverless containers; that is, leveraging containers instead of functions to implement the custom logic and using the container as a utility service and incurring costs only when the container runs. Services like AWS Fargate or Google Cloud Run offer this capability. The difference between the two (functions vs. containers) is just the degree to which developers want to shift the boundaries of shared responsibilities. Containers give you a bit more control over user space libraries and network capabilities. Containers are an evolution of the existing server-based/VM model, offering an easy packaging and deployment model for your application stack. You are still required to define your operating system’s requirements, your desired language stack, and dependencies to deploy code, which means you continue to carry some of the infrastructure complexity. For the purpose of this book, we are going to focus on using FaaS for our custom logic, though you can explore the usage of serverless containers for the same as well.

1.3 Making the call to go serverless

 The web application example we went through is one of the simplest demonstrations of what can be achieved with serverless architectures. A serverless approach can also work exceptionally well for organizations that want to innovate and move quickly.

 Functions and serverless architectures, in general, are versatile. You can use them to build backends for CRUD applications, e-commerce, back-office systems, complex web apps, and all kinds of mobile and desktop software. Tasks that used to take weeks can be done in days or hours as long as we chose the right combination of technologies. Lambda functions are stateless and scalable, which makes them perfect for implementing any logic that benefits from parallel processing.

 The most flexible and powerful serverless designs are event-driven, which means each component in the architecture reacts to a state change or notification of some kind rather than responding to a request or polling for information. In chapter 2, for example, you’ll build an event-driven, push-based pipeline to see how quickly you can put together a system to encode video to different bit rates and formats.

 Note You will find the use of events as a communication mechanism between components to be a recurring theme in serverless architectures; indeed, AWS Lambda’s initial launch was as an event-driven computing service. Building event-driven, push-based systems will often reduce cost and complexity (you won’t need to run extra code to poll for changes) and, potentially, make the overall user experience smoother. It goes without saying that although event-driven, push-based models are a good goal, they might not be appropriate or achievable in all circumstances.

 Serverless architecture allows developers to focus on software design and code rather than infrastructure. Scalability and high availability are easier to achieve, and the pricing is often more fair because you pay only for what you use. More importantly, you have the potential to reduce some of the complexity of the system by minimizing the number of layers and amount of code needed.

 Adopting a serverless approach to application development comes with significant agility, elasticity, and cost efficiency gains. However, it is easy to fall into the trap of trying to adopt a serverless approach for all applications. We recommend keeping a few principles in mind as you start your serverless journey:

 	
 Avoid lift-and-shift—In practice, serverless architectures are more suited for new applications rather than porting existing applications over. This is because existing application code bases have a lot of code that is made redundant by the serverless services. For example, porting a Java Spring app into Lambda brings a heavy framework into a function, most of which exists to interact with a web server (which doesn’t exist inside Lambda).

 	
 Adopt a serverless first approach, not a serverless only approach—While there are companies like A Cloud Guru that have adopted a serverless only approach, where 100% of their application runs as a serverless implementation, the more widespread approach that companies like Expedia and T-Mobile have adopted is to go serverless first. What this means is that their developers attempt to first build any new application in the following priority order: build as much as possible using third-party services, fall back to custom services built using AWS serverless primitives like AWS Lambda, and finally, fall back to custom services built using custom software running on infrastructure like EC2. We talk about the reasons why you may have to fall back beyond custom serverless services in the next section.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F02_Sbarski2.png
Application user

. i Layering helps to
User interface components segregate concerns, but
more layers can also
make changes harder

Presentation logic

Application tier

Client-side model .
| — = | and slower to implement.
Presentation | Client-side service layer |
ti o
ler é
é’ < Cross-cutting concerns
| Application programming interface | 21315918 span numerous layers.)
| S d ool | 2(5]8lls 3 A good example of this is
ewér's' i sew{w ayer 28|23z logging, which can happen
| Business/domain layer | S = at every layer.
5 — @ 3
[Business entities/model | 2

Data access/persistence layer

Cross-cutting
concerns

| Database || File storage |

—
-

Data tier

OEBPS/OEBPS/Images/CH01_F01_Sbarski2.png
1. User performs an action
that requires data from a
database to be displayed.

2. A request is formed
and sent from the client
to the web server.

!

—_—

-

\

—

Application user

(presentation tier)

6. Information is displayed
to the user.

PR
Web client

Web server

5. An appropriate response
is generated and sent back.

(application tier)

3. The request is
processed and the
database is queried.

/

Database
(data tier)

4. Data is retrieved.

OEBPS/cover.jpeg
SECOND EDITION

Peter Sbarski
Yan Cvi
Ajay Nair

/'I MANNING

OEBPS/OEBPS/Images/Manning_copyright.png

