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Preface
      

      
      
      
      While I was finishing another book project for Manning, a discussion developed about a PowerShell Deep Dives book. In the
         past Manning published two volumes of a SQL Server Deep Dives book written by a number of SQL Server MVPs and members of the
         SQL community. The chapters were intended as in-depth content on specific aspects of SQL Server. At the time, many of us involved
         in this book were also part of the developing PowerShell Deep Dives conference.
      

      
      That event brought Microsoft MVPs and community members together for a few days of intense PowerShell togetherness. Think
         of it as a geeky Woodstock festival for PowerShell. The intent was to share PowerShell experiences and ideas on specific—or
         even niche—topics that would be hard to cover in a larger conference like Microsoft TechEd. The PowerShell Deep Dives conference
         eventually became the PowerShell Summit that we enjoy today.
      

      
      The idea behind this book was to take that conference concept and put it into book format. The chapters would be short explorations
         of specific PowerShell ideas—things that might be presented at the PowerShell Summit. Some of the content in this book has
         actually been presented at these conferences.
      

      
      I was “volunteered” to serve as lead editor and began my new career as cat wrangler. A call went out and many people offered
         to contribute chapters to the book as well as act as section editors. Eventually, we had a tentative table of contents and
         our volunteer authors started writing.
      

      
      Volunteer is the key word here as nobody associated with this project is receiving any royalties or advances. Instead, all royalties
         will be donated to charity, which was also a part of the SQL Server Deep Dives project. In purchasing this book in any format,
         you are supporting the outstanding work of Save the Children.
      

      
      On behalf of the authors and my coeditors, we are grateful for your support and interest in our collective work. Are you ready
         to dive in deeply and uncover some PowerShell treasures?
      

      
      JEFFERY HICKS
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About this Book
      

      
      
      
      This book is for anyone with an interest in PowerShell. Perhaps you want to learn what you can accomplish or perhaps you’re
         trying to solve a problem and you see a chapter that will help. While the majority of the chapters in the book are written
         for IT pros, there is plenty of content for developers and others whose PowerShell experience may be more peripheral.
      

      
      We’re assuming you have some fundamental PowerShell knowledge. If you’re an absolute beginner, much of the content will be
         lost on you. This book isn’t intended as a tutorial for learning PowerShell, but it should teach you how to accomplish certain
         tasks or take advantage of a PowerShell feature that goes beyond the core documentation.
      

      
      In any event, this is PowerShell content you likely won’t find any place else, written by PowerShell experts and MVPs.

      
      
      
What version of PowerShell do I need?
      

      
      This book isn’t targeted at any particular version of PowerShell. There are some chapters that are PowerShell 3.0-specific
         and that should be evident from reading the chapter. The safest assumption is that you’re using at least PowerShell 2.0.
      

      
      
      
      
Where’s coverage of Microsoft Exchange?
      

      
      As we were assembling content for this book, we had to use what contributors wanted to write about, but we also wanted to
         keep the book broad in scope. Yes, there are a few chapters that are SQL Server-related, but many of the concepts and techniques
         can apply to other PowerShell situations.
      

      
      Frankly, products like Microsoft Exchange, which rely heavily on PowerShell, deserve their own Deep Dives book, and we hope
         someone from the Exchange community will step up and lead the effort for a similar book, hopefully with some good PowerShell
         content. The same is true of other Microsoft products such as SharePoint and Active Directory.
      

      
      
      
      
      
How the book is organized
      

      
      This book is divided into 4 parts, each centered on a PowerShell theme:

      
      

      
         
         	
Part 1—PowerShell administration
            
         

         
         	
Part 2—PowerShell scripting
            
         

         
         	
Part 3—PowerShell for developers
            
         

         
         	
Part 4—PowerShell platforms
            
         

         
      

      
      This isn’t necessarily a hard and fast division. Some chapters could easily have been assigned to multiple parts. Since the
         book isn’t intended as a tutorial, you can jump from chapter to chapter as you see fit. An effort was made within each section
         to order content in such a way as to facilitate learning.
      

      
      
      
      
Code conventions and downloads
      

      
      All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. We’ve tried to make any code that’s shown as a listing available as a download. You should
         test and review all code samples in a non-production environment. None of the code listings should be considered production-ready.
      

      
      Throughout the book you will see shorter code examples. Many of these are one-line expressions. Due to printing limitations
         we have had to take a few liberties with how code is presented. You might see a command presented like this:
      

      
      PS C:\> Get-service | where {$_.status –eq 'running'} | select
  [image: ] status,displayname

      
      or like this

      
      Get-service |
where {$_.status –eq 'running'} |
select status,displayname

      
      It is the same one-line command. We are trusting that you have enough fundamental PowerShell knowledge to understand what
         a basic command looks like and how to use it either in the shell or a script.
      

      
      The source code for the examples in this book is available online from the publisher’s website at www.manning.com/PowerShellDeepDives.
      

      
      
      
      
Author Online
      

      
      The purchase of PowerShell Deep Dives includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
         technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
         your web browser to www.manning.com/PowerShellDeepDives. The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long
         as the book is in print.
      

      
      This is the place to go to report errors in the book or to receive help with title-specific content. If you’re looking for
         more general help with PowerShell, please visit the forum at http://PowerShell.org. Registration is free and many authors of this book are active on the site.
      

      
      
      
      
About the editors
      

      
      Jeffery Hicks is the lead editor for PowerShell Deep Dives. The bios and photographs of the section editors can be found at the end of the introductions for their respective sections.
      

      
      

      
         
         	
Part 1—PowerShell administration, edited by Richard Siddaway
            
         

         
         	
Part 2—PowerShell scripting, edited by Jeff Hicks
            
         

         
         	
Part 3—PowerShell for developers, edited by Oisín Grehan
            
         

         
         	
Part 4—PowerShell platforms, edited by Aleksandar Nikolić
            
         

         
      

      
      Jeffery Hicks is a Microsoft MVP in Windows PowerShell, a Microsoft Certified Trainer, and an IT veteran with over 20 years
         of experience, much of it spent as an IT consultant specializing in Microsoft server technologies with an emphasis in automation
         and efficiency. He works today as an independent author, trainer, and consultant. Jeff writes the popular Prof. PowerShell
         column for MPCMag.com, and is a regular contributor to the Petri IT Knowledgebase, 4SysOps and the Altaro Hyper-V blog, as
         well as a frequent speaker at technology conferences and user groups.
      

      
      Jeff’s latest books are Manning’s Learn PowerShell 3 in a Month of Lunches, Second Edition and Learn PowerShell Toolmaking in a Month of Lunches, both with Don Jones, and PowerShell in Depth: An Administrator’s Guide, coauthored with Don Jones and Richard Siddaway.
      

      
      
      

About Save the Children
      

      
      
      
      Save the Children is the leading independent organization creating lasting change in the lives of children in need in the
         United States and around the world. Recognized for their commitment to accountability, innovation, and collaboration, Save
         the Children goes into the hearts of communities, where they help children and families help themselves. The charity works
         with other organizations, governments, non-profits, and a variety of local partners while maintaining their own independence
         without political agenda or religious orientation.
      

      
      When disaster strikes around the world, Save the Children is there to save lives with food, medical care, and education, and
         remains to help communities rebuild through long-term recovery programs. As quickly and as effectively as Save the Children
         responds to tsunamis and civil conflict, it also works to resolve the ongoing struggles children face every day—poverty, hunger,
         illiteracy, and disease—and replaces them with hope for the future.
      

      
      Save the Children serves impoverished, marginalized, and vulnerable children and families in nearly 120 countries. Their programs
         reach both children and those working to save and improve their lives, including parents, caregivers, community members, and
         members of our partner organizations. They help save children’s lives, protect them from exploitation, and assist them in
         accessing education and health care.
      

      
      Through disaster risk-reduction, emergency preparedness, rapid humanitarian relief, and long-term recovery programs, Save
         the Children also assists millions of girls and boys at risk of or affected by natural disasters, conflicts, and ethnic violence.
      

      
      The editors and contributors of PowerShell Deep Dives are proud to donate the royalties from this book to this worthy cause. Learn more at www.savethechildren.org.
      

      
      
      
      


Part 1. PowerShell administration
      

      
      
      Edited by Richard Siddaway

      
      PowerShell is a tool for administrators enabling the automation of administrative processes. This first part of the book gives
         you an overview of the range of administrative tasks you can tackle and some superb examples of administering systems with
         PowerShell.
      

      
      PowerShell remoting is fantastic for administering tens, hundreds, or thousands of remote machines. But sometimes, things
         go wrong. Chapter 1 will show you how to diagnose and correct problems with PowerShell remoting.
      

      
      In PowerShell 1.0 we only had WMI for working with remote machines. PowerShell 3.0 introduces a new way to work with WMI on
         local and remote machines—the CIM cmdlets and CIM sessions, which are analogous to PowerShell remoting sessions but only for
         WMI access, and which are discussed in chapter 2.
      

      
      How many times have you heard the phrase, “Users say that server X is running slowly”? You now need to investigate the server—chapter 3 shows you how to use PowerShell to collect and analyze the data from performance counters.
      

      
      Your network is fundamental to your environment. Chapter 4 presents a set of PowerShell-based tools that enable you to investigate networking issues, such as which ports are available,
         and how to test connectivity by sending data to and from specific ports.
      

      
      The ability to administer servers remotely is key to managing a large environment. Chapter 5 shows how this concept can be extended to remote management from almost any device using PowerShell Web Access (a Windows
         Server 2012 feature). It provides true role-based access for your remote administration.
      

      
      Do you know who is logging onto to your machines, what they’re doing, and when they’re doing it? The techniques presented
         in chapter 6 will enable you to audit your user logons so you know, and can prove, who is doing what and when. You could extend these
         techniques to investigate other events recorded in your event logs.
      

      
      Security is one aspect of an administrator’s work that never goes away. Certificates are used in a number of situations including
         authentication and encryption. Managing certificates can be a time-consuming activity, but chapter 7 comes to the rescue by showing you how to use PowerShell to administer your certificate authority database.
      

      
      Part 1 closes with chapter 8 which shows you how to manage the size of the Active Directory token used for authorization. If this token gets too large,
         users will experience difficulties logging on and accessing their resources.
      

      
      The chapters in this part of the book have one thing in common—the techniques presented are designed to make your job easier.
         Automate the mundane and repetitive, and you’ll find the time to proactively make your job, and therefore your environment,
         better.
      

      
      Enjoy!

      
      
      
About the editor
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Chapter 1. Diagnosing and troubleshooting PowerShell remoting
      

      
      Don Jones
      

      
      Troubleshooting and diagnosing remoting can be one of the most difficult tasks for an administrator. When remoting works,
         it works; when it doesn’t, it’s often hard to tell why. Fortunately, PowerShell v3 and its accompanying implementation of
         remoting offer much clearer and more prescriptive error messages than prior versions. But even v2 included an undocumented
         and little-appreciated module named PSDiagnostics, which was designed specifically to facilitate remoting troubleshooting. The module lets you turn on detailed trace log information
         before you attempt to initiate a remoting connection. You can then use that detailed log information to get a better idea
         of where remoting is failing.
      

      
      In this chapter I’ll walk you through several troubleshooting examples. The idea is to help you recognize specific failure
         situations so that you’ll know what to do in each case to get things working. Each example focuses on a single scenario, such
         as a failed or blocked connection.
      

      
      
      
Diagnostics examples
      

      
      For the following scenarios I started by importing the PSDiagnostics module (note that this is implemented as a script module and requires an execution policy that permits it to run, such as
         RemoteSigned or Unrestricted). Figure 1 also shows that I ran the Enable-PSWSManCombinedTrace command, which starts the extended diagnostics logging.
      

      
      
      
      Figure 1. Loading the diagnostics module and starting a trace
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      For each scenario I then ran one or more commands that involved remoting, as demonstrated in figure 2. Afterward, I disabled the trace by running Disable-PSWSManCombinedTrace, so that the log would only contain the details from that particular attempt (I cleared the log between attempts, so that
         each scenario provided a fresh diagnostics log).
      

      
      
      

      
      
      Figure 2. Entering a session and running a command
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      Finally, as shown in figure 3, I retrieved the messages from the log. In the scenarios I’ll provide an annotated version of these.
      

      
      
      
      Figure 3. Examining the logged diagnostic information
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      Note

      
      
      In the examples I’ll typically truncate much of this output so that you can focus on the most meaningful pieces. Also note
         the difference between reading the information from the event log architecture, as in figure 3, and reading the .EVT trace file directly, as you’ll do in some of the scenarios. The latter will provide combined information
         from different logs, which can sometimes be more useful.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      I’ll also make use of the Microsoft Windows Remote Management (WinRM)/Analytic log, which doesn’t normally contain human-readable
         information. In order to use the log’s contents I’ll use an internal Microsoft utility to translate the log’s contents into
         something you can read. (I’ve been given permission to distribute the utility, which you can find at http://files.concentratedtech.com/psdiagnostics.zip.)
      

      
      Trace information is stored in PowerShell’s installation folder (run cd $pshome to get there, then change to the Traces folder). The filename extension is .ETL, and you can use Get-WinEvent –path filename.etl to read a particular file. The Construct-PSRemoteDataObject command, included in the zip file I referenced, can translate portions of the Analytic log’s Message property into human-readable text. A demo script included in the zip file shows how to use it. As shown in figure 4, I dot-sourced the Construct-PSRemoteDataObject.ps1 file into my shell in order to gain access to the commands it contains.
      

      
      
      
      Figure 4. Dot-sourcing the Construct-PSRemoteDataObject.ps1 script
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      I also deleted the contents of C:\Windows\System32\WindowsPowerShell\v1.0\Traces prior to starting each of the following examples.
         That way, I start each one with a fresh trace.
      

      
      
      
      
A perfect remoting connection
      

      
      Time for the first scenario: a perfect remoting connection. In this example you go from a Windows 7 client computer in a domain
         named AD2008R2 to the domain’s DC01 domain controller. On the DC, change to the C:\ folder, run a directory, and then end
         the session. Figure 5 shows the entire scenario.
      

      
      
      
      Figure 5. The example for this scenario: a perfect remoting connection
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      Now read the log in chronological order. You need to be careful; running Enable-PSWSManCombinedTrace and Disable-PSWSManCombinedTrace creates log events for those commands. You might want to run the Enable command and then wait a few minutes before doing anything with remoting. That way, you can tell by the timestamp in the log
         when the “real” traffic begins. Wait a few more minutes before running the Disable command, again so that you can easily tell when the “real” log traffic ends. Also note that you’ll get information from two
         logs, WinRM and PowerShell, although reading the .EVT file with Get-WinEvent will grab everything in sequence.
      

      
      The connection begins with (in this example) Enter-PSSession and name resolution, as shown in figure 6.
      

      
      
      
      Figure 6. Starting the remoting connection
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      WinRM has to spin up a runspace (a PowerShell process) on the remote computer. That includes setting several options for locale,
         timing, and so on, as shown in figure 7.
      

      
      
      
      Figure 7. Starting the remote runspace
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      This will go on for a while. Eventually you’ll see WinRM beginning to send “chunks,” which are packetized communications.
         These are sent via the Simple Object Access Protocol, so expect to see SOAP referenced a lot. (Web Services Management [WS-MAN]
         is a Web service, remember, and SOAP is the communications language of Web services.) Figure 8 shows a couple of these 1500-byte chunks. Notice that the payload is pretty much gibberish.
      

      
      
      
      Figure 8. Data begins to transfer over the connection
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      This gibberish is what the Construct-PSRemoteDataObject command can translate. For example, those “sending” messages have an event ID of 32868; by looking for only those events
         you can see what’s being sent, as shown in figure 9.
      

      
      
      
      Figure 9. Translating the data that was sent
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      In this case, the client was asking the server (which is listed as the destination) about its capabilities, and for some metadata
         on the Exit-PSSession command (that’s the second message). This is how the client figures out what kind of server it’s talking to and other important,
         preliminary information. Now the client knows what version of the serialization protocol will be used to send data back and
         forth, what time zone the server is in, and other details.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Event ID 32868 is client-to-server traffic; ID 32867 represents server-to-client traffic. Using those two IDs along with Construct-PSRemoteDataObject can reveal the majority of the session transcript once the connection is established.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Moving on. As shown in figure 10, you’ll see some authentication back-and-forth, during which some errors can be expected. The system will eventually get
         over it and, as shown, start receiving chunks of data from the server.
      

      
      
      
      Figure 10. Taking care of authentication
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      A rather surprising amount of back-and-forth can ensue as the two computers exchange pleasantries, share information about
         each other and how they work, and so on. Change your event log output to include event ID numbers, because those can be useful
         when trying to grab specific pieces of data. At this point the log will consist mainly of the client sending commands and
         the server sending back the results. This is more readable when you use Construct-PSRemoteDataObject, so here’s the complete back-and-forth from that perspective. First up is the client’s statement of its session capabilities:
      

      
      destination : Server
messageType : SessionCapability
pipelineId  : 00000000-0000-0000-0000-000000000000
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><Version
              N="protocolversion">2.2</Version><Version
              N="PSVersion">2.0</Version><Version
              N="SerializationVersion">1.1.0.1</Version><BA N="TimeZon
              e">AAEAAAD/////AQAAAAAAAAAEAQAAABxTeXN0ZW0uQ3VycmVudFN5c
              3RlbVRpbWVab25lBAAAABdtX0NhY2hlZERheWxpZ2h0Q2hhbmdlcw1tX
              3RpY2tzT2Zmc2V0Dm1fc3RhbmRhcmROYW1lDm1fZGF5bGlnaHROYW1lA
              wABARxTeXN0ZW0uQ29sbGVjdGlvbnMuSGFzaHRhYmxlCQkCAAAAAPgpF
              9b///8KCgQCAAAAHFN5c3RlbS5Db2xsZWN0aW9ucy5IYXNodGFibGUHA
              AAACkxvYWRGYWN0b3IHVmVyc2lvbghDb21wYXJlchBIYXNoQ29kZVByb
              3ZpZGVyCEhhc2hTaXplBEtleXMGVmFsdWVzAAADAwAFBQsIHFN5c3Rlb
              S5Db2xsZWN0aW9ucy5JQ29tcGFyZXIkU3lzdGVtLkNvbGxlY3Rpb25zL
              klIYXNoQ29kZVByb3ZpZGVyCOxROD8AAAAACgoDAAAACQMAAAAJBAAAA
              BADAAAAAAAAABAEAAAAAAAAAAs=</BA></MS></Obj>

      
      Then the server’s:

      
      destination : Client
messageType : SessionCapability
pipelineId  : 00000000-0000-0000-0000-000000000000
runspaceId  : 00000000-0000-0000-0000-000000000000
data        : <Obj RefId="0"><MS><Version
              N="protocolversion">2.2</Version><Version
              N="PSVersion">2.0</Version><Version
              N="SerializationVersion">1.1.0.1</Version></MS></Obj>

      
      Next is the server’s $PSVersionTable object, which lists versioning information:
      

      
      destination : Client
messageType : ApplicationPrivateData
pipelineId  : 00000000-0000-0000-0000-000000000000
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><Obj N="ApplicationPrivateData"
              RefId="1"><TN RefId="0"><T>System.Management.Automation.
              PSPrimitiveDictionary</T><T>System.Collections.Hashtable
              </T><T>System.Object</T></TN><DCT><En><S
              N="Key">PSVersionTable</S><Obj N="Value"
              RefId="2"><TNRef RefId="0" /><DCT><En><S
              N="Key">PSVersion</S><Version
              N="Value">2.0</Version></En><En><S
              N="Key">PSCompatibleVersions</S><Obj N="Value"
              RefId="3"><TN RefId="1"><T>System.Version[]</T><T>System
              .Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve
              rsion><Version>2.0</Version><Version>3.0</Version></LST>
              </Obj></En><En><S N="Key">BuildVersion</S><Version
              N="Value">6.2.8314.0</Version></En><En><S
              N="Key">PSRemotingProtocolVersion</S><Version
              N="Value">2.2</Version></En><En><S
              N="Key">WSManStackVersion</S><Version
              N="Value">3.0</Version></En><En><S
              N="Key">CLRVersion</S><Version
              N="Value">4.0.30319.261</Version></En><En><S
              N="Key">SerializationVersion</S><Version N="Value">1.1.0
              .1</Version></En></DCT></Obj></En></DCT></Obj></MS></Obj
              >

      
      Next the server sends information about the runspace that will be used:

      
      destination : Client
messageType : RunspacePoolStateInfo
pipelineId  : 00000000-0000-0000-0000-000000000000
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><I32
              N="RunspaceState">2</I32></MS></Obj>

      
      The client sends information about its Exit-PSSession command:
      

      
      destination : Server
messageType : GetCommandMetadata
pipelineId  : 03460806-3011-42a6-9843-c54f39ee6fb8
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><Obj N="Name" RefId="1"><TN RefId="0"
              ><T>System.String[]</T><T>System.Array</T><T>System.Obje
              ct</T></TN><LST><S>Out-Default</S><S>Exit-PSSession</S><
              /LST></Obj><Obj N="CommandType" RefId="2"><TN RefId="1">
              <T>System.Management.Automation.CommandTypes</T><T>Syste
              m.Enum</T><T>System.ValueType</T><T>System.Object</T></T
              N><ToString>Alias, Function, Filter,
              Cmdlet</ToString><I32>15</I32></Obj><Nil N="Namespace"
              /><Nil N="ArgumentList" /></MS></Obj>

      
      Later you’ll see the result of the CD C:\ command, which is the new PowerShell prompt reflecting the new folder location:
      

      
      destination : Client
messageType : PowerShellOutput
pipelineId  : c913b8ae-2802-4454-9d9b-926ca6032018
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <S>PS C:\&gt; </S>

      
      Next, let’s look at the output of the Dir command. The first bit is writing the column headers for Mode, LastWriteTime, Length, Name, and so forth. This is all being
         sent to the client. I’ve included the first few lines for you, each of which comes across in its own block:
      

      
      destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId  : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
              RefId="1"><TN RefId="0"><T>System.Management.Automation.
              Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
              em.ValueType</T><T>System.Object</T></TN><ToString>Write
              Line2</ToString><I32>16</I32></Obj><Obj N="mp"
              RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
              /T><T>System.Object</T></TN><LST><S>Mode
              LastWriteTime     Length Name
                                     </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId  : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
              RefId="1"><TN RefId="0"><T>System.Management.Automation.
              Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
              em.ValueType</T><T>System.Object</T></TN><ToString>Write
              Line2</ToString><I32>16</I32></Obj><Obj N="mp"
              RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
              /T><T>System.Object</T></TN><LST><S>----
              -------------     ------ ----
                                     </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId  : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
              RefId="1"><TN RefId="0"><T>System.Management.Automation.
              Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
              em.ValueType</T><T>System.Object</T></TN><ToString>Write
              Line2</ToString><I32>16</I32></Obj><Obj N="mp"
              RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
              /T><T>System.Object</T></TN><LST><S>d----
              8/25/2010   8:11 AM            IT Structures
                                           </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId  : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
              RefId="1"><TN RefId="0"><T>System.Management.Automation.
              Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
              em.ValueType</T><T>System.Object</T></TN><ToString>Write
              Line2</ToString><I32>16</I32></Obj><Obj N="mp"
              RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
              /T><T>System.Object</T></TN><LST><S>d----
              7/13/2009  11:20 PM            PerfLogs
                                           </S></LST></Obj></MS></Obj>

      
      Eventually the command finishes and you get the prompt again:

      
      destination : Client
messageType : PowerShellOutput
pipelineId  : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <S>PS C:\&gt; </S>

      
      You’ll also see periodic exchanges about the state of the pipeline. The following indicates that the command is done:

      
      destination : Client
messageType : PowerShellStateInfo
pipelineId  : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9
runspaceId  : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data        : <Obj RefId="0"><MS><I32
              N="PipelineState">4</I32></MS></Obj>

      
      A lot of data passes back and forth, but it’s possible to make sense of it using these tools. Frankly, most remoting problems
         take place during the connection phase, meaning once that’s completed successfully you’ll have no further problems. The next scenarios focus on specific connection errors.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      To clear the log and prepare for a new trace, try deleting the .EVT files and going into Event Viewer to clear the Applications
         and Services Logs > Microsoft > Windows > Windows Remote Management log. If you’re getting errors when running Enable-PSWSManCombinedTrace, one of those two tasks probably hasn’t been completed.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      
Connection problem: Blocked port
      

      
      Figure 11 shows what happens when you try to connect to a computer and the necessary port—5985 by default—isn’t open all the way through.
         Let’s look at how this appears in the log.
      

      
      
      
      Figure 11. Connection failure due to a firewall or other port-blocking problem
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      Note

      
      
      I’m assuming you’ve already checked the computer name, made sure it resolves to the proper IP address, and so forth; what
         you’re looking at is definitely a blocked port (because I set it up that way) in this example.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Figure 12 shows that you successfully resolved the computer name. You’ll find that testing with Enter-PSSession is easiest, because it’s easy to spot that command in the log and see when the “real” log data begins.
      

      
      
      
      Figure 12. Starting the connection attempt
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      A lot of the initial log traffic is still WinRM talking to itself, getting set up for the connection attempt. Keep scrolling
         through that until you start to see problem indications. Figure 13 shows a timeout—never a good sign—and the error message generated by WinRM. As you can see, this is exactly what’s on-screen,
         so PowerShell isn’t hiding anything.
      

      
      
      
      Figure 13. The timeout error in the diagnostics log
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      This is one of the trickiest bits of remoting: WinRM can’t tell why the server didn’t respond. It doesn’t realize that the
         port isn’t open. For all WinRM knows, you could have specified a computer name that doesn’t exist. All it sees is that it
         sent a message out to the network and nobody replied. In the end, nearly all of the possible “low-level” problems—bad IP address,
         bad computer name, blocked port, and so forth—all look the same to WinRM. You’re on your own to troubleshoot these problems.
      

      
      One useful technique is to use the old command-line Telnet client. Keep in mind that WS-MAN is HTTP, and HTTP, like many Internet
         protocols, sends text back and forth, more or less exactly like Telnet. HTTP has specific text it sends and looks for, but
         the transmission is old-school Telnet. Run something like telnet dc01 5985 to see if you can connect. A blank screen is normal: press Ctrl-C to break out, and you’ll see an HTTP “Bad Request” error.
         That’s fine. It means you got through. That confirms the computer name, IP address, port, and everything else “low-level.”
      

      
      
      
      
      
Connection problem: No permissions
      

      
      This problem can be tricky, because you need to be an Administrator to enable a diagnostics trace. On the other hand, WinRM
         is usually quite clear when you can’t connect because your account doesn’t have permission to the endpoint: “Access Denied”
         is the error message, and that’s pretty straightforward.
      

      
      But you can also log on as an Administrator (or open a shell under Administrator credentials), enable a trace, and then have
         another user (or your other user account) make the attempt. Go back in as Administrator, disable the trace, and then examine
         the log. Figure 14 shows what you’re looking for.
      

      
      
      
      Figure 14. “Access Denied” in the diagnostics log
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      The log data after that shows you the user account that tried to create the connection (AD2008R2\SallyS, in our example, which
         is why the command failed—she’s not an Administrator). A quick check with Get-PSSessionConfiguration on the remote machine will confirm the permissions on whatever remoting endpoint you’re attempting to connect to. Also, as
         shown in figure 15, running Set-PSSessionConfiguration can be useful. Provide the –Name of the endpoint you’re checking, and add –ShowSecurityDescriptorUI. That will let you confirm the endpoint’s permissions in a friendlier GUI form, and you can modify it right there if need
         be.
      

      
      
      

      
      
      Figure 15. Checking an endpoint’s permissions using Set-PSSessionConfiguration
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Connection problem: Untrusted host
      

      
      In this scenario you try to connect from the client in the AD2008R2 domain to a standalone computer that isn’t part of a domain,
         as shown in figure 16.
      

      
      
      
      Figure 16. Attempted connection for this scenario: untrusted host
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      As shown in figure 17, the error comes quickly, even though you provided a valid credential. You’re in a situation where WinRM can’t get the mutual
         authentication it wants, and that requires additional setup, which I won’t cover here (grab my free Secrets of PowerShell Remoting from http://PowerShellBooks.com for a walkthrough on fixing this problem). But what does the problem look like in the diagnostics log?
      

      
      
      
      Figure 17. The error message when attempting to connect to an untrusted host. The message gives good clues as to how to solve this problem.
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      Figure 18 shows that WinRM still sends its initial salvo of traffic to the server. The error is generated when the reply comes back
         that the client can’t authenticate this server. What you see in the log is pretty much what shows up in the shell, verbatim.
      

      
      
      
      Figure 18. The diagnostic log content when attempting to connect to an untrusted host
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      Figure 19 shows a good second step to take: run Test-WSMan. Provide the same computer name or IP address, but leave off the –Credential parameter. The cmdlet can at least tell you that WS-MAN and WinRM are up and running on the remote computer, and what version
         they’re running. That narrows the problem down to one of authentication, involving either your permissions (which would have
         resulted in “Access Denied”) or the mutual authentication component of remoting.
      

      
      
      
      Figure 19. Test-WSMan is like a “ping” for remoting
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      Note

      
      
      You see substantially the same behavior when you attempt to connect using HTTPS (the –UseSSL switch on the various remoting commands) and the remote machine’s SSL certificate name doesn’t match the name you used in
         your command. The error message is unambiguous both on-screen and in the log.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      
Summary
      

      
      Why did I bother going through the logs when, in most of the examples, the logs echoed what was on the screen? It’s simple:
         as PowerShell becomes embedded in more and more GUI applications you might not always have a console to rely on, with its
         nice error messages. What you can do, however, is use the console to start a trace, run whatever GUI app is failing, and then
         dig into the log to see if you find some of the signs I’ve shown you.
      

      
      As for solving these problems, in many cases you’ll have to perform some additional remoting setup. That can be complex in
         anything but a “we all live in the same domain” environment. I’ve put together a step-by-step guide to every configuration
         scenario I could think of, complete with screen shots, in a free PDF called Secrets of PowerShell Remoting, available from http://PowerShellBooks.com. (That site will at least get you to the guide’s current location.)
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Chapter 2. CIM sessions
      

      
      Richard Siddaway
      

      
      PowerShell v3 introduces a great deal of new functionality. The biggest changes are associated with Windows Management Instrumentation
         (WMI).
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      WMI is Microsoft’s implementation of the industry standard Common Information Model (CIM). With the Windows 8/2012 wave of
         products, Microsoft started moving to a more standards-based approach for WMI, and new terminology has emerged based on these
         changes.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      With WMI in PowerShell v3, you get

      
      

      
         
         	A new API
            
         

         
         	New objects and .NET classes
            
         

         
         	A new set of cmdlets
            
         

         
         	CIM sessions
            
         

         
         	The ability to create cmdlets from WMI classes
            
         

         
      

      
      One chapter can’t cover all of these topics, so I’m going to concentrate on CIM sessions with a side trip through the CIM
         cmdlets. For the other topics, see my book PowerShell and WMI (Manning 2012).
      

      
      I start the chapter with a look at how WMI has been used in the past and some of the problems associated with it, followed
         by a quick look at the new CIM cmdlets, including comparisons to the existing WMI cmdlets where applicable.
      

      
      Then I discuss CIM sessions, and I close the chapter by showing you how to configure CIM sessions to work with systems that
         still use legacy versions of PowerShell.
      

      
      
      
WMI
      

      
      The WMI cmdlets in PowerShell v2 are great—if you’ve ever tried working with WMI through VBScript, you’ll appreciate how great
         they are! But WMI cmdlets do come with a few problems.
      

      
      WMI is a terrific tool for working with remote systems (in PowerShell v1 it was the only remote tool). The problem is that the WMI cmdlets work over Distributed Component Object Model (DCOM) for access to remote systems. DCOM isn’t a firewall-friendly protocol; it needs to be explicitly
         allowed. The remote machine also has to allow DCOM access. You can access a remote system by using the –ComputerName parameter:
      

      
      PS> Get-WmiObject -Class Win32_ComputerSystem -ComputerName DC02

      
      If DCOM isn’t configured, you get an error like this:

      
      Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)
At line:1 char:1
+ Get-WmiObject -Class Win32_ComputerSystem -ComputerName DC02
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    + CategoryInfo          : InvalidOperation: (:) [Get-WmiObject], COMException
    + FullyQualifiedErrorId : GetWMICOMException,Microsoft.PowerShell.Commands.GetWmiObjectCommand

      
      The other place where DCOM bites you is on the –Authentication parameter of GetWmiObject. This causes confusion because you aren’t authorizing yourself; you’re determining the level of encryption on the DCOM connection
         to the remote machine. The most common scenario is when the WMI provider needs PacketPrivacy—full encryption on the connection—and won’t allow remote access without it. This issue occurs with the Internet Information
         Services (IIS) and cluster WMI providers, for example.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Local access ignores the need for PacketPrivacy.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      You can use PowerShell remoting to overcome the DCOM problems. You’re effectively running the commands locally and bypassing
         DCOM. In PowerShell v3 you get another way to access WMI classes—the CIM cmdlets.
      

      
      
      
      
CIM cmdlets
      

      
      CIM is an industry standard, owned and maintained by the Distributed Management Task Force (DMTF), which is also responsible
         for the WS-MAN protocols. WMI is Microsoft’s implementation of CIM.
      

      
      Try this:

      
      Get-WmiObject -List *_ComputerSystem

      
      You’ll get two classes returned:

      
      

      
         
         	
CIM_ComputerSystem
            
         

         
         	
Win32_ComputerSystem
            
         

         
      

      
      The CIM_ComputerSystem class is the original DMTF standard. The Win32_ComputerSystem class is Microsoft’s version. In the root\cimv2 namespace, many of the classes have a CIM_ and a Win32_ version. They may be identical, or the Win32_ may be a modified version of the CIM_ class, usually with extra properties. I use the Win32_ class if there’s a choice.
      

      
      The new CIM API and cmdlets are part of an effort to further the use of CIM/WMI by a closer adoption of standards, and to
         link in with the Open Management Infrastructure initiative.
      

      
      The new CIM cmdlets are listed in table 1 with their corresponding WMI cmdlets.
      

      
      Table 1. Comparison of CIM cmdlets and WMI cmdlets
      

      
         
            
            
         
         
            
               	
                  CIM cmdlet

               
               	
                  WMI cmdlet

               
            

         
         
            
               	New-CimInstance
               	n/a
            

            
               	Get-CimInstance
               	Get-WmiObject
            

            
               	Set-CimInstance
               	Set-WmiInstance
            

            
               	Invoke-CimMethod
               	Invoke-WmiMethod
            

            
               	Remove-CimInstance
               	Remove-WmiObject
            

            
               	Get-CimAssociatedInstance
               	n/a
            

            
               	Get-CimClass
               	n/a
            

            
               	Register-CimIndicationEvent
               	Register-WmiEvent
            

         
      

      
      The functioning of the CIM cmdlets is obvious—they do the same job as their WMI equivalents. But some cmdlets don’t have a
         WMI equivalent:
      

      
      

      
         
         	
New-CimInstance—Creates a new instance of a CIM class. In practice, it has limited applicability. I usually use the Create method of a class through Invoke-CimMethod.
            
         

         
         	
Get-CimAssociatedInstance—Works through WMI associations. Easier to use than the ASSOCIATORS OF queries in WMI.
            
         

         
         	
Get-CimClass—Investigates a CIM class. You can discover properties and methods (including arguments). Arguably the most useful CIM cmdlet.
            
         

         
      

      
      Using the CIM cmdlets is similar to using the WMI cmdlets, but note these two differences:

      
      

      
         
         	You get a different type of object returned.
            
         

         
         	You get an inert object—no WMI methods. Use Invoke-CimMethod to use the methods of a class.
            
         

         
      

      
      You can see the differences by comparing the output of the WMI and CIM cmdlets. Try this code:

      
      Get-WmiObject -Class Win32_ComputerSystem | Get-Member
Get-CimInstance -Class Win32_ComputerSystem | Get-Member

      
      Compare the results to see the changes. You may also see a difference in the default output from a class because the CIM cmdlets
         produce a different object; therefore, the formatting can be different.
      

      
      The WMI cmdlets had a –ComputerName parameter for accessing remote systems. The CIM cmdlets give you a choice: the –CimSession parameter for working with CIM sessions, or the –ComputerName parameter, which works with one or more computer names.
      





















































