

 [image: cover]

PowerShell Deep Dives

 Edited by Jeffery Hicks, Richard Siddaway, Oisín Grehan, and Aleksandar Nikoli

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditor: Gwen Burda, Tiffany Taylor, and Lianna Wlasiuk
Proofreader: Melody Dolab
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN 9781617291319

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Dedication

 To the memory and indomitable spirit of Will Steele @pen_test

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Authors and their Chapters

 Preface

 Acknowledgments

 About this Book

 About Save the Children

 1. PowerShell administration

 Chapter 1. Diagnosing and troubleshooting PowerShell remoting

 Chapter 2. CIM sessions

 Chapter 3. Collecting and analyzing performance counter data

 Chapter 4. TCP port communications with PowerShell

 Chapter 5. Managing systems through a keyhole

 Chapter 6. Using PowerShell to audit user logon events

 Chapter 7. Managing and administering a certification authority database with PowerShell

 Chapter 8. Using PowerShell to reduce Active Directory token bloat

 2. PowerShell scripting

 Chapter 9. The 10 PowerShell scripting commandments

 Chapter 10. Avoiding the pipeline

 Chapter 11. A template for handling and reporting errors

 Chapter 12. Tips and tricks for creating complex or advanced HTML reports with PowerShell

 Chapter 13. Using and “abusing” dynamic parameters

 Chapter 14. PowerShell type formatting

 Chapter 15. Scalable scripting for large data sets: pipeline and database techniques

 Chapter 16. Building your own WMI-based cmdlets

 Chapter 17. Turning command-line tools into PowerShell tools

 3. PowerShell for developers

 Chapter 18. Using Source Control Software with PowerShell

 Chapter 19. Inline .NET code

 Chapter 20. PowerShell and XML: better together

 Chapter 21. Adding automatic remoting to advanced functions and cmdlets

 Chapter 22. Taming software builds (and other complicated processes) with psake

 4. PowerShell platforms

 Chapter 23. PowerShell and the SQL Server provider

 Chapter 24. Creating flexible subscriptions in SSRS

 Chapter 25. Inventory database table statistics using PowerShell and SQL Server Management Objects

 Chapter 26. WSUS and PowerShell

 Chapter 27. Provisioning IIS web servers and sites with PowerShell

 Chapter 28. Active Directory Group Management application

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Authors and their Chapters

 Preface

 Acknowledgments

 About this Book

 About Save the Children

 1. PowerShell administration

 Chapter 1. Diagnosing and troubleshooting PowerShell remoting

 Diagnostics examples

 A perfect remoting connection

 Connection problem: Blocked port

 Connection problem: No permissions

 Connection problem: Untrusted host

 Summary

 About the author

 Chapter 2. CIM sessions

 WMI

 CIM cmdlets

 Using CIM sessions

 CIM session options

 Summary

 About the author

 Chapter 3. Collecting and analyzing performance counter data

 Windows Performance Logs and Alerts

 Enumerating the counter groups

 Finding the right counters

 Accessing the counters’ data

 Controlling the sampling and the collection interval

 Getting the data from remote computers

 Using jobs for long-running tasks

 Saving the performance data to a file

 Saving the data to a binary file (BLG)

 Saving the data to an Excel file (CSV)

 Manipulating stored performance data from a file

 Summary

 About the author

 Chapter 4. TCP port communications with PowerShell

 Testing for an open port

 Building a more robust port checker

 Sending and receiving data

 Sending data

 Receiving data

 LDAP port communications

 Testing port 389 and receiving data with portqry.exe

 Testing port 389 and receiving data with PowerShell

 Creating an Echo server

 Creating a TPC port listener

 Handling connections and data

 Creating the Echo server

 Summary

 About the author

 Chapter 5. Managing systems through a keyhole

 PowerShell remoting

 Endpoints

 Constrained endpoints, take one

 Constrained endpoints, take two

 PowerShell Web Access

 Summary

 About the author

 Chapter 6. Using PowerShell to audit user logon events

 Event log basics

 Querying the event logs with PowerShell

 Auditing logon failures

 Auditing logon type and authentication protocol

 Auditing Active Directory user-account lockout events

 Summary

 About the author

 Chapter 7. Managing and administering a certification authority database with PowerShell

 Existing tools

 Querying the CA database

 Accessing the database

 Getting the database schema

 Querying the database

 Advanced administration of the CA database

 Required APIs

 Certificate revocation

 Certificate request approval and denial

 CA database cleanup

 Summary

 About the author

 Chapter 8. Using PowerShell to reduce Active Directory token bloat

 SIDs 101

 Where does the SID history come from?

 The solution

 The script

 Listing domain SIDs and trusts

 The challenge

 PowerShell options

 Active Directory cmdlets

 WMI

 NLTEST

 ADSI

 .NET

 The script solution

 Summary

 About the author

 2. PowerShell scripting

 Chapter 9. The 10 PowerShell scripting commandments

 Constructing a sound function

 Select your function name carefully

 Start help early

 Output

 Keep the pipeline in mind

 Handle and provide a path property

 Use Write- commands properly

 Parameters

 Use standard parameter names and aliases

 Avoid restoring data: make full use of the common parameters

 Assign default values (so constants can be parameters)

 Be mindful of your users

 Provide parameters to switch off parts of a complex function (or script)

 Accept input from the pipeline

 Be flexible about what is acceptable in parameters

 Using parameter types and validation properly

 Example: finding duplicate files

 Extra tricks for file parameters

 Convert to paths

 Use a path property if it exists

 Pipe the same item into multiple parameters

 Write code for another person to read

 Summary

 About the author

 Chapter 10. Avoiding the pipeline

 Requirements

 Rules of engagement

 Filtering objects sooner

 Filtering by property

 Filtering by condition

 Returning only the properties that you need

 Providers and filtering parameters

 What’s in a name?

 Where-Object isn’t bad

 Using regular expressions

 Using member enumeration

 Member enumeration and properties

 Member enumeration and methods

 Counting objects

 Summary

 About the author

 Chapter 11. A template for handling and reporting errors

 Using preference variables: $ErrorActionPreference

 Using structured error handling: try/catch/finally

 Using $Error and InvocationInfo objects

 Handling custom business-logic errors with throw and try

 Final template

 Summary

 About the author

 Chapter 12. Tips and tricks for creating complex or advanced HTML reports with PowerShell

 Standard ConvertTo-HTML output

 Script parameters and help

 ConvertTo-HTML’s –Fragment parameter

 Using a PowerShell here-string to create the HTML header

 Encoding an image into the HTML report

 Adding charts to the report

 Preparing the data for the report

 Differentiating report data with color

 Final steps

 Summary

 About the author

 Chapter 13. Using and “abusing” dynamic parameters

 Static parameters

 Initial design

 Advanced functions

 Dynamic parameters

 Advantages and disadvantages

 Existing implementations of dynamic parameters

 Practical applications

 Using dynamic parameters

 “Abusing” dynamic parameters

 Summary

 About the author

 Chapter 14. PowerShell type formatting

 Creating a formatting file

 View definitions

 Defining table headers

 Conditional row entries

 Grouping

 Custom controls

 Putting it together

 Loading formatting data

 Summary

 About the author

 Chapter 15. Scalable scripting for large data sets: pipeline and database techniques

 The stream and the water balloon

 Streams and water balloons in PowerShell scripts

 The problem: holding everything in memory at once

 The solution: stream over input items instead of collecting them

 Pipelines are not the enemy of efficiency

 Making it real: streaming over data in complex realistic tasks

 If it quacks like a database ...

 Getting started

 Getting the data to the database

 Getting objects and insights back from the database

 Exploring your PowerShell data outside of PowerShell

 Summary

 About the author

 Chapter 16. Building your own WMI-based cmdlets

 Discovering WMI-based cmdlets

 Creating a WMI-based cmdlet

 Using a WMI-based cmdlet

 Adding extra filter parameters

 Creating cmdlets from WMI methods

 Summary

 About the author

 Chapter 17. Turning command-line tools into PowerShell tools

 Requirements

 Conversion techniques

 Looking for PowerShell data formats

 Parsing text output

 Handling CLI errors

 A practical example

 Summary

 About the author

 3. PowerShell for developers

 Chapter 18. Using Source Control Software with PowerShell

 Requirements

 When to use source control

 Introduction to Mercurial

 Command line versus GUI

 Common source control operations

 Initializing a repository

 Adding files

 Committing a new changeset

 Removing files

 Using Mercurial from PowerShell

 Script to initialize a repository

 Script to commit a changeset

 Working with Mercurial in teams

 Alternative Mercurial web services

 Summary

 About the Author

 Chapter 19. Inline .NET code

 .NET class for output

 Output types

 Creating a .NET class for output

 .NET class with methods

 Summary

 About the author

 Chapter 20. PowerShell and XML: better together

 What is XML?

 XML in .NET and PowerShell

 Get-Content

 [xml]

 Adapted objects and XMLNodeAdapter

 CIM (WMI) adapted objects

 XML adapted objects

 Read and write XML documents

 Read an XML answer file

 Modify and save XML data

 Special XML cases

 Object serialization

 Web service communication

 Summary

 About the author

 Chapter 21. Adding automatic remoting to advanced functions and cmdlets

 Delivering economic value

 An automatic remoting example

 The pain of manual Invoke-Command

 The pain of increasing complexity

 Defining the user experience

 It all starts with ComputerName

 Inspiration from Workflow

 Is ComputerName alone sufficient?

 Of parameters and parameter sets

 Implementing your solution

 Inner and outer functions and script blocks

 Inserting the inner function and making it work

 Testing your solution

 Making it more standard

 Enabling pipeline support

 Dealing with the real world and gotchas

 Accommodating PowerShell versions

 Dealing with modules

 Streaming binary DLLs to the target server

 Making your cmdlets production-ready

 “Protecting” intellectual property and positioning your module as a product

 Summary

 About the author

 Chapter 22. Taming software builds (and other complicated processes) with psake

 Building software

 Introducing psake

 Installing psake

 psake commands

 psake build scripts

 Running the build script

 Building Visual Studio projects

 Using PowerShell in psake tasks

 Configuring the build with properties

 Validating property values

 Managing psake script growth

 Identifying public tasks

 Describing your tasks

 Grouping tasks into files

 Summary

 About the author

 4. PowerShell platforms

 Chapter 23. PowerShell and the SQL Server provider

 Requirements

 Introduction to the SQL Server provider

 Using the SQL Server provider

 Examples of using the SQL Server provider

 Getting a count of databases in an instance

 Finding a table in many databases

 Summary

 About the author

 Chapter 24. Creating flexible subscriptions in SSRS

 Understanding SSRS subscriptions

 Environment settings

 Requirements

 SQL Server and PowerShell requirements

 Subscription requirements

 Subscription in action

 Main script

 Storing subscriptions

 Retrieving subscriptions

 Parsing parameters

 Delivering subscriptions

 Scheduling the script

 Taking it further

 Summary

 About the author

 Chapter 25. Inventory database table statistics using PowerShell and SQL Server Management Objects

 Understanding SMO

 Loading SMO

 The Server object

 Creating the inventory database using SMO

 Creating the TableStats table using SMO

 Resetting from previous runs

 Gathering inventory data

 Querying the data

 Other ways to use the data

 Summary

 About the author

 Chapter 26. WSUS and PowerShell

 WSUS server configuration and events

 Initial connection

 Viewing WSUS configuration

 Viewing the WSUS database connection

 Viewing WSUS event history

 Automatic approval rules

 Locating approval rules

 Creating approval rules

 Reporting in WSUS

 Failed update installations

 Auditing approvals

 Client update status

 Summary

 About the author

 Chapter 27. Provisioning IIS web servers and sites with PowerShell

 Rapid IIS deployment

 Transferring website files and certificates

 Deploying the default website

 Deploying the shopping website

 Enabling remote management for IIS Manager

 Enabling the service

 Replacing the certificate

 Creating a load-balanced web farm

 Creating an SSL website

 Automating the process

 Summary

 About the author

 Chapter 28. Active Directory Group Management application

 Requirements

 User Interface development tools

 Data storage tools and design

 Automation and auditing

 Organizing the project files

 Designing the UI

 Rendering the UI

 Adding UI event-handling logic

 Handling database interactions

 Executing SQL statements

 Implementing UI error handling

 Writing the Active Directory modification script

 Summary

 About the author

 Index

 List of Figures

 List of Tables

 List of Listings

Authors and their Chapters

 Chris Bellée 28

 Bartosz Bielawski 5, 13

 Robert C. Cain 25

 Jim Christopher 22

 Adam Driscoll 14

 Josh Gavant 20

 Jason Helmick 27

 Jeffery Hicks 17

 Don Jones 1

 Ashley McGlone 8

 Jonathan Medd 12

 Ben Miller 23

 James O’Neill 9

 Arnaud Petitjean 3

 Vadims Podans 7

 Karl Prosser 21

 Boe Prox 4, 26

 Matthew Reynolds 15

 Mike F. Robbins 6

 Donabel Santos 24

 Richard Siddaway 2, 16, 19

 Will Steele 11

 Trevor Sullivan 18

 Jeff Wouters 10

Preface

 While I was finishing another book project for Manning, a discussion developed about a PowerShell Deep Dives book. In the
 past Manning published two volumes of a SQL Server Deep Dives book written by a number of SQL Server MVPs and members of the
 SQL community. The chapters were intended as in-depth content on specific aspects of SQL Server. At the time, many of us involved
 in this book were also part of the developing PowerShell Deep Dives conference.

 That event brought Microsoft MVPs and community members together for a few days of intense PowerShell togetherness. Think
 of it as a geeky Woodstock festival for PowerShell. The intent was to share PowerShell experiences and ideas on specific—or
 even niche—topics that would be hard to cover in a larger conference like Microsoft TechEd. The PowerShell Deep Dives conference
 eventually became the PowerShell Summit that we enjoy today.

 The idea behind this book was to take that conference concept and put it into book format. The chapters would be short explorations
 of specific PowerShell ideas—things that might be presented at the PowerShell Summit. Some of the content in this book has
 actually been presented at these conferences.

 I was “volunteered” to serve as lead editor and began my new career as cat wrangler. A call went out and many people offered
 to contribute chapters to the book as well as act as section editors. Eventually, we had a tentative table of contents and
 our volunteer authors started writing.

 Volunteer is the key word here as nobody associated with this project is receiving any royalties or advances. Instead, all royalties
 will be donated to charity, which was also a part of the SQL Server Deep Dives project. In purchasing this book in any format,
 you are supporting the outstanding work of Save the Children.

 On behalf of the authors and my coeditors, we are grateful for your support and interest in our collective work. Are you ready
 to dive in deeply and uncover some PowerShell treasures?

 JEFFERY HICKS

Acknowledgments

 First, I must thank all of the contributors to this book, including their families and employers. Writing a book is a major
 undertaking, regardless of whether you are writing 30 chapters or one. For many of my coauthors this book is their first publication,
 so not only do I want to thank them, I also want to congratulate them. This book would never have happened without the contributions
 of these members of the PowerShell community.

 Next, I couldn’t have shepherded this book to completion without the assistance and advice of section editors Oisín Grehan,
 Richard Siddaway, and Aleksandar Nikolić. I think the project was more involved than they anticipated and I appreciate their
 willingness to stick it out with me—especially Richard who volunteered for section editor duty in addition to contributing
 three chapters of his own!

 All of us would like to thank the terrific people at Manning: Cynthia Kane, Michael Stephens, Mary Piergies, Barbara Mirecki,
 Kevin Sullivan, Melody Dolab, Lianna Wlasiuk, Tiffany Taylor, Gwen Burda, and Maureen Spencer. These few are just the tip
 of a fantastic iceberg of enthusiastic people who kept us on track, supported this project, and, in the end, made it all possible.

 Special thanks to our peer reviewers, who read the chapters during development and provided invaluable feedback: Adam Rodgers,
 Allan Miller, Dave Pawson, Don Westerfield, Douglas Duncan, James Berkenbile, Jeff Dykstra, Klaus Schulte, Mike Shepard, Subhasis
 Ghosh, and Thomas Lee.

 Finally, a sincere thank-you to the PowerShell community. It is no overstatement to say that this community is extremely active,
 supportive, and welcoming. I’m amazed not only at how members of the community absorb and welcome contributions like this
 book, but also at how they give and share so much of what they’ve learned with others. This is an incredible group of people.
 Without their interest and support, this project would not have come to fruition. Your enthusiasm enriches us all, and especially
 the lives touched by Save the Children.

About this Book

 This book is for anyone with an interest in PowerShell. Perhaps you want to learn what you can accomplish or perhaps you’re
 trying to solve a problem and you see a chapter that will help. While the majority of the chapters in the book are written
 for IT pros, there is plenty of content for developers and others whose PowerShell experience may be more peripheral.

 We’re assuming you have some fundamental PowerShell knowledge. If you’re an absolute beginner, much of the content will be
 lost on you. This book isn’t intended as a tutorial for learning PowerShell, but it should teach you how to accomplish certain
 tasks or take advantage of a PowerShell feature that goes beyond the core documentation.

 In any event, this is PowerShell content you likely won’t find any place else, written by PowerShell experts and MVPs.

What version of PowerShell do I need?

 This book isn’t targeted at any particular version of PowerShell. There are some chapters that are PowerShell 3.0-specific
 and that should be evident from reading the chapter. The safest assumption is that you’re using at least PowerShell 2.0.

Where’s coverage of Microsoft Exchange?

 As we were assembling content for this book, we had to use what contributors wanted to write about, but we also wanted to
 keep the book broad in scope. Yes, there are a few chapters that are SQL Server-related, but many of the concepts and techniques
 can apply to other PowerShell situations.

 Frankly, products like Microsoft Exchange, which rely heavily on PowerShell, deserve their own Deep Dives book, and we hope
 someone from the Exchange community will step up and lead the effort for a similar book, hopefully with some good PowerShell
 content. The same is true of other Microsoft products such as SharePoint and Active Directory.

How the book is organized

 This book is divided into 4 parts, each centered on a PowerShell theme:

 	
Part 1—PowerShell administration

 	
Part 2—PowerShell scripting

 	
Part 3—PowerShell for developers

 	
Part 4—PowerShell platforms

 This isn’t necessarily a hard and fast division. Some chapters could easily have been assigned to multiple parts. Since the
 book isn’t intended as a tutorial, you can jump from chapter to chapter as you see fit. An effort was made within each section
 to order content in such a way as to facilitate learning.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. We’ve tried to make any code that’s shown as a listing available as a download. You should
 test and review all code samples in a non-production environment. None of the code listings should be considered production-ready.

 Throughout the book you will see shorter code examples. Many of these are one-line expressions. Due to printing limitations
 we have had to take a few liberties with how code is presented. You might see a command presented like this:

 PS C:\> Get-service | where {$_.status –eq 'running'} | select
 [image:] status,displayname

 or like this

 Get-service |
where {$_.status –eq 'running'} |
select status,displayname

 It is the same one-line command. We are trusting that you have enough fundamental PowerShell knowledge to understand what
 a basic command looks like and how to use it either in the shell or a script.

 The source code for the examples in this book is available online from the publisher’s website at www.manning.com/PowerShellDeepDives.

Author Online

 The purchase of PowerShell Deep Dives includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/PowerShellDeepDives. The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long
 as the book is in print.

 This is the place to go to report errors in the book or to receive help with title-specific content. If you’re looking for
 more general help with PowerShell, please visit the forum at http://PowerShell.org. Registration is free and many authors of this book are active on the site.

About the editors

 Jeffery Hicks is the lead editor for PowerShell Deep Dives. The bios and photographs of the section editors can be found at the end of the introductions for their respective sections.

 	
Part 1—PowerShell administration, edited by Richard Siddaway

 	
Part 2—PowerShell scripting, edited by Jeff Hicks

 	
Part 3—PowerShell for developers, edited by Oisín Grehan

 	
Part 4—PowerShell platforms, edited by Aleksandar Nikolić

 Jeffery Hicks is a Microsoft MVP in Windows PowerShell, a Microsoft Certified Trainer, and an IT veteran with over 20 years
 of experience, much of it spent as an IT consultant specializing in Microsoft server technologies with an emphasis in automation
 and efficiency. He works today as an independent author, trainer, and consultant. Jeff writes the popular Prof. PowerShell
 column for MPCMag.com, and is a regular contributor to the Petri IT Knowledgebase, 4SysOps and the Altaro Hyper-V blog, as
 well as a frequent speaker at technology conferences and user groups.

 Jeff’s latest books are Manning’s Learn PowerShell 3 in a Month of Lunches, Second Edition and Learn PowerShell Toolmaking in a Month of Lunches, both with Don Jones, and PowerShell in Depth: An Administrator’s Guide, coauthored with Don Jones and Richard Siddaway.

About Save the Children

 Save the Children is the leading independent organization creating lasting change in the lives of children in need in the
 United States and around the world. Recognized for their commitment to accountability, innovation, and collaboration, Save
 the Children goes into the hearts of communities, where they help children and families help themselves. The charity works
 with other organizations, governments, non-profits, and a variety of local partners while maintaining their own independence
 without political agenda or religious orientation.

 When disaster strikes around the world, Save the Children is there to save lives with food, medical care, and education, and
 remains to help communities rebuild through long-term recovery programs. As quickly and as effectively as Save the Children
 responds to tsunamis and civil conflict, it also works to resolve the ongoing struggles children face every day—poverty, hunger,
 illiteracy, and disease—and replaces them with hope for the future.

 Save the Children serves impoverished, marginalized, and vulnerable children and families in nearly 120 countries. Their programs
 reach both children and those working to save and improve their lives, including parents, caregivers, community members, and
 members of our partner organizations. They help save children’s lives, protect them from exploitation, and assist them in
 accessing education and health care.

 Through disaster risk-reduction, emergency preparedness, rapid humanitarian relief, and long-term recovery programs, Save
 the Children also assists millions of girls and boys at risk of or affected by natural disasters, conflicts, and ethnic violence.

 The editors and contributors of PowerShell Deep Dives are proud to donate the royalties from this book to this worthy cause. Learn more at www.savethechildren.org.

Part 1. PowerShell administration

 Edited by Richard Siddaway

 PowerShell is a tool for administrators enabling the automation of administrative processes. This first part of the book gives
 you an overview of the range of administrative tasks you can tackle and some superb examples of administering systems with
 PowerShell.

 PowerShell remoting is fantastic for administering tens, hundreds, or thousands of remote machines. But sometimes, things
 go wrong. Chapter 1 will show you how to diagnose and correct problems with PowerShell remoting.

 In PowerShell 1.0 we only had WMI for working with remote machines. PowerShell 3.0 introduces a new way to work with WMI on
 local and remote machines—the CIM cmdlets and CIM sessions, which are analogous to PowerShell remoting sessions but only for
 WMI access, and which are discussed in chapter 2.

 How many times have you heard the phrase, “Users say that server X is running slowly”? You now need to investigate the server—chapter 3 shows you how to use PowerShell to collect and analyze the data from performance counters.

 Your network is fundamental to your environment. Chapter 4 presents a set of PowerShell-based tools that enable you to investigate networking issues, such as which ports are available,
 and how to test connectivity by sending data to and from specific ports.

 The ability to administer servers remotely is key to managing a large environment. Chapter 5 shows how this concept can be extended to remote management from almost any device using PowerShell Web Access (a Windows
 Server 2012 feature). It provides true role-based access for your remote administration.

 Do you know who is logging onto to your machines, what they’re doing, and when they’re doing it? The techniques presented
 in chapter 6 will enable you to audit your user logons so you know, and can prove, who is doing what and when. You could extend these
 techniques to investigate other events recorded in your event logs.

 Security is one aspect of an administrator’s work that never goes away. Certificates are used in a number of situations including
 authentication and encryption. Managing certificates can be a time-consuming activity, but chapter 7 comes to the rescue by showing you how to use PowerShell to administer your certificate authority database.

 Part 1 closes with chapter 8 which shows you how to manage the size of the Active Directory token used for authorization. If this token gets too large,
 users will experience difficulties logging on and accessing their resources.

 The chapters in this part of the book have one thing in common—the techniques presented are designed to make your job easier.
 Automate the mundane and repetitive, and you’ll find the time to proactively make your job, and therefore your environment,
 better.

 Enjoy!

About the editor

 [image:]

 Richard Siddaway has worked with Microsoft technologies for 25 years and is currently automating for Kelway (UK) Ltd. PowerShell
 caught his interest during the early beta releases for version 1.0 back in 2005. Richard blogs extensively about PowerShell
 and founded the UK PowerShell User Group in 2007. A PowerShell MVP for the last six years, Richard gives numerous talks on
 PowerShell at various events in the UK, Europe, and the US. He has published a number of articles on PowerShell.

 After writing two PowerShell books—PowerShell in Practice (Manning 2010) and PowerShell and WMI (Manning 2012)—Richard then collaborated with Don Jones and Jeff Hicks to write PowerShell in Depth (Manning 2013). Richard is currently writing an introductory book for Active Directory administrators that features PowerShell.
 He can be contacted through his blog at http://msmvps.com/blogs/RichardSiddaway/Default.aspx.

Chapter 1. Diagnosing and troubleshooting PowerShell remoting

 Don Jones

 Troubleshooting and diagnosing remoting can be one of the most difficult tasks for an administrator. When remoting works,
 it works; when it doesn’t, it’s often hard to tell why. Fortunately, PowerShell v3 and its accompanying implementation of
 remoting offer much clearer and more prescriptive error messages than prior versions. But even v2 included an undocumented
 and little-appreciated module named PSDiagnostics, which was designed specifically to facilitate remoting troubleshooting. The module lets you turn on detailed trace log information
 before you attempt to initiate a remoting connection. You can then use that detailed log information to get a better idea
 of where remoting is failing.

 In this chapter I’ll walk you through several troubleshooting examples. The idea is to help you recognize specific failure
 situations so that you’ll know what to do in each case to get things working. Each example focuses on a single scenario, such
 as a failed or blocked connection.

Diagnostics examples

 For the following scenarios I started by importing the PSDiagnostics module (note that this is implemented as a script module and requires an execution policy that permits it to run, such as
 RemoteSigned or Unrestricted). Figure 1 also shows that I ran the Enable-PSWSManCombinedTrace command, which starts the extended diagnostics logging.

 Figure 1. Loading the diagnostics module and starting a trace

 [image:]

 For each scenario I then ran one or more commands that involved remoting, as demonstrated in figure 2. Afterward, I disabled the trace by running Disable-PSWSManCombinedTrace, so that the log would only contain the details from that particular attempt (I cleared the log between attempts, so that
 each scenario provided a fresh diagnostics log).

 Figure 2. Entering a session and running a command

 [image:]

 Finally, as shown in figure 3, I retrieved the messages from the log. In the scenarios I’ll provide an annotated version of these.

 Figure 3. Examining the logged diagnostic information

 [image:]

 	

 Note

 In the examples I’ll typically truncate much of this output so that you can focus on the most meaningful pieces. Also note
 the difference between reading the information from the event log architecture, as in figure 3, and reading the .EVT trace file directly, as you’ll do in some of the scenarios. The latter will provide combined information
 from different logs, which can sometimes be more useful.

 	

 I’ll also make use of the Microsoft Windows Remote Management (WinRM)/Analytic log, which doesn’t normally contain human-readable
 information. In order to use the log’s contents I’ll use an internal Microsoft utility to translate the log’s contents into
 something you can read. (I’ve been given permission to distribute the utility, which you can find at http://files.concentratedtech.com/psdiagnostics.zip.)

 Trace information is stored in PowerShell’s installation folder (run cd $pshome to get there, then change to the Traces folder). The filename extension is .ETL, and you can use Get-WinEvent –path filename.etl to read a particular file. The Construct-PSRemoteDataObject command, included in the zip file I referenced, can translate portions of the Analytic log’s Message property into human-readable text. A demo script included in the zip file shows how to use it. As shown in figure 4, I dot-sourced the Construct-PSRemoteDataObject.ps1 file into my shell in order to gain access to the commands it contains.

 Figure 4. Dot-sourcing the Construct-PSRemoteDataObject.ps1 script

 [image:]

 I also deleted the contents of C:\Windows\System32\WindowsPowerShell\v1.0\Traces prior to starting each of the following examples.
 That way, I start each one with a fresh trace.

A perfect remoting connection

 Time for the first scenario: a perfect remoting connection. In this example you go from a Windows 7 client computer in a domain
 named AD2008R2 to the domain’s DC01 domain controller. On the DC, change to the C:\ folder, run a directory, and then end
 the session. Figure 5 shows the entire scenario.

 Figure 5. The example for this scenario: a perfect remoting connection

 [image:]

 Now read the log in chronological order. You need to be careful; running Enable-PSWSManCombinedTrace and Disable-PSWSManCombinedTrace creates log events for those commands. You might want to run the Enable command and then wait a few minutes before doing anything with remoting. That way, you can tell by the timestamp in the log
 when the “real” traffic begins. Wait a few more minutes before running the Disable command, again so that you can easily tell when the “real” log traffic ends. Also note that you’ll get information from two
 logs, WinRM and PowerShell, although reading the .EVT file with Get-WinEvent will grab everything in sequence.

 The connection begins with (in this example) Enter-PSSession and name resolution, as shown in figure 6.

 Figure 6. Starting the remoting connection

 [image:]

 WinRM has to spin up a runspace (a PowerShell process) on the remote computer. That includes setting several options for locale,
 timing, and so on, as shown in figure 7.

 Figure 7. Starting the remote runspace

 [image:]

 This will go on for a while. Eventually you’ll see WinRM beginning to send “chunks,” which are packetized communications.
 These are sent via the Simple Object Access Protocol, so expect to see SOAP referenced a lot. (Web Services Management [WS-MAN]
 is a Web service, remember, and SOAP is the communications language of Web services.) Figure 8 shows a couple of these 1500-byte chunks. Notice that the payload is pretty much gibberish.

 Figure 8. Data begins to transfer over the connection

 [image:]

 This gibberish is what the Construct-PSRemoteDataObject command can translate. For example, those “sending” messages have an event ID of 32868; by looking for only those events
 you can see what’s being sent, as shown in figure 9.

 Figure 9. Translating the data that was sent

 [image:]

 In this case, the client was asking the server (which is listed as the destination) about its capabilities, and for some metadata
 on the Exit-PSSession command (that’s the second message). This is how the client figures out what kind of server it’s talking to and other important,
 preliminary information. Now the client knows what version of the serialization protocol will be used to send data back and
 forth, what time zone the server is in, and other details.

 	

 Note

 Event ID 32868 is client-to-server traffic; ID 32867 represents server-to-client traffic. Using those two IDs along with Construct-PSRemoteDataObject can reveal the majority of the session transcript once the connection is established.

 	

 Moving on. As shown in figure 10, you’ll see some authentication back-and-forth, during which some errors can be expected. The system will eventually get
 over it and, as shown, start receiving chunks of data from the server.

 Figure 10. Taking care of authentication

 [image:]

 A rather surprising amount of back-and-forth can ensue as the two computers exchange pleasantries, share information about
 each other and how they work, and so on. Change your event log output to include event ID numbers, because those can be useful
 when trying to grab specific pieces of data. At this point the log will consist mainly of the client sending commands and
 the server sending back the results. This is more readable when you use Construct-PSRemoteDataObject, so here’s the complete back-and-forth from that perspective. First up is the client’s statement of its session capabilities:

 destination : Server
messageType : SessionCapability
pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><Version
 N="protocolversion">2.2</Version><Version
 N="PSVersion">2.0</Version><Version
 N="SerializationVersion">1.1.0.1</Version><BA N="TimeZon
 e">AAEAAAD/////AQAAAAAAAAAEAQAAABxTeXN0ZW0uQ3VycmVudFN5c
 3RlbVRpbWVab25lBAAAABdtX0NhY2hlZERheWxpZ2h0Q2hhbmdlcw1tX
 3RpY2tzT2Zmc2V0Dm1fc3RhbmRhcmROYW1lDm1fZGF5bGlnaHROYW1lA
 wABARxTeXN0ZW0uQ29sbGVjdGlvbnMuSGFzaHRhYmxlCQkCAAAAAPgpF
 9b///8KCgQCAAAAHFN5c3RlbS5Db2xsZWN0aW9ucy5IYXNodGFibGUHA
 AAACkxvYWRGYWN0b3IHVmVyc2lvbghDb21wYXJlchBIYXNoQ29kZVByb
 3ZpZGVyCEhhc2hTaXplBEtleXMGVmFsdWVzAAADAwAFBQsIHFN5c3Rlb
 S5Db2xsZWN0aW9ucy5JQ29tcGFyZXIkU3lzdGVtLkNvbGxlY3Rpb25zL
 klIYXNoQ29kZVByb3ZpZGVyCOxROD8AAAAACgoDAAAACQMAAAAJBAAAA
 BADAAAAAAAAABAEAAAAAAAAAAs=</BA></MS></Obj>

 Then the server’s:

 destination : Client
messageType : SessionCapability
pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 00000000-0000-0000-0000-000000000000
data : <Obj RefId="0"><MS><Version
 N="protocolversion">2.2</Version><Version
 N="PSVersion">2.0</Version><Version
 N="SerializationVersion">1.1.0.1</Version></MS></Obj>

 Next is the server’s $PSVersionTable object, which lists versioning information:

 destination : Client
messageType : ApplicationPrivateData
pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><Obj N="ApplicationPrivateData"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 PSPrimitiveDictionary</T><T>System.Collections.Hashtable
 </T><T>System.Object</T></TN><DCT><En><S
 N="Key">PSVersionTable</S><Obj N="Value"
 RefId="2"><TNRef RefId="0" /><DCT><En><S
 N="Key">PSVersion</S><Version
 N="Value">2.0</Version></En><En><S
 N="Key">PSCompatibleVersions</S><Obj N="Value"
 RefId="3"><TN RefId="1"><T>System.Version[]</T><T>System
 .Array</T><T>System.Object</T></TN><LST><Version>1.0</Ve
 rsion><Version>2.0</Version><Version>3.0</Version></LST>
 </Obj></En><En><S N="Key">BuildVersion</S><Version
 N="Value">6.2.8314.0</Version></En><En><S
 N="Key">PSRemotingProtocolVersion</S><Version
 N="Value">2.2</Version></En><En><S
 N="Key">WSManStackVersion</S><Version
 N="Value">3.0</Version></En><En><S
 N="Key">CLRVersion</S><Version
 N="Value">4.0.30319.261</Version></En><En><S
 N="Key">SerializationVersion</S><Version N="Value">1.1.0
 .1</Version></En></DCT></Obj></En></DCT></Obj></MS></Obj
 >

 Next the server sends information about the runspace that will be used:

 destination : Client
messageType : RunspacePoolStateInfo
pipelineId : 00000000-0000-0000-0000-000000000000
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I32
 N="RunspaceState">2</I32></MS></Obj>

 The client sends information about its Exit-PSSession command:

 destination : Server
messageType : GetCommandMetadata
pipelineId : 03460806-3011-42a6-9843-c54f39ee6fb8
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><Obj N="Name" RefId="1"><TN RefId="0"
 ><T>System.String[]</T><T>System.Array</T><T>System.Obje
 ct</T></TN><LST><S>Out-Default</S><S>Exit-PSSession</S><
 /LST></Obj><Obj N="CommandType" RefId="2"><TN RefId="1">
 <T>System.Management.Automation.CommandTypes</T><T>Syste
 m.Enum</T><T>System.ValueType</T><T>System.Object</T></T
 N><ToString>Alias, Function, Filter,
 Cmdlet</ToString><I32>15</I32></Obj><Nil N="Namespace"
 /><Nil N="ArgumentList" /></MS></Obj>

 Later you’ll see the result of the CD C:\ command, which is the new PowerShell prompt reflecting the new folder location:

 destination : Client
messageType : PowerShellOutput
pipelineId : c913b8ae-2802-4454-9d9b-926ca6032018
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <S>PS C:\> </S>

 Next, let’s look at the output of the Dir command. The first bit is writing the column headers for Mode, LastWriteTime, Length, Name, and so forth. This is all being
 sent to the client. I’ve included the first few lines for you, each of which comes across in its own block:

 destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>Mode
 LastWriteTime Length Name
 </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>----
 ------------- ------ ----
 </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>d----
 8/25/2010 8:11 AM IT Structures
 </S></LST></Obj></MS></Obj>

destination : Client
messageType : RemoteHostCallUsingPowerShellHost
pipelineId : c259c891-516a-46a7-b287-27c96ff86d5b
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I64 N="ci">-100</I64><Obj N="mi"
 RefId="1"><TN RefId="0"><T>System.Management.Automation.
 Remoting.RemoteHostMethodId</T><T>System.Enum</T><T>Syst
 em.ValueType</T><T>System.Object</T></TN><ToString>Write
 Line2</ToString><I32>16</I32></Obj><Obj N="mp"
 RefId="2"><TN RefId="1"><T>System.Collections.ArrayList<
 /T><T>System.Object</T></TN><LST><S>d----
 7/13/2009 11:20 PM PerfLogs
 </S></LST></Obj></MS></Obj>

 Eventually the command finishes and you get the prompt again:

 destination : Client
messageType : PowerShellOutput
pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <S>PS C:\> </S>

 You’ll also see periodic exchanges about the state of the pipeline. The following indicates that the command is done:

 destination : Client
messageType : PowerShellStateInfo
pipelineId : f5c8bc7a-ec54-4180-b2d4-86479f9ea4b9
runspaceId : 4358d585-0eab-47ef-a0e6-4b98e71f34ab
data : <Obj RefId="0"><MS><I32
 N="PipelineState">4</I32></MS></Obj>

 A lot of data passes back and forth, but it’s possible to make sense of it using these tools. Frankly, most remoting problems
 take place during the connection phase, meaning once that’s completed successfully you’ll have no further problems. The next scenarios focus on specific connection errors.

 	

 Note

 To clear the log and prepare for a new trace, try deleting the .EVT files and going into Event Viewer to clear the Applications
 and Services Logs > Microsoft > Windows > Windows Remote Management log. If you’re getting errors when running Enable-PSWSManCombinedTrace, one of those two tasks probably hasn’t been completed.

 	

Connection problem: Blocked port

 Figure 11 shows what happens when you try to connect to a computer and the necessary port—5985 by default—isn’t open all the way through.
 Let’s look at how this appears in the log.

 Figure 11. Connection failure due to a firewall or other port-blocking problem

 [image:]

 	

 Note

 I’m assuming you’ve already checked the computer name, made sure it resolves to the proper IP address, and so forth; what
 you’re looking at is definitely a blocked port (because I set it up that way) in this example.

 	

 Figure 12 shows that you successfully resolved the computer name. You’ll find that testing with Enter-PSSession is easiest, because it’s easy to spot that command in the log and see when the “real” log data begins.

 Figure 12. Starting the connection attempt

 [image:]

 A lot of the initial log traffic is still WinRM talking to itself, getting set up for the connection attempt. Keep scrolling
 through that until you start to see problem indications. Figure 13 shows a timeout—never a good sign—and the error message generated by WinRM. As you can see, this is exactly what’s on-screen,
 so PowerShell isn’t hiding anything.

 Figure 13. The timeout error in the diagnostics log

 [image:]

 This is one of the trickiest bits of remoting: WinRM can’t tell why the server didn’t respond. It doesn’t realize that the
 port isn’t open. For all WinRM knows, you could have specified a computer name that doesn’t exist. All it sees is that it
 sent a message out to the network and nobody replied. In the end, nearly all of the possible “low-level” problems—bad IP address,
 bad computer name, blocked port, and so forth—all look the same to WinRM. You’re on your own to troubleshoot these problems.

 One useful technique is to use the old command-line Telnet client. Keep in mind that WS-MAN is HTTP, and HTTP, like many Internet
 protocols, sends text back and forth, more or less exactly like Telnet. HTTP has specific text it sends and looks for, but
 the transmission is old-school Telnet. Run something like telnet dc01 5985 to see if you can connect. A blank screen is normal: press Ctrl-C to break out, and you’ll see an HTTP “Bad Request” error.
 That’s fine. It means you got through. That confirms the computer name, IP address, port, and everything else “low-level.”

Connection problem: No permissions

 This problem can be tricky, because you need to be an Administrator to enable a diagnostics trace. On the other hand, WinRM
 is usually quite clear when you can’t connect because your account doesn’t have permission to the endpoint: “Access Denied”
 is the error message, and that’s pretty straightforward.

 But you can also log on as an Administrator (or open a shell under Administrator credentials), enable a trace, and then have
 another user (or your other user account) make the attempt. Go back in as Administrator, disable the trace, and then examine
 the log. Figure 14 shows what you’re looking for.

 Figure 14. “Access Denied” in the diagnostics log

 [image:]

 The log data after that shows you the user account that tried to create the connection (AD2008R2\SallyS, in our example, which
 is why the command failed—she’s not an Administrator). A quick check with Get-PSSessionConfiguration on the remote machine will confirm the permissions on whatever remoting endpoint you’re attempting to connect to. Also, as
 shown in figure 15, running Set-PSSessionConfiguration can be useful. Provide the –Name of the endpoint you’re checking, and add –ShowSecurityDescriptorUI. That will let you confirm the endpoint’s permissions in a friendlier GUI form, and you can modify it right there if need
 be.

 Figure 15. Checking an endpoint’s permissions using Set-PSSessionConfiguration

 [image:]

Connection problem: Untrusted host

 In this scenario you try to connect from the client in the AD2008R2 domain to a standalone computer that isn’t part of a domain,
 as shown in figure 16.

 Figure 16. Attempted connection for this scenario: untrusted host

 [image:]

 As shown in figure 17, the error comes quickly, even though you provided a valid credential. You’re in a situation where WinRM can’t get the mutual
 authentication it wants, and that requires additional setup, which I won’t cover here (grab my free Secrets of PowerShell Remoting from http://PowerShellBooks.com for a walkthrough on fixing this problem). But what does the problem look like in the diagnostics log?

 Figure 17. The error message when attempting to connect to an untrusted host. The message gives good clues as to how to solve this problem.

 [image:]

 Figure 18 shows that WinRM still sends its initial salvo of traffic to the server. The error is generated when the reply comes back
 that the client can’t authenticate this server. What you see in the log is pretty much what shows up in the shell, verbatim.

 Figure 18. The diagnostic log content when attempting to connect to an untrusted host

 [image:]

 Figure 19 shows a good second step to take: run Test-WSMan. Provide the same computer name or IP address, but leave off the –Credential parameter. The cmdlet can at least tell you that WS-MAN and WinRM are up and running on the remote computer, and what version
 they’re running. That narrows the problem down to one of authentication, involving either your permissions (which would have
 resulted in “Access Denied”) or the mutual authentication component of remoting.

 Figure 19. Test-WSMan is like a “ping” for remoting

 [image:]

 	

 Note

 You see substantially the same behavior when you attempt to connect using HTTPS (the –UseSSL switch on the various remoting commands) and the remote machine’s SSL certificate name doesn’t match the name you used in
 your command. The error message is unambiguous both on-screen and in the log.

 	

Summary

 Why did I bother going through the logs when, in most of the examples, the logs echoed what was on the screen? It’s simple:
 as PowerShell becomes embedded in more and more GUI applications you might not always have a console to rely on, with its
 nice error messages. What you can do, however, is use the console to start a trace, run whatever GUI app is failing, and then
 dig into the log to see if you find some of the signs I’ve shown you.

 As for solving these problems, in many cases you’ll have to perform some additional remoting setup. That can be complex in
 anything but a “we all live in the same domain” environment. I’ve put together a step-by-step guide to every configuration
 scenario I could think of, complete with screen shots, in a free PDF called Secrets of PowerShell Remoting, available from http://PowerShellBooks.com. (That site will at least get you to the guide’s current location.)

About the author

 [image:]

 Don Jones is a senior partner and principal technologist for Concentrated Tech (ConcentratedTech.com). He’s authored and co-authored
 six books on Windows PowerShell, including Learn Windows PowerShell 3 in a Month of Lunches, Learn PowerShell Toolmaking in a Month of Lunches, and PowerShell in Depth. Don is a Microsoft MVP Award recipient and writes the monthly Windows PowerShell column for Microsoft’s TechNet Magazine (TechNetMagazine.com). Don is also the co-founder and CEO for PowerShell.org, where you’ll find him answering questions in
 the “General Q&A” and “Remoting” discussion forums.

Chapter 2. CIM sessions

 Richard Siddaway

 PowerShell v3 introduces a great deal of new functionality. The biggest changes are associated with Windows Management Instrumentation
 (WMI).

 	

 Note

 WMI is Microsoft’s implementation of the industry standard Common Information Model (CIM). With the Windows 8/2012 wave of
 products, Microsoft started moving to a more standards-based approach for WMI, and new terminology has emerged based on these
 changes.

 	

 With WMI in PowerShell v3, you get

 	A new API

 	New objects and .NET classes

 	A new set of cmdlets

 	CIM sessions

 	The ability to create cmdlets from WMI classes

 One chapter can’t cover all of these topics, so I’m going to concentrate on CIM sessions with a side trip through the CIM
 cmdlets. For the other topics, see my book PowerShell and WMI (Manning 2012).

 I start the chapter with a look at how WMI has been used in the past and some of the problems associated with it, followed
 by a quick look at the new CIM cmdlets, including comparisons to the existing WMI cmdlets where applicable.

 Then I discuss CIM sessions, and I close the chapter by showing you how to configure CIM sessions to work with systems that
 still use legacy versions of PowerShell.

WMI

 The WMI cmdlets in PowerShell v2 are great—if you’ve ever tried working with WMI through VBScript, you’ll appreciate how great
 they are! But WMI cmdlets do come with a few problems.

 WMI is a terrific tool for working with remote systems (in PowerShell v1 it was the only remote tool). The problem is that the WMI cmdlets work over Distributed Component Object Model (DCOM) for access to remote systems. DCOM isn’t a firewall-friendly protocol; it needs to be explicitly
 allowed. The remote machine also has to allow DCOM access. You can access a remote system by using the –ComputerName parameter:

 PS> Get-WmiObject -Class Win32_ComputerSystem -ComputerName DC02

 If DCOM isn’t configured, you get an error like this:

 Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)
At line:1 char:1
+ Get-WmiObject -Class Win32_ComputerSystem -ComputerName DC02
+ ~~
 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject], COMException
 + FullyQualifiedErrorId : GetWMICOMException,Microsoft.PowerShell.Commands.GetWmiObjectCommand

 The other place where DCOM bites you is on the –Authentication parameter of GetWmiObject. This causes confusion because you aren’t authorizing yourself; you’re determining the level of encryption on the DCOM connection
 to the remote machine. The most common scenario is when the WMI provider needs PacketPrivacy—full encryption on the connection—and won’t allow remote access without it. This issue occurs with the Internet Information
 Services (IIS) and cluster WMI providers, for example.

 	

 Note

 Local access ignores the need for PacketPrivacy.

 	

 You can use PowerShell remoting to overcome the DCOM problems. You’re effectively running the commands locally and bypassing
 DCOM. In PowerShell v3 you get another way to access WMI classes—the CIM cmdlets.

CIM cmdlets

 CIM is an industry standard, owned and maintained by the Distributed Management Task Force (DMTF), which is also responsible
 for the WS-MAN protocols. WMI is Microsoft’s implementation of CIM.

 Try this:

 Get-WmiObject -List *_ComputerSystem

 You’ll get two classes returned:

 	
CIM_ComputerSystem

 	
Win32_ComputerSystem

 The CIM_ComputerSystem class is the original DMTF standard. The Win32_ComputerSystem class is Microsoft’s version. In the root\cimv2 namespace, many of the classes have a CIM_ and a Win32_ version. They may be identical, or the Win32_ may be a modified version of the CIM_ class, usually with extra properties. I use the Win32_ class if there’s a choice.

 The new CIM API and cmdlets are part of an effort to further the use of CIM/WMI by a closer adoption of standards, and to
 link in with the Open Management Infrastructure initiative.

 The new CIM cmdlets are listed in table 1 with their corresponding WMI cmdlets.

 Table 1. Comparison of CIM cmdlets and WMI cmdlets

 	
 CIM cmdlet

 	
 WMI cmdlet

 	New-CimInstance
 	n/a

 	Get-CimInstance
 	Get-WmiObject

 	Set-CimInstance
 	Set-WmiInstance

 	Invoke-CimMethod
 	Invoke-WmiMethod

 	Remove-CimInstance
 	Remove-WmiObject

 	Get-CimAssociatedInstance
 	n/a

 	Get-CimClass
 	n/a

 	Register-CimIndicationEvent
 	Register-WmiEvent

 The functioning of the CIM cmdlets is obvious—they do the same job as their WMI equivalents. But some cmdlets don’t have a
 WMI equivalent:

 	
New-CimInstance—Creates a new instance of a CIM class. In practice, it has limited applicability. I usually use the Create method of a class through Invoke-CimMethod.

 	
Get-CimAssociatedInstance—Works through WMI associations. Easier to use than the ASSOCIATORS OF queries in WMI.

 	
Get-CimClass—Investigates a CIM class. You can discover properties and methods (including arguments). Arguably the most useful CIM cmdlet.

 Using the CIM cmdlets is similar to using the WMI cmdlets, but note these two differences:

 	You get a different type of object returned.

 	You get an inert object—no WMI methods. Use Invoke-CimMethod to use the methods of a class.

 You can see the differences by comparing the output of the WMI and CIM cmdlets. Try this code:

 Get-WmiObject -Class Win32_ComputerSystem | Get-Member
Get-CimInstance -Class Win32_ComputerSystem | Get-Member

 Compare the results to see the changes. You may also see a difference in the default output from a class because the CIM cmdlets
 produce a different object; therefore, the formatting can be different.

 The WMI cmdlets had a –ComputerName parameter for accessing remote systems. The CIM cmdlets give you a choice: the –CimSession parameter for working with CIM sessions, or the –ComputerName parameter, which works with one or more computer names.

