

 [image: cover]

 Ajax in Action

 Dave Crane, Eric Pascarello & Darren James

[image:]

Copyright

 For online information and ordering of this and other Manning books, please go to www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

 ©2006 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books they publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

 Manning Publications Co.
209 Bruce Park Avenue
Greenwich, CT 06830

 Copyeditor: Liz Welch
Typesetter: Denis Dalinnik
Cover designer: Leslie Haimes

 Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 09 08 07 06 05

Dedication

 To Hermes, Apollo, Athena, and my cats, for their wisdom

 D.C.

 To my wife; I’m surprised you said yes

 E.P.

 To my red-headed wife

 D.J.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Rethinking the web application

 Chapter 1. A new design for the Web

 Chapter 2. First steps with Ajax

 Chapter 3. Introducing order to Ajax

 2. Core techniques

 Chapter 4. The page as an application

 Chapter 5. The role of the server

 3. Professional Ajax

 Chapter 6. The user experience

 Chapter 7. Security and Ajax

 Chapter 8. Performance

 4. Ajax by example

 Chapter 9. Dynamic double combo

 Chapter 10. Type-ahead suggest

 Chapter 11. The enhanced Ajax web portal

 Chapter 12. Live search using XSLT

 Chapter 13. Building stand-alone applications with Ajax

 Appendix A. The Ajax craftsperson’s toolkit

 Appendix B. JavaScript for object-oriented programmers

 Appendix C. Ajax frameworks and libraries

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Rethinking the web application

 Chapter 1. A new design for the Web

 1.1. Why Ajax rich clients?

 1.1.1. Comparing the user experiences

 1.1.2. Network latency

 1.1.3. Asynchronous interactions

 1.1.4. Sovereign and transient usage patterns

 1.1.5. Unlearning the Web

 1.2. The four defining principles of Ajax

 1.2.1. The browser hosts an application, not content

 1.2.2. The server delivers data, not content

 1.2.3. User interaction with the application can be fluid and continuous

 1.2.4. This is real coding and requires discipline

 1.3. Ajax rich clients in the real world

 1.3.1. Surveying the field

 1.3.2. Google Maps

 1.4. Alternatives to Ajax

 1.4.1. Macromedia Flash-based solutions

 1.4.2. Java Web Start and related technologies

 1.5. Summary

 1.6. Resources

 Chapter 2. First steps with Ajax

 2.1. The key elements of Ajax

 2.2. Orchestrating the user experience with JavaScript

 2.3. Defining look and feel using CSS

 2.3.1. CSS selectors

 2.3.2. CSS style properties

 2.3.3. A simple CSS example

 2.4. Organizing the view using the DOM

 2.4.1. Working with the DOM using JavaScript

 2.4.2. Finding a DOM node

 2.4.3. Creating a DOM node

 2.4.4. Adding styles to your document

 2.4.5. A shortcut: Using the innerHTML property

 2.5. Loading data asynchronously using XML technologies

 2.5.1. IFrames

 2.5.2. XmlDocument and XMLHttpRequest objects

 2.5.3. Sending a request to the server

 2.5.4. Using callback functions to monitor the request

 2.5.5. The full lifecycle

 2.6. What sets Ajax apart

 2.7. Summary

 2.8. Resources

 Chapter 3. Introducing order to Ajax

 3.1. Order out of chaos

 3.1.1. Patterns: creating a common vocabulary

 3.1.2. Refactoring and Ajax

 3.1.3. Keeping a sense of proportion

 3.1.4. Refactoring in action

 3.2. Some small refactoring case studies

 3.2.1. Cross-browser inconsistencies: Façade and Adapter patterns

 3.2.2. Managing event handlers: Observer pattern

 3.2.3. Reusing user action handlers: Command pattern

 3.2.4. Keeping only one reference to a resource: Singleton pattern

 3.3. Model-View-Controller

 3.4. Web server MVC

 3.4.1. The Ajax web server tier without patterns

 3.4.2. Refactoring the domain model

 3.4.3. Separating content from presentation

 3.5. Third-party libraries and frameworks

 3.5.1. Cross-browser libraries

 3.5.2. Widgets and widget suites

 3.5.3. Application frameworks

 3.6. Summary

 3.7. Resources

 2. Core techniques

 Chapter 4. The page as an application

 4.1. A different kind of MVC

 4.1.1. Repeating the pattern at different scales

 4.1.2. Applying MVC in the browser

 4.2. The View in an Ajax application

 4.2.1. Keeping the logic out of the View

 4.2.2. Keeping the View out of the logic

 4.3. The Controller in an Ajax application

 4.3.1. Classic JavaScript event handlers

 4.3.2. The W3C event model

 4.3.3. Implementing a flexible event model in JavaScript

 4.4. Models in an Ajax application

 4.4.1. Using JavaScript to model the business domain

 4.4.2. Interacting with the server

 4.5. Generating the View from the Model

 4.5.1. Reflecting on a JavaScript object

 4.5.2. Dealing with arrays and objects

 4.5.3. Adding a Controller

 4.6. Summary

 4.7. Resources

 Chapter 5. The role of the server

 5.1. Working with the server side

 5.2. Coding the server side

 5.2.1. Popular implementation languages

 5.2.2. N-tier architectures

 5.2.3. Maintaining client-side and server-side domain models

 5.3. The big picture: common server-side designs

 5.3.1. Naive web server coding without a framework

 5.3.2. Working with Model2 workflow frameworks

 5.3.3. Working with component-based frameworks

 5.3.4. Working with service-oriented architectures

 5.4. The details: exchanging data

 5.4.1. Client-only interactions

 5.4.2. Introducing the planet browser example

 5.4.3. Thinking like a web page: content-centric interactions

 5.4.4. Thinking like a plug-in: script-centric interactions

 5.4.5. Thinking like an application: data-centric interactions

 5.5. Writing to the server

 5.5.1. Using HTML forms

 5.5.2. Using the XMLHttpRequest object

 5.5.3. Managing user updates effectively

 5.6. Summary

 5.7. Resources

 3. Professional Ajax

 Chapter 6. The user experience

 6.1. Getting it right: building a quality application

 6.1.1. Responsiveness

 6.1.2. Robustness

 6.1.3. Consistency

 6.1.4. Simplicity

 6.1.5. Making it work

 6.2. Keeping the user informed

 6.2.1. Handling responses to our own requests

 6.2.2. Handling updates from other users

 6.3. Designing a notification system for Ajax

 6.3.1. Modeling notifications

 6.3.2. Defining user interface requirements

 6.4. Implementing a notification framework

 6.4.1. Rendering status bar icons

 6.4.2. Rendering detailed notifications

 6.4.3. Putting the pieces together

 6.5. Using the framework with network requests

 6.6. Indicating freshness of data

 6.6.1. Defining a simple highlighting style

 6.6.2. Highlighting with the Scriptaculous Effects library

 6.7. Summary

 6.8. Resources

 Chapter 7. Security and Ajax

 7.1. JavaScript and browser security

 7.1.1. Introducing the “server of origin” policy

 7.1.2. Considerations for Ajax

 7.1.3. Problems with subdomains

 7.1.4. Cross-browser security

 7.2. Communicating with remote services

 7.2.1. Proxying remote services

 7.2.2. Working with web services

 7.3. Protecting confidential data

 7.3.1. The man in the middle

 7.3.2. Using secure HTTP

 7.3.3. Encrypting data over plain HTTP using JavaScript

 7.4. Policing access to Ajax data streams

 7.4.1. Designing a secure web tier

 7.4.2. Restricting access to web data

 7.5. Summary

 7.6. Resources

 Chapter 8. Performance

 8.1. What is performance?

 8.2. JavaScript execution speed

 8.2.1. Timing your application the hard way

 8.2.2. Using the Venkman profiler

 8.2.3. Optimizing execution speed for Ajax

 8.3. JavaScript memory footprint

 8.3.1. Avoiding memory leaks

 8.3.2. Special considerations for Ajax

 8.4. Designing for performance

 8.4.1. Measuring memory footprint

 8.4.2. A simple example

 8.4.3. Results: how to reduce memory footprint 150-fold

 8.5. Summary

 8.6. Resources

 4. Ajax by example

 Chapter 9. Dynamic double combo

 9.1. A double-combo script

 9.1.1. Limitations of a client-side solution

 9.1.2. Limitations of a server-side solution

 9.1.3. Ajax-based solution

 9.2. The client-side architecture

 9.2.1. Designing the form

 9.2.2. Designing the client/server interactions

 9.3. Implementing the server: VB .NET

 9.3.1. Defining the XML response format

 9.3.2. Writing the server-side code

 9.4. Presenting the results

 9.4.1. Navigating the XML document

 9.4.2. Applying Cascading Style Sheets

 9.5. Advanced issues

 9.5.1. Allowing multiple-select queries

 9.5.2. Moving from a double combo to a triple combo

 9.6. Refactoring

 9.6.1. New and improved net.ContentLoader

 9.6.2. Creating a double-combo component

 9.7. Summary

 Chapter 10. Type-ahead suggest

 10.1. Examining type-ahead applications

 10.1.1. Common type-ahead suggest features

 10.1.2. Google Suggest

 10.1.3. The Ajax in Action type-ahead

 10.2. The server-side framework: C#

 10.2.1. The server and the database

 10.2.2. Testing the server-side code

 10.3. The client-side framework

 10.3.1. The HTML

 10.3.2. The JavaScript

 10.3.3. Accessing the server

 10.4. Adding functionality: multiple elements with different queries

 10.5. Refactoring

 10.5.1. Day 1: developing the TextSuggest component game plan

 10.5.2. Day 2: TextSuggest creation—clean and configurable

 10.5.3. Day 3: Ajax enabled

 10.5.4. Day 4: handling events

 10.5.5. Day 5: the suggestions pop-up UI

 10.5.6. Refactor debriefing

 10.6. Summary

 Chapter 11. The enhanced Ajax web portal

 11.1. The evolving portal

 11.1.1. The classic portal

 11.1.2. The rich user interface portal

 11.2. The Ajax portal architecture using Java

 11.3. The Ajax login

 11.3.1. The user table

 11.3.2. The server-side login code: Java

 11.3.3. The client-side login framework

 11.4. Implementing DHTML windows

 11.4.1. The portal windows database

 11.4.2. The portal window’s server-side code

 11.4.3. Adding the JS external library

 11.5. Adding Ajax autosave functionality

 11.5.1. Adapting the library

 11.5.2. Autosaving the information to the database

 11.6. Refactoring

 11.6.1. Defining the constructor

 11.6.2. Adapting the AjaxWindows.js library

 11.6.3. Specifying the portal commands

 11.6.4. Performing the Ajax processing

 11.6.5. Refactoring debrief

 11.7. Summary

 Chapter 12. Live search using XSLT

 12.1. Understanding the search techniques

 12.1.1. Looking at the classic search

 12.1.2. The flaws of the frame and pop-up methods

 12.1.3. Examining a live search with Ajax and XSLT

 12.1.4. Sending the results back to the client

 12.2. The client-side code

 12.2.1. Setting up the client

 12.2.2. Initiating the process

 12.3. The server-side code: PHP

 12.3.1. Building the XML document

 12.3.2. Building the XSLT document

 12.4. Combining the XSLT and XML documents

 12.4.1. Working with Microsoft Internet Explorer

 12.4.2. Working with Mozilla

 12.5. Completing the search

 12.5.1. Applying a Cascading Style Sheet

 12.5.2. Improving the search

 12.5.3. Deciding to use XSLT

 12.5.4. Overcoming the Ajax bookmark pitfall

 12.6. Refactoring

 12.6.1. An XSLTHelper

 12.6.2. A live search component

 12.6.3. Refactoring debriefing

 12.7. Summary

 Chapter 13. Building stand-alone applications with Ajax

 13.1. Reading information from the outside world

 13.1.1. Discovering XML feeds

 13.1.2. Examining the RSS structure

 13.2. Creating the rich user interface

 13.2.1. The process

 13.2.2. The table-less HTML framework

 13.2.3. Compliant CSS formatting

 13.3. Loading the RSS feeds

 13.3.1. Global scope

 13.3.2. Ajax preloading functionality

 13.4. Adding a rich transition effect

 13.4.1. Cross-browser opacity rules

 13.4.2. Implementing the fading transition

 13.4.3. Integrating JavaScript timers

 13.5. Additional functionality

 13.5.1. Inserting additional feeds

 13.5.2. Integrating the skipping and pausing functionality

 13.6. Avoiding the project’s restrictions

 13.6.1. Overcoming Mozilla’s security restriction

 13.6.2. Changing the application scope

 13.7. Refactoring

 13.7.1. RSS reader Model

 13.7.2. RSS reader view

 13.7.3. RSS reader Controller

 13.7.4. Refactoring debrief

 13.8. Summary

 Appendix A. The Ajax craftsperson’s toolkit

 A.1. Working smarter with the right toolset

 A.1.1. Acquiring tools that fit

 A.1.2. Building your own tools

 A.1.3. Maintaining your toolkit

 A.2. Editors and IDEs

 A.2.1. What to look for in a code editor

 A.2.2. Current offerings

 A.3. Debuggers

 A.3.1. Why we use a debugger

 A.3.2. JavaScript debuggers

 A.3.3. HTTP debuggers

 A.3.4. Building your own cross-browser output console

 A.4. DOM inspectors

 A.4.1. Using the Mozilla DOM Inspector

 A.4.2. DOM inspectors for Internet Explorer

 A.4.3. The Safari DOM Inspector for Mac OS X

 A.5. Installing Firefox extensions

 A.6. Resources

 Appendix B. JavaScript for object-oriented programmers

 B.1. JavaScript is not Java

 B.2. Objects in JavaScript

 B.2.1. Building ad hoc objects

 B.2.2. Constructor functions, classes, and prototypes

 B.2.3. Extending built-in classes

 B.2.4. Inheritance of prototypes

 B.2.5. Reflecting on JavaScript objects

 B.2.6. Interfaces and duck typing

 B.3. Methods and functions

 B.3.1. Functions as first-class citizens

 B.3.2. Attaching functions to objects

 B.3.3. Borrowing functions from other objects

 B.3.4. Ajax event handling and function contexts

 B.3.5. Closures in JavaScript

 B.4. Conclusions

 B.5. Resources

 Appendix C. Ajax frameworks and libraries

 Accesskey Underlining Library

 ActiveWidgets

 Ajax JavaServer Faces Framework

 Ajax JSP Tag Library

 Ajax.NET

 AjaxAC

 AjaxAspects

 AjaxCaller

 AjaxFaces

 BackBase

 Behaviour

 Bindows

 BlueShoes

 CakePHP

 CL-Ajax

 ComfortASP.NET

 Coolest DHTML Calendar

 CPAINT (Cross-Platform Asynchronous Interface Toolkit)

 Dojo

 DWR (Direct Web Remoting)

 Echo 2

 f(m)

 FCKEditor

 Flash JavaScript Integration Kit

 Google AjaxSLT

 Guise

 HTMLHttpRequest

 Interactive Website Framework

 Jackbe

 JPSpan

 jsolait

 JSON

 JSRS (JavaScript Remote Scripting)

 LibXMLHttpRequest

 Mochikit

 netWindows

 Oddpost

 OpenRico

 Pragmatic Objects

 Prototype

 Qooxdoo

 RSLite

 Ruby on Rails

 Sack

 SAJAX

 Sarissa

 Scriptaculous

 SWATO...

 Tibet

 TinyMCE

 TrimPath Templates

 Walter Zorn’s DHTML Libraries

 WebORB for .NET

 WebORB for Java

 x

 XAJAX

 x-Desktop

 XHConn

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Sometimes your destiny will follow you around for years before you notice it. Amidst the medley of fascinating new technologies
 that I was playing—I mean working—with in the early 1990s was a stunted little scripting language called JavaScript. I soon realized that, despite its name,
 it didn’t really have anything to do with my beloved Java, but it persistently dogged my every step.

 By the late 90s, I had decided to cut my hair and get a proper job, and found myself working with the early adopters of digital
 set-top box technology. The user interface for this substantial piece of software was written entirely in JavaScript and I
 found myself the technical lead of a small team of developers writing window-management code, schedulers, and all kinds of
 clever stuff in this language. “How curious,” I thought. “It’ll never catch on.”

 With time I moved on to more demanding work, developing the enterprise messaging backbone and various user interface components
 for an “intelligent,” talking “House of the Future.” I was hired for my Java skills, but I was soon writing fancy JavaScript
 user interfaces again. It was astonishing to find that some people were now taking this scripting language seriously enough
 to write frameworks for it. I quickly picked up the early versions of Mike Foster’s x library (which you’ll find put into
 occasional action in this book). One afternoon, while working on an email and text message bulletin board, I had the weird,
 exciting idea of checking for new messages in a hidden frame and adding them to the user interface without refreshing the screen. After a few hours of frenzied hacking, I had it working, and I’d even figured out how to render the new messages in color
 to make them noticeable to the user. “What a laugh,” I thought, and turned back to some serious code. Meantime, unbeknownst
 to me, Eric Costello, Erik Hatcher, Brent Ashley, and others were thinking along similar lines, and Microsoft was cooking
 up the XMLHttpRequest for its Outlook Web Access.

 Destiny was sniffing at my heels. My next job landed me in a heavy-duty development role, building software for big Tier 1
 banks. We use a mixture of Java and JavaScript and employ tricks with hidden frames and other things. My team currently looks
 after more than 1.5 million bytes of such code—that’s static JavaScript, in addition to code we generate from JSPs. No, I’m
 not counting any image resources in there either. We use it to develop applications for hundreds of operators managing millions
 of dollars’ worth of accounts. Your bank account may well be managed by this software.

 Somewhere along the way, JavaScript had grown up without my quite realizing it. In February 2005, Jesse James Garrett provided
 the missing piece of the jigsaw puzzle. He gave a short, snappy name to the cross-browser-asynchronous-rich-client-dynamic-HTML-client-server
 technology that had been sneaking up on us all for the last few years: Ajax.

 And the rest, as they say, is history. Ajax is generating a lot of interest now, and a lot of good code is getting written
 by the people behind Prototype, Rico, Dojo, qooxdoo, Sarissa, and numerous other frameworks, too plentiful to count. Actually,
 we do try to count them, in appendix C. We think we’ve rounded up most of the suspects. And I’ve never had so much fun playing—I mean working—with computers.

 We have not arrived yet. The field is still evolving. I was amazed to see just how much when I did the final edits in September
 on the first chapter that I wrote back in May! There’s still a lot of thinking to be done on this subject, and the next year
 or two will be exciting. I’ve been very lucky to have Eric and Darren on the book piece of the journey with me so far.

 We hope you will join us—and enjoy the ride.

 DAVE CRANE

Acknowledgments

 Although there are only three names on the cover of this book, a legion of talented, hardworking, and just plain crazy people
 supported us behind the scenes. We’d like to thank everyone at Manning, especially our publisher, Marjan Bace, and our development
 editors, Jackie Carter and Doug Bennett, for their continuous support and help on so many aspects of the manuscript. To the
 others at Manning who worked with us in different stages of the project—Blaise Bace, review editor Karen Tegtmayer, webmaster
 Iain Shigeoka, publicist Helen Trimes, and not least of all project editor Mary Piergies—thanks for helping to steer us along
 so smoothly. Our copyeditors, Linda Recktenwald and Liz Welch, and proofreaders Barbara Mirecki and Tiffany Taylor, proved
 to be indispensable, and design editor Dottie Marsico and typesetter Denis Dalinnik did a marvelous job of converting our
 scribbles into pictures and our text into a real book!

 Many talented coders gave their time unflinchingly to our cause, as technical proofreaders and reviewers. Leading the charge
 were Phil McCarthy (who not only corrected our code, but also our grammar and style, even setting us straight on the rules
 of Battleship) and Bear Bibeault, who bravely advised on server architecture, client-side code, and Mac compatibility, in
 the face of Hurricane Rita. Joe Mayo, Valentin Crettaz, James Tikalsky, Shane Witbeck, Frank Zammetti, Joel Webber, Jonathan
 Esterhazy, Garret Wilson, Joe Walker, and J.B. Rainsberger provided first-rate technical support at very short notice. We
 are truly grateful to them.

 We also thank the many reviewers of the manuscript, in its various stages, for their thoughtful feedback: Ernest Friedman-Hill,
 Craig Walls, Patrick Peak, J. B. Rainsberger, Jack Herrington, Erik Hatcher, Oliver Zeigermann, Suresh Kumar, Mark Chaimungkalanont,
 Doug Warren, Deiveehan Nallazhagappan, Norman Richards, Mark Eagle, Christophe Avare, Bill Lynch, Wayland Chan, Shane Witbeck,
 Mike Stenhouse, Frank Zammetti, Brendan Murray, Ryan Cox, Valentin Crettaz, Thomas Baekdal, Peter-Paul Koch, Venkatt Guhesan,
 Frank Jania, Mike Foster, Bear Bibeault, Peter George, Joel Webber, Nikhil Narayana, Harshad Oak, and Bas Vodde.

 Thanks to Paul Hobbs, Bill Gathen, and Charlie Arehart for spotting typos in the code in the Manning Early Access Program
 chapters (MEAP). Finally, special thanks are due to Brian J. Sletten, Ben Galbraith, and Kito Mann for helping to get the
 ball rolling in the first place. Our thanks also go to the authors of the many Ajax frameworks that we have used in the book,
 and to Jesse James Garrett for providing us with a short, snappy acronym to grace the cover of our book. (We feel that “Those
 Rich Client JavaScript Network Things in Action” wouldn’t have been quite as effective.)

 We’re standing on the shoulders of a whole group of giants here. The view is fantastic.

Dave Crane

 I’d like to thank Chia, Ben, and Sophie for their support, wisdom, and enthusiasm, and for putting up with me through all
 the late nights and early mornings. I’m finished now and I promise to behave. Thanks too to my parents for listening to the
 book-writing saga unfold and for instilling in me the strength and foolishness to undertake such a project in the first place.

 Eric and Darren have been excellent co-authors to work with, and I’d like to extend my thanks to them too, for their invaluable
 contributions to the book.

 My thanks to my colleagues at Smartstream Technologies for exploring the world of Ajax with me before it was christened—Tony
 Coombes, John Kellett, Phil McCarthy, Anthony Warner, Jon Green, Rob Golder, David Higgins, Owen ReesHayward, Greg Nwosu,
 Hristo Gramatikov, and Stuart Martin, and to my managers Colin Reid and Andrew Elmore. Thanks too to our colleagues overseas:
 Bhupendra, Pooja, Rahul, Dhiraj, Josef, Vjeko and Ted, and to the many other talented people with whom I’ve had the pleasure
 to work over the years. Special thanks are due to Rodrigo Barnes for introducing me to this new programming language called
 “Java” ten years ago, and to my brother Mike for figuring out how to drive our BBC microcomputer.

Eric Pascarello

 I would like to thank Shona, my wife, for putting up with the late nights and for planning our wedding without my help, while
 I wrote this book. Thanks to my parents for letting me become a computer nerd. Thanks to my co-workers Fred Grau, Paul Fuseyamore,
 Tim Stanton, Tracey Baker, Adrienne Cantler, and Kelly Singleton for putting up with my early morning grumpiness after the
 long nights of writing. Thanks to the people at www.JavaRanch.com for their support and many great ideas. And I cannot forget to thank the aliens who abducted me and taught me to program.

Darren James

 I would like to thank my wife, Alana, and my children, Hannah and Paul, for being my life’s inspiration. Thanks to my parents
 for encouraging me to do well in school; to my colleague and friend, Bill Scott, for his ideas and support; to Richard Cowin
 and the contributors to Rico; to Butch Clarke for being an anchor in the storm; and to Gordon, Junior, and Jub-Jub for making
 me laugh.

About this Book

 Ajax is a growing new technology at the time of this writing and we’re delighted to bring you the lowdown on it, in the inimitable
 style of Manning’s In Action series. In doing so, though, we faced an interesting problem. Although Ajax is indisputably hot, it isn’t really new. It
 isn’t really a technology, either.

 Let us explain. Ajax brings together several well-established web technologies and uses them in new and interesting ways.
 Learning to use a completely new technology for the first time is in some ways simpler because you start with a blank slate.
 Ajax is different: there is also much to unlearn. Because of this, our book is organized somewhat differently from most Manning
 In Action books. You may notice this when reading and should know that we feel the way it is organized best suits this subject.

 And, as you will see, although the Ajax technologies themselves are all client side, the differences extend all the way down
 to the server. This book is mainly about client-side programming, and most of the code examples that you’ll find in here are
 JavaScript. The principles of Ajax decouple the client from the server beautifully, and can be used with any server-side language.
 We’ve therefore got a broad audience to address and have opted to present our server-side code in a mixture of languages:
 PHP, Java, C#, and Visual Basic .NET. More importantly, though, we’ve tried to keep the server-side code relatively simple
 and implementation-agnostic, so that you can port it to whatever environment you choose. Where we do use language-specific
 features, we explain them in enough detail for those unfamiliar with that particular environment to figure out what we’re
 doing.

Who should read this book?

 Ajax is at the crossroads of a number of disciplines; readers will approach it from a number of directions. On the one hand
 there are professional enterprise developers with computer science degrees and several years of hands-on experience with large
 software projects, who need to sometimes pop their heads above the battlements and work with the presentation tier. On the
 other hand are creative professionals who have moved from graphic design to web design and “new media,” and taught themselves
 how to program using scripting languages such as PHP, Visual Basic, or JavaScript/ActionScript. In between there are desktop
 app developers retraining for the Web and sysadmins called upon to put together web-based management tools, as well as many
 others.

 All of these possible readers have a real interest in Ajax. We’ve tried to address the needs of all of them, at least to some
 extent, in this book. We provide pointers to the basic web technologies for the server-side developer used to treating the
 web browser as a dumb terminal. We also give a grounding in software design and organization for the new media developer who
 may be more used to ad hoc coding styles. Wherever you come from, Ajax is a cross-disciplinary technology and will lead you
 into some unfamiliar areas. We’re going to stretch you a bit, and ask you to pick up a few new skills along the way. We’ve
 done the same in our own use of Ajax, even while writing this book. We have found it to be a very rewarding and enjoyable
 experience, with benefits extending to other aspects of our professional lives.

Roadmap

 This book is divided into four parts. Part 1 will tell you what Ajax is, explain why it is a useful addition to your development toolbox, and introduce the tools that
 can make you successful. Part 2 covers the core techniques that make an Ajax application work, and part 3 builds on these to discuss what is needed to go from proof of concept to production-ready software. In part 4 we take a direct hands-on approach, and build five Ajax projects step by step; we then refactor them into drop-in components
 that you can use in your own web applications.

 As we have said, Ajax is not a technology but a process. We’ve therefore dedicated chapter 1 to reorienting developers familiar with pre-Ajax web development. We discuss the fundamental differences between Ajax and
 the classic web application, how to think about usability, and other conceptual goodies. If you want to find out what the
 buzz around Ajax is, we suggest you start here. If you just want to eat, drink, and sleep code, then you’d best move on to
 chapter 2.

 The Ajax technologies are all reasonably well documented in their own right already. We’ve provided a whistle-stop, example-driven
 run through these technologies in chapter 2, but we haven’t aimed at being comprehensive. What we have done is emphasize where the technology is used differently, or
 behaves differently, as a result of being part of Ajax.

 Chapter 3 introduces the third main theme for this book, managing the Ajax codebase. Having watched a JavaScript codebase grow to over
 1.5 MB of source code, we can attest to the fact that writing JavaScript for Ajax is a different ball game. We talk design
 patterns and refactoring here, not because we think they’re cool, but because we’ve found them to be invaluable, practical
 tools in working with Ajax. And we think you will too as you start to pick up speed.

 In chapters 4 and 5, we turn our sights on the core components of Ajax, and apply our design pattern knowledge to find the best practices. Chapter 4 looks at ways of keeping your code clean on the client itself, applying the old web workhorse, Model-View-Controller, in
 a new way. Chapter 5 looks at the different ways of communicating between the client and the server and how various types of frameworks can be
 adapted to work with Ajax. By this point, we have covered all the basic plumbing and you’ll know how Ajax operates end to
 end.

 Chapters 6 through 8 build on the fundamental knowledge that we’ve acquired to look at how to add polish to your application and go beyond a proof
 of concept to something that’s fun, and safe, to usable in the real world. Chapter 6 addresses the user experience, and takes an in-depth look at ways of keeping the user informed while asynchronous tasks are
 executing. There’s a balance to be struck between keeping out of the user’s way and keeping him in the dark, and we show you
 how to find that happy middle ground here.

 Chapter 7 looks at the issue of security in Ajax from a number of angles. Ajax is a web technology and many of the issues that it faces
 are no different from any other web app. We cover the basic ground, concentrating on Ajax-specific issues here, such as securely
 importing generated JavaScript from the server, and protecting your web service entry points from unwanted direct manipulation.
 Security can be a showstopper for serious applications, and we give the basic steps needed to keep it under control here.

 Chapter 8 discusses that other showstopper, performance (or rather, lack of it!). We show how to monitor the performance of your application
 and how to analyze code in order to improve it and keep those improvements consistent across an application.

 In part 4, which consists of chapters 9 through 13, we switch gears to look at a number of Ajax projects. In each case, we code the functionality up in a straightforward way
 and then refactor it into something robust that you can drop into your own projects with no more than a few lines of code.
 This gives you the benefit of understanding the principles, the benefits of reuse, as well as showing Ajax refactoring in
 action.

 In chapter 9, we look at a simple way to give the user a richer experience by enhancing HTML forms with Ajax: we use data entered in one
 field to prepopulate a second drop-down list by making a background request to the server. We continue the theme of form enhancement
 in chapter 10 with an implementation of type-ahead suggest, fetching data from the server in response to user keystrokes.

 Chapter 11 moves on to the wider possibilities of Ajax user interfaces. We develop a complete portal application that resembles a workstation
 desktop more than a web page, complete with its own draggable, resizable windows. Ajax processes track window movements in
 the background, so that the desktop is always in the same state you left it, even if you log back in on a different machine.

 Chapter 12 develops an Ajax-based search system and demonstrates the power of client-side XSLT as a way of turning raw XML data into
 formatted, styled content.

 In chapter 13, we present an Ajax client without a back-end implementation. It still talks to server processes, but in this case, does
 so directly to blog and news syndication feeds, using the Internet standard RSS protocol.

 Finally, we include three appendices that we hope you’ll find useful. The body of the book discusses the technology itself.
 With a new, cross-disciplinary technology, assembling the tools to use it effectively is more of a challenge than with a mature
 technology stack such as J2EE or .NET. The vendors haven’t started offering Ajax tools yet, but we’re sure that they will!
 In the meantime, we provide in appendix A an overview of the tools and tricks that we’ve used to develop our Ajax projects and to keep our house in order.

 Appendix B is for enterprise programmers who understand software design principles but aren’t quite sure how to apply them in such a
 flexible, unstructured, and well, downright odd language as JavaScript. We walk through what the language can do, and point
 out where the main divergences from Java and C# lie.

 If the tool vendors haven’t quite caught up with Ajax yet, neither have the framework developers. The Ajax framework scene
 is a hotbed of innovation, intrigue (and often re-invention) right now. Appendix C rounds up the Ajax frameworks and toolkits that we know of at the moment, and provides a short overview and link for each.

Code conventions

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. We make use of many languages and markups in this book—JavaScript, HTML, CSS, XML, Java,
 C#, Visual Basic .NET, and PHP—but we try to adopt a consistent approach. Method and function names, object properties, XML
 elements, and attributes in text are presented using this same font.

 In many cases, the original source code has been reformatted: we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases even this was not enough, and listings include line-continuation markers.
 Additionally, many comments have been removed from the listings. Where appropriate, we’ve also cut implementation details
 that distract rather than help tell the story, such as JavaBean setters and getters, import and include statements, and namespace
 declarations.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to
 explanations that follow the listing.

Code downloads

 Source code for all of the working examples in this book is available for download from http://www.manning.com/crane.

 We realize that not all of you will have a .NET server, J2EE app server, and a Linux, Apache, MySQL, PHP/Python/Perl (LAMP)
 setup sitting on your desk, and that your principal interest in this book is in the client technology. As a result, we’ve
 tried to include “mock”-based versions of the example code that can be run with static dummy data from any web server, including
 Apache, Tomcat, and IIS. These are in addition to the full working examples, so that if you do enjoy wrestling with databases
 and app servers, you can dig in. Some basic setup documentation is provided with the download.

Author Online

 Purchase of Ajax in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to http://www.manning.com/crane. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some
 challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people best remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that in order for learning to become permanent it must
 pass through stages of exploration, play, and, interestingly, retelling of what was learned. People understand and remember
 new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part
 of all In Action guides is that they are example-driven. This encourages readers to try things out, to play with new code, and explore new
 ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or to
 solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they
 want it. They need books that aid them “in action.” The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of Ajax in Action is a “Sultana,” a female member of a sultan’s family; both his wife and his mother could be addressed by that name. The illustration
 is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street,
 London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of
 contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked
 on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book...two
 hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase,
 and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation
 was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed
 with a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the
 bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds
 the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that
 might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago—brought back to life by the pictures from this collection.

Part 1. Rethinking the web application

 This part of the book introduces the main concepts of Ajax. Chapter 1 presents Ajax and reasons to use it. Chapter 2 covers the technical fundamentals, and shows how they fit together. The aim is that, by the end of the book, you’ll be able
 to tackle real-world projects bigger than a “hello world.” Chapter 3 introduces the software development tools that we’ve used to manage large projects, and shows you how to use them with Ajax.

Chapter 1. A new design for the Web

 This chapter covers

	Asynchronous network interactions and usage patterns

 	The key differences between Ajax and classic web applications

 	The four fundamental principles of Ajax

 	Ajax in the real world

Ideally, a user interface (UI) will be invisible to users, providing them with the options they need when they need them but
 otherwise staying out of their way, leaving users free to focus on the problem at hand. Unfortunately, this is a very hard
 thing to get right, and we become accustomed, or resigned, to working with suboptimal UIs on a daily basis—until someone shows
 us a better way, and we realize how frustrating our current method of doing things can be.

 The Internet is currently undergoing such a realization, as the basic web browser technologies used to display document content
 have been pushed beyond the limits of what they can sanely accomplish.

 Ajax (Asynchronous JavaScript + XML) is a relatively recent name, coined by Jesse James Garrett of Adaptive Path. Some parts
 of Ajax have been previously described as Dynamic HTML and remote scripting. Ajax is a snappier name, evoking images of cleaning powder, Dutch football teams, and Greek heroes suffering the throes
 of madness.

 It’s more than just a name, though. There is plenty of excitement surrounding Ajax, and quite a lot to get excited about,
 from both a technological and a business perspective. Technologically, Ajax gives expression to a lot of unrealized potential
 in the web browser technologies. Google and a few other major players are using Ajax to raise the expectations of the general
 public as to what a web application can do.

 The classical “web application” that we have become used to is beginning to creak under the strain that increasingly sophisticated
 web-based services are placing on it. A variety of technologies are lining up to fill the gap with richer, smarter, or otherwise
 improved clients. Ajax is able to deliver this better, smarter richness using only technologies that are already installed
 on the majority of modern computers.

 With Ajax, we are taking a bunch of dusty old technologies and stretching them well beyond their original scope. We need to
 be able to manage the complexity that we have introduced. This book will discuss the how-tos of the individual technologies
 but will also look at the bigger picture of managing large Ajax projects. We’ll introduce Ajax design patterns throughout the book as well to help us get this job done. Design patterns help us to capture our knowledge and experience
 with a technology as we acquire it and to communicate it with others. By introducing regularity to a codebase, they can facilitate
 creating applications that are easy to modify and extend as requirements change. Design patterns are even a joy to work with!

1.1. Why Ajax rich clients?

 Building a rich client interface is a bit more complicated than designing a web page. What is the incentive, then, for going
 this extra mile? What’s the payoff? What is a rich client, anyway?

 Two key features characterize a rich client: it’s rich, and it’s a client.

 Let me explain a little more. Rich refers here to the interaction model of the client. A rich user interaction model is one that can support a variety of input
 methods and that responds intuitively and in a timely fashion. We could set a rather unambitious yardstick for this by saying
 that for user interaction to be rich, it must be as good as the current generation of desktop applications, such as word processors
 and spreadsheets. Let’s take a look at what that would entail.

 1.1.1. Comparing the user experiences

 Take a few minutes to play with an application of your choice (other than a web browser), and count the types of user interaction
 that it offers. Come back here when you’ve finished. I’m going to discuss a spreadsheet as an example shortly, but the points
 I’ll make are sufficiently generic that anything from a text editor up will do.

 Finished? I am. While typing a few simple equations into my spreadsheet, I found that I could interact with it in a number
 of ways, editing data in situ, navigating the data with keyboard and mouse, and reorganizing data using drag and drop.

 As I did these things, the program gave me feedback. The cursor changed shape, buttons lit up as I hovered over them, selected
 text changed color, highlighted windows and dialogs were represented differently, and so on (figure 1.1). That’s what passes for rich interactivity these days. Arguably there’s still some way to go, but it’s a start.

 Figure 1.1. This desktop spreadsheet application illustrates a variety of possibilities for user interaction. The headers for the selected
 rows and columns are highlighted; buttons offer tooltips on mouseover; toolbars contain a variety of rich widget types; and
 the cells can be interactively inspected and edited.

 [image:]

 So is the spreadsheet application a rich client? I would say that it isn’t.

 In a spreadsheet or similar desktop application, the logic and the data model are both executed in a closed environment, in
 which they can see each other very clearly but shut the rest of the world out (figure 1.2). My definition of a client is a program that communicates to a different, independent process, typically running on a server. Traditionally, the server
 is bigger, stronger, and better than the client, and it stores monstrously huge amounts of information. The client allows
 end users to view and modify this information, and if several clients are connected to the same server, it allows them to
 share that data. Figure 1.3 shows a simple schematic of a client/server architecture.

 Figure 1.2. Schematic architectures for a standalone desktop application. The application runs in a process of its own, within which the
 data model and the program logic can “see” one another. A second running instance of the application on the same computer
 has no access to the data model of the first, except via the filesystem. Typically, the entire program state is stored in
 a single file, which is locked while the application is running, preventing any simultaneous exchange of information.

 [image:]

 Figure 1.3. Schematic architectures for client/server systems and n-tier architectures. The server offers a shared data model, with which
 clients can interact. The clients still maintain their own partial data models, for rapid access, but these defer to the server
 model as the definitive representation of the business domain objects. Several clients can interact with the same server,
 with locking of resources handled at a fine-grain level of individual objects or database rows. The server may be a single
 process, as in the traditional client/server model of the early- to mid-1990s, or consist of several middleware tiers, external
 web services, and so on. In any case, from the client’s perspective, the server has a single entry point and can be considered
 a black box.

 [image:]

 In a modern n-tier architecture, of course, the server will communicate to further back-end servers such as databases, giving
 rise to middleware layers that act as both client and server. Our Ajax applications typically sit at the end of this chain,
 acting as client only, so we can treat the entire n-tier system as a single black box labeled “server” for the purposes of
 our current discussion.

 My spreadsheet sits on its own little pile of data, stored locally in memory and on the local filesystem. If it is well architected,
 the coupling between data and presentation may be admirably loose, but I can’t split it across the network or share it as
 such. And so, for our present purposes, it isn’t a client.

 Web browsers are clients, of course, contacting the web servers from which they request pages. The browser has some rich functionality
 for the purpose of managing the user’s web browsing, such as back buttons, history lists, and tabs for storing several documents.
 But if we consider the web pages for a particular site as an application, then these generic browser controls are not related
 to the application any more than the Windows Start menu or window list are related to my spreadsheet.

 Let’s have a look at a modern web application. Simply because everyone has heard of it, we’ll pick on Amazon, the bookseller
 (figure 1.4). I point my browser to the Amazon site, and, because it remembers who I am from my last visit, it shows me a friendly greeting,
 a list of recommended books, and information about my purchasing history.

 Figure 1.4. Amazon.com home page. The system has remembered who I am from a previous visit, and the navigational links are a mixture of
 generic boilerplate and personal information.

 [image:]

 Clicking on a title from the recommendations list leads me to a separate page (that is, the screen flickers and I lose sight
 of all the lists that I was viewing a few seconds earlier). This, too, is stuffed full of contextual information: reviews,
 secondhand prices for the book, links to similar authors, and titles of other books that I’ve recently checked out (figure 1.5).

 Figure 1.5. Amazon.com book details page. Again, a dense set of hyperlinks combines generic and personal information. Nonetheless, a significant
 amount of detail is identical to that shown in figure 1.4, which must, owing to the document-based operation of the web browser, be retransmitted with every page.

 [image:]

 In short, I’m presented with very rich, tightly interwoven information. And yet my only way of interacting with this information
 is through clicking hyperlinks and filling in text forms. If I fell asleep at the keyboard while browsing the site and awoke
 the next day, I wouldn’t know that the new Harry Potter book had been released until I refreshed the entire page. I can’t
 take my lists with me from one page to another, and I can’t resize portions of the document to see several bits of content at once.

 This is not to knock Amazon. It’s doing a good job at working within some very tight bounds. But compared to the spreadsheet,
 the interaction model it relies on is unquestionably limiting.

 So why are those limits present in modern web applications? There are sound technical reasons for the current situation, so
 let’s take a look at them now.

 1.1.2. Network latency

 The grand vision of the Internet age is that all computers in the world interconnect as one very large computing resource.
 Remote and local procedure calls become indistinguishable, and issuers are no longer even aware of which physical machine (or machines) they are working on, as they happily compute the folds in their proteins or decode extraterrestrial
 signals.

 Remote and local procedure calls are not the same thing at all, unfortunately. Communications over a network are expensive
 (that is, they are slow and unreliable). When a non-networked piece of code is compiled or interpreted, the various methods
 and functions are coded as instructions stored in the same local memory as the data on which the methods operate (figure 1.6). Thus, passing data to a method and returning a result is pretty straightforward.

 Figure 1.6. Sequence diagram of a local procedure call. Very few actors are involved here, as the program logic and the data model are
 both stored in local memory and can see each other directly.

 [image:]

 Under the hood, a lot of computation is going on at both ends of a network connection in order to send and receive data (figure 1.7). It’s this computation that slows things down, more than the physical journey along the wire. The various stages of encoding
 and decoding cover aspects of the communication ranging from physical signals passing along the wire (or airwaves), translation
 of these signals as the 1s and 0s of binary data, error checking and re-sending, to the reassembling of the sequence, and
 ultimately the meaning, of the binary information.

 Figure 1.7. Sequence diagram of a remote procedure call. The program logic on one machine attempts to manipulate a data model on another
 machine.

 [image:]

 The calling function’s request must be encoded as an object, which is then serialized (that is, converted into a linear set
 of bytes). The serialized data is then passed to the application protocol (usually HTTP these days) and sent across the physical
 transport (a copper or fiber-optic cable, or a wireless connection of some sort).

 On the remote machine, the application protocol is decoded, and the bytes of data deserialized, to create a copy of the request
 object. This object can then be applied to the data model and a response object generated. To communicate the response to
 the calling function, the serialization and transport layers must be navigated once more, eventually resulting in a response
 object being returned to the calling function.

 These interactions are complex but amenable to automation. Modern programming environments such as Java and the Microsoft
 .NET Framework offer this functionality for free. Nonetheless, internally a lot of activity is going on when a remote procedure
 call (RPC) is made, and if such calls are made too freely, performance will suffer.

 So, making a call over a network will never be as efficient as calling a local method in memory. Furthermore, the unreliability
 of the network (and hence the need to resend lost packets of information) makes this inefficiency variable and hard to predict.
 The responsiveness of the memory bus on your local machine is not only better but also very well defined in comparison.

 But what does that have to do with usability? Quite a lot, as it turns out.

 A successful computer UI does need to mimic our expectations of the real world at the very basic level. One of the most basic ground rules for interaction is that when we push, prod, or poke at something, it responds immediately.
 Slight delays between prodding something and the response can be disorienting and distracting, moving the user’s attention
 from the task at hand to the UI itself.

 Having to do all that extra work to traverse the network is often enough to slow down a system such that the delay becomes
 noticeable. In a desktop application, we need to make bad usability design decisions to make the application feel buggy or
 unresponsive, but in a networked application, we can get all that for free!

 Because of the unpredictability of network latency, this perceived bugginess will come and go, and testing the responsiveness
 of the application can be harder, too. Hence, network latency is a common cause of poor interactivity in real-world applications.

 1.1.3. Asynchronous interactions

 There is only one sane response to the network latency problem available to the UI developer—assume the worst. In practical
 terms, we must try to make UI responses independent of network activity. Fortunately, a holding response is often sufficient,
 as long as it is timely. Let’s take a trip to the physical world again. A key part of my morning routine is to wake my children
 up for school. I could stand over them prodding them until they are out of bed and dressed, but this is a time-consuming approach,
 leaving a long period of time in which I have very little to do (figure 1.8).

 Figure 1.8. Sequence diagram of a synchronous response to user input, during my morning routine. In a sequence diagram, the passage of
 time is vertical. The height of the shaded area indicates the length of time for which I am blocked from further input.

 [image:]

 I need to wake up my children, stare out the window, and ignore the cat. The children will notify me when they are properly
 awake by asking for breakfast. Like server-side processes, children are slow to wake. If I follow a synchronous interaction
 model, I will spend a long time waiting. As long as they are able to mutter a basic “Yes, I’m awake,” I can happily move on
 to something else and check up on them later if need be.

 In computer terms, what I’m doing here is spawning an asynchronous process, in a separate thread. Once they’re started, my
 children will wake up by themselves in their own thread, and I, the parent thread, don’t need to synchronize with them until
 they notify me (usually with a request to be fed). While they’re waking up, I can’t interact with them as if they were already
 up and dressed, but I can be confident that it will happen in due course (figure 1.9).

 Figure 1.9. Sequence diagram of an asynchronous response to user input. If I follow an asynchronous input model, I can let the children
 notify me that they are starting to wake up. I can then continue with my other activities while the wakeup happens and remain
 blocked for a much shorter period of time.

 [image:]

 With any UI, it’s a well-established practice to spawn an asynchronous thread to handle any lengthy piece of computation and
 let it run in the background while the user gets on with other things. The user is necessarily blocked while that thread is
 launched, but this can be done in an acceptably short span of time. Because of network latency, it is good practice to treat any RPC as potentially lengthy and handle it asynchronously.

 This problem, and the solution, are both well established. Network latency was present in the old client/server model, causing
 poorly designed clients to freeze up inexplicably as they tried to reach an overloaded server. And now, in the Internet age,
 network latency causes your browser to “chug” frustratingly while moving between web pages. We can’t get rid of latency, but
 we know how to deal with it—by processing the remote calls asynchronously, right?

 Unfortunately for us web app developers, there’s a catch. HTTP is a request-response protocol. That is, the client issues
 a request for a document, and the server responds, either by delivering the document, saying that it can’t find it, offering
 an alternative location, or telling the client to use its cached copy, and so on. A request-response protocol is one-way.
 The client can make contact with the server, but the server cannot initiate a communication with the client. Indeed, the server
 doesn’t remember the client from one request to the next.

 The majority of web developers using modern languages such as Java, PHP, or .NET will be familiar with the concept of user
 sessions. These are an afterthought, bolted onto application servers to provide the missing server-side state in the HTTP
 protocol. HTTP does what it was originally designed for very well, and it has been adapted to reach far beyond that with considerable
 ingenuity. However, the key feature of our asynchronous callback solution is that the client gets notified twice: once when
 the thread is spawned and again when the thread is completed. Straightforward HTTP and the classic web application model can’t
 do this for us.

 The classic web app model, as used by Amazon, for example, is still built around the notion of pages. A document is displayed
 to the user, containing lists of links and/or form elements that allow them to drill down to further documents. Complex datasets
 can be interacted with in this way on a large scale, and as Amazon and others have demonstrated, the experience of doing so
 can be compelling enough to build a business on.

 This model of interaction has become quite deeply ingrained in our way of thinking over the ten years or so of the commercial,
 everyday Internet. Friendly WYSIWYG web-authoring tools visualize our site as a collection of pages. Server-side web frameworks
 model the transition between pages as state transition diagrams. The classic web application is firmly wedded to the unavoidable
 lack of responsiveness when the page refreshes, without an easy recourse to the asynchronous handler solution.

 But Amazon has built a successful business on top of its website. Surely the classic web application can’t be that unusable?
 To understand why the web page works for Amazon but not for everyone, we ought to consider usage patterns.

 1.1.4. Sovereign and transient usage patterns

 It’s futile to argue whether a bicycle is better than a sports utility vehicle. Each has its own advantages and disadvantages—comfort,
 speed, fuel consumption, vague psychological notions about what your mode of transport “says” about you as a person. When
 we look at particular use patterns, such as getting through the rush hour of a compact city center, taking a large family
 on vacation, or seeking shelter from the rain, we may arrive at a clear winner. The same is true for computer UIs.

 Software usability expert Alan Cooper has written some useful words about usage patterns and defines two key usage modes:
 transient and sovereign. A transient application might be used every day, but only in short bursts and usually as a secondary activity. A sovereign application, in contrast, must cope with the user’s full attention for several hours at a time.

 Many applications are inherently transient or sovereign. A writer’s word processor is a sovereign application, for example,
 around which a number of transient functions will revolve, such as the file manager (often embedded into the word processor
 as a file save or open dialog), a dictionary or spellchecker (again, often embedded), and an email or messenger program for
 communicating with colleagues. To a software developer, the text editor or Integrated Development Environment (IDE) is sovereign, as is the debugger.

 Sovereign applications are also often used more intensely. Remember, a wellbehaved UI should be invisible. A good yardstick
 for the intensity of work is the effect on the user’s workflow of the UI stalling, thus reminding the user that it exists.
 If I’m simply moving files from one folder to another and hit a two-second delay, I can cope quite happily. If I encounter
 the same two-second delay while composing a visual masterpiece in a paint program, or in the middle of a heavy debugging session
 with some tricky code, I might get a bit upset.

 Amazon is a transient application. So are eBay and Google—and most of the very large, public web-based applications out there.
 Since the dawn of the Internet, pundits have been predicting the demise of the traditional desktop office suite under the
 onslaught of web-based solutions. Ten years later, it hasn’t happened. Web page–based solutions are good enough for transient
 use but not for sovereign use.

 1.1.5. Unlearning the Web

 Fortunately, modern web browsers resemble the original ideal of a client for remote document servers about as closely as a
 Swiss army knife resembles a neolithic flint hunting tool. Interactive gizmos, scripting languages, and plug-ins have been
 bolted on willy-nilly over the years in a race to create the most compelling browsing experience. (Have a look at www.webhistory.org/www.lists/wwwtalk.1993q1/0182.html to get a perspective on how far we’ve come. In 1993, a pre-Netscape Marc Andreessen tentatively suggested to Tim Berners-Lee
 and others that HTML might benefit from an image tag.)

 A few intrepid souls have been looking at JavaScript as a serious programming language for several years, but on the whole,
 it is associated with faked-up alert dialogs and “click the monkey to win” banners.

 Think of Ajax as a rehabilitation center for this misunderstood, ill-behaved child of the browser wars. By providing some
 guidance and a framework within which to operate, we can turn JavaScript into a helpful model citizen of the Internet, capable
 of enhancing the real usability of a web application—and without enraging the user or trashing the browser in the process.
 Mature, well-understood tools are available to help us do this. Design patterns are one such tool that we make frequent use
 of in our work and will refer to frequently in this book.

 Introducing a new technology is a technical and social process. Once the technology is there, people need to figure out what
 to do with it, and a first step is often to use it as if it were something older and more familiar. Hence, early bicycles
 were referred to as “hobbyhorses” or “dandy horses” and were ridden by pushing one’s feet along the ground. As the technology
 was exposed to a wider audience, a second wave of innovators would discover new ways of using the technology, adding improvements
 such as pedals, brakes, gears, and pneumatic tires. With each incremental improvement, the bicycle became less horse-like
 (figure 1.10).

 Figure 1.10. Development of the modern bicycle

 [image:]

 The same processes are at work in web development today. The technologies behind Ajax have the ability to transform web pages
 into something radically new. Early attempts to use the Ajax technologies resembled the traditional web page document and
 have that neither-one-thing-nor-the-other flavor of the hobbyhorse. To grasp the potential of Ajax, we must let go of the
 concept of the web page and, in doing so, unlearn a lot of the assumptions that we have been making for the last few years.
 In the short few months since Ajax was christened, a lot of unlearning has been taking place.

1.2. The four defining principles of Ajax

 The classic page-based application model is hard-wired into many of the frameworks that we use, and also into our ways of
 thinking. Let’s take a few minutes to discover what these core assumptions are and how we need to rethink them to get the
 most out of Ajax.

 1.2.1. The browser hosts an application, not content

 In the classic page-based web application, the browser is effectively a dumb terminal. It doesn’t know anything about where
 the user is in the greater workflow. All of that information is held on the web server, typically in the user’s session. Server-side
 user sessions are commonplace these days. If you’re working in Java or .NET, the server-side session is a part of the standard
 API, along with requests, responses, and Multipurpose Internet Mail Extensions (MIME) types. Figure 1.11 illustrates the typical lifecycle of a classic web application.

 Figure 1.11. Lifecycle of a classic web application. All the state of the user’s “conversation” with the application is held on the web
 server. The user sees a succession of pages, none of which can advance the broader conversation without going back to the
 server.

 [image:]

 When the user logs in or otherwise initializes a session, several server-side objects are created, representing, say, the
 shopping basket and the customer credentials if this is an e-commerce site. At the same time, the home page is dished up to
 the browser, in a stream of HTML markup that mixes together standard boilerplate presentation and user-specific data and content
 such as a list of recently viewed items.

 Every time the user interacts with the site, another document is sent to the browser, containing the same mixture of boilerplate
 and data. The browser dutifully throws the old document away and displays the new one, because it is dumb and doesn’t know
 what else to do.

 When the user hits the logout link or closes the browser, the application exits and the session is destroyed. Any information
 that the user needs to see the next time she or he logs on will have been handed to the persistence tier by now. An Ajax application moves some of the application logic to the browser, as figure 1.12 illustrates.

 Figure 1.12. Lifecycle of an Ajax application. When the user logs in, a client application is delivered to the browser. This application
 can field many user interactions independently, or else send requests to the server behind the scenes, without interrupting
 the user’s workflow.

 [image:]

 When the user logs in, a more complex document is delivered to the browser, a large proportion of which is JavaScript code.
 This document will stay with the user throughout the session, although it will probably alter its appearance considerably
 while the user is interacting with it. It knows how to respond to user input and is able to decide whether to handle the user
 input itself or to pass a request on to the web server (which has access to the system database and other resources), or to
 do a combination of both.

 Because the document persists over the entire user session, it can store state. A shopping basket’s contents may be stored
 in the browser, for example, rather than in the server session.

 1.2.2. The server delivers data, not content

 As we noted, the classic web app serves up the same mixture of boilerplate, content, and data at every step. When our user
 adds an item to a shopping basket, all that we really need to respond with is the updated price of the basket or whether anything
 went wrong. As illustrated in figure 1.13, this will be a very small part of the overall document.

 Figure 1.13. Breakdown of the content delivered (A) to a classic web application and (B) to an Ajax application. As the application continues
 to be used, cumulative traffic (C) increases.

 [image:]

 An Ajax-based shopping cart could behave somewhat smarter than that, by sending out asynchronous requests to the server. The
 boilerplate, the navigation lists, and other features of the page layout are all there already, so the server needs to send
 back only the relevant data.

 The Ajax application might do this in a number of ways, such as returning a fragment of JavaScript, a stream of plain text,
 or a small XML document. We’ll look at the pros and cons of each in detail in chapter 5. Suffice it to say for now that any one of these formats will be much smaller than the mish-mash returned by the classic
 web application.

 In an Ajax application, the traffic is heavily front-loaded, with a large and complex client being delivered in a single burst
 when the user logs in. Subsequent communications with the server are far more efficient, however. For a transient application,
 the cumulative traffic may be less for a conventional web page application, but as the average length of interaction time
 increases, the bandwidth cost of the Ajax application becomes less than that of its classic counterpart.

 1.2.3. User interaction with the application can be fluid and continuous

 A web browser provides two input mechanisms out of the box: hyperlinks and HTML forms.

 Hyperlinks can be constructed on the server and preloaded with Common Gateway Interface (CGI) parameters pointed at dynamic server pages or servlets. They can be dressed up with images and Cascading Style Sheets (CSS) to provide rudimentary feedback when the mouse hovers over them. Given a good web designer, hyperlinks can be made to look
 like quite fancy UI components.

 Form controls offer a basic subset of the standard desktop UI components: input textboxes, checkboxes and radio buttons, and
 drop-down lists. Several likely candidates are missing, though. There are no out-of-the-box tree controls, editable grids,
 or combo-boxes provided. Forms, like hyperlinks, point at server-side URLs.

 Alternatively, hyperlinks and form controls can be pointed at JavaScript functions. It’s a common technique in web pages to
 provide rudimentary form validation in JavaScript, checking for empty fields, out-of-range numbers, and so on, before submitting
 data to the server. These JavaScript functions persist only as long as the page itself and are replaced when the page submits.

 While the page is submitting, the user is effectively in limbo. The old page may still be visible for a while, and the browser
 may even allow the user to click on any visible links, but doing so will produce unpredictable results and may wreak havoc
 with the server-side session. The user is generally expected to wait until the page is refreshed, often with a set of choices
 similar to those that were snatched away from them seconds earlier. After all, adding a pair of trousers to the shopping basket
 is unlikely to modify the top-level categories from “menswear,” “women’s wear,” “children’s,” and “accessories.”

 Let’s take the shopping cart example again. Because our Ajax shopping cart sends data asynchronously, users can drop things
 into it as fast as they can click. If the cart’s client-side code is robust, it will handle this load easily, and the users
 can get on with what they’re doing.

 There is no cart to drop things into, of course, just an object in session on the server. Users don’t want to know about session
 objects while shopping, and the cart metaphor provides a more comfortable real-world description of what’s taking place. Switching
 contexts between the metaphor and direct access to the computer is distracting to users. Waiting for a page to refresh will
 jerk them back to the reality of sitting at a computer for a short time (figure 1.14), and our Ajax implementation avoids doing this. Shopping is a transient activity, but if we consider a different business
 domain, for example, a high-pressure help desk scenario or a complex engineering task, then the cost of disrupting the workflow
 every few seconds with a page refresh is prohibitive.

 Figure 1.14. Interrupting the user’s workflow to process events. The user deals with two types of object: those relating to their business,
 and those relating to the computer system. Where the user is forced to switch between the two frequently, disorientation and
 lack of productivity may occur.

 [image:]

 The second advantage of Ajax is that we can hook events to a wider range of user actions. More sophisticated UI concepts such
 as drag-and-drop become feasible, bringing the UI experience fully up to par with the desktop application widget sets. From
 a usability perspective, this freedom is important not so much because it allows us to exercise our imagination, but because
 it allows us to blend the user interaction and server-side requests more fully.

 To contact the server in a classic web application, we need to click a hyperlink or submit a form, and then wait. This interrupts
 the user’s workflow. In contrast, contacting the server in response to a mouse movement or drag, or a keystroke, allows the
 server to work alongside the user. Google Suggest (www.google.com/webhp?complete=1) is a very simple but effective example of this: responding to users keystrokes as they type into the search box and contacting
 the server to retrieve and display a list of likely completions for the phrases, based on searches made by other users of
 the search engine worldwide. We provide a simple implementation of a similar service in chapter 8.

 1.2.4. This is real coding and requires discipline

 Classic web applications have been making use of JavaScript for some time now, to add bells and whistles around the edge of
 their pages. The page-based model prevents any of these enhancements from staying around for too long, which limits the uses
 to which they can be put. This catch-22 situation has led, unfairly, to JavaScript getting a reputation as a trivial, hacky
 sort of language, looked down upon by the serious developers.

 Coding an Ajax application is a different matter entirely. The code that you deliver when users launch the application must
 run until they close it, without breaking, without slowing down, and without generating memory leaks. If we’re aiming at the
 sovereign application market, then this means several hours of heavy usage. To meet this goal, we must write high-performance,
 maintainable code, using the same discipline and understanding that is successfully applied to the server tiers.

 The codebase will also typically be larger than anything written for a classic web application. Good practices in structuring
 the codebase become important. The code may become the responsibility of a team rather than an individual, bringing up issues
 of maintainability, separation of concerns, and common coding styles and patterns.

 An Ajax application, then, is a complex functional piece of code that communicates efficiently with the server while the user
 gets on with work. It is clearly a descendent of the classic page-based application, but the similarity is no stronger than
 that between the early hobbyhorse and a modern touring bike. Bearing these differences in mind will help you to create truly
 compelling web applications.

1.3. Ajax rich clients in the real world

 So much for the theory. Ajax is already being used to create real applications, and the benefit of the Ajax approach can already
 be seen. It’s still very much early days—the bicycles of a few far-sighted individuals have pedals and solid rubber tires,
 and some are starting to build disc brakes and gearboxes, so to speak. The following section surveys the current state of
 the art and then looks in detail at one of the prominent early adopters to see where the payoff in using Ajax lies.

 1.3.1. Surveying the field

 Google has done more than any other company to raise the profile of Ajax applications (and it, like the majority of adopters,
 was doing so before the name Ajax was coined). Its GMail service was launched in beta form in early 2004. Along with the extremely
 generous mailbox size, the main buzz around GMail was the UI, which allowed users to open several mail messages at once and
 which updated mailbox lists automatically, even while the user was typing in a message. Compared with the average web mail
 system offered by most Internet service providers (ISPs) at the time, this was a major step forward. Compared with the corporate
 mail server web interfaces of the likes of Microsoft Outlook and Lotus Notes, GMail offered most of the functionality without
 resorting to heavy, troublesome ActiveX controls or Java applets, making it available across most platforms and locations,
 rather than the corporate user’s carefully preinstalled machine.

 Google has followed this up with further interactive features, such as Google Suggest, which searches the server for likely
 completions for your query as you type, and Google Maps, an interactive zoomable map used to perform location-based searches.
 At the same time, other companies have begun to experiment with the technology, such as Flickr’s online photo-sharing system,
 now part of Yahoo!

 The applications we have discussed so far are testing the water. They are still transient applications, designed for occasional
 use. There are signs of an emerging market for sovereign Ajax applications, most notably the proliferation of frameworks in
 recent months. We look at a few of these in detail in chapter 3, and attempt to summarize the current state of the field in appendix C.

 There are, then, sufficient signals to suggest that Ajax is taking hold of the market in a significant way. We developers
 will play with any new technology for its own sake, but businesses like Google and Yahoo! will join in only if there are compelling
 business reasons. We’ve already outlined many of the theoretical advantages of Ajax. In the following section, we’ll take
 apart Google Maps, in order to see how the theory stacks up.

 1.3.2. Google Maps

 Google Maps is a cross between a map viewer and a search engine. Initially, the map shows the entire United States (figure 1.15). The map can be queried using free text, allowing drill-down to specific street addresses or types of amenity such as hotels
 and restaurants (figure 1.16).

 Figure 1.15. The Google Maps home page offers a scrolling window on a zoomable map of the United States, alongside the familiar Google
 search bar. Note that the zoom control is positioned on top of the map rather than next to it, allowing the user to zoom without
 taking his eyes off the map.

 [image:]

 The search feature functions as a classic web app, refreshing the entire page, but the map itself is powered by Ajax. Clicking
 on individual links from a hotel search will cause additional pop-ups to be displayed on the fly, possibly even scrolling
 the map slightly to accommodate them. The scrolling of the map itself is the most interesting feature of Google Maps. The
 user can drag the entire map by using the mouse. The map itself is composed of small tiled images, and if the user scrolls
 the map far enough to expose a new tile, it will be asynchronously downloaded. There is a noticeable lag at times, with a
 blank white area showing initially, which is filled in once the map tile is loaded; however, the user can continue to scroll,
 triggering fresh tile requests, while the download takes place. The map tiles are cached by the browser for the extent of
 a user’s session, making it much quicker to return to a part of the map already visited.

 Figure 1.16. Google Maps hotel search. Note the traditional use of the DHTML technologies to create shadows and rich tooltip balloons.
 Adding Ajax requests makes these far more dynamic and useful.

 [image:]

 Looking back to our discussions of usability, two important things are apparent. First, the action that triggers the download
 of new map data is not a specific click on a link saying “fetch more maps” but something that the user is doing anyway, namely, moving the map around. The user
 workflow is uninterrupted by the need to communicate with the server. Second, the requests themselves are asynchronous, meaning
 that the contextual links, zoom control, and other page features remain accessible while the map is gathering new data.

 Internet-based mapping services are nothing new. If we looked at a typical pre-Ajax Internet mapping site, we would see a
 different set of interaction patterns. The map would typically be divided into tiles. A zoom control, and perhaps sideways
 navigation links at the map’s edges, might be provided. Clicking on any of these would invoke a full-screen refresh, resulting
 in a similar page hosting different map tiles. The user workflow would be interrupted more, and after looking at Google Maps,
 the user would find the site slow and frustrating.

 Turning to the server-side, both services are undoubtedly backed by some powerful mapping solutions. Both serve up map tiles
 as images. The conventional web server of the pre-Ajax site is continually refreshing boilerplate code when the user scrolls,
 whereas Google Maps, once up and running, serves only the required data, in this case image tiles that aren’t already cached.
 (Yes, the browser will cache the images anyway, providing the URL is the same, but browser caching still results in server
 traffic when checking for up-to-date data and provides a less-reliable approach than programmatic caching in memory.) For
 a site with the prominent exposure of Google, the bandwidth savings must be considerable.

 To online services such as Google, ease of use is a key feature in getting users to visit their service and to come back again.
 And the number of page impressions is a crucial part of the bottom line for the business. By introducing a better UI with
 the flexibility that Ajax offers, Google has clearly given traditional mapping services something to worry about. Certainly
 other factors, such as the quality of the back-end service, come into play, but other things being equal, Ajax can offer a
 strong business advantage.

 We can expect the trend for this to rise as public exposure to richer interfaces becomes more prevalent. As a marketable technology,
 Ajax looks to have a bright future for the next few years. However, other rich client technologies are looking to move into
 this space, too. Although they are largely outside the scope of this book, it’s important that we take a look at them before
 concluding our overview.

1.4. Alternatives to Ajax

 Ajax meets a need in the marketplace for richer, more responsive web-based clients that don’t need any local installation.
 It isn’t the only player in that space, though, and in some cases, it isn’t even the most appropriate choice. In the following
 section, we’ll briefly describe the main alternatives.

 1.4.1. Macromedia Flash-based solutions

 Macromedia’s Flash is a system for playing interactive movies using a compressed vector graphics format. Flash movies can
 be streamed, that is, played as they are downloaded, allowing users to see the first bits of the movie before the last bits
 have arrived. Flash movies are interactive and are programmed with ActionScript, a close cousin of JavaScript. Some support
 for input form widgets is also provided, and Flash can be used for anything from interactive games to complex business UIs.
 Flash has very good vector graphics support, something entirely absent from the basic Ajax technology stack.

 Flash has been around for ages and is accessed by a plug-in. As a general rule, relying on a web browser plug-in is a bad
 idea, but Flash is the web browser plug-in, with the majority of browsers bundling it as a part of the installation. It is available across Windows,
 Mac OS X, and Linux, although the installation base on Linux is probably smaller than for the other two platforms.

 For the purposes of creating rich clients with Flash, two very interesting technologies are Macromedia’s Flex and the open
 source Laszlo suite, both of which provide simplified server-side frameworks for generating Flash-based business UIs. Both
 frameworks use Java/Java 2 Enterprise Edition (J2EE) on the server side. For lower-level control over creating Flash movies
 dynamically, several toolkits, such as PHP’s libswf module, provide core functionality.

 1.4.2. Java Web Start and related technologies

 Java Web Start is a specification for bundling Java-based web applications on a web server in such a way that a desktop process
 can find, download, and run them. These applications can be added as hyperlinks, allowing seamless access from a Web Start–savvy
 web browser. Web Start is bundled with the more recent Java runtimes, and the installation process will automatically enable
 Web Start on Internet Explorer and Mozilla-based browsers.

 Once downloaded, Web Start applications are stored in a managed “sandbox” in the filesystem and automatically updated if a
 new version is made available. This allows them to be run while disconnected from the network and reduces network traffic on reload, making the deployment of heavy applications weighing several megabytes a possibility. Applications
 are digitally signed, and the user may choose to grant them full access to the filesystem, network ports, and other resources.

 Traditionally, Web Start UIs are written in the Java Swing widget toolkit, about which strong opinions are held on both sides.
 The Standard Widget Toolkit (SWT) widgets used to power IBM’s Eclipse platform can also be deployed via Web Start, although this requires a bit more work.

 Microsoft’s .NET platform offers a similar feature called No Touch Deployment, promising a similar mix of easy deployment,
 rich UIs, and security.

 The main downside to both technologies is the need to have a runtime preinstalled. Of course, any rich client needs a runtime,
 but Flash and Ajax (which uses the web browser itself as a runtime) use runtimes that are commonly deployed. Java and .NET
 runtimes are both very limited in their distribution at present and can’t be relied on for a public web service.

1.5. Summary

 We’ve discussed the differences between transient and sovereign applications and the requirements of each. Transient applications
 need to deliver the goods, but, when users are using them, they have already stepped out of their regular flow of work, and
 so a certain amount of clunkiness is acceptable. Sovereign applications, in contrast, are designed for long-term intensive
 use, and a good interface for a sovereign application must support the users invisibly, without breaking their concentration
 on the task at hand.

 The client/server and related n-tier architectures are essential for collaborative or centrally coordinated applications,
 but they raise the specter of network latency, with its ability to break the spell of user productivity. Although a general-purpose
 solution to the conflict between the two exists in asynchronous remote event handling, the traditional request-response model
 of the classic web application is ill suited to benefit from it.

 We’ve set a goal for ourselves, and for Ajax, in this chapter of delivering usable sovereign applications through a web browser,
 thereby satisfying the goals of user productivity, networking, and effortless, centralized maintenance of an application all
 at once. In order for this mission to succeed, we need to start thinking about our web pages and applications in a fundamentally
 different way. We’ve identified the key ideas that we need to learn and those that we need to unlearn:

	The browser hosts an application, not content.

 	The server delivers data, not content.

 	The user interacts continuously with the application, and most requests to the server are implicit rather than explicit.

 	Our codebase is large, complex, and well structured. It is a first-class citizen in our architecture, and we must take good
 care of it.

The next chapter will unpack the key Ajax technologies and get our hands dirty with some code. The rest of the book will look
 at important design principles that can help us to realize these goals.

1.6. Resources

 To check out some of our references in greater depth, here are URLs to several of the articles that we’ve referred to in this
 chapter:

	Jesse James Garrett christened Ajax on February 18, 2005, in this article: www.adaptivepath.com/publications/essays/archives/000385.php

 	Alan Cooper’s explanation of sovereign and transient applications can be found here: www.cooper.com/articles/art_your_programs_posture.htm

 	Google Maps can be found here if you live in the United States: http://maps.google.com
 and here if you live in the United Kingdom: http://maps.google.co.uk
 and here if you live on the moon: http://moon.google.com

The images of the bicycle were taken from the Pedaling History website: www.pedalinghistory.com

Chapter 2. First steps with Ajax

 This chapter covers

	Introducing the technologies behind Ajax

 	Using Cascading Style Sheets to define look and feel

 	Using the Document Object Model to define the user interface structure

 	Using XMLHttpRequest to asynchronously contact the server

 	Putting the pieces together

In chapter 1 we focused on users and how Ajax can assist them in their daily activities. Most of us are developers, and so, having convinced
 ourselves that Ajax is a Good Thing, we need to know how to work with it. The good news is that, as with many brand-new, shiny
 technologies, most of this process will be reasonably familiar already, particularly if you’ve worked with the Internet.

 In this chapter, we’ll explain the Ajax technology. We’ll discuss the four technological cornerstones of Ajax and how they
 relate to one another, using code examples to demonstrate how each technology works and how everything fits together.

 You might like to think of this chapter as the “hello world” section of the book, in which we introduce the core technologies
 using some simple examples. We’re more interested here in just getting things to work; we’ll start to look at the bigger picture
 in chapter 3. If you’re already familiar with some or all of the Ajax technologies, you may want to skim these sections. If you’re new
 to Ajax and to web client programming, these introductions should be sufficient to orient you for the rest of the book.

2.1. The key elements of Ajax

 Ajax isn’t a single technology. Rather, it’s a collection of four technologies that complement one another. Table 2.1 summarizes these technologies and the role that each has to play.

 Table 2.1. The key elements of Ajax

	JavaScript
 	JavaScript is a general-purpose scripting language designed to be embedded inside applications. The JavaScript interpreter
 in a web browser allows programmatic interaction with many of the browser’s inbuilt capabilities. Ajax applications are written
 in JavaScript.

	Cascading Style Sheets (CSS)
 	CSS offers a way of defining reusable visual styles for web page elements. It offers a simple and powerful way of defining
 and applying visual styling consistently. In an Ajax application, the styling of a user interface may be modified interactively
 through CSS.

	Document Object Model (DOM)
 	The DOM presents the structure of web pages as a set of programmable objects that can be manipulated with JavaScript. Scripting
 the DOM allows an Ajax application to modify the user interface on the fly, effectively redrawing parts of the page.

	XMLHttpRequest object
 	The (misnamed) XMLHttpRequest object allows web programmers to retrieve data from the web server as a background activity.
 The data format is typically XML, but it works well with any text-based data. While XMLHttpRequest is the most flexible general-purpose
 tool for this job, there are other ways of retrieving data from the server, too, and we’ll cover them all in this chapter.

We saw in chapter 1 how an Ajax application delivers a complex, functioning application up front to users, with which they then interact. JavaScript
 is the glue that is used to hold this application together, defining the user workflow and business logic of the application.
 The user interface is manipulated and refreshed by using JavaScript to manipulate the Document Object Model (DOM), continually
 redrawing and reorganizing the data presented to the users and processing their mouse- and keyboard-based interactions. Cascading
 Style Sheets (CSS) provide a consistent look and feel to the application and a powerful shorthand for the programmatic DOM manipulation. The
 XMLHttpRequest object (or a range of similar mechanisms) is used to talk to the server asynchronously, committing user requests
 and fetching up-to-date data while the user works. Figure 2.1 shows how the technologies fit together in Ajax.

 Figure 2.1. The four main components of Ajax: JavaScript defines business rules and program flow. The Document Object Model and Cascading
 Style Sheets allow the application to reorganize its appearance in response to data fetched in the background from the server
 by the XMLHttpRequest object or its close cousins.

 [image:]

 Three of the four technologies—CSS, DOM, and JavaScript—have been collectively referred to as Dynamic HTML, or DHTML for short.
 DHTML was the Next Big Thing around 1997, but not surprisingly in this industry, it never quite lived up to its initial promise.
 DHTML offered the ability to create funky, interactive interfaces for web pages, yet it never overcame the issue of the full-page
 refresh. Without going back to talk to the server, there was only so much that we could do. Ajax makes considerable use of
 DHTML, but by adding the asynchronous request, it can extend the longevity of a web page considerably. By going back to the
 server while the interface is doing its stuff, without interruption, Ajax makes a great difference to the end result.

 Rather conveniently, all of these technologies are already preinstalled in most modern web browsers, including Microsoft’s
 Internet Explorer; the Mozilla/Gecko family of browsers, including Firefox, Mozilla Suite, Netscape Navigator, and Camino;
 the Opera browser; Apple’s Safari; and its close cousin Konqueror, from the UNIX KDE desktop. Inconveniently, the implementations
 of these technologies are frustratingly different in some of the fine details and will vary from version to version, but this
 situation has been improving over the last five years, and we have ways of coping cleanly with cross-browser incompatibilities.

 Every modern operating system comes with a modern browser preinstalled. So the vast majority of desktop and laptop computers
 on the planet are already primed to run Ajax applications, a situation that most Java or .NET developers can only dream about.
 (The browsers present in PDAs and Smartphones generally offer a greatly cut-down feature list and won’t support the full range
 of Ajax technologies, but differences in screen size and input methods would probably be an issue even if they did. For now,
 Ajax is principally a technology for desktop and laptop machines.)

 We’ll begin by reviewing these technologies in isolation and then look at how they interoperate. If you’re a seasoned web
 developer, you’ll probably know a lot of this already, in which case you might like to skip ahead to chapter 3, where we begin to look at managing the technologies by using design patterns.

