

 [image: manning]

 "Looks Good to Me"

 Constructive code reviews

 Adrienne Braganza

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Rebecca Johnson
 Technical editor: Miroslav Popovic
 Review editor: Dunja Nikitović
 Production editor: Keri Hales
 Copy editor: Alisa Larson
 Proofreader: Jason Everett
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633438125

 Printed in the United States of America

 dedication

 This is for you . . . you . . . my Number One. Thank you, Mario.

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Code review foundations

 1 The significance of code reviews

 1.1 Who this book is for

 1.2 How this book is structured

 1.3 You should want code reviews

 1.3.1 Better applications

 1.3.2 Elevated team understanding

 1.4 Convincing your team

 1.5 Making code reviews better

 2 Dissecting the code review

 2.1 Code review systems

 2.1.1 Human-led

 2.1.2 Tool-facilitated

 2.1.3 Hybrid

 2.2 How does a code review work?

 2.2.1 The modern code review workflow

 2.2.2 Our code review (pull request workflow)

 2.3 Elements of a great PR

 2.3.1 Title: The “what”

 2.3.2 Description (the “why”)

 2.3.3 Labels

 2.3.4 Review states

 2.4 Code review participants and expectations

 2.4.1 The reviewer

 2.4.2 The author

 2.4.3 The team

 2.4.4 Those in charge

 2.4.5 The organization

 3 Building your team’s first code review process

 3.1 Establish your goals

 3.1.1 Finding bugs

 3.1.2 Codebase stability and maintainability

 3.1.3 Knowledge transfer and knowledge sharing

 3.1.4 Mentoring

 3.1.5 Recordkeeping/chronicling

 3.1.6 Choosing your code review goals

 3.2 Choose your tools

 3.2.1 Assessing code review functions

 3.2.2 Choosing a tool

 3.3 Set guidelines

 3.3.1 What is our workflow?

 3.3.2 What is your review focus?

 3.3.3 What can block a PR from being approved?

 3.3.4 What’s our approval policy?

 3.4 Refining the process

 3.4.1 Refinement scenario walkthroughs

 Part 2 Elevated code review essentials

 4 The Team Working Agreement

 4.1 What’s a Team Working Agreement?

 4.2 Setting team expectations with a Team Working Agreement

 4.2.1 Scenario 1: The swift and not-so-swift reviews

 4.2.2 Scenario 2: Mismatched meanings

 4.2.3 Scenario 3: To approve or not to approve?

 4.3 Establishing a TWA with your team

 4.3.1 Do we really need a TWA?

 4.4 What to consider including in your TWA

 4.4.1 More implicit code review expectations

 4.4.2 Reasonable response times

 4.4.3 Reasonable PR sizes

 4.4.4 Issue identification

 4.4.5 Self-approving PRs

 4.4.6 Nitpicks

 4.4.7 Positive review environment

 4.4.8 What happens when a policy is violated?

 4.5 This TWA is the team’s document now

 4.5.1 Need to make a change?

 4.5.2 Final thoughts

 5 The advantages of automation

 5.1 Automation as an asset

 5.2 Automation prerequisites

 5.2.1 Team style guide

 5.2.2 Capable tools

 5.3 Automations before the review

 5.3.1 Formatting

 5.3.2 Linting

 5.3.3 Static analyzers

 5.3.4 Automated testing

 5.4 Automations during the review

 5.4.1 PR templates

 5.4.2 PR validators

 5.4.3 Reviewer assignments

 5.4.4 PR gate checks

 5.4.5 Reminders and escalations

 6 Composing effective code review comments

 6.1 What makes a comment effective?

 6.1.1 Objectivity

 6.1.2 Specificity

 6.1.3 Focused outcome

 6.1.4 Effective code review comment examples

 6.2 Tone of voice

 6.3 Code compliments

 Part 3 Dealing with dilemmas

 7 How code reviews can suck

 7.1 Code review pain points

 7.1.1 The lazy code review

 7.1.2 The mean code review

 7.1.3 The shape-shifting code review

 7.1.4 The stringent code review

 7.2 So, what do we do?

 8 Decreasing code review delays

 8.1 “We only have a single senior developer to review our PRs”

 8.2 “I don’t understand the PR”

 8.3 “There are too many files to review”

 8.4 “Feature is too large to review”

 8.5 “There’s too much discussion back and forth”

 8.6 “Code needs to be refactored (sometimes over and over)”

 9 Eliminating process loopholes

 9.1 How do loopholes happen?

 9.2 Loopholes (and how to fix them)

 9.2.1 An undefined code review process

 9.2.2 Lack of time for code reviews

 9.2.3 Tool (mis)configurations

 9.2.4 Lack of feedback culture

 9.2.5 Approval-driven metrics

 9.2.6 Taking advantage of emergencies

 10 The Emergency Playbook

 10.1 What is an Emergency Playbook?

 10.2 What goes in an Emergency Playbook?

 10.2.1 Decision trees

 10.2.2 Authorization process

 10.2.3 Bypassing mechanisms

 10.2.4 Next steps

 10.3 When do we use the Emergency Playbook?

 Part 4 Pairing code reviews with other practices

 11 Code reviews and pair programming

 11.1 Do we do code reviews or pair programming?

 11.1.1 Complementing code reviews with pair programming

 11.1.2 Pair programming can’t replace code reviews

 11.2 Integrating pair programming

 11.2.1 Convincing your team to try pair programming

 11.2.2 Pairing styles

 11.2.3 Considerations for effective pair programming

 12 Code reviews and mob programming

 12.1 Do we do code reviews or mob programming?

 12.1.1 Mob programming strengths

 12.1.2 Complementing code reviews with mob programming

 12.1.3 Mob programming can’t replace code reviews

 12.2 Integrating mob programming with code reviews

 12.2.1 Complementary approaches

 12.2.2 Mob programming challenges

 13 Code reviews and AI

 13.1 Benefits of AI in code reviews

 13.1.1 Expedited reviews

 13.1.2 Code quality improvement

 13.1.3 Review consistency

 13.1.4 Review scalability for large teams and codebases

 13.2 Limitations of AI in code reviews

 13.2.1 Difficulty understanding context and domain knowledge

 13.2.2 Capabilities are highly dependent on training data

 13.2.3 Over-reliance on AI can hinder human reviewer expertise

 13.3 What can an AI-powered code review do?

 13.4 Integrating AI into your code reviews

 13.5 The future of code reviews: Human-AI collaboration

 appendix A Team Working Agreement starter template

 appendix B Emergency Playbook starter template

 B.1 Name your emergency procedure:

 B.2 Decision trees

 B.3 Authorization process

 B.4 Bypassing mechanism (and associated tasks)

 B.5 Next Steps

 B.5.1 Documentation

 appendix C PR templates

 appendix D List of resources

 D.1 List of resources by chapter

 D.2 List of linters by language

 D.3 List of static analysis tools by language

 index

 foreword

 I’ve been coding for money for over 32 years this year, and coding for free for nearly 40! I’ve taught coding at two colleges and worked side by side with developers who were far, far better coders than I, at companies all over the world, like Microsoft, Nike, and Intel, among others. Early in my career, I had my code so completely eviscerated in group code reviews that it had me sobbing in my car in the parking lot.

 It wasn’t until I read Adrienne’s book, Looks Good to Me: Constructive Code Reviews, that I realized that no one ever formally teaches us how to review code, or how to accept the review. It’s somehow just assumed that we’ll put a bunch of passionate coders in a room, have them warmly accept “this code sucks” as feedback, and have each happily head back to their desk to make needed changes with an open heart.

 You may think programming is about raw competence, you against the machine, putting lightning in a bottle in a caffeine-fueled 2 a.m. coding session. It is—when you’re a one-person shop coding for yourself. But engineers nearly always work as part of a team, and even more often, we work on very large systems that can’t be held in a single human’s mind. Programming is a team sport, and humans are a messy bunch to assemble into teams.

 Adrienne knows this and has assembled a practical and human-first guide to constructive code reviews. It’s filled with real-world anecdotes from her storied career, and it also looks at the code review process within the larger context of the software development life cycle. What if your team is deep into continuous integration as a culture? What if you work in pairs? What about the “vacation factor?” Should code reviews come in pairs or in mobs? Should you use extensive tooling or just eyeballs and intuition? I appreciate that each of these questions and so many more are delved into in great depth with clear examples.

 Reviewing code is as important as writing code, and you’ll want to put together a process that works for your team culture. With this book, you’ll work to set a Team Working Agreement, set shared expectations, and describe a comfortable environment where everyone can bring their best selves and their best code to the table. You’ll then add in automation, PR prechecks, test coverage, and more.

 Whether you’re just starting out or you’ve been in the game for years, this book will set you and your team up for an improved code review culture. Thank you, Adrienne, writing a book like this is a massive undertaking. Looks good to me!

 —Scott Hanselman, VP of Developer Community, Microsoft

 preface

 Ah, code reviews! We need them, but we dread them. We do them, but not well. And despite the tools we have at our disposal, we still manage to mess things up.

 How do we deal with gigantic PRs? How do we make code reviews shorter? Why can’t we write effective code review comments? Is SSDaaRB (Single Senior Developer as a Reviewer Bottleneck) something we just have to accept? Are we doomed to debate with our colleagues over technical implementations? Will code reviews always be like this?

 These questions (and plenty more) are the matters that I gravitated toward in my now 12-year career. I’ve worked on teams that had no code review process at all. I’ve worked on teams that had a process, but it was barely enforced. I’ve worked on teams that had a wonderful process. And I’ve worked on teams where the process made me want to pull my hair out because it was so tedious. As I gained knowledge in those roles, both in technologies and team processes, I couldn’t help but return to those questions. Looking back, I realized a big part of whether I enjoyed working with certain teams was whether our code review process was amicable and effective. Yes, you write code when you become a professional software developer, but you spend way more time reading and making sense of it. You also spend a lot of time reading code you didn’t write! This realization made me look at code reviews in a different light.

 More recently, I’ve been earning pretty pennies as a developer advocate, focused on teaching developers how to do “developer things” well. I accidentally fell into this role, but I’m glad I did; my software development background (and apparent skills in public speaking and written communication) really helps in creating technical educational content that shines. A big part of that is because I like to focus on what I believe are essentials—things that we tend to forget or assume that everyone already knows in the software development industry—and teach them in an approachable way. When Manning asked me what topic I would want to write about, given the chance to choose anything, the choice was absolutely clear: code reviews.

 Are there other resources on code reviews? Absolutely. Do other developers have insights that may relate better to you? Guaranteed. But one fact remained: there is no “official” or single, comprehensive resource on code reviews, not in the way I imagined. I wanted to answer the questions I previously mentioned. I wanted to focus on the code review process and the team dynamics that surround it rather than list out code smells to watch out for (that would be a huge book if I accommodated everyone). I wanted to share all the insights, experience, strategies, and tactics I’ve learned and collected throughout my career to build a better code review. And I wanted to do it in a friendly, approachable way. I wanted to be THE book on code reviews. So that’s what I did.

 Now that you’re reading this labor of love, I’m excited to guide you through the human side of code reviews. I want you to do better than LGTM [image: figure]. I want your code reviews to be great!

 Thanks for caring about code reviews. Enjoy the book!

 acknowledgments

 Writing a book is no small feat. And it’s certainly not just me that does everything. So it’s only appropriate that I give my thanks to everyone who has been a part of creating this wonderful book, both directly and indirectly.

 I want to thank my first (my last, my everything), my husband, Mario. For the countless conversations we’ve had about code reviews, the late-night milk teas you’ve brought me, the patience you’ve shown while I disappeared into my “writing mode,” and the undying support you’ve given me throughout this entire process, thank you. Mahal na mahal kita ♥.

 To Rebecca Johnson, my editor at Manning: there were many *cough* rearranged deadlines, major changes to the book’s content, and questions I had on how to navigate the book-writing process, and you gracefully guided and supported me through all of it. Thank you for pushing me to be a better writer and for being an indispensable editor on this book.

 To Miroslav Popovic, software architect and Software Engineering Manager at Qinshift, my technical editor: your feedback was instrumental in keeping this book as approachable for a myriad of developers as possible. Your own insights and perspectives not only enhanced this book but also kept it authentic. Thank you for playing a pivotal role in the creation of this book!

 David Alexander, Jonah Andersson, Devlin Duldulao, Denis Kranjčec, Garrett McCullough, Glenn Reyes, and Marilag Svennevig: thank you for the marvelous contributions to the book. Your stories, lessons, and real-life ways of working benefited the book greatly.

 Thanks to all my reviewers: Asif Iqbal, Ninoslav Čerkez, Charles Chan, Dave Corun, David Krief, Deborah Mesquita, Edward Lee, Emmanouil Chardalas, Frédéric Flayol, Gowtham Sadasivam, Hazem Farahat, Jakub Jabłon´ski, Jeff Patterson, Jeremy Bryan, John Kasiewicz, John Pantoja, Jon Moore, Lin Zhang, Louis Aloia, Louis Savart, Marcus Geselle, Marlin Keys, Mehmet Yilmaz, Mustafa Özçetin, Oliver Korten, Regan Russell, Scott Bartram, Sebastian Larsson, Seth MacPherson, Shyam Burkule, Srihari Sridharan, Tim Wooldridge, Xiaoyun Yang, and Ashwani Singh. I’m incredibly grateful for all of your insightful feedback and suggestions. Even though they may have resulted in late nights, tight deadlines, and the use of every spare minute I had to incorporate them, the investment was well worth it. Thank you all for helping me create a truly worthy book.

 Alisa Larson, I guess I’m a bit verbose, huh? Thank you so much for going through the muddled version of my book and making it much more succinct. Your excellent edits, refining rewrites, and clarifying cuts make this book even more human-readable than I could have imagined. Thank you.

 Manfred Steger, although we’ve never met, I owe my book’s character, charm, and comedic breaks to you. I feel incredibly lucky to have found your set of adorable Pixelchen vectors and even more thankful that you’ve generously made them free to use. Thanks to you, the readers of the book don’t have to endure the limits of my artistic ability.

 To Brian Sawyer, my acquisitions editor at Manning: thank you for having that first call, taking a chance on an evergreen topic like code reviews, and eventually agreeing to the title changes of this book!

 Erik Pillar also deserves my thanks: without you, I would not have started a conversation with Brian, and this book may not exist at all! Not only that, but your continued efforts in finding podcasts, book clubs, and other opportunities to share my book have been tremendous. Thank you!

 Adriana Sabo and Dunja Nikitović: thank you for facilitating the major review rounds, the results of which have been invaluable for the improvement of my book. As well, thanks to the rest of the production team behind the scenes who helped shepherd this book into its final format.

 Finally, thank you to my family. I’ve always wanted to make you proud, so I hope this book does the job. [image: figure] Thanks for always rooting for me. You know who you are. Ok, in case you don’t—Angie Braganza, Joanne Braganza (Hi, Mom [image: figure]), Joel Braganza, JP Braganza, Gerry Braganza, Lucie Lapid, Jill Lapid, Fely Quitevis-Bateman, and Jonathan Abarabar. Maraming salamat! I love you all. [image: figure]

 about this book

 Looks Good to Me: Constructive Code Reviews was written to be THE code review book. It intends to be the referenceable, immediately applicable, and discussion-starting book on code reviews your team won’t stop talking about (in a good way). We start with the “what” and “why” of code reviews and then engage in a step-by-step process of building your team’s first code review before teaching you essential skills, like automation, collaboratively creating team agreements, and comment writing, that let you perform code reviews well. We finish with the trickier stuff—dilemmas that can delay your code review or weaken its effectiveness and how to consider code reviews with other practices.

 Who should read this book

 Do you write and review code? Then YOU should. To be a bit more specific, Looks Good to Me would be valuable for developers who want to make their current code review process better, who want to establish a new code review process for their team, or are tired of ineffective reviews and need some inspiration on how to change them. This book is especially relevant for those who have grown resentful of the code review process due to “human bottlenecks” but would like to resolve them to change their feelings on the process! Lastly, technical leads and software development managers who want to support and enable their team to build the best code review process that works for them will also find value in this book.

 How this book is organized: A road map

 This book has four parts that cover 13 chapters. Part 1 will make sure you have a good foundation for code reviews:

 	 Chapter 1 introduces you to the code review, its benefits, and why they are significant in the context of software development. It also describes how you may want to go through this book, “choose your own adventure” style.

 	 Chapter 2 dissects the code review and establishes some core knowledge you should know: what types of review systems there are, what a typical workflow looks like, what the elements of a good pull request are, and who the main characters of a code review are and the responsibilities each one holds.

 	 Chapter 3 breaks down how to build your team’s first code review process step by step. You’ll walk through establishing a code review process collaboratively and ask your team to make some important decisions about the code review they are creating.

 Part 2 gets into the key skills you’ll need to not only perform code reviews but also do them well:

 	 Chapter 4 explores the important Team Working Agreement. Everything about it, from what it is to why your team needs it and how it helps enforce code review policies to how to maintain it are addressed.

 	 Chapter 5 focuses on automation tactics, both during development and during the review.

 	 Chapter 6 teaches us why words matter and how to write considerate yet effective code review comments for almost any scenario.

 Part 3 gets into real dilemmas you might face (and how to handle them) once you’ve been using your code review process for some time:

 	 Chapter 7 outlines some pain points and real developer stories of code reviews gone wrong.

 	 Chapter 8 takes a look at the prevailing problem of lengthy code reviews—specifically, why they may get delayed and how to make reviews much shorter.

 	 Chapter 9 digs into code review process loopholes to watch out for and how to fix them (tech leads and engineering managers, chapter 9 is for you!).

 	 Chapter 10 introduces the Emergency Playbook, a helpful tool that allows your team to deal with situations that don’t fit neatly into your established code review process.

 Part 4 analyzes code reviews within the context of other software development practices:

 	 Chapter 11 explores combining code reviews with pair programming.

 	 Chapter 12 explores combining code reviews with mob programming.

 	 Chapter 13 ends the book discussing code reviews and AI: what’s possible right now and what I think we should be mindful of as we enter the next age of code reviews.

 I highly recommend reading this book cover to cover. As a general rule, I encourage everyone to read chapters 2 through 6 as they are equally valuable to every team, regardless of where you are on your code review journey. The remaining chapters can be read as necessary and when applicable to your team. You can also refer back to chapters as often as you need to, when you change teams, or when you need a refresher on some awesome thing you learned from this book.

 About the code

 This book contains examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/looks-good-to-me. Throughout the book, you’ll find templates and examples that will usually be a Markdown file. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/looks-good-to-me, and from GitHub at https://github.com/adriennetacke/lgtm-extras.

 liveBook discussion forum

 Purchase of Looks Good to Me includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/looks-good-to-me/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest her interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 Adrienne Braganza is a Filipina software engineer, international speaker, LinkedIn Learning instructor, author of Coding for Kids: Python, and now, a Manning author, thanks to this book! (Essentially, she’s an overachiever.) With over a decade of software development and developer advocacy experience, she’s always favored teaching the essential topics, especially how to do them well. But the most important things to know about her? She spends way too much money on coffee and pastries and looks forward to the ungodly amounts of time she can now spend playing Age of Empires II and Manor Lords.

 about the cover illustration

 The figure on the cover of Looks Good to Me, titled “The Lounge Singer,” is taken from a book by Louis Curmer published in 1841. The illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Code review foundations

 Hey there! You’re here either because (a) you want to learn about this thing called code reviews, (b) you’re in desperate need of redoing your existing process, or (c) you know your code reviews are OK but are looking to make them better, or (d) you really like to learn and have good taste in technical books [image: figure]—maybe you’re reason (e) and you just appreciate the awesome book title [image: figure]. Regardless of the reason, the first part of the book will make sure you have a good foundation on code reviews, at least the way we’ll be talking about them in this book!

 Chapter 1 will introduce you to the importance of code reviews, why you should want them, how to convince your team to want them too, and lay out how the rest of this book is structured. Feel free to reference this chapter when you want to skip to certain topics.

 Chapter 2 delves deeper into the basic components of the code review; by the end of this jam-packed chapter (that I encourage you to take in strides), you’ll understand what types of code review systems there are and what the main parts of a code review are, describe what a pull request is and how to create a fantastic one, and know who participates in the code review and what their specific obligations are.

 With the detailed foundation laid, you’ll be ready for chapter 3, which guides your team through a step-by-step process in creating your first code review process. Once you complete chapter 3, your team should have their first working code review process in place! To make the best of it, you’ll need to learn some key code review skills, which await you in part 2—Elevated code review essentials.

1 The significance of code reviews

 This chapter covers

 	Introducing the code review process

 	Who this book is for (and who it’s not for)

 	How this book is structured

 	The benefits of a code review

 	How we can make code reviews better

 Mike, a developer on a small software development team, just finished a new feature on Friday. He built an entirely new invoice parsing system that would render customers’ invoices as PDFs. And he finished it just in time for his vacation in Cancún. Sure, there were some workarounds and hacks in parts of his code, but hey, it worked. Excited, he quickly merged his new feature into the demo environment; his colleagues (Adrienne, Erica, and Justin) agreed to demo the new invoice parser to the CEO while Mike was out.

 On Monday morning, Adrienne stared at her screen, confused. She began testing the parser and found that it was calculating the invoices incorrectly. Debugging was almost impossible as she couldn’t make sense of Mike’s code. She asked both Erica and Justin if they could try their hand at understanding the new parser code. After some time, both defeatedly shook their heads no. As they huddled around Adrienne’s screen trying to understand the mystery code, Mike shared photos of his vacation in the team’s messaging channel—the beaches he lay on, margaritas he drank, and tasty dishes he ate. The team sighed.

 [image: figure]

 Unfortunately, the team was unable to fix the calculation problem by the time of the demo. Mike’s coworkers couldn’t “fake” the demo—the code was so difficult, it was impossible to understand enough to know what to manipulate and how to make it do the right thing—and they couldn’t reschedule the demo as it had already been rescheduled twice. They had to show the new feature with its major flaw to their CEO. As they performed the demo of the new parsing system, the CEO was not happy. This feature was already supposed to be deployed last quarter. To make matters worse, the fees were wrong—by a lot—and it was glaringly obvious in the demo. Adrienne, Erica, and Justin were under intense pressure to “fix this faster than as soon as possible,” a direct quote from the CEO.

 As they debugged, they found the relevant code where fees were indeed calculated incorrectly, but they were unsure why. Adrienne and her colleagues spent the rest of that Monday (and Tuesday and Wednesday) working overtime to understand the code and find the problem. After those stressful few days, they finally found it: an incorrect calculation hidden behind “clever” code and single-letter variable names produced the wrong fee. As a (sour) cherry on top, they confirmed that the new invoice PDF parser system irresponsibly pulled the charge amounts from the generated PDF rather than a more durable source of truth. This was a major change from the conventions of the codebase and a wrong one at that. At this point, it was pretty clear that this new parsing system introduced some headache-inducing bugs.

 The team worked as quickly as they could to get invoices functioning properly again. It was a bit tricky as there were no tests (tsk tsk, Mike), and the code was cryptic. The team felt that even Mike wouldn’t understand his own code once returning from vacation. In the end, Adrienne, Erica, and Justin agreed that they never wanted to go through something like that again.

 As you read this story, you may have thought, “Why didn’t Mike’s colleagues look through his code or give a quick thumbs up before moving forward? Why was there no knowledge sharing between Mike and his team or any explanation of his changes? Were there no automated tools that could have caught some of these bugs?” These are all great questions, and they all lead to what this book is about: code reviews.

 So, what’s a code review? At its core, it’s a process software developers use to inspect each other’s code, making sure it passes a set of agreed-upon standards. The inspection part can happen over your shoulder, through a more formal meeting with a governing board of approvers, or, as is the focus in this book, through a pull request (PR). A PR is a proposal of code changes that can be reviewed, discussed, and commented on before being merged into a larger codebase. Pull requests are common in tools like GitHub, GitLab, Bitbucket, Azure Repos, AWS CodeCommit, Google Cloud Source Repositories, or any number of collaborative code tools backed by private Git repositories.

 NOTE  To learn more about how to get started with Git, see https://mng.bz/w5Z5.

 Code reviews are also the missing piece to our earlier story. Mike’s team could have employed a very simplistic review by preparing Mike’s new parsing system changes in a PR. Then, at least two of the team—ideally, the whole team—could have taken a look to see whether everything looked good. Since things obviously weren’t, Mike’s teammates could have given him feedback: the code was too cryptic, was straying from the codebase’s conventions, and didn’t have accompanying tests for such an important feature. Mike’s code would never have progressed to the demo environment in the state it was in.

 While this book focuses on code reviews, I need to call out its complementary and co-dependent nature to an overall continuous integration (CI) and continuous delivery (CD) strategy. CI refers to the automation of building, testing, and integrating code changes within a shared repository. CD refers to the automation of delivering code changes to an environment for approval. Together, they form a CI/CD pipeline, which is a set of automated workflows a software development team uses to cut down on manual tasks of the software development process. While a fully automated CI/CD pipeline is an alluring goal we should strive for, it’s not foolproof for protecting and maintaining the health of a codebase. Where CI automates and evaluates code quality through static analysis, unit tests, and other “computer-friendly” mechanisms, code reviews allow developers to evaluate code with a nuanced, context-aware, and domain knowledge–aware eye. We need both. Overall, the more safeguards a team can put into place to make sure healthy code is the only code that gets deployed, the better.

 A good code review process plays a vital role in an organization’s overall approach to supply chain security and build environment security. Securing everyone’s participation in and support for code reviews contributes to the overarching goal of building valuable software for your organization.

 What about continuous deployment?

 When you hear or read about CI/CD pipelines, the acronym “CD” likely refers to continuous delivery rather than the equivalently abbreviated continuous deployment. In continuous delivery, the automated workflows in a pipeline are briefly paused or stopped since they require human intervention to approve the final push to production. Alternatively, continuous deployment is fully automated: as long as code changes pass all the required tests implemented in the pipeline, they are deployed to customers immediately. I like to remember the difference in this way: continuous delivery delivers a sign-off (like a delivery driver asking you to sign for a package), and continuous deployment deploys a ready-to-go feature (exactly like the definition of “deploy,” which is to move into a position of readiness).

 Now, some of you might be thinking, “I know how important code reviews are, and we do have a code review process in place.” To that, I say, “Great!” That’s a wonderful start. Let’s continue to pull on that thread: ask yourself and, more importantly, all the members of your team the following questions:

 	 Is our current code review process useful?

 	 Do our code reviews take too long?

 	 Are we placing the reviewing burden on a single person?

 	 Do we still like each other after a difficult code review?

 	 Do we know how to leave a suggestion or constructive criticism?

 	 Do we know how to deal with feedback effectively?

 	 Is our review process fulfilling the purpose we believe they are supposed to fulfill?

 	 Are we aligned on what that purpose is?

 	 Are we taking advantage of any automation?

 	 Do we know what’s expected of each party in our code review process?

 	 Do we all understand the value code reviews bring to our software development process?

 	 Can we show why code reviews matter and link them to the business value they deliver?

 	 Can we confidently say that we love our process?

 In my conversations with developers around the world and my own experiences on a multitude of teams, I’m willing to bet that you’ve answered “No” to at least a few of those questions. I can also tell you that there’s a consistent theme: software developers dread code reviews. Whether that’s because it’s an inconsistent, unsustainable, inefficient, unfair, uselessly manual, or otherwise nonexistent process, or there is a lack of empathy between teammates during the review itself or some other bottleneck of human origin, code reviews are avoidably the bane of many developers’ existence.

 Through this book, I want to change this reality. Whether this is the first time you’ve heard of code reviews or are sick and tired of them, I want you to experience code reviews as they should be—effective, empathetic, and effortless for your team.

 One big caveat as you read this book: this won’t be a “one-size-fits-all” approach for code reviews. Your team’s needs, wants, and limitations will differ (imagine writing a book covering all possible team scenarios)! Rather, this book is a guide to help you set up or improve and then continuously refine and evolve a manageable process. I try to generalize the advice I give to help most teams create a code review process that works within their team and organizational constraints, achieves the goals they wish to accomplish, complements a larger CI/CD pipeline, and is one the team is happy and proud of. Ultimately, this book will make your code reviews better by improving the process, even if that progress is small or incremental.

 If you implement just a few tactics today or share a piece of advice learned from this book with a colleague, I’ll consider that a success for code reviewers everywhere. Let’s get to it.

1.1 Who this book is for

 This book will be valuable to anyone who reads, writes, and reviews code. Through actionable advice, automation tactics, collaborative strategies, and team-enforced techniques, this book will guide developers, tech leads, and engineering managers on building a code review process from scratch or upgrading an existing one that’s subpar.

 	 If you’re just starting out in software development —I want you to understand why code reviews are important and explore how it’s critical to create maintainable, understandable, and valuable applications; to acknowledge that organizations need it (even if they don’t understand it); and to recognize that we can’t just let AI take care of them for us.

 	 If you’re on a software development team and aware of the importance of code reviews but need help creating a process for your own team —I want to guide you through creating a code review process from scratch, from convincing your team and establishing a fair and effective process from the start to choosing what your code review process will do for your team and how.

 	 If you’re a developer who sees your team’s code review process could be improved —I want to share tactics, strategies, and mindsets that you can implement and experiment with, many of which solve common problems that plague many teams’ code reviews today. And if “improving” your process means “redoing” your process ([image: figure]), I’ll advise you on how to define better guidelines and rules you’ll enforce as a team.

 	 If you’re a developer who wants help in navigating difficult reviews —I want to give you structured processes that help you find middle ground with your colleagues and strategies for handling typical code review disagreements.

 	 If you’re a developer who has trouble composing code review feedback —I want to give you reusable comment strategies, from one that helps organize and streamline feedback for both the author and reviewer to one that helps you objectively and effectively ask for a change.

 	 If you’re a senior or lead developer who’s tired of being the only reviewer —I want to solve this “bottleneck” problem and help you fairly and efficiently redistribute the reviewing responsibility in a way that makes sense and contributes to the overall improvement of the team’s skills.

 	 If you’re a tech lead or lead developer who wants to improve your team’s code review demeanor —I want to help you help your team to be more considerate of each other through code review comment patterns (that your team can use to compose effective, yet considerate code review comments) and introduce you to the Team Working Agreement, a document that can help your team understand each other’s expectations around the code review.

 	 If you’re a tech lead or engineering manager who is frustrated with particularly long code review cycles —I want to unravel the reasons why code reviews can take so long, train you to spot potential factors that contribute to long code reviews on your own team, and share what can be done to reduce code review times.

 	 If you’re a tech lead or engineering manager who wants to support and enable a pro-code review culture —I want this book to serve as a helpful guide on the holistic code review process, even if you don’t participate in the review phase itself. I want to help you appreciate the benefits of a code review, anticipate (and deal with) common problems that arise, prevent human bottlenecks, enable your team to build a code review process that addresses their needs, and recognize how you can best support your team’s code reviews.

 No matter who you are, I’ll guide you through the code review process with a human lens to transform a process that’s been known to be forgotten, despised, and used to build up one’s ego into a much more enjoyable, praised, and supported part of the software development workflow. I mean, for such an integral component of software development—not to mention the countless tools we have at our disposal—there should be a better way. This book will help you get there.

 It is worth noting who this book is not for : this book may not make sense for you if you primarily work alone, like a one-person army or solo developer at a startup. The tactics and advice shared here focus on solving problems between people, so those sections may not apply. However, learning what’s in this book can set a wonderful foundation for you once you start working on a larger team!

 Also, while this book presents guidelines on how to review code effectively and generalized criteria to judge code on, this book is not for those who want to learn what to look for while you review your colleague’s code, which will differ greatly between programming languages, application architectures, and your company’s internal standards. So, if you are looking for a guide on how to spot code smells, a reference on programming conventions and best practices, or a book that teaches you how to write good code, this is not the book you’re looking for [image: figure] (waves hand in Jedi-like motion).

 If that’s what you are looking for, I’d highly recommend Steve McConnell’s Code Complete: A Practical Handbook of Software Construction [1] or Christian Clausen’s Five Lines of Code: How and When to Refactor [2]. Both are excellent references on what to look for in code reviews and how to make the code you’re reviewing better.

1.2 How this book is structured

 In Part 1 (chapters 1–3), we start with some basics. You’re currently reading chapter 1, which introduces you to the code review, its benefits, and why they are significant in the context of software development. It also outlines who this book is for and how it’s structured. Chapter 2 dissects the code review and establishes all the basics you should know: what types of review systems there are, what a typical workflow is like, what the elements of a good PR are, and who the main characters of a code review are and the responsibilities each one holds. Chapter 3 breaks down how to build your team’s first code review process step by step. You’ll walk through establishing a code review process collaboratively and ask your team to make some important decisions about the code review they are creating.

 With a foundation laid, Part 2 (chapters 4–6) gets into the good stuff. These chapters delve into specific skills you’ll need to perform code reviews and do them well. Chapter 4 explores the important Team Working Agreement. Everything about it, from what it is to why your team needs it and how it helps enforce code review policies to how it’s maintained will be addressed. Chapter 5 focuses on automation tactics, both during development and during the review. Chapter 6 teaches us why words matter and how to write considerate yet effective code review comments for almost any scenario.

 Part 3 (chapters 7–10) gets into the tricky stuff that can pop up as your team gets used to code reviews. Chapter 7 outlines some pain points and real developer stories of code reviews gone wrong. Chapter 8 takes a look at the prevailing problem of lengthy code reviews—specifically, why they may get delayed and how to make reviews much shorter. Chapter 9 digs into some code review process loopholes—namely, what to watch out for and how to fix them if we spot them in our own code review (tech leads and engineering managers, chapter 9 is for you!). We then end Part 3 with chapter 10, an introduction to the Emergency Playbook. This is a helpful tool that allows your team to deal with situations that don’t fit neatly into your established code review process. You’ll likely find the actionable pieces of advice that you can use today in part 3 of the book.

 By Part 4 (chapters 11–13), you can learn more about code reviews within the context of other software development practices before I leave you with my thoughts on the future of code reviews. Chapter 11 explores combining code reviews and pair programming, while Chapter 12 explores combining code reviews with mob programming. Both chapters answer the questions, “Do we still need code reviews if we do this?” and “How do we do both well?” Finally, chapter 13 discusses code reviews and AI, what’s possible right now (at least during the time of writing), and what to be mindful of as we (inevitably) introduce AI into our code reviews.

 While I highly recommend reading this from cover to cover, there are other ways to make the most of this book:

 	 If you just accepted code reviews into your life but don’t know how to start the process with your team —I’d start with chapter 2, then really dig into chapters 3 and 4. Once you have a good cadence and your team is used to code reviews, you can start making your way through the rest of Part 3 to refine it and tailor the process to your team.

 	 If your code reviews are terrible, no good fiascos —Same as those starting from scratch (you’ll be better off redoing your team’s code review foundation, trust me); start with chapter 2 and take your time with chapters 3 and 4. Since you’ve experienced what a terrible code review process is like, you’ll likely ease into Part 3’s chapters a lot sooner than those starting from scratch, as you’ll know what to improve or do better this time around.

 	 If your team understands the importance of code reviews but can’t agree on anything —Start with chapter 4 and then go through the rest of the book.

 	 If your code reviews are alright but you know they can be way better —You can likely jump straight to chapters 5 and 6 (and beyond) and start experimenting with automation tactics and enhanced code review policies, among other neat things to improve your process. You can also refer back to chapters 2 to 4 as needed.

 	 If your team needs some help with constructive feedback (like how to give and receive it) —Head straight to chapter 6 and then refer back to the rest of the book as necessary.

 	 As a general rule —Chapters 2 to 4 can be equally valuable to most teams, no matter where you are in the code review-building process.

 Lastly, this book is meant to keep on giving. Once you have established a process with your team, feel free to refer back to it as needed. Recommend specific sections to new team members or establish it as required reading for all code review participants. Pick and choose different tactics as you need them or when you are refining your process. This book should be your best code review friend.

1.3 You should want code reviews

 Code reviews should be the norm rather than the exception. They result in better applications, promote clear and readable codebases, and can produce invaluable artifacts that describe how and, more importantly, why your codebase has changed over the years. I’m telling you, you should want code reviews.

1.3.1 Better applications

 Code reviews (paired with a well-rounded CI/CD strategy) keep codebases healthy and secure. When done properly and consistently, code reviews minimize the number of defects that enter production. This has been proven time and time again. IBM’s 500,000-line Orbit project used 11 (!) levels of review, resulting in only 1% of expected errors being found without review [1]. AT&T’s case study showed a 90% decrease in defects once code reviews were introduced to a 200-person organization within the company [1]. A large-scale study of modern code review and security in open source projects conducted by the University of California at Berkeley shows that code review reduces the number of bugs and security bugs in production [3]. Then there’s a case study titled The Impact of Code Review Coverage and Code Review Participation on Software Quality that I think sums it up best: “If a large proportion of the code changes that are integrated during development are either: (1) omitted from the code review process (low review coverage), or (2) have lax code review involvement (low review participation), then defect-prone code will permeate through to the released software product” [4].

 Code reviews also promote better clarity and readability of code as developers review each other’s work. Whether it’s because you know someone else is going to look at your code or just generally try to write human-friendly code, the process seems to encourage us to tidy up and present our code changes in the best light. Clear, readable, human-friendly code generally means it’s also maintainable code, and a maintainable codebase typically lowers the chances of bugs being introduced in the future. As an important, human-only quality check, code reviews make applications better.

 As code quality continuously improves (and stays healthy) and the understanding and maintainability of the code also improve, the number of people and the amount of time and money needed for debugging and fixing the application are reduced later on.

 Having a codebase that a team can confidently work on simplifies (and sometimes makes possible) adherence to compliance requirements, regulatory standards, and internal audits of the codebase. This all boils down to a codebase whose overall maintainability improves over time, largely thanks to code reviews. All of these things promote better code, which usually translates to better applications.

1.3.2 Elevated team understanding

 Often an overlooked benefit, code reviews can boost a team’s overall understanding of their codebase and each other. When prioritized, code reviews can act as both a knowledge-transfer (the deliberate process of moving knowledge from one person or group to another) mechanism and a knowledge-sharing (the exchange of knowledge in a readily accessible environment) mechanism between team members. Thus, code reviews are a useful onboarding mechanism, integrating new team members faster.

 With code reviews, the opportunity to share and transfer knowledge between all involved naturally presents itself. Knowledge transfer and knowledge sharing can lead to more people on your team understanding a larger percentage of your codebase. With more knowledge equally spread across the team, you can reduce the overall team’s dependency on specific team members. No more feeling guilty for taking time off!

 Finally, effective code reviews, combined with automation practices and clear team policies (like proper commit messages, PR descriptions, and a commitment to explaining the “why” of your changes), can be the living record of your codebase’s evolution. How powerful would that be to know exactly when, where, and why a particular change caused a problem or produced a positive change?

 With some really kick-ass perks, it shouldn’t be so difficult to get your team on board. Unfortunately, a few people might not be so excited about code reviews.

1.4 Convincing your team

 Let’s be clear about something: most software development teams are not against a code review process, just the annoyances that surround it. Consequently, it can take some effort to convince your team that they are still worth it, especially if you are starting without a code review process! That’s why the key to convincing your team is first to get on the same page (of this book [image: figure]).

 As Khalid aptly sings, “Can we just talk?”; convincing your team starts with an open conversation with everyone. Every individual should be invited to this conversation, from the developers who write the code to the tech leads who influence the policies and even the engineering managers who play a part in enforcing the process.

 In this conversation, likely more than one, you’ll need to find common ground on a lot of topics:

 	 What are the goals of our code review?

 	 Who needs to know about this change?

 	 How do we decide who reviews PRs?

 	 How long do we give reviewers to approve PRs?

 	 Do we require a minimum of two approvers? Three?

 	 What do we do when we need to deploy an emergency hotfix?

 When first starting, these conversations can be held every week. Alternatively, this topic is a great thing to discuss during engineering offsites, a typical week-long engagement where teams plan their future vision, goals, and projects. As you start to define and refine the common ground for your team, it should be codified into a living, working document your team can reference. An example is the Team Working Agreement, which will be explained in detail in chapter 4.

 By gathering everyone’s opinions, actively encouraging every member to participate in these conversations, and building a process around the team’s collective goals, you’ll have the best chance at convincing your team to give code reviews a try or another shot.

1.5 Making code reviews better

 Once you have a code review process in place (or if you’re reading this book eager to make changes to your existing one), your team will likely want to make updates and improvements to it. To make code reviews better, we need to consider two things.

 First, proper engineering discipline has to be a core goal of the team. For code reviews, that means producing an artifact (i.e., the code being written) that is durable and valuable. When the developers on your team can easily understand the code—and can still understand it a few years from now—durability is achieved. Likewise, code becomes valuable when bug fixes are quicker to apply, and extensions to functionality are easier, or even possible, to implement. When a team has durability and value ingrained, the code they write and the code reviews they complete are likely better.

 Second, we can’t forget the people behind the code. From the practices performed to the conversations held, the foundation of great code reviews is built within an environment that encourages feedback and a cohesive team. What does a cohesive team look like? It’s where each team member is able and willing to share their opinion, wants to contribute to key team conversations, feels safe bringing up concerns, can confidently rely on their colleagues to do their best work, and generally trusts that others will treat them with kindness and respect. There’s no room for egos on a cohesive team; favoritism, bias, nepotism, selfishness, and a lack of humility also don’t have space on a cohesive team.

 For a great code review process to be built, a team has to know what it wants, what it doesn’t want, what systems work best for the team, what is possible with their organizational and team constraints, what its collective goals and standards are, and have a collective sense of ownership and accountability to the codebases they maintain—this only happens when a team works well together. Only then will a repeatable and worthwhile code review be created.

 With all that out of the way, I’m excited to share what I’ve experienced, learned, developed, experimented with, researched, and corroborated over the years on how to make code reviews the best that they can be. And you know what? This book is the culmination of ideas, automation tactics, templates, patterns, and strategies that you can use to create the code review process of your team’s dreams. Ready to get started?

 Summary

 	 A code review is a process software developers use to inspect each other’s code, making sure it passes a set of agreed-upon standards. The inspection part can happen over your shoulder, through a formal meeting, or through a pull request (a proposal of code changes that can be reviewed, discussed, and commented on before being merged into a larger codebase).

 	 Code reviews should be the norm rather than the exception in software development. Why? Code reviews produce better applications (through clear, readable, maintainable code) and elevate a team’s understanding of their codebase and each other (through the knowledge-transfer, knowledge-sharing, and record-keeping mechanisms they provide).

 	 Great code reviews are built on the foundation of a cohesive team, meaning a team where all members feel respected, valued, and treated as an equal part of the team.

 References

 [1] McConnell, S. (2016). Code Complete: A Practical Handbook of Software Construction. Microsoft Press.

 [2] Clausen, C. (2021). Five Lines of Code: How and When to Refactor. Manning Publications.

 [3] Thompson, C., & Wagner, D. (2017). A large-scale study of modern code review and security in open source projects. In Proceedings of the 13th International Conference on Predictive Models and Data Analytics in Software Engineering (pp. 83–92). Association for Computing Machinery.

 [4] McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review coverage and code review participation on software quality. In MSR 2014: Proceedings of the 11th Working Conference on Mining Software Repositories (pp. 192–201). Association for Computing Machinery.

2 Dissecting the code review

 This chapter covers

 	What code review systems exist

 	What’s involved in a typical code review workflow

 	Who participates or influences the code review process (code review participants)

 	What responsibilities belong to each participant (code review expectations)

 In the first chapter, we explored why code reviews are essential and why you and your team should want them. Here, we dive deeper into the process itself: types of code review systems, who’s involved, what a typical workflow looks like (and which one we’ll focus on in this book), and some foundational practices we should know for the workflow we’ll be using. Consider this chapter a breakdown of the basics!

 NOTE  This chapter is packed with lots of good info. Feel free to take it section by section. Take a break if you feel like you need one. Bookmarks are encouraged for this chapter!

2.1 Code review systems

 There are two code review systems a team can consider: human-led or tool-facilitated. Both have pros and cons, but as a recurring theme of this book, the right decision is what works best for your team. As you delve into what each system offers, note what you like and dislike and see what your team thinks about its characteristics.

 Also, consider your team’s size, location, industry, organization, budget, and goals. Human-led systems may be perfect for smaller teams in the same city. This quickly changes once your team becomes hybrid, adds more remote workers, or even has one team member move to a different timezone. Similarly, highly regulated industries like finance or healthcare may require additional documentation and historical records, which point to using a tool-facilitated system. Taking everything into consideration, you may find that neither one nor the other will fulfill your team’s needs—rather, a hybrid of the two will be what’s best!

2.1.1 Human-led

 The human-led code review encompasses any system that primarily uses synchronous meetings, discussions, or face-to-face review processes to evaluate potential code changes. It can be a formal process, where a team member presents their code to their colleagues at a high-stakes meeting, or it can be as informal as a pair programming session with someone reviewing it over your shoulder.

 Choosing a fully human-led code review system can be a great facilitator of both knowledge transfer and sharing and mentoring goals. This can give your team greater awareness of and familiarity with the system they are building—largely because they get to discuss its intricacies with their colleagues more often. Reviews can be much faster, too; requesting an in-person code review is more likely to be done at the time of the request. Uncertainties and questions about the proposed changes can also be answered in a synchronous but shorter timeframe. That’s the ideal case, anyway.

 Despite these advantages, there are a few things to consider. With its synchronous nature, formal documentation and official records of the code review itself become highly dependent on the team to accomplish. As a separate task, these important parts can easily be abandoned. The in-person nature of this system also limits the review to team members who are within reach of each other or go into the same office. While online meetings can still facilitate this kind of system, it becomes harder to coordinate across distributed teams.

2.1.2 Tool-facilitated

 Probably the most well-known type, tool-facilitated code review systems use software to help teams run their code review process. If you’ve ever used GitHub, GitLab, Azure Repos, BitBucket, Sourceforge, Google Cloud Repositories, Git Kraken, AWS CodeCommit, Launchpad, or a whole slew of other tools, then you’ve participated in a tool-facilitated code review system!

 Choosing a fully tool-facilitated code review system works especially well for large or distributed teams. When the tool is part of a larger ecosystem your team already works within, conforming to the code review process is easier. Tool-facilitated code reviews also allow parts of workflows to be automated, which is a big reason they are a popular choice. They provide a clear structure for many parts of the review, including the communication between the author and reviewer and the review itself. Tool-facilitated systems also offer integrations with CI/CD tools, like running static analysis checks, unit tests, and deployments to other test environments, making them a very productive choice.

 On the other hand, tool-facilitated code review systems do have some downsides. One of them is delayed or lengthy review times. This is due to the asynchronous nature of the tool and having the software facilitate the process. Additionally, if the wrong tool is chosen, your team may introduce unnecessary friction into the code review process, either by working around the tool’s shortcomings or adapting to the tool’s quirks rather than having the tool adapt to your team’s process. If your team has to switch between multiple systems to do a code review and their development work, this is another source of frustration for your team’s workflow.

2.1.3 Hybrid

 As you’ve likely identified, a hybrid of both human-led and tool-facilitated systems will probably be the right match for your team. You’re not alone. According to StackOverflow’s 2022 Developer Survey, 85% of respondents say their organizations are at least partially remote [1], about 94% use Git as the version control system [2], and GitHub is the most used version control platform for both professional (~87% of respondents) and personal (~56% of respondents) use [3].

 If any part of your team is in more than one location, the use of a tool will be required. Even if your entire team is located in one location, a large codebase, multiple codebases or projects, team sizes of more than five, or multiple teams touching the same codebase will likely still require a tool to help facilitate and keep track of all the changes! Moreover, teams can supplement the tool with human-led tasks where they feel it falls short. For example, additional mentoring and knowledge transfer/sharing can occur through pair programming sessions prior to the submission of a pull request (PR).

 Before choosing a system, consider an in-depth discussion with all members of your team who will be engaging in the code review process. Review the items in figure 2.1. In this way, your collective choice will have greater buy-in, resulting in higher chances of acceptance and support from the team.

 [image: figure]

Figure 2.1 Comparing human-led, tool-facilitated, and hybrid code review systems.

2.2 How does a code review work?

 Before we dive into the modern code review (on which this book is based), a brief look at the past is warranted. While there is likely much more history on this topic, many thanks should be given to Michael E. Fagan, an IBM researcher first credited with the invention of the “formal” code inspection process in 1976 [4]. This was the first documented and structured process with the sole goal of examining source code for defects. In contrast to the modern code review (which can be asynchronous, completed remotely, and much quicker overall), Fagan’s inspection process was much more formal.

 Consisting of several (and sometimes extended) in-person meetings, Fagan’s inspection involved three to six participants (each with an assigned role) who discussed and reviewed up to 250 lines of source code. There’s a moderator who keeps everyone on task, controls the pace of the review, and acts as an arbiter of disputes [5]. There’s a reviewer tasked with critical analysis, a reader who only looks at the source code for comprehension (meaning no critique), and the author, the original creator of the source code [5]. There’s also an observer role—someone occasionally called in for domain-specific advice or to learn how to do reviews properly [5].

 What’s most characteristic of Fagan’s inspections is that everyone is handed printed materials—the source code itself and other related note and rubric documents—that are used for the duration of the inspection. Throughout the inspection, meticulous details and metrics are recorded, including those about any defects found and about the inspection process itself. Though variations of this type of code review are still done today, they are not as common as they once were. Still, Fagan solidified the formal inspection system as an effective and very successful way to improve software quality; since introducing it in 1974, IBM reduced the number of defects per thousand lines of code by two-thirds! You can read the interesting and detailed breakdown in Fagan’s paper “Design and Code Inspections to Reduce Errors in Program Development” [6].

2.2.1 The modern code review workflow

 Today, the intent and goals of the modern code review process are still the same, but the structure is a bit more informal, ad hoc, and tool-based. Numerous workflows can comprise a code review; we’ll start with the lowest common denominator between the different permutations today.

 note  There are plenty of things that can and should be done before even reaching this workflow, like different forms of automation. This book goes into depth about those things; for now, we first need to lay the groundwork before jumping into those topics. Let’s crawl before walking before finally running, shall we?

 A general code review involves four parts: new or changed code, one or more reviewers (ideally other than the author of the code to be reviewed), a reviewing mechanism, and a signoff condition, as seen in figure 2.2. Let’s see what’s involved in each part of a code review.

 [image: figure]

Figure 2.2 A high-level workflow of the typical, modern code review

 New/changed code

 Writing new code or changing existing code leads to a code review process being initiated. Once the author is finished, the unreviewed segments of code are prepared for someone to review. This can be an email that’s sent to a team with the actual code to be reviewed, a scheduled meeting where the code is presented, your own monitor showcasing your code in an integrated development environment (IDE), or, in the case of the workflow we’ll be using in this book, a pull request (PR), a reviewing mechanism that is common on Git-based version control systems.

 Pull requests vs. merge requests

 PRs are widely understood as the reviewing mechanism of choice. Pulling a request refers to pulling changes from another branch into your own branch/specified target branch. However, GitHub is not the only player in the market! In GitLab, the equivalent feature is called a “merge request” (MR). GitLab chose this name since it is the final action in the process. Both PRs and MRs encapsulate the intent of making changes to your existing code. No matter which one you choose, know that they act as the review mechanism portion in the overall code review.

 There’s also something called the git email workflow (https://mng.bz/XVnl), where your changes are proposed via “patches.” I am not personally familiar with this system (which is why it won’t be discussed in this book), but please feel free to read about it in the link!

 Review requested

 When a review is requested, this signals to the team that a pending code inspection needs to be done. The review itself can happen over someone’s shoulder, through a conversation, via email, or someplace other than a PR, and it can happen before or in conjunction with a formal PR. Since this book focuses on the PR as the reviewing mechanism, we’ll continue describing the remaining parts with that in mind.

 Once a PR is opened, the associated repository’s team members are notified, either by some configured notification settings in the tool or, more likely, in a manual manner—say, a quick message from the author asking someone to review their PR.

 During the review/addressing feedback

 While the pull request is open, the bulk of the code review happens. First, it’s expected that at least one reviewer (likely obvious but still needs to be said: someone other than the original author) go over the code, look for potential problems, provide feedback, and ultimately ensure that the code being reviewed can safely be integrated into the main codebase without any problems.

 This unreviewed code can also be discussed in more detail. If defects are found, clarification is needed, or other feedback needs to be noted, the reviewer can leave comments. As a common feature of version control tools/systems, comments can be added to the PR by highlighting the applicable code and adding the desired note. It is up to the original author to address these comments and resolve them adequately. Sometimes, the reviewer or another colleague pairs up with the author to help fix any problems. While encouraged, the original author can’t depend on that assistance; ultimately, the author is still responsible for responding to the reviewer’s feedback.

 This feedback–resolution cycle can go back and forth for a while. The PR will remain open until the team’s signoff conditions are met and the reviewer is confident the code is clear, stable, and won’t break the main codebase.

 Signoff

 Finally, after all feedback is incorporated and signoff conditions are met, the reviewer approves the pull request. This signals the team that the PR is safe and ready to be integrated into the main codebase. At this point, the code review process is complete.

 Now, a variety of other tasks may be kicked off after this approval; code can be automatically merged, or other safety checks can be run, usually orchestrated by CI/CD pipelines. These pipelines can consist of automated steps that build, run, test, and deploy code and are just as integral to the software development process as code reviews. We can (and should) engage in many of these tasks before and after the code review—something highly recommended and, again, discussed more throughout this book.

 And that’s it! Remember, this is the lowest common denominator of what a code review process is. As you go through this book, you’ll decide with your team how to change and evolve these steps (if you are starting from scratch) or curate which tactics and strategies to apply (if you are improving or refining your existing code review process).

2.2.2 Our code review (pull request workflow)

 This book will be based on a pull request workflow as the code review process. It’s pretty much the modern code review workflow we just discussed with the PR as a core part of the process, as seen in figure 2.3.

 [image: figure]

Figure 2.3 A pull request-based code review workflow

 We’ll initiate the code review process when a PR is opened, use open PRs to signal to our team that reviews are pending, deal with feedback and discussion through comments, and complete the code review process when a reviewer (or two) approves the PR. The rest of this book will consider this workflow when we talk about a code review.

 Now that we’re familiar with the workflow we’ll be working with, we need to make sure we understand the basics and best practices of the pull request. For anyone who’s writing code to be reviewed, this next section is essentially “Awesome Pull Requests 101.”

2.3 Elements of a great PR

 First things first (sings to self: [image: figure] I’m the realest), putting your code up for review is more than just opening a PR and calling it a day. A lot depends on you, the author of the code, to make sure the review goes well. Basically, you need to make sure the PR you submit is properly prepared. In this section, we’re going to see what that means.

 Note  I use the term pull request (PR) also to mean merge request. Pull request is a GitHub term, while merge request is a GitLab term. Both are mechanisms to propose changes to a main repository!

2.3.1 Title: The “what”

 It all starts with the title. So much can be said with this key element if you let it. And you definitely should. A title needs to be clear, concise, and succinct. It should immediately explain the “what” of the PR—think “elevator pitch” for your code changes. It should make use of categorizations (we’ll get to that in a moment), distill the essence of the code changes into a palatable line or two, and ultimately get the reviewer into the correct mindset for their review.

 Good titles give you a hint about the PR, with the description filling in the rest of the details. Excellent titles are to the point and self-explanatory without the rest of the PR. These additional details, like the description or tags, ideally add further context; they explain the “why” of the PR. But you want to keep these extra flourishes optional; a reviewer shouldn’t need the extra details to understand what the PR is about. In short, the reviewer should be able to understand what they’re reviewing based on the title alone. Title-driven review, anyone?

 To truly visualize how meaningful titles can be, let’s break down some examples. I’m sure that by the end of this discussion, you’ll identify which titles would make your life easier as a reviewer (and which ones won’t).

 [image: figure]

 Let’s start with the most frustrating of titles: bug fix for invoice issue. On first reading this title, you might think, “OK?” At least we know it’s a bug fix. Hopefully [image: figure]. And it has something to do with an invoice issue. As a reviewer reading this title, you may start going down a rabbit hole. Is this the recurring invoice problem or a new one? If it’s a new one, what kind of problem is it? Is it urgent (money is being lost) or less so (typo on a label within the invoice)? Better yet, what exactly is the problem? Do we already have a ticket for this, or is this an emergency fix? I think you get the idea.

 A vague title (such as this first example) often leads to more questions for the reviewer. More questions mean more cognitive overhead to manage. And more cognitive overhead means not setting up the reviewer for success, but rather, a path toward confusion. To address what may have likely popped into your head: Yes, the author could have placed the rest of the details and answers to those questions in the description of the PR, but that doesn’t tackle the inherent problem—that the reviewer cannot easily and quickly understand what this PR is about. They should know after reading the title, not after going through the PR in its entirety.

 [image: figure]

 The next title, fix issue #1462, may seem slightly better than the first title, but not really. You might be thinking, “Well, it links to the issue it’s solving, so the explanation is there.” But it’s not—at least not in this particular PR. Unless you have personally filed issue #1462, have previously glanced at issue #1462 and remember what it is, or happen to have it open in another tab at that very moment, reading the title alone conveys nothing about what the problem is.

 So again, you as a reviewer are unsure about what to expect. You know it’s a fix of some sort, but for what, you don’t know yet. You’re given the additional task of navigating to issue #1462 to see what it is and hope that the title there is a bit more descriptive. Once over there, you’re more likely to get distracted by the contents of the issue. After scrolling through a few discussion points, you think to yourself, “What was I doing here? Oh right! I wanted to know what issue #1462 was.” Catching yourself, you close that tab and return to the PR. Only now are you (possibly) aware of what this PR is about.

 [image: figure]

 fix incorrect invoice calculation (issue #1462) offers another small improvement, but it is still not an excellent title. Here, we finally get a peek at the “what” of the PR: a calculation is not being done correctly. We even have a linked issue adding support. Yet, we still have outstanding questions (as we did with the first title), and we are still required to do our own research (as we did with the second title).

 [image: figure]

 The next title, fix: invoice calculates incorrectly because of decimal point being in the wrong place, causing subtotal to be wrong, continues with improvements and finally arrives at a descriptive title. It certainly addresses what the PR will fix; we can clearly understand the problem and mentally prepare for the potential fix—all in one sentence! However, you might notice that this title is way too long. We’ll address that in a moment. First, let me slightly divert your attention to something special in this title.

 In this fourth example, we are introduced to a PR title tactic: categorization prefixes. Categorization prefixes are short phrases or abbreviations used in a PR title to classify them quickly. You may have also seen or used something like Conventional Commits (https://www.conventionalcommits.org/; thanks to Miroslav for the callout), which advocates for the same thing. Categorization prefixes are an incredibly efficient way to describe your PR to the reviewer, allow for changelog generation in an automated fashion, and make searching through your PRs a nicer process. It is totally worth enforcing the use of categorization prefixes in your PR titles as a team.

 Categorizing the PR as fix: prepares us to shift our reviewer mindset and focus on bugfix-specific goals: Does the PR actually fix the problem? Are there new tests that account for the bug? Are there edge cases that are not considered outside of targeting the bug?

 We also expect slightly different details in the description for a fix; items like reproduction steps and before- and after-fix comparisons are likely more important to us than a justification document or use case list, which would be more appropriate for a new feature. Adding this kind of detail to a PR is invaluable for the reviewer without much effort on the author’s part, so categorizing PRs in this way is very much recommended. Table 2.1 has a good list of categorizations to consider when using and prepending PR titles.

Table 2.1 PR title categorization prefixes

 	

 Categorization prefix

 	

 Use for

 	

 Examples

 	 feat:
 Alternatives:
 feat(component or project):
 feature:
 feature(component or project):

 	 Features, ideally complete, atomic, and encapsulated portions or behaviors
 When dealing with large projects or multiple components, it can be helpful to specify the affected component or project as part of the prefix.

 	 feat: add common timeouts to registry/digest/head fetches
 feat: add axis option to slide transition
 feat(sidenav): customize width using percentages
 feature: add oci image index support via Accepted headers

 	 fix:

 	 Bug fixes, hot fixes
 Code intended to fix unintended or unwanted behavior.
 When dealing with large projects or multiple components, it can be helpful to specify the affected component or project as part of the prefix.

OEBPS/Images/Emoji-15.png

OEBPS/Images/2-unnumb-3.png

OEBPS/Images/Emoji-23.png

OEBPS/Images/Emoji-1.png

OEBPS/Images/cover.jpg

OEBPS/Images/2-unnumb-4.png

OEBPS/Images/Emoji-7.png

OEBPS/Images/2-unnumb-1.png

OEBPS/Images/2-2.png

OEBPS/Images/Emoji-22.png

OEBPS/Images/2-3.png

OEBPS/Images/1-unnumb.png

OEBPS/Images/Emoji-4.png

OEBPS/Images/Emoji-5.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

OEBPS/Images/2-unnumb-2.png

OEBPS/Images/2-1.png

OEBPS/Images/Emoji-8.png

