

 [image:]

 Learn Generative AI with PyTorch

 Mark Liu

 Foreword by Sarah Sanders

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Rebecca Johnson

 	
 Technical editors:

 	
 Emmanuel Maggiori and Wee Hyong Tok

 	
 Review editor:

 	
 Dunja Nikitović

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Kari Lucke

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Kostas Passadis

 	
 Typesetter:

 	
 Tamara Švelić Sabljić

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633436466

 dedication

 To all AI enthusiasts!

 contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Introduction to generative AI

 1 What is generative AI and why PyTorch?

 1.1 Introducing generative AI and PyTorch

 What is generative AI?

 The Python programming language

 Using PyTorch as our AI framework

 1.2 GANs

 A high-level overview of GANs

 An illustrating example: Generating anime faces

 Why should you care about GANs?

 1.3 Transformers

 The attention mechanism

 The Transformer architecture

 Multimodal Transformers and pretrained LLMs

 1.4 Why build generative models from scratch?

 2 Deep learning with PyTorch

 2.1 Data types in PyTorch

 Creating PyTorch tensors

 Index and slice PyTorch tensors

 PyTorch tensor shapes

 Mathematical operations on PyTorch tensors

 2.2 An end-to-end deep learning project with PyTorch

 Deep learning in PyTorch: A high-level overview

 Preprocessing data

 2.3 Binary classification

 Creating batches

 Building and training a binary classification model

 Testing the binary classification model

 2.4 Multicategory classification

 Validation set and early stopping

 Building and training a multicategory classification model

 3 Generative adversarial networks: Shape and number generation

 3.1 Steps involved in training GANs

 3.2 Preparing training data

 A training dataset that forms an exponential growth curve

 Preparing the training dataset

 3.3 Creating GANs

 The discriminator network

 The generator network

 Loss functions, optimizers, and early stopping

 3.4 Training and using GANs for shape generation

 The training of GANs

 Saving and using the trained generator

 3.5 Generating numbers with patterns

 What are one-hot variables?

 GANs to generate numbers with patterns

 Training the GANs to generate numbers with patterns

 Saving and using the trained model

 Part 2. Image generation

 4 Image generation with generative adversarial networks

 4.1 GANs to generate grayscale images of clothing items

 Training samples and the discriminator

 A generator to create grayscale images

 Training GANs to generate images of clothing items

 4.2 Convolutional layers

 How do convolutional operations work?

 How do stride and padding affect convolutional operations?

 4.3 Transposed convolution and batch normalization

 How do transposed convolutional layers work?

 Batch normalization

 4.4 Color images of anime faces

 Downloading anime faces

 Channels-first color images in PyTorch

 4.5 Deep convolutional GAN

 Building a DCGAN

 Training and using DCGAN

 5 Selecting characteristics in generated images

 5.1 The eyeglasses dataset

 Downloading the eyeglasses dataset

 Visualizing images in the eyeglasses dataset

 5.2 cGAN and Wasserstein distance

 WGAN with gradient penalty

 cGANs

 5.3 Create a cGAN

 A critic in cGAN

 A generator in cGAN

 Weight initialization and the gradient penalty function

 5.4 Training the cGAN

 Adding labels to inputs

 Training the cGAN

 5.5 Selecting characteristics in generated images

 Selecting images with or without eyeglasses

 Vector arithmetic in latent space

 Selecting two characteristics simultaneously

 6 CycleGAN: Converting blond hair to black hair

 6.1 CycleGAN and cycle consistency loss

 What is CycleGAN?

 Cycle consistency loss

 6.2 The celebrity faces dataset

 Downloading the celebrity faces dataset

 Process the black and blond hair image data

 6.3 Building a CycleGAN model

 Creating two discriminators

 Creating two generators

 6.4 Using CycleGAN to translate between black and blond hair

 Training a CycleGAN to translate between black and blond hair

 Round-trip conversions of black hair images and blond hair images

 7 Image generation with variational autoencoders

 7.1 An overview of AEs

 What is an AE?

 Steps in building and training an AE

 7.2 Building and training an AE to generate digits

 Gathering handwritten digits

 Building and training an AE

 Saving and using the trained AE

 7.3 What are VAEs?

 Differences between AEs and VAEs

 The blueprint to train a VAE to generate human face images

 7.4 A VAE to generate human face images

 Building a VAE

 Training the VAE

 Generating images with the trained VAE

 Encoding arithmetic with the trained VAE

 Part 3. Natural language processing and Transformers

 8 Text generation with recurrent neural networks

 8.1 Introduction to RNNs

 Challenges in generating text

 How do RNNs work?

 Steps in training a LSTM model

 8.2 Fundamentals of NLP

 Different tokenization methods

 Word embedding

 8.3 Preparing data to train the LSTM model

 Downloading and cleaning up the text

 Creating batches of training data

 8.4 Building and training the LSTM model

 Building an LSTM model

 Training the LSTM model

 8.5 Generating text with the trained LSTM model

 Generating text by predicting the next token

 Temperature and top-K sampling in text generation

 9 A line-by-line implementation of attention and Transformer

 9.1 Introduction to attention and Transformer

 The attention mechanism

 The Transformer architecture

 Different types of Transformers

 9.2 Building an encoder

 The attention mechanism

 Creating an encoder

 9.3 Building an encoder-decoder Transformer

 Creating a decoder layer

 Creating an encoder-decoder Transformer

 9.4 Putting all the pieces together

 Defining a generator

 Creating a model to translate between two languages

 10 Training a Transformer to translate English to French

 10.1 Subword tokenization

 Tokenizing English and French phrases

 Sequence padding and batch creation

 10.2 Word embedding and positional encoding

 Word embedding

 Positional encoding

 10.3 Training the Transformer for English-to-French translation

 Loss function and the optimizer

 The training loop

 10.4 Translating English to French with the trained model

 11 Building a generative pretrained Transformer from scratch

 11.1 GPT-2 architecture and causal self-attention

 The architecture of GPT-2

 Word embedding and positional encoding in GPT-2

 Causal self-attention in GPT-2

 11.2 Building GPT-2XL from scratch

 BPE tokenization

 The Gaussian error linear unit activation function

 Causal self-attention

 Constructing the GPT-2XL model

 11.3 Loading up pretrained weights and generating text

 Loading up pretrained parameters in GPT-2XL

 Defining a generate() function to produce text

 Text generation with GPT-2XL

 12 Training a Transformer to generate text

 12.1 Building and training a GPT from scratch

 The architecture of a GPT to generate text

 The training process of the GPT model to generate text

 12.2 Tokenizing text of Hemingway novels

 Tokenizing the text

 Creating batches for training

 12.3 Building a GPT to generate text

 Model hyperparameters

 Modeling the causal self-attention mechanism

 Building the GPT model

 12.4 Training the GPT model to generate text

 Training the GPT model

 A function to generate text

 Text generation with different versions of the trained model

 Part 4. Applications and new developments

 13 Music generation with MuseGAN

 13.1 Digital music representation

 Musical notes, octave, and pitch

 An introduction to multitrack music

 Digitally represent music: Piano rolls

 13.2 A blueprint for music generation

 Constructing music with chords, style, melody, and groove

 A blueprint to train a MuseGAN

 13.3 Preparing the training data for MuseGAN

 Downloading the training data

 Converting multidimensional objects to music pieces

 13.4 Building a MuseGAN

 A critic in MuseGAN

 A generator in MuseGAN

 Optimizers and the loss function

 13.5 Training the MuseGAN to generate music

 Training the MuseGAN

 Generating music with the trained MuseGAN

 14 Building and training a music Transformer

 14.1 Introduction to the music Transformer

 Performance-based music representation

 The music Transformer architecture

 Training the music Transformer

 14.2 Tokenizing music pieces

 Downloading training data

 Tokenizing MIDI files

 Preparing the training data

 14.3 Building a GPT to generate music

 Hyperparameters in the music Transformer

 Building a music Transformer

 14.4 Training and using the music Transformer

 Training the music Transformer

 Music generation with the trained Transformer

 15 Diffusion models and text-to-image Transformers

 15.1 Introduction to denoising diffusion models

 The forward diffusion process

 Using the U-Net model to denoise images

 A blueprint to train the denoising U-Net model

 15.2 Preparing the training data

 Flower images as the training data

 Visualizing the forward diffusion process

 15.3 Building a denoising U-Net model

 The attention mechanism in the denoising U-Net model

 The denoising U-Net model

 15.4 Training and using the denoising U-Net model

 Training the denoising U-Net model

 Using the trained model to generate flower images

 15.5 Text-to-image Transformers

 CLIP: A multimodal Transformer

 Text-to-image generation with DALL-E 2

 16 Pretrained large language models and the LangChain library

 16.1 Content generation with the OpenAI API

 Text generation tasks with OpenAI API

 Code generation with OpenAI API

 Image generation with OpenAI DALL-E 2

 Speech generation with OpenAI API

 16.2 Introduction to LangChain

 The need for the LangChain library

 Using the OpenAI API in LangChain

 Zero-shot, one-shot, and few-shot prompting

 16.3 A zero-shot know-it-all agent in LangChain

 Applying for a Wolfram Alpha API Key

 Creating an agent in LangChain

 Adding tools by using OpenAI GPTs

 Adding tools to generate code and images

 16.4 Limitations and ethical concerns of LLMs

 Limitations of LLMs

 Ethical concerns for LLMs

 Appendix A. Installing Python, Jupyter Notebook, and PyTorch

 Appendix B. Minimally qualified readers and deep learning basics

 index

 front matter

 foreword

 I first met Mark at the PNC Innovation Summit at the University of Kentucky, at which we were both presenters. His topic was How Machines Learn. From our very first encounter, I was struck by Mark’s ability to explain complex concepts in an engaging and easy-to-understand manner. His knack for breaking down intricate ideas into digestible, relatable terms was truly impressive, and it’s a gift that he now shares through his latest book, Learn Generative AI with PyTorch.

 At Native AI, where I am cofounder and chief operating officer, we are tasked with generating predictive synthetic data that is both highly accurate and robust. Mark’s exploration of techniques like temperature and top-K sampling to control the precision of AI-generated text is cutting-edge. These methods are essential for tailoring natural language processing outputs to specific use cases, a topic that will continue to grow in importance and business value.

 Learn Generative AI with PyTorch is a comprehensive guide that not only introduces readers to the fascinating world of generative AI but also equips them with practical skills to build and implement their own models. Mark’s use of PyTorch as the framework of choice is a testament to its flexibility and power in developing advanced AI models. From long short-term memory models to variational autoencoders, generative adversarial networks, and Transformers, this book covers an impressive breadth of topics.

 Mark’s book is an invaluable resource for anyone looking to dive into generative AI, whether they are beginners seeking to understand the basics or experienced practitioners aiming to expand their knowledge and skills. His ability to make complex topics accessible and engaging ensures that readers will come away with a solid understanding and the confidence to apply what they’ve learned.

 I am honored to write the foreword for this exceptional book and am excited for the many readers who will benefit from Mark’s expertise. Learn Generative AI with PyTorch is sure to inspire and educate, paving the way for future innovations in the field of generative AI.

 —Sarah Sanders, Cofounder and COO, NativeAI

 preface

 My fascination with generative AI began a few years ago when I first saw models converting horse images into zebra images and Transformers producing lifelike text. This book is born out of my journey in building and understanding these models from scratch. It’s the book I wish I had during my experiments with various generative models. It begins with simple models, helping readers build foundational deep learning skills before advancing to more complex challenges. I chose PyTorch for its dynamic computational graph and clear syntax after experimenting with TensorFlow.

 All generative models in this book are deep neural networks. The book starts with a comprehensive deep learning project in PyTorch, ideal for those new to the field. Each chapter is carefully structured to build upon the previous one. You’ll first learn to create basic content, such as shapes, numbers, and images using generative adversarial networks with straightforward architectures. As you progress, the complexity increases, culminating in building state-of-the-art models such as Transformers to generate text and music and diffusion models to generate high-resolution images.

 On the surface, this book provides an exploration of various generative AI models. At a deeper level, the technological journey reflects how our mind works and the essence of what it means to be human. The prominence of deep neural networks in these generative models is a testament to our quest to understand and replicate the complex processes of human learning. Generative AI models, drawing inspiration from the marvels of evolutionary biology that shaped our brains, learn from the vast amount of data they encounter, much like we humans learn from the stimuli around us.

 The implications of generative AI extend far beyond its practical applications. As we stand at the forefront of this technological revolution, we are compelled to re-evaluate our understanding of consciousness, life, and the very nature of human existence. The parallels between machine learning and human learning are striking. Just as generative AI operates through neural networks inspired by the human brain, our thoughts, emotions, and behaviors are the outputs of the neural networks within our body. Thus, the study of generative AI transcends technological boundaries, becoming an exploration of the human condition and the mechanisms that underlie our consciousness. The study of generative AI leads us to a profound speculation: Are humans, in essence, sophisticated generative AI models?

 In that sense, generative AI is not just a tool: it is a mirror reflecting our deepest existential questions. As we continue to develop and interact with these technologies, we are not only shaping the future of artificial intelligence but also deepening our understanding of human intelligence. Ultimately, the exploration of generative AI is an exploration of ourselves, a journey into the heart of consciousness and the essence of life, challenging us to redefine what it means to be conscious, to be alive, and to be human.

 acknowledgments

 Many people have helped to make this book a reality. Jonathan Gennick, my acquisition editor at Manning, played a crucial role in identifying the topics readers are eager to learn and in structuring the chapters to facilitate learning. A special thanks goes to my developmental editor, Rebecca Johnson, whose relentless pursuit of perfection significantly improved the book. She encouraged me to explain complex concepts in a clear and understandable manner.

 My gratitude also extends to my technical editor, Emmanuel Maggiori, author of Smart Until It’s Dumb (Applied Maths Ltd., 2023). Every time I got carried away in my writing about AI’s wondrous potential, Emmanuel was always quick to point out its limitations. While my favorite quote is, “Any sufficiently advanced technology is indistinguishable from magic” by Arthur C. Clarke, Emmanuel’s perspective on AI can be summed up by the title of his book. This clash of viewpoints, I believe, provides our readers with a more balanced perspective.

 Thank you to all the reviewers: Abhilash Babu, Ankit Virmani, Arpit Singh, Christopher Kottmyer, David Cronkite, Eduardo Rienzi, Erim Erturk, Francis Osei Annin, Georg Piwonka, Holger Voges, Ian Long, Japneet Singh, Karrtik Iyer, Kollin Trujillo, Michael Petrey, Mirerfan Gheibi, Nathan Crocker, Neeraj Gupta, Neha Shetty, Palak Mathur, Peter Henstock, Piergiorgio Faraglia, Rajat Kant Goel, Ramaa Vissa, Ravi Kiran Bamidi, Richard Tobias, Ruud Gijsen, Slavomir Furman, Sumit Pal, Thiago Britto Borges, Tony Holdroyd, Ursin Stauss, Vamsi Srinivas Parasa, Viju Kothuvatiparambil, and Walter Alexander Mata López, your suggestions helped make this a better book.

 I also wish to thank the production team at Manning Publications for helping me bring this project to completion.

 Finally, I want to express my deepest gratitude to my wife, Ivey Zhang, and my son, Andrew Liu, for their unwavering support throughout this journey.

 about this book

 Learn Generative AI with PyTorch aims to guide you through the creation of various content (shapes, numbers, images, text, and music) from scratch. It begins with simple models, helping readers build foundational deep learning skills before advancing to more complex challenges. All generative models in this book are deep neural networks. The book starts with a comprehensive deep learning project in PyTorch, ideal for those new to the field. Each chapter is carefully structured to build upon the previous one. You’ll first create basic content like shapes, numbers, and images using generative adversarial networks with straightforward architectures. As you progress, the complexity increases, culminating in building state-of-the-art models like Transformers and diffusion models.

 Who should read this book?

 Learn Generative AI with PyTorch is designed for machine learning enthusiasts and data scientists in various business fields who possess intermediate Python programming skills. This book aims to teach generative AI techniques for creating novel and innovative content, such as images, text, patterns, numbers, shapes, and audio, to enhance both their employers’ businesses and their own careers. While many free learning materials are available online covering individual topics, this book consolidates everything into a clear, easy-to-follow, and up-to-date format, making it an invaluable resource for anyone aspiring to become an expert in generative AI.

 I assume the readers have a solid grasp of Python. You should be familiar with variable types, Python functions and classes, and the installation of third-party Python libraries and packages. If you need to brush up on these skills, the free online Python tutorial provided by W3Schools is a great resource (https://www.w3schools.com/python/).

 You also should have a basic understanding of machine learning, particularly neural networks and deep learning. If not, a good book for this purpose is Deep Learning with PyTorch by Stevens, Antiga, and Viehmann (2020), also published by Manning Publications. Appendix B of this book provides a review of key concepts such as loss functions, activation functions, and optimizers, which are essential for developing and training deep neural networks. However, this appendix is not meant to be a comprehensive tutorial on these topics.

 How this book is organized: a roadmap

 This book has 16 chapters, organized into four parts. Part I introduces you to generative AI and deep learning with PyTorch.

 	
 Chapter 1 explains what generative AI is and the rationale behind selecting PyTorch over other AI frameworks like TensorFlow for building generative models in this book.

 	
 Chapter 2 uses PyTorch to create deep neural networks to perform binary and multicategory classifications so that you become well-versed in deep learning and classification tasks. The intention is to get you ready for the upcoming chapters, where you use deep neural networks in PyTorch to create various generative models.

 	
 Chapter 3 introduces you to generative adversarial networks (GANs). You learn to use GANs to generate shapes and sequences of numbers with certain patterns.

 Part II covers image generation.

 	
 Chapter 4 discusses how to build and train GANs to generate high-resolution color images. In particular, you’ll learn to use convolutional neural networks to capture spatial features in images. You’ll also learn to use transposed convolutional layers to upsample and generate high-resolution feature maps in images.

 	
 Chapter 5 details two ways to select characteristics in generated images. The first method involves selecting specific vectors in the latent space. The second method uses a conditional GAN, where you build and train a GAN with labeled data.

 	
 Chapter 6 teaches you how to use a CycleGAN to translate images between two domains such as images with black hair and images with blond hair or horse images and zebra images.

 	
 Chapter 7 explains how to generate high-resolution images using another generative model: autoencoders and their variant, variational autoencoders.

 Part III dives into natural language processing and text generation.

 	
 Chapter 8 discusses text generation with a recurrent neural network. Along the way, you learn how tokenization and word embedding work. You’ll also learn to generate text autoregressively with the trained model and how to use temperature and top-K sampling to control the creativity of the generated text.

 	
 Chapter 9 builds a Transformer from scratch, based on the paper “Attention Is All You Need,” to translate between any two languages. You’ll implement line by line the multihead attention mechanism and an encoder-decoder Transformer.

 	
 Chapter 10 trains the Transformer you built in chapter 9 with more than 47,000 pairs of English-to-French translations. You’ll learn to translate common English phrases to French with the trained model.

 	
 Chapter 11 builds GPT-2XL, the largest version of GPT-2, from scratch. After that, you’ll learn how to extract the pretrained weights from Hugging Face and load them to your own GPT-2 model to generate text.

 	
 Chapter 12 constructs a scaled-down version of the GPT model with approximately 5 million parameters so that you can train it on a regular computer. You’ll use three novels by Ernest Hemingway as the training data. The trained model can generate text in Hemingway style.

 Part IV discusses some practical applications of the generative models in the book and the most recent developments in the field of generative AI.

 	
 Chapter 13 builds and trains a MuseGAN to generate music. MuseGAN treats a piece of music as a multidimensional object akin to an image. The generator produces a complete piece of music and submits it to the critic for evaluation. The generator then modifies the music based on the critic’s feedback until it closely resembles real music from the training dataset.

 	
 Chapter 14 takes a different approach to AI music creation. Instead of treating a piece of music as a multidimensional object, you treat it as a sequence of musical events. You’ll then apply techniques from text generation to predict the next element in a sequence.

 	
 Chapter 15 introduces you to diffusion models, which form the foundation of all leading text-to-image Transformers (such as DALL-E 2 or Imagen). You’ll build and train a diffusion model to generate high-resolution flower images.

 	
 Chapter 16 ends the book with a project in which you use the LangChain library to combine pretrained large language models with Wolfram Alpha and Wikipedia APIs to create a zero-shot know-it-all personal assistant.

 Appendix A discusses how to install PyTorch on your computer, with or without a compute unified device architecture-enabled GPU. Appendix B provides information on what background you need in order to proceed with projects in this book and some basic concepts in deep learning such as loss functions, activation functions, and optimizers.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-generative-ai-with-pytorch. All Python programs in this book are available for download from the Manning website at www.manning.com and from the book’s GitHub repository at https://github.com/markhliu/DGAI. The programs are organized by chapters with each chapter in a single Jupyter Notebook file. See appendix A on how to install Python, PyTorch, and Jupyter Notebook on your computer.

 liveBook discussion forum

 Purchase of Learn Generative AI with PyTorch includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-generative-ai-with-pytorch/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

 about the author

 [image:]

 Dr. Mark Liu is a tenured finance professor and the (founding) director of the Master of Science in Finance program at the University of Kentucky. He is the author of two books: Make Python Talk (No Starch Press, 2021) and Machine Learning, Animated (CRC Press, 2023). Mark has more than 20 years of coding experience. He obtained his PhD in finance from Boston College. Mark has published his research in top finance journals such as the Journal of Financial Economics, the Journal of Financial and Quantitative Analysis, and the Journal of Corporate Finance.

 about the cover illustration

 The figure on the cover of Learn Generative AI with PyTorch, captioned “L’Agent de la rue de Jerusalem,” or “The Jerusalem Street Agent,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. Introduction to generative AI

 What is generative AI? How is it different from its nongenerative counterparts, discriminative models? Why do we choose PyTorch as the AI framework in this book?

 In this part, we answer these questions. In addition, all generative AI models in this book are deep neural networks. Therefore, you’ll learn how to use PyTorch to create deep neural networks to perform binary and multicategory classifications so that you become well versed in deep learning and classification tasks. The intention is to get you ready for the upcoming chapters, where you use deep neural networks in PyTorch to create various generative models. You’ll also learn to use PyTorch to build and train generative adversarial networks to generate shapes and sequences of numbers.

 1 What is generative AI and why PyTorch?

 This chapter covers

 	Generative AI vs. nongenerative AI

 	Why PyTorch is ideal for deep learning and generative AI

 	The concept of Generative Adversarial Networks

 	The benefits of the attention mechanism and Transformers

 	Advantages of creating generative AI models from scratch

 Generative AI has significantly affected the global landscape, capturing widespread attention and becoming a focal point since the advent of ChatGPT in November 2022. This technological advancement has revolutionized numerous aspects of everyday life, ushering in a new era in technology and inspiring a host of startups to explore the extensive possibilities offered by various generative models.

 Consider the advancements made by Midjourney, a pioneering company, which now creates high-resolution, realistic images from brief text inputs. Similarly, Freshworks, a software company, has accelerated application development dramatically, reducing the time required from an average of 10 weeks to mere days, a feat achieved through the capabilities of ChatGPT (see the Forbes article “10 Amazing Real-World Examples of How Companies Are Using ChatGPT in 2023,” by Bernard Barr, 2023, https://mng.bz/Bgx0). To add a case in point, elements of this very introduction have been enhanced by generative AI, demonstrating its ability to refine content to be more engaging.

 NOTE What better way to explain generative AI than letting generative AI do itself? I asked ChatGPT to rewrite an early draft of this introduction in a “more engaging manner” before finalizing it.

 The repercussions of this technological advancement extend far beyond these examples. Industries are experiencing significant disruption due to the advanced capabilities of generative AI. This technology now produces essays comparable to those written by humans, composes music reminiscent of classical compositions, and rapidly generates complex legal documents, tasks that typically require considerable human effort and time. Following the release of ChatGPT, CheggMate, an educational platform, witnessed a significant decrease in its stock value. Furthermore, the Writers Guild of America, during a recent strike, reached a consensus to put guardrails around AI’s encroachment on scriptwriting and editing (see the WIRED article “Hollywood Writers Reached an AI Deal That Will Rewrite History,” by Will Bedingfield, 2023, https://mng.bz/1ajj).

 NOTE CheggMate charges college students to have their questions answered by human specialists. Many of these jobs can now be done by ChatGPT or similar tools at a fraction of the costs.

 This raises several questions: What is generative AI, and how does it differ from other AI technologies? Why is it causing such widespread disruption across various sectors? What is the underlying mechanism of generative AI, and why is it important to understand?

 This book offers an in-depth exploration of generative AI, a groundbreaking technology reshaping numerous industries through its efficient and rapid content creation capabilities. Specifically, you’ll learn to use state-of-the-art generative models to create various forms of content: shapes, numbers, images, text, and audio. Further, instead of treating these models as black boxes, you’ll learn to create them from scratch so that you have a deep understanding of the inner workings of generative AI. In the words of physicist Richard Feynman, “What I cannot create, I do not understand.”

 All these models are based on deep neural networks, and you’ll use Python and PyTorch to build, train, and use these models. We chose Python for its user-friendly syntax, cross-platform compatibility, and wide community support. We also chose PyTorch over other frameworks like TensorFlow for its ease of use and adaptability to various model architectures. Python is widely regarded as the primary tool for machine learning (ML), and PyTorch has become increasingly popular in the field of AI. Therefore, using Python and PyTorch allows you to follow the new developments in generative AI. Because PyTorch allows for graphics processing unit (GPU) training acceleration, you’ll train these models in a matter of minutes or hours and witness generative AI in action!

 1.1 Introducing generative AI and PyTorch

 This section explains what generative AI is and how it’s different from its nongenerative counterparts: discriminative models. Generative AI is a category of technologies with the remarkable capacity to produce diverse forms of new content, including text, images, audio, video, source code, and intricate patterns. Generative AI crafts entirely new worlds of novel and innovative content; ChatGPT is a notable example. In contrast, discriminative modeling predominantly concerns itself with the task of recognizing and categorizing pre-existing content.

 1.1.1 What is generative AI?

 Generative AI is a type of artificial intelligence that creates new content, such as text, images, or music, by learning patterns from existing data. It differs from discriminative models, which specialize in discerning disparities among distinct data instances and learning the boundary between classes. Figure 1.1 illustrates the difference between these two modeling methods. For instance, when confronted with an array of images featuring dogs and cats, a discriminative model determines whether each image portrays a dog or a cat by capturing a few key features that distinguish one from the other (e.g., cats have small noses and pointy ears). As the top half of the figure shows, a discriminative model takes data as inputs and produces probabilities of different labels, which we denote by Prob(dog) and Prob(cat). We can then label the inputs based on the highest predicted probabilities.

 [image:]

 Figure 1.1 A comparison of generative models versus discriminative models. A discriminative model (top half of the figure) takes data as inputs and produces probabilities of different labels, which we denote by Prob(dog) and Prob(cat). In contrast, a generative model (bottom half) acquires an in-depth understanding of the defining characteristics of these images to synthesize new images representing dogs and cats.

 In contrast, generative models exhibit a unique ability to generate novel instances of data. In the context of our dog and cat example, a generative model acquires an in-depth understanding of the defining characteristics of these images to synthesize new images representing dogs and cats. As the bottom half of figure 1.1 shows, a generative model takes task descriptions (such as varying values in a latent space that result in different characteristics in the generated image, which we will discuss in detail in chapters 4 to 6) as inputs and produces entirely new images of dogs and cats.

 From a statistical perspective, when presented with data examples with features X, which describe the input and various corresponding labels Y, discriminative models undertake the responsibility of predicting conditional probabilities, specifically the probability prob(Y|X). Conversely, generative models attempt to learn the joint probability distribution of the input features X and the target variable Y, denoted as prob (X, Y). Armed with this knowledge, they sample from the distribution to conjure fresh instances of X.

 There are different types of generative models depending on the specific forms of content you want to create. In this book, we focus primarily on two prominent technologies: Generative Adversarial Networks (GANs) and Transformers (although we’ll also cover variational autoencoders and diffusion models). The word “adversarial” in GANs refers to the fact that the two neural networks compete against each other in a zero-sum game framework: the generative network tries to create data instances indistinguishable from real samples, while the discriminative network tries to identify the generated samples from real ones. The competition between the two networks leads to the improvement of both, eventually enabling the generator to create highly realistic data. Transformers are deep neural networks that can efficiently solve sequence-to-sequence prediction tasks, and we’ll explain them in more detail later in this chapter.

 GANs, celebrated for their ease of implementation and versatility, empower individuals with even rudimentary knowledge of deep learning to construct their generative models from the ground up. These versatile models can give rise to a plethora of creations, from geometric shapes and intricate patterns, as exemplified in chapter 3 of this book, to high-quality color images like human faces, which you’ll learn to generate in chapter 4. Furthermore, GANs exhibit the ability to transform image content, seamlessly morphing a human face image with blond hair into one with black hair, a phenomenon discussed in chapter 6. Notably, they extend their creative prowess to the field of music generation, producing realistic-sounding musical compositions, as demonstrated in chapter 13.

 In contrast to shape, number, or image generation, the art of text generation poses formidable challenges, chiefly due to the sequential nature of textual information, where the order and arrangement of individual characters and words hold significant meaning. To confront this complexity, we turn to Transformers, deep neural networks designed to proficiently address sequence-to-sequence prediction tasks. Unlike their predecessors, such as recurrent neural networks (RNNs) or convolutional neural networks (CNNs), Transformers excel in capturing intricate, long-range dependencies inherent in both input and output sequences. Notably, their capacity for parallel training (a distributed training method in which a model is trained on multiple devices simultaneously) has substantially reduced training times, making it possible for us to train Transformers on vast amounts of data.

 The revolutionary architecture of Transformers underpins the emergence of large language models (LLMs; deep neural networks with a massive number of parameters and trained on large datasets), including ChatGPT, BERT, DALL-E, and T5. This transformative architecture serves as the bedrock of the recent surge in AI advancement, ushered in by the introduction of ChatGPT and other generative pretrained Transformer (GPT) models.

 In the subsequent sections, we dive into the comprehensive inner workings of these two pioneering technologies: their underlying mechanisms and the myriad possibilities they unlock.

 1.1.2 The Python programming language

 I assume you have a working knowledge of Python. To follow the content in the book, you need to know the Python basics such as functions, classes, lists, dictionaries, and so on. If not, there are plenty of free resources online to get you started. Follow the instructions in appendix A to install Python. After that, create a virtual environment for this book and install Jupyter Notebook as the computing environment for projects in this book.

 Python has established itself as the leading programming language globally since the latter part of 2018, as documented by The Economist (see the article “Python Is Becoming the World’s Most Popular Coding Language” by the Data Team at The Economist, 2018, https://mng.bz/2gj0). Python is not only free for everyone to use but also allows other users to create and tweak libraries. Python has a massive community-driven ecosystem, so you can easily find resources and assistance from fellow Python enthusiasts. Plus, Python programmers love to share their code, so instead of reinventing the wheel, you can import premade libraries and share your own with the Python community.

 No matter if you’re on Windows, Mac, or Linux, Python’s got you covered. It’s a cross-platform language, although the process of installing software and libraries might vary a bit depending on your operating system—but don’t worry; I’ll show you how to do it in appendix A. Once everything’s set up, Python code behaves the same across different systems.

 Python is an expressive language that’s suitable for general application development. Its syntax is easy to grasp, making it straightforward for AI enthusiasts to understand and work with. If you run into any problems with the Python libraries mentioned in this book, you can search Python forums or visit sites like Stack Overflow (https://stackoverflow.com/questions/tagged/python) for answers. And if all else fails, don’t hesitate to reach out to me for assistance.

 Lastly, Python offers a large collection of libraries that make creating generative models easy (relative to other languages such as C++ or R). In this journey, we’ll exclusively use PyTorch as our AI framework, and I’ll explain why we pick it over competitors like TensorFlow shortly.

 1.1.3 Using PyTorch as our AI framework

 Now that we have settled on using Python as the programming language for this book, we’ll choose a suitable AI framework for generative modeling. The two most popular AI frameworks in Python are PyTorch and TensorFlow. In this book, we use PyTorch over TensorFlow for its ease of use, and I strongly encourage you to do the same.

 PyTorch is an open-source ML library developed by Meta’s AI Research lab. Built on the Python programming language and the Torch library, PyTorch aims to offer a flexible and intuitive platform for creating and training deep learning models. Torch, the predecessor of PyTorch, was an ML library for building deep neural networks in C with a Lua wrapper, but its development was discontinued. PyTorch was designed to meet the needs of researchers and developers by providing a more user-friendly and adaptable framework for deep learning projects.

 A computational graph is a fundamental concept in deep learning that plays a crucial role in the efficient computation of complex mathematical operations, especially those involving multidimensional arrays or tensors. A computational graph is a directed graph where the nodes represent mathematical operations, and the edges represent data that flow between these operations. One of the key uses of computational graphs is the calculation of partial derivatives when implementing backpropagation and gradient descent algorithms. The graph structure allows for the efficient calculation of gradients required to update the model parameters during training. PyTorch creates and modifies the graph on the fly, which is called a dynamic computational graph. This makes it more adaptable to varying model architectures and simplifies debugging. Further, just like TensorFlow, PyTorch provides accelerated computation through GPU training, which can significantly reduce training time compared to central processing unit (CPU) training.

 PyTorch’s design aligns well with the Python programming language. Its syntax is concise and easy to understand, making it accessible to both newcomers and experienced developers. Researchers and developers alike appreciate PyTorch for its flexibility. It empowers them to experiment with novel ideas quickly, thanks to its dynamic computational graph and simple interface. This flexibility is crucial in the rapidly evolving fields of generative AI. PyTorch also has a rapidly growing community that actively contributes to its development. This results in an extensive ecosystem of libraries, tools, and resources for developers.

 PyTorch excels in transfer learning, a technique where pretrained models designed for a general task are fine-tuned for specific tasks. Researchers and practitioners can easily utilize pretrained models, saving time and computational resources. This feature is especially important in the age of pretrained LLMs and allows us to adopt LLMs for downstream tasks such as classification, text summarization, and text generation.

 PyTorch is compatible with other Python libraries, such as NumPy and Matplotlib. This interoperability allows data scientists and engineers to seamlessly integrate PyTorch into their existing workflows, enhancing productivity. PyTorch is also known for its commitment to community-driven development. It evolves rapidly, with regular updates and enhancements based on real-world usage and user feedback, ensuring that it remains at the cutting edge of AI research and development.

 Appendix A provides detailed instructions on how to install PyTorch on your computer. Follow the instructions to install PyTorch in the virtual environment for this book. In case you don’t have a Compute Unified Device Architecture (CUDA)-enabled GPU installed on your computer, all programs in this book are compatible with CPU training as well. Better yet, I’ll provide the trained models on the book’s GitHub repository https://github.com/markhliu/DGAI so you can see the trained models in action (in case the trained model is too large, I’ll provide them on my personal website https://gattonweb.uky.edu/faculty/lium/). In chapter 2, you’ll dive deep into PyTorch. You’ll first learn the data structure in PyTorch, Tensor, which holds numbers and matrices and provides functions to conduct operations. You’ll then learn to perform an end-to-end deep learning project using PyTorch. Specifically, you’ll create a neural network in PyTorch and use clothing item images and the corresponding labels to train the network. Once done, you use the trained model to classify clothing items into 10 different label types. The project will get you ready to use PyTorch to build and train various generative models in later chapters.

 1.2 GANs

 This section first provides a high-level overview of how GANs work. We then use the generation of anime face images as an example to show you the inner workings of GANs. Finally, we’ll discuss the practical uses of GANs.

 1.2.1 A high-level overview of GANs

 GANs represent a category of generative models initially proposed by Ian Goodfellow and his collaborators in 2014 (“Generative Adversarial Nets,” https://arxiv.org/abs/1406.2661). GANs have become extremely popular in recent years because they are easy to build and train, and they can generate a wide variety of content. As you’ll see from the illustrating example in the next subsection, GANs employ a dual-network architecture comprising a generative model tasked with capturing the underlying data distribution to generate content and a discriminative model that serves to estimate the likelihood that a given sample originates from the authentic training dataset (considered as “real”) rather than being a product of the generative model (considered as “fake”). The primary objective of the model is to produce new data instances that closely resemble those in the training dataset. The nature of the data generated by GANs is contingent upon the composition of the training dataset. For example, if the training data consists of grayscale images of clothing items, the synthesized images will closely resemble such clothing items. Conversely, if the training dataset comprises color images of human faces, the generated images will also resemble human faces.

 Take a look at figure 1.2—the architecture of our GAN and its components. To train the model, both real samples from the training dataset (as shown at the top of figure 1.2) and fake samples created by the generator (left) are presented to the discriminator (middle). The principal aim of the generator is to create data instances that are virtually indistinguishable from the examples found within the training dataset. Conversely, the discriminator strives to distinguish fake samples generated by the generator from real samples. These two networks engage in a continual competitive process similar to a cat-and-mouse game, trying to outperform each other iteratively.

 [image:]

 Figure 1.2 GANs architecture and its components. GANs employ a dual-network architecture comprising a generative model (left) tasked with capturing the underlying data distribution and a discriminative model (center) that serves to estimate the likelihood that a given sample originates from the authentic training dataset (considered as “real”) rather than being a product of the generative model (considered as “fake”).

 The training process of the GAN model involves multiple iterations. In each iteration, the generator takes some form of task description (step 1) and uses it to create fake images (step 2). The fake images, along with real images from the training set, are presented to the discriminator (step 3). The discriminator tries to classify each sample as either real or fake. It then compares the classification with the actual labels, the ground truth (step 4). Both the discriminator and the generator receive feedback (step 5) from the classification and improve their capabilities: while the discriminator adapts its ability to identify fake samples, the generator learns to enhance its capacity to generate convincing samples to fool the discriminator. As training advances, an equilibrium is reached when neither network can further improve. At this point, the generator becomes capable of producing data instances that are practically indistinguishable from real samples.

 To understand exactly how GANs work, let’s look at an illustrating example.

 1.2.2 An illustrating example: Generating anime faces

 Picture this: you’re a passionate anime enthusiast, and you’re on a thrilling quest to create your very own anime faces using a powerful tool known as a deep convolutional GAN (or DCGAN for short; don’t worry, we’ll dive deeper into this in chapter 4).

 If you look at the top middle of figure 1.2, you’ll spot a picture that reads “Real Image.” We’ll use 63,632 colorful images of anime faces as our training dataset. And if you flip to figure 1.3, you’ll see 32 examples from our training set. These special images play a crucial role as they form half of the inputs to our discriminator network.

 [image:]

 Figure 1.3 Examples from the anime faces training dataset

 The left of figure 1.2 is the generator network. To generate different images every time, the generator takes as input a vector Z from the latent space. We could think of this vector as a “task description.” During training, we draw different Z vectors from the latent space, so the network generates different images every time. These fake images are the other half of the inputs to the discriminator network.

 NOTE By altering the values in the vector Z, we generate different outputs. In chapter 5, you’ll learn how to select the vector Z to generate images with certain characteristics (e.g., male or female features).

 But here’s the twist: before we teach our two networks the art of creation and detection, the images produced by the generator are, well, gibberish! They look nothing like the realistic anime faces you see in figure 1.3. In fact, they resemble nothing more than static on a TV screen (you’ll witness this firsthand in chapter 4).

 We train the model for multiple iterations. In each iteration, we present a group of images created by the generator, along with a group of anime face images from our training set to the discriminator. We ask the discriminator to predict whether each image is created by the generator (fake) or from the training set (real).

 You may wonder: How do the discriminator and the generator learn during each iteration of training? Once the predictions are made, the discriminator doesn’t just sit back; it learns from its prediction blunders for each image. With this newfound knowledge, it fine-tunes its parameters, shaping itself to make better predictions in the next round. The generator isn’t idle either. It takes notes from its image generation process and the discriminator’s prediction outcomes. With that knowledge in hand, it adjusts its own network parameters, striving to create increasingly lifelike images in the next iteration. The goal? To reduce the odds of the discriminator sniffing out its fakes.

 As we journey through these iterations, a remarkable transformation takes place. The generator network evolves, producing anime faces that grow more and more realistic, akin to those in our training collection. Meanwhile, the discriminator network hones its skills, becoming a seasoned detective when it comes to spotting fakes. It’s a captivating dance between creation and detection.

 Gradually, a magical moment arrives. An equilibrium, or perfect balance, is achieved. The images created by the generator become so astonishingly real that they are indistinguishable from the genuine anime faces in our training archives. At this point, the discriminator is so confused that it assigns a 50% chance of authenticity to every image, whether it’s from our training set or was crafted by the generator.

 Finally, behold some examples of the artwork of the generator, as shown in figure 1.4: they do look indistinguishable from those in our training set.

 [image:]

 Figure 1.4 Generated anime face images by the trained generator in DCGAN

 1.2.3 Why should you care about GANs?

 GANs are easy to implement and versatile: you’ll learn to generate geometric shapes, intricate patterns, high-resolution images, and realistic-sounding music in this book alone.

 The practical use of GANs doesn’t stop at generating realistic data. GANs can also translate attributes in one image domain to another. As you’ll see in chapter 6, you can train a CycleGAN (a type of generative model in the GAN family) to convert blond hair to black hair in human face images. The same trained model can also convert black hair to blond hair. Figure 1.5 shows four rows of images. The first row is the original images with blond hair. The trained CycleGAN converts them to images with black hair (second row). The last two rows are the original images with black hair and the converted image with blond hair, respectively.

 [image:]

 Figure 1.5 Changing hair color with CycleGAN. If we feed images with blond hair (first row) to a trained CycleGAN model, the model converts blond hair to black hair in these images (second row). The same trained model can also convert black hair (third row) to blond hair (bottom row).

 Think about all the amazing skills you’ll pick up from training GANs—they’re not just cool; they’re super practical too! Let’s say you run an online clothing store with a “Make to Order” strategy (which allows users to customize their purchases before manufacturing). Your website showcases tons of unique designs for customers to pick from, but here’s the catch: you only make the clothes once someone places an order. Creating high-quality images of these clothes can be quite expensive since you have to produce the items and then photograph them.

 GANs to the rescue! You don’t need a massive collection of manufactured clothing items and their images; instead, you can use something like CycleGAN to transform features from one set of images into another, creating a whole new array of styles. This is just one nifty way to use GANs. The possibilities are endless because these models are super versatile and can handle all sorts of data—making them a game-changer for practical applications.

 1.3 Transformers

 Transformers are deep neural networks that excel at sequence-to-sequence prediction problems, such as taking an input sentence and predicting the most likely next words. This section introduces you to the key innovation in Transformers: the self-attention mechanism. We’ll then discuss the Transformer architecture and different types of Transformers. Finally, we’ll discuss some recent developments in Transformers, such as multimodal models (Transformers whose inputs include not only text but also other data types such as audio and images) and pretrained LLMs (models trained on large textual data that can perform various downstream tasks).

 Before the Transformer architecture was invented in 2017 by a group of Google researchers (Vaswani et al., “Attention Is All You Need,” https://arxiv.org/abs/1706.03762), natural language processing (NLP) and other sequence-to-sequence prediction tasks were primarily handled by RNNs. However, RNNs struggle with retaining information about earlier elements in a sequence, which hampers their ability to capture long-term dependencies. Even advanced RNN variants like long short-term memory (LSTM) networks, which can handle longer-range dependencies, fall short when it comes to extremely long-range dependencies.

 More importantly, RNNs (including LSTMs) process inputs sequentially, which means these models process one element at a time, in sequence, instead of looking at the entire sequence simultaneously. The fact that RNNs conduct computation along the symbol positions of the input and output sequences prevents parallel training, which makes training slow. This, in turn, makes it impossible to train the models on huge datasets.

 The key innovation of Transformers is the self-attention mechanism, which excels at capturing long-term dependencies in a sequence. Further, since the inputs are not handled sequentially in the model, Transformers can be trained in parallel, which greatly reduces the training time. More importantly, parallel training makes it possible to train Transformers on large amounts of data, which makes LLMs intelligent and knowledgeable (based on their ability to process and generate human-like text, understand context, and perform a variety of language tasks). This has led to the rise of LLMs such as ChatGPT and the recent AI boom.

 1.3.1 The attention mechanism

 The attention mechanism assigns weights on how an element is related to all elements in a sequence (including the element itself). The higher the weight, the more closely the two elements are related. These weights are learned from large sets of training data in the training process. Therefore, a trained LLM such as ChatGPT can figure out the relationship between any two words in a sentence, hence making sense of the human language.

 You may wonder: How does the attention mechanism assign scores to elements in a sequence to capture the long-term dependencies? The attention weights are calculated by first passing the inputs through three neural network layers to obtain query Q, key K, and value V (which we’ll explain in detail in chapter 9). The method of using query, key, and value to calculate attention comes from retrieval systems. For example, you may go to a public library to search for a book. You can type in, say, “machine learning in finance” in the library’s search engine. In this case, the query Q is “machine learning in finance.” The keys K are the book titles, book descriptions, and so on. The library’s retrieval system will recommend a list of books (values V) based on the similarities between the query and the keys. Naturally, books with the phrases “machine learning” or “finance” or both in titles or descriptions come up on top while books with neither phrase in the title or description will show up at the bottom of the list because these books will be assigned a low matching score.

 In chapters 9 and 10, you’ll learn the details of the attention mechanism—better yet, you’ll implement the attention mechanism from scratch to build and train a Transformer to successfully translate English to French.

 1.3.2 The Transformer architecture

 Transformers were first proposed when designing models for machine language translation (e.g., English to German or English to French). Figure 1.6 is a diagram of the Transformer architecture. The left side is the encoder, and the right side is the decoder. In chapters 9 and 10, you’ll learn to construct a Transformer from scratch to train the model to translate English to French, and we’ll explain figure 1.6 in greater detail then.

 The encoder in the Transformer “learns” the meaning of the input sequence (e.g., the English phrase “How are you?”) and converts it into vectors that represent this meaning before passing the vectors to the decoder. The decoder constructs the output (e.g., the French translation of an English phrase) by predicting one word at a time, based on previous words in the sequence and the output from the encoder. The trained model can translate common English phrases into French.

 There are three types of Transformers: encoder-only Transformers, decoder-only Transformers, and encoder-decoder Transformers. An encoder-only Transformer has no decoder and is capable of converting a sequence into an abstract representation for various downstream tasks such as sentiment analysis, named entity recognition, and text generation. For example, BERT is an encoder-only Transformer. A decoder-only Transformer has only a decoder but no encoder, and it’s well suited for text generation, language modeling, and creative writing. GPT-2 (the predecessor of ChatGPT) and ChatGPT are both decoder-only Transformers. In chapter 11, you’ll learn to create GPT-2 from scratch and then extract the trained model weights from Hugging Face (an AI community that hosts and collaborates on ML models, datasets, and applications). You’ll load the weights to your GPT-2 model and start generating coherent text.

 [image:]

 Figure 1.6 The Transformer architecture. The encoder in the Transformer (left side of the diagram) learns the meaning of the input sequence (e.g., the English phrase “How are you?”) and converts it into an abstract representation that captures its meaning before passing it to the decoder (right side of the diagram). The decoder constructs the output (e.g., the French translation of the English phrase) by predicting one word at a time, based on previous words in the sequence and the abstract representation from the encoder.

 Encoder-decoder Transformers are needed for complicated tasks such as multimodal models that can handle text-to-image generation or speech recognition. Encoder-decoder Transformers combine the strengths of both encoders and decoders. Encoders are efficient in processing and understanding input data, while decoders excel in generating output. This combination allows the model to effectively understand complex inputs (like text or speech) and generate intricate outputs (like images or transcribed text).

 1.3.3 Multimodal Transformers and pretrained LLMs

 Recent developments in generative AI give rise to various multimodal models: Transformers that can use not only text but also other data types, such as audio and images, as inputs. Text-to-image Transformers are one such example. DALL-E 2, Imagen, and Stable Diffusion are all text-to-image models, and they have garnered much media attention due to their ability to generate high-resolution images from textual prompts. Text-to-image Transformers incorporate the principles of diffusion models, which involve a series of transformations to gradually increase the complexity of data. Therefore, we first need to understand diffusion models before we discuss text-to-image Transformers.

 Imagine you want to generate high-resolution flower images by using a diffusion-based model. You’ll first obtain a training set of high-quality flower images. You then ask the model to gradually add noise to the flower images (the so-called diffusion process) until they become completely random noise. You then train the model to progressively remove noise from these noisy images to generate new data samples. The diffusion process is illustrated in figure 1.7. The left column contains four original flower images. As we move to the right, some noise is added to the images in each step, until at the right column, the four images are pure random noise.

 [image:]

 Figure 1.7 The diffusion model adds more and more noise to the images and learns to reconstruct them. The left column contains four original flower images. As we move to the right, some noise is added to the images in each time step, until at the right column, the four images are pure random noise. We then use these images to train a diffusion-based model to progressively remove noise from noisy images to generate new data samples.

 You may be wondering: How are text-to-image Transformers related to diffusion models? Text-to-image Transformers take a text prompt as input and generate images that correspond to that textual description. The text prompt serves as a form of conditioning, and the model uses a series of neural network layers to transform that textual description into an image. Like diffusion models, text-to-image Transformers use a hierarchical architecture with multiple layers, each progressively adding more detail to the generated image. The core concept of iteratively refining the output is similar in both diffusion models and text-to-image Transformers, as we’ll explain in chapter 15.

 Diffusion models have now become more popular due to their ability to provide stable training and generate high-quality images, and they have outperformed other generative models such as GANs and variational autoencoders. In chapter 15, you’ll first learn to train a simple diffusion model using the Oxford Flower dataset. You’ll also learn the basic idea behind multimodal Transformers and write a Python program to ask OpenAI’s DALL-E 2 to generate images through a text prompt. For example, when I entered “an astronaut in a space suit riding a unicorn” as the prompt, DALL-E 2 generated the image shown in figure 1.8.

 [image:]

 Figure 1.8 Image generated by DALL-E 2 with text prompt “an astronaut in a space suit riding a unicorn”

 In chapter 16, you’ll learn how to access pretrained LLMs such as ChatGPT, GPT4, and DALL-E 2. These models are trained on large textual data and have learned general knowledge from the data. Hence, they can perform various downstream tasks such as text generation, sentiment analysis, question answering, and named entity recognition. Since pretrained LLMs were trained on information a few months ago, they cannot provide information on events and developments in the last one or two months, let alone real-time information such as weather conditions, flight status, or stock prices. We’ll use LangChain (a Python library designed for building applications with LLMs, providing tools for prompt management, LLM chaining, and output parsing) to chain together LLMs with the Wolfram Alpha and Wikipedia APIs to create a know-it-all personal assistant.

 1.4 Why build generative models from scratch?

 The goal of this book is to show you how to build and train all generative models from scratch. This way, you’ll have a thorough understanding of the inner workings of these models and can make better use of them. Creating something from scratch is the best way to understand it. You’ll accomplish this goal for GANs: all models, including DCGAN and CycleGAN, are built from the ground up and trained using well-curated data in the public domain.

 For Transformers, you’ll build and train all models from scratch except for LLMs. This exception is due to the vast amount of data and the supercomputing facilities needed to train certain LLMs. However, you’ll make serious progress in this direction. Specifically, you’ll implement in chapters 9 and 10 the original groundbreaking 2017 paper “Attention Is All You Need” line by line with English-to-French translation as an example (the same Transformer can be trained on other datasets such as Chinese to English or English to German translations). You’ll also build a small-size decoder-only Transformer and train it using several of Ernest Hemingway’s novels, including The Old Man and the Sea. The trained model can generate text in Hemingway style. ChatGPT and GPT-4 are too large and complicated to build and train from scratch for our purposes, but you’ll peek into their predecessor, GPT-2, and learn to build it from scratch. You’ll also extract the trained weights from Hugging Face and load them up to the GPT-2 model you built and start to generate realistic text that can pass as human-written.

 In this sense, the book is taking a more fundamental approach than most books. Instead of treating generative AI models as a black box, readers have a chance to look under the hood and examine in detail the inner workings of these models. The goal is for you to have a deeper understanding of generative models. This, in turn, can potentially help you build better and more responsible generative AI for the following reasons.

 First, having a deep understanding of the architecture of generative models helps readers make better practical uses of these models. For example, in chapter 5, you’ll learn how to select characteristics in generated images such as male or female features and with or without eyeglasses. By building a conditional GAN from the ground up, you understand that certain features of the generated images are determined by the random noise vector, Z, in the latent space. Therefore, you can choose different values of Z as inputs to the trained model to generate the desired characteristics (such as male or female features). This type of attribute selection is hard to do without understanding the design of the model.

 For Transformers, knowing the architecture (and what encoders and decoders do) gives you the ability to create and train Transformers to generate the types of content you are interested in (say, Jane Austin–style novels or Mozart-style music). This understanding also helps you with pretrained LLMs. For example, while it is hard to train GPT-2 from scratch with its 1.5 billion parameters, you can add an additional layer to the model and fine-tune it for other downstream tasks such as text classification, sentiment analysis, and question-answering.

 Second, a deep understanding of generative AI helps readers have an unbiased assessment of the dangers of AI. While the extraordinary powers of generative AI have benefitted us in our daily lives and work, it also has the potential to create great harm. Elon Musk went so far as saying that “there’s some chance that it goes wrong and destroys humanity” (see the article by Julia Mueller in The Hill, 2023, “Musk: There’s a Chance AI ‘Goes Wrong and Destroys Humanity,’” https://mng.bz/Aaxz). More and more people in academics and in the tech industry are worried about the dangers posed by AI in general and generative AI in particular. Generative AI, especially LLMs, can lead to unintended consequences, as many pioneers in the tech profession have warned (see, e.g., Stuart Russell, 2023, “How to Stop Runaway AI,” https://mng.bz/ZVzP). It’s not a coincidence that merely five months after the release of ChatGPT, many tech industry experts and entrepreneurs, including Steve Wozniak, Tristan Harris, Yoshua Bengio, and Sam Altman, signed an open letter calling for a pause in training any AI system that’s more powerful than GPT-4 for at least six months (see the article by Connie Loizos in TechCrunch, “1,100+ Notable Signatories Just Signed an Open Letter Asking ‘All AI Labs to Immediately Pause for at Least 6 Months,’” https://mng.bz/RNEK). A thorough understanding of the architecture of generative models helps us provide a deep and unbiased evaluation of the benefits and potential dangers of AI.

 Summary

 	
 Generative AI is a type of technology with the capacity to produce diverse forms of new content, including texts, images, code, music, audio, and video.

 	
 Discriminative models specialize in assigning labels while generative models generate new instances of data.

 	
 PyTorch, with its dynamic computational graphs and the ability for GPU training, is well suited for deep learning and generative modeling.

 	
 GANs are a type of generative modeling method consisting of two neural networks: a generator and a discriminator. The goal of the generator is to create realistic data samples to maximize the chance that the discriminator thinks they are real. The goal of the discriminator is to correctly identify fake samples from real ones.

 	
 Transformers are deep neural networks that use the attention mechanism to identify long-term dependencies among elements in a sequence. The original Transformer has an encoder and a decoder. When it’s used for English-to-French translation, for example, the encoder converts the English sentence into an abstract representation before passing it to the decoder. The decoder generates the French translation one word at a time, based on the encoder’s output and the previously generated words.

 2 Deep learning with PyTorch

 This chapter covers

 	PyTorch tensors and basic operations

 	Preparing data for deep learning in PyTorch

 	Building and training deep neural networks with PyTorch

 	Conducting binary and multicategory classifications with deep learning

 	Creating a validation set to decide training stop points

 In this book, we’ll use deep neural networks to generate a wide range of content, including text, images, shapes, music, and more. I assume you already have a foundational understanding of machine learning (ML) and, in particular, artificial neural networks. In this chapter, I’ll refresh your memory on essential concepts such as loss functions, activation functions, optimizers, and learning rates, which are crucial for developing and training deep neural networks. If you find any gaps in your understanding of these topics, I strongly encourage you to address them before proceeding with the projects in this book. Appendix B provides a summary of the basic skills and concepts needed, including the architecture and training of artificial neural networks.

 NOTE There are plenty of great ML books out there for you to choose from. Examples include Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (2019, O’Reilly) and Machine Learning, Animated (2023, CRC Press). Both books use TensorFlow to create neural networks. If you prefer a book that uses PyTorch, I recommend Deep Learning with PyTorch (2020, Manning Publications).

 Generative AI models are frequently confronted with the task of either binary or multicategory classification. For instance, in generative adversarial networks (GANs), the discriminator undertakes the essential role of a binary classifier, its purpose being to distinguish between the fake samples created by the generator from real samples from the training set. Similarly, in the context of text generation models, whether in recurrent neural networks or Transformers, the overarching objective is to predict the subsequent character or word from an extensive array of possibilities (essentially a multicategory classification task).

 In this chapter, you’ll learn how to use PyTorch to create deep neural networks to perform binary and multicategory classifications so that you become well-versed in deep learning and classification tasks.

 Specifically, you’ll engage in an end-to-end deep learning project in PyTorch, on a quest to classify grayscale images of clothing items into different categories such as coats, bags, sneakers, shirts, and so on. The intention is to prepare you for the creation of deep neural networks, capable of performing both binary and multicategory classification tasks in PyTorch. This, in turn, will get you ready for the upcoming chapters, where you use deep neural networks in PyTorch to create various generative models.

 To train generative AI models, we harness a diverse range of data formats such as raw text, audio files, image pixels, and arrays of numbers. Deep neural networks created in PyTorch cannot take these forms of data directly as inputs. Instead, we must first convert them into a format that the neural networks understand and accept. Specifically, you’ll convert various forms of raw data into PyTorch tensors (fundamental data structures used to represent and manipulate data) before feeding them to generative AI models. Therefore, in this chapter, you’ll also learn the basics of data types, how to create various forms of PyTorch tensors, and how to use them in deep learning.

 Knowing how to perform classification tasks has many practical applications in our society. Classifications are widely used in healthcare for diagnostic purposes, such as identifying whether a patient has a particular disease (e.g., positive or negative for a specific cancer based on medical imaging or test results). They play a vital role in many business tasks (stock recommendations, credit card fraud detection, and so on). Classification tasks are also integral to many systems and services that we use daily such as spam detection and facial recognition.

 2.1 Data types in PyTorch

 We’ll use datasets from a wide range of sources and formats in this book, and the first step in deep learning is to transform the inputs into arrays of numbers.

 In this section, you’ll learn how PyTorch converts different formats of data into algebraic structures known as tensors. Tensors can be represented as multidimensional arrays of numbers, similar to NumPy arrays but with several key differences, chief among them the ability of GPU accelerated training. There are different types of tensors depending on their end use, and you’ll learn how to create different types of tensors and when to use each type. We’ll discuss the data structure in PyTorch in this section by using the heights of the 46 U.S. presidents as our running example.

 Refer to the instructions in appendix A to create a virtual environment and install PyTorch and Jupyter Notebook on your computer. Open the Jupyter Notebook app within the virtual environment and run the following line of code in a new cell:

 !pip install matplotlib

 This command will install the Matplotlib library on your computer, enabling you to plot images in Python.

 2.1.1 Creating PyTorch tensors

 When training deep neural networks, we feed the models with arrays of numbers as inputs. Depending on what a generative model is trying to create, these numbers have different types. For example, when generating images, the inputs are raw pixels in the form of integers between 0 and 255, but we’ll convert them to floating-point numbers between –1 and 1; when generating text, there is a “vocabulary” akin to a dictionary, and the input is a sequence of integers telling you which entry in the dictionary the word corresponds to.

 NOTE The code for this chapter, as well as other chapters in this book, is available at the book’s GitHub repository: https://github.com/markhliu/DGAI.

 Imagine you want to use PyTorch to calculate the average height of the 46 U.S. presidents. We can first collect the heights of the 46 U.S. presidents in centimeters and store them in a Python list:

 heights = [189, 170, 189, 163, 183, 171, 185,
 168, 173, 183, 173, 173, 175, 178,
 183, 193, 178, 173, 174, 183, 183,
 180, 168, 180, 170, 178, 182, 180,
 183, 178, 182, 188, 175, 179, 183,
 193, 182, 183, 177, 185, 188, 188,
 182, 185, 191, 183]

 The numbers are in chronological order: the first value in the list, 189, indicates that the first U.S. president, George Washington, was 189 centimeters tall. The last value shows that Joe Biden’s height is 183 centimeters. We can convert a Python list into a PyTorch tensor by using the tensor() method in PyTorch:

 import torch
heights_tensor = torch.tensor(heights, ①
 dtype=torch.float64) ②

 ① Converts a Python list to a PyTorch tensor

 ② Specifies the data type in the PyTorch tensor

 We specify the data type using the dtype argument in the tensor() method. The default data type in PyTorch tensors is float32, a 32-bit floating-point number. In the preceding code cell, we converted the data type to float64, double-precision floating-point numbers. float64 provides more precise results than float32, but it takes longer to compute. There is a tradeoff between precision and computational costs. Which data type to use depends on the task at hand.

 Table 2.1 lists different data types and the corresponding PyTorch tensor types. These include integers and floating-point numbers with different precisions. Integers can also be either signed or unsigned.

 Table 2.1 Data and tensor types in PyTorch

 	
 PyTorch tensor type

 	
 dtype argument in tensor()

 	
 Data type

 	
 FloatTensor

 	
 torch.float32 or torch.float

 	
 32-bit floating point

 	
 HalfTensor

 	
 torch.float16 or torch.half

 	
 16-bit floating point

 	
 DoubleTensor

 	
 torch.float64 or torch.double

 	
 64-bit floating point

 	
 CharTensor

 	
 torch.int8

 	
 8-bit integer (signed)

 	
 ByteTensor

 	
 torch.uint8

 	
 8-bit integer (unsigned)

 	
 ShortTensor

 	
 torch.int16 or torch.short

 	
 16-bit integer (signed)

 	
 IntTensor

 	
 torch.int32 or torch.int

 	
 32-bit integer (signed)

 	
 LongTensor

 	
 torch.int64 or torch.long

 	
 64-bit integer (signed)

 You can create a tensor with a certain data type in one of the two ways. The first way is to use the PyTorch class as specified in the first column of table 2.1. The second way is to use the torch.tensor() method and specify the data type using the dtype argument (the value of the argument is listed in the second column of table 2.1). For example, to convert the Python list [1, 2, 3] into a PyTorch tensor with 32-bit integers in it, you can use two methods in the following listing.

 Listing 2.1 Two ways of specifying tensor types

 t1=torch.IntTensor([1, 2, 3]) ①
t2=torch.tensor([1, 2, 3],
 dtype=torch.int) ②
print(t1)
print(t2)

 ① Uses torch.IntTensor() to specify the tensor type

 ② Uses dtype=torch.int to specify the tensor type

 This leads to the following output:

 tensor([1, 2, 3], dtype=torch.int32)
tensor([1, 2, 3], dtype=torch.int32)

 Exercise 2.1

 Use two different methods to convert the Python list [5, 8, 10] into a PyTorch tensor with 64-bit floating-point numbers in it. Consult the third row in table 2.1 for this question.

 Many times, you need to create a PyTorch tensor with values 0 everywhere. For example, in GANs, we create a tensor of zeros as the labels for fake samples, as you’ll see in chapter 3. The zeros() method in PyTorch generates a tensor of zeros with a certain shape. In PyTorch, a tensor is an n-dimensional array, and its shape is a tuple representing the size along each of its dimensions. The following lines of code generate a tensor of zeros with two rows and three columns:

 tensor1 = torch.zeros(2, 3)
print(tensor1)

 The output is as follows:

 tensor([[0., 0., 0.],
 [0., 0., 0.]])

 The tensor has a shape of (2, 3), which means the tensor is a 2D array; there are two elements in the first dimension and three elements in the second dimension. Here, we didn’t specify the data type, and the output has the default data type of float32.

 From time to time, you need to create a PyTorch tensor with values 1 everywhere. For example, in GANs, we create a tensor of ones as the labels for real samples. Here we use the ones() method to create a 3D tensor with values 1 everywhere:

 tensor2 = torch.ones(1,4,5)
print(tensor2)

 The output is

 tensor([[[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]]])

 We have generated a 3D PyTorch tensor. The shape of the tensor is (1, 4, 5).

 Exercise 2.2

 Create a 3D PyTorch tensor with values 0 in it. Make the shape of the tensor (2, 3, 4).

 You can also use a NumPy array instead of a Python list in the tensor constructor:

 import numpy as np

nparr=np.array(range(10))
pt_tensor=torch.tensor(nparr, dtype=torch.int)
print(pt_tensor)

 The output is

 tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=torch.int32)

 2.1.2 Index and slice PyTorch tensors

 We use square brackets ([]) to index and slice PyTorch tensors, as we do with Python lists. Indexing and slicing allow us to operate on one or more elements in a tensor, instead of on all elements. To continue our example of the heights of the 46 U.S. presidents, if we want to assess the height of the third president, Thomas Jefferson, we can do the following:

 height = heights_tensor[2]
print(height)

 This leads to an output of

 tensor(189., dtype=torch.float64)

 The output shows that the height of Thomas Jefferson was 189 centimeters.

 We can use negative indexing to count from the back of the tensor. For example, to find the height of Donald Trump, who is the second to last president in the list, we use index –2:

 height = heights_tensor[-2]
print(height)

 The output is

 tensor(191., dtype=torch.float64)

 The output shows that Trump’s height is 191 centimeters.

 What if we want to know the heights of five recent presidents in the tensor heights_tensor? We can obtain a slice of the tensor:

OEBPS/OEBPS/Images/CH01_F02_Liu.png
Real image

Step 5: Feedback

Fake image

Prediction
(real or
fake?)

Step 5: Feedback

OEBPS/OEBPS/Images/CH01_F03_Liu.png
A S M

ik

Iy

)3 |
2N S
TR
»
ol /2

4 1

4

oS 7 a‘ VR =~ TS ‘ "
) 6 P o) O W
] el s Sl s
S 1 AL [N / '”.' VAR .

BI'&

OEBPS/OEBPS/Images/Liu_Author.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F05_Liu.png
Original images with blond hair:

Fake |ma es with bl

ﬂl‘f

Original images Wl‘t black hair:

OEBPS/OEBPS/Images/CH01_F04_Liu.png
:

Ll

[ele]elleds!
(5 | | [N [1
\ 3 m

OEBPS/cover.jpeg
Learn

Generative Al
PyTorch

with

OEBPS/OEBPS/Images/CH01_F07_Liu.png

OEBPS/OEBPS/Images/CH01_F06_Liu.png
Output
probabilties
A

Encoder Encoder block Decoder

Positional Positional
encoding >P encoding B @
e —
Inputs Outputs

low are you?) (e.g., Comment &tes-vous?)

OEBPS/OEBPS/Images/CH01_F08_Liu.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F01_Liu.png
Prob(Cat)

Discriminative
model
Prob(Dog)
- -
Generative

model

