

 [image: cover]

Zend Framework in Action

 Rob Allen, Nick Lo & Steven Brown

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed elemental chlorine-free

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Andy Carroll
Typesetter: Tony Roberts
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 - VHG - 13 12 11 10 09 08 07

Dedication

 To Georgina, Jon, and Ben, for the love and support that you give me

 R.A.

 To the Cookie Fairy and her two little helpers, Cory and Cass, for the nourishment you give me

 N.L.

 To Grandma, for believing in me

 S.B.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. The essentials

 Chapter 1. Introducing Zend Framework

 Chapter 2. Hello Zend Framework!

 2. A Core Application

 Chapter 3. Building a website with Zend Framework

 Chapter 4. Managing the view

 Chapter 5. Ajax

 Chapter 6. Managing the database

 Chapter 7. User authentication and access control

 Chapter 8. Forms

 Chapter 9. Searching

 Chapter 10. Email

 Chapter 11. Deployment

 3. More Power to Your Application

 Chapter 12. Talking with other applications

 Chapter 13. Mashups with public web services

 Chapter 14. Caching: making it faster

 Chapter 15. Internationalization and localization

 Chapter 16. Creating PDFs

 Appendix A. A whistle-Stop Tour of PHP Syntax

 Appendix B. Object-Oriented PHP

 Appendix C. Tips and tricks

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the cover illustration

 1. The essentials

 Chapter 1. Introducing Zend Framework

 1.1. Introducing Structure to PHP Websites

 1.2. Why Use Zend Framework?

 1.2.1. Everything is in the Box

 1.2.2. Modern Design

 1.2.3. Easy to Learn

 1.2.4. Full Documentation

 1.2.5. Simple Development

 1.2.6. Rapid Development

 1.2.7. Structured Code is Easy to Maintain

 1.3. What is Zend Framework?

 1.3.1. Where did it Come From?

 1.3.2. What’s in it?

 1.4. Zend Framework Design Philosophy

 1.4.1. High-quality Components

 1.4.2. Pragmatism and Flexibility

 1.4.3. Clean IP

 1.4.4. Support from Zend Technologies

 1.5. Alternative PHP Frameworks

 1.6. Summary

 Chapter 2. Hello Zend Framework!

 2.1. The Model-View-Controller Design Pattern

 2.1.1. The Model

 2.1.2. The View

 2.1.3. The Controller

 2.2. The Anatomy of a Zend Framework Application

 2.2.1. The Application Directory

 2.2.2. The Library Directory

 2.2.3. The Tests Directory

 2.2.4. The Public Directory

 2.3. Hello World: File by File

 2.3.1. Bootstrapping

 2.3.2. Apache .htaccess

 2.3.3. Index Controller

 2.3.4. View Template

 2.4. How MVC Applies to Zend Framework

 2.4.1. Zend Framework’s Controller

 2.4.2. Understanding Zend_View

 2.4.3. The Model in MVC

 2.5. Summary

 2. A Core Application

 Chapter 3. Building a website with Zend Framework

 3.1. Initial Planning of a Website

 3.1.1. The Site’s Goals

 3.1.2. Designing the User Interface

 3.1.3. Planning the Code

 3.2. Initial Coding

 3.2.1. The Directory Structure

 3.2.2. The Bootstrap Class

 3.2.3. Running the Application

 3.3. The Home Page

 3.3.1. The Initial Models

 3.3.2. Testing Our Models

 3.3.3. The Home-Page Controller

 3.4. Summary

 Chapter 4. Managing the view

 4.1. Introducing the Two Step View and Composite View Patterns

 4.2. View Handling with Zend_Layout

 4.3. Integrating Zend_Layout into Places

 4.3.1. Setup

 4.3.2. Layout Scripts

 4.3.3. Common Actions Using Placeholders

 4.3.4. The Homepage View Script

 4.4. Advanced View Helpers

 4.4.1. Controller Integration

 4.4.2. View Script Management

 4.4.3. HTML Header Helpers

 4.5. Summary

 Chapter 5. Ajax

 5.1. Introducing Ajax

 5.1.1. Defining Ajax

 5.1.2. Using Ajax in Web Applications

 5.2. A simple Ajax Example

 5.3. Using Ajax Client Libraries

 5.4. Using Ajax with Zend Framework

 5.4.1. The Controller

 5.4.2. The View

 5.5. Integrating into a Zend Framework Application

 5.5.1. The Place Controller

 5.5.2. Adding Review Rating HTML to the View Script

 5.5.3. Adding JavaScript to the View Scripts

 5.5.4. The Server Code

 5.6. Summary

 Chapter 6. Managing the database

 6.1. Database Abstraction with Zend_Db_Adapter

 6.1.1. Creating a Zend_Db_Adapter

 6.1.2. Querying the Database

 6.1.3. Inserting, Updating, and Deleting

 6.1.4. Handling Database-Specific Differences

 6.2. Table Abstraction with Zend_Db_Table

 6.2.1. What is the Table Data Gateway Pattern?

 6.2.2. Using Zend_Db_Table

 6.2.3. Inserting and Updating with Zend_Db_Table

 6.2.4. Deleting Records with Zend_Db_Table

 6.3. Using Zend_Db_Table as a Model

 6.3.1. Testing the Model

 6.3.2. Table Relationships with Zend_Db_Table

 6.4. Summary

 Chapter 7. User authentication and access control

 7.1. Introducing Authentication and Access Control

 7.1.1. What is Authentication?

 7.1.2. What is Access Control?

 7.2. Implementing Authentication

 7.2.1. Introducing Zend_Auth

 7.2.2. Logging in Using HTTP Authentication

 7.3. Using Zend_Auth in a Real Application

 7.3.1. Logging in

 7.3.2. A View Helper Welcome Message

 7.3.3. Logging out

 7.4. Implementing Access Control

 7.4.1. Introducing Zend_Acl

 7.4.2. Configuring a Zend_Acl Object

 7.4.3. Checking the Zend_Acl Object

 7.5. Summary

 Chapter 8. Forms

 8.1. Introducing Zend_Form

 8.1.1. Integrated Data Filters and Validators

 8.1.2. Integrated Error Handling

 8.1.3. Decorators to Simplify Markup

 8.1.4. Plug-in Loaders for Customization

 8.1.5. Internationalization

 8.1.6. Subforms and Display Groups

 8.2. Building a Login Form

 8.2.1. Setting up Paths

 8.2.2. Our form View Script

 8.2.3. Updating the AuthController Controller Action

 8.2.4. The Basic Login form Class

 8.3. Filtering and Validation

 8.3.1. Basic Filtering and Validation

 8.3.2. Custom Error Messages

 8.3.3. Internationalizing the Form

 8.3.4. Adding a Custom Validator

 8.4. Decorating Our Login Form

 8.4.1. Zend_Form Default Decorators

 8.4.2. Setting Our Own Decorators

 8.5. Summary

 Chapter 9. Searching

 9.1. Benefits of Search

 9.1.1. Key Usability Issue for Users

 9.1.2. Ranking Results is Important

 9.2. Introducing Zend_Search_Lucene

 9.2.1. Creating a Separate Search Index for your Website

 9.2.2. Powerful Queries

 9.2.3. Best Practices

 9.3. Adding Search to Places

 9.3.1. Updating the Index as new Content is Added

 9.3.2. Creating the Search form and Displaying the Results

 9.4. Summary

 Chapter 10. Email

 10.1. The Basics of Email

 10.1.1. Email Simplified

 10.1.2. Dissecting an Email Address

 10.2. Introducing Zend_Mail

 10.2.1. Creating Emails with Zend_Mail

 10.2.2. Sending Emails with Zend_Mail

 10.3. Building a Support Tracker for Places

 10.3.1. Designing the Application

 10.3.2. Integrating Zend_Mail into the Application

 10.3.3. Adding Headers to the Support Email

 10.3.4. Adding Attachments to the Support Email

 10.3.5. Formatting the email

 10.4. Reading Email

 10.4.1. Collecting and Storing Email

 10.4.2. Reading Email with Our Application

 10.5. Summary

 Chapter 11. Deployment

 11.1. Setting up the Server

 11.1.1. Designing for Different Environments

 11.1.2. Using Virtual Hosts for Development

 11.2. Version Control with Subversion

 11.2.1. Creating the Subversion Repository

 11.2.2. Checking out Code from the Repository

 11.2.3. Committing Changes to the Repository

 11.2.4. Updating a Local Working Copy

 11.2.5. Dealing with Conflicts

 11.2.6. Getting a Clean Copy from the Repository

 11.2.7. Using Branches

 11.2.8. Externals

 11.3. Functional Testing

 11.3.1. Functional Testing with Selenium IDE

 11.3.2. Automating Selenium IDE Tests

 11.3.3. Functional Testing with Zend_Http_Client

 11.4. Scripting the deployment

 11.5. Summary

 3. More Power to Your Application

 Chapter 12. Talking with other applications

 12.1. Integrating Applications

 12.1.1. Exchanging Structured Data

 12.1.2. Producing and Consuming Structured Data

 12.1.3. How Web Services Work

 12.1.4. Why We Need Web Services

 12.2. Producing and Consuming Feeds with Zend_Feed

 12.2.1. Producing a Feed

 12.2.2. Consuming a Feed

 12.3. Making RPCs with Zend_XmlRpc

 12.3.1. Using Zend_XmlRpc_Server

 12.3.2. Using Zend_XmlRpc_Client

 12.4. Using REST Web Services with Zend_Rest

 12.4.1. What is REST?

 12.4.2. Using Zend_Rest_Client

 12.4.3. Using Zend_Rest_Server

 12.5. Summary

 Chapter 13. Mashups with public web services

 13.1. Accessing Public Web Services

 13.1.1. Zend_Gdata

 13.1.2. Zend_Service_Akismet

 13.1.3. Zend_Service_Amazon

 13.1.4. Zend_Service_Audioscrobbler

 13.1.5. Zend_Service_Delicious

 13.1.6. Zend_Service_Flickr

 13.1.7. Zend_Service_Gravatar

 13.1.8. Zend_Service_Nirvanix

 13.1.9. Zend_Service_RememberTheMilk

 13.1.10. Zend_Service_Simpy

 13.1.11. Zend_Service_SlideShare

 13.1.12. Zend_Service_StrikeIron

 13.1.13. Zend_Service_Technorati

 13.1.14. Zend_Service_Yahoo

 13.2. Displaying ads with Amazon Web Services

 13.2.1. The Amazon Model Class

 13.2.2. The Amazon ads View Helper

 13.2.3. Caching the View Helper

 13.3. Displaying Pictures from Flickr

 13.3.1. The Flickr Model Class

 13.3.2. Using Flickr in an Action Controller

 13.4. Using Zend_Gdata for Google Access

 13.4.1. The YouTube API in an Action Controller

 13.4.2. The Video Categories Page

 13.4.3. The Video List Page

 13.4.4. The Video Page

 13.5. Summary

 Chapter 14. Caching: making it faster

 14.1. Benefits of Caching

 14.2. How Caching Works

 14.3. Implementing Zend_Cache

 14.3.1. Zend_Cache Frontends

 14.3.2. Zend_Cache Backends

 14.4. Caching at Different Application Levels

 14.4.1. Choosing What to Cache

 14.4.2. Optimal Cache Expiry

 14.5. Cache Tags

 14.6. Summary

 Chapter 15. Internationalization and localization

 15.1. Translating Languages and Idioms

 15.1.1. Translating Languages

 15.1.2. Translating Idioms

 15.2. Using Zend_Locale and Zend_Translate

 15.2.1. Setting the Locale with Zend_Locale

 15.2.2. Translating with Zend_Translate

 15.3. Adding a Second Language to the Places Application

 15.3.1. Selecting the Language

 15.3.2. The LanguageSetup Front Controller Plug-in

 15.3.3. Translating the View

 15.3.4. Displaying the Correct Date with Zend_Locale

 15.4. Summary

 Chapter 16. Creating PDFs

 16.1. Zend_Pdf Basics

 16.1.1. Creating or Loading Documents

 16.1.2. Creating Pages in Your PDF Document

 16.1.3. Adding Document Meta-Information

 16.1.4. Saving the PDF Document

 16.2. Building a PDF Report Generator

 16.2.1. Our Report Document Model

 16.2.2. Our Report Page Model

 16.3. Drawing Text on the Page

 16.3.1. Choosing Fonts

 16.3.2. Setting the Font and Adding Text

 16.3.3. Adding Wrapped Text

 16.4. Working with Color

 16.4.1. Choosing Colors

 16.4.2. Setting Colors

 16.5. Using Styles

 16.6. Drawing Shapes

 16.6.1. Drawing Lines

 16.6.2. Setting up Dashed Lines

 16.6.3. Drawing Rectangles and Polygons

 16.6.4. Drawing Circles and Ellipses

 16.7. Rotating Objects

 16.8. Adding Images to the Page

 16.9. Drawing Objects within Clipping Masks

 16.10. Generating PDF Reports

 16.11. Summary

 Appendix A. A whistle-Stop Tour of PHP Syntax

 A.1. PHP Fundamentals

 A.2. Variables and Types

 A.2.1. Strings

 A.2.2. Arrays

 A.3. Conditionals and Loops

 A.3.1. Conditionals

 A.3.2. Looping

 A.3.3. Alternative Syntax for the Nested Block

 A.4. Functions

 A.5. Summary

 Appendix B. Object-Oriented PHP

 B.1. Object Orientation in PHP

 B.1.1. Classes, Objects, and Inheritance

 B.1.2. Extending Classes

 B.1.3. Abstract Classes and Interfaces

 B.1.4. Magic Methods

 B.2. The SPL

 B.2.1. Using Iterators

 B.2.2. Using ArrayAccess and Countable

 B.3. PHP4

 B.4. Software Design Patterns

 B.4.1. The Singleton Pattern

 B.4.2. The Registry pattern

 B.5. Summary

 Appendix C. Tips and tricks

 C.1 MVC Tips and Tricks

 C.1.1 Modules

 C.1.2 Case Sensitivity

 Word Separation within Action URLs

 C.1.3 Routing

 C.2 Diagnostics with Zend_Log and Zend_Debug

 C.2.1 Zend_Debug

 C.2.2 Zend_Log

 C.3 Zend_Db_Profiler

 C.4 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Small things lead to big things. In August 2006, I decided to write a short getting-started tutorial on Zend Framework (for
 version 0.1.4!). Many people read it and fixed my errors for me, which was nice. In October 2006, Ben Ramsey contacted me
 via IRC and asked if I were interested in writing a book about Zend Framework. Apparently Chris Shiflett had recommended me,
 as he’d read my tutorial and other musings on Zend Framework-related topics and thought I could write. Simple mistake, really!

 Ben put me in touch with Mike Stephens of Manning, and I agreed to outline a book about Zend Framework. He introduced me to
 Marjan Bace who worked with me through the process of getting the outline together. Marjan’s kind words and encouragement
 helped tremendously. By the time we knew what the book would be about, I believed I could write it, and I started in January
 2007.

 By May, we all realized that I’m not the fastest writer in the world, and if we wanted a book out this decade, we needed some
 help! Nick Lo and, later, Steven Brown kindly answered the call for help, and their enthusiasm has ensured that the book was
 completed. Nick also proved much more capable at graphics than I, and the diagrams are a pleasure to look at as a result!

 While writing the book, Zend Framework matured with 1.0, 1.5, and 1.6 releases. (Version 1.6 was released late into the development
 cycle of the book, and while we cover it, we do not cover the new Dojo integration features.) We have watched Zend Framework
 grow from a collection of essentially untested code into the mature, stable code base that it is now. Thousands of developers,
 myself included, use Zend Framework as the base upon which they build their websites and applications. I hope that this book
 will enable you to join us.

 ROB ALLEN

Acknowledgments

 It was not until we actually tried to write a book that we discovered why the acknowledgments section of every book explains
 that the book is more than the work of the author (or authors) whose name(s) appears on the front cover! True to form, this
 book was also a group effort by more than just Rob, Nick, and Steven. We would like to thank everyone who helped us turn the
 original idea into the book you are now holding.

 We are indebted to our development editors, Joyce King, Douglas Pundick, and Nermina Miller, who offered advice and encouragement
 throughout the writing phase. We would never have completed it without you guys. Late-night/early-morning chats on Skype enlightened
 us on the book-writing process and the organization required to complete the manuscript.

 A host of other people at Manning also worked very hard behind the scenes to ensure that the book made it through to publication.
 We would like to thank them all, including our publisher Marjan Bace, our associate publisher Mike Stephens, our review editor
 Karen Tegtmeyer, and Megan Yockey who kept on top of the paperwork. When the manuscript entered the production stage, Mary
 Piergies, our project editor, provided invaluable guidance. The rest of the production team (Tony Roberts, Dottie Marsico,
 Tiffany Taylor, Leslie Haimes, Elizabeth Martin, Gabriel Dobrescu, and Steven Hong) all had a hand in bringing this book to
 you.

 We are also thankful to all the reviewers of the manuscript at its various stages of completeness: Deepak Vohra, Jonathon
 Bloomer, Horaci Macias, Jeff Watkins, Greg Donald, Peter Pavlovich, Pete Helgren, Marcus Baker, Edmon Begoli, Doug Warren,
 Thomas Weidner, Michal Minicki, Ralf Eggert, David Hanson, Andries Seutens, and Dagfinn Reiersøl.

 We would also like to thank the many people who preordered the book and joined the MEAP program. Your feedback has made the
 book much better than it would have been.

 The quality and readability of the text in your hands is so much better than our initial efforts thanks to the sterling efforts
 of Andy Carroll, our copy editor. The writing is now much tighter and easier to read due to his work.

 Finally, we would like to thank Matthew Weier O’Phinney for checking the technical content for us. He has given generously
 of his time and advice, though, of course, all errors and omissions are ours alone.

Rob Allen

 I would like to thank my wife, Georgina, and sons for putting up with me through this project. Georgina’s support and encouragement
 have enabled me to get through to the end. I promise not to write another book until the decorating is done! I would also
 like to thank my parents for listening to my inane ramblings about something they don’t understand and for instilling in me
 a desire to see things through to the end. My boss, Carl, and the rest of the team at Big Room Internet also deserve my thanks
 for listening to my progress reports and coping when I wasn’t as alert as I should have been, due to late-night and early-morning
 writing sessions.

 I would also like to thank the many contributors to Zend Framework who have provided the code, documentation, and help on
 mailing lists, forums, and the #zftalk IRC channel. The community has made Zend Framework what it is, and it’s great to be
 part of it.

Nick Lo

 My first thanks must go to Rob for giving me the opportunity to be part of this project, and for his patience as I bumbled
 through it. I have to also reiterate the thanks to our editors—it’s impressive just how much a good editor can squeeze out
 of your writing even after you’ve been over and over it.

 Personal thanks go to all my family for the initial excitement they had and will have again when I hand them a copy of the
 book. I won’t mind if your eyes glaze over when you realize the book has as much interest to you, as my brother put it, as
 a refrigerator manual!

 Finally, thanks to all our fellow developers who offer their knowledge to the development community. It’s heartening to see
 how much help is shared amongst often total strangers for no apparent gain. That spirit contributed to the book, with suggestions
 like early-access reader Antonio Ruiz Zwollo’s .htaccess setting, which we used in Chapter 11.

Steven Brown

 I must thank Michael Stephens for recommending that I join Rob and Nick in writing this book. Thanks to Rob and Nick for allowing
 me to come on board, and for understanding when personal disruptions prevented me from contributing as much as I had hoped.
 Thanks to Nermina Miller for making my writing look good, and thanks to Nick for making my diagrams look good.

 Most importantly, I thank my wife, Tamara, who is still waiting for the landscaping to be finished and who smiles and nods
 politely when I ramble on about coding problems. Tamara has always been there to support me through the hard times, and to
 make the good times even more enjoyable.

About this book

 In 2005, Andi Gutmans of Zend Technologies announced Zend’s PHP Collaboration Project, and with it launched Zend Framework.
 By March 2006, there was some initial code, and version 1.0 was released in July 2007 with regular releases since then. Zend
 Framework has provided PHP with a high-quality framework that is different from most others due to its use-at-will philosophy,
 allowing the developer to pick and choose which parts to use for any given project.

 This book shows how to use Zend Framework to your best advantage, and the techniques are demonstrated on an example website
 that is developed over the course of the book. We look at the major components of Zend Framework and show how to use each
 one in the context of a real-world application. As a result, this book supplements the online manual’s functional view of
 the framework by showing you how it all fits together, allowing you to produce high-quality websites and applications.

Who should read this book?

 This book is for PHP developers who want to or are using Zend Framework. As Zend Framework has a use-at-will philosophy, not
 all chapters will be useful to every reader immediately. However, we believe that all readers will gain something from every
 chapter, even if you have to read it again to pick up the details when you start using that component!

 This is not a beginner’s book; we assume that you are familiar with PHP and have an understanding of object-oriented programming.
 Appendix A, “A Whistle-Stop Tour of PHP Syntax,” and appendix B, “Object-Oriented PHP,” provide a useful overview of the fundamentals, but they are not substitutes for a full book on the
 subject.

Further information about Zend Framework

 In addition to this book, the Zend Framework website at http://framework.zend.com/ is an excellent resource. The online manual at http://framework.zend.com/manual/en/ is the definitive reference documentation for all the components in the framework. For help and discussion on Zend Framework,
 we recommend subscribing to the mailing lists. The details can be found at http://framework.zend.com/wiki/display/ZFDEV/Contributing+to+Zend+Framework, and the archives are at http://framework.zend.com/archives. Finally, interactive, real-time chat about Zend Framework can be found on the Freenode IRC network in the #zftalk channel.

Road map

 This book is organized into three parts. Part 1 introduces Zend Framework and shows how to implement a simple “hello world” application using Zend Framework components.
 Part 2 looks at the components in the framework that are useful to most web applications, and part 3 introduces the less frequently used components that will be cherry-picked for particular projects.

The Essentials

 Chapter 1 looks at what components Zend Framework provides to help us build web-sites quickly and efficiently. It also looks at why
 we use the framework in the first place and what advantages it brings.

 Chapter 2 puts some code on the table. Starting slowly, we build the simplest, complete website that we can using the Model View Controller
 (MVC) design pattern. This chapter sets the stage and introduces core concepts about the code and design of Zend Framework
 that serve as a foundation for parts 2 and 3.

A Core Application

 Chapter 3 develops the initial design and code for the Places to take the kids!, a real-world community website using Zend Framework. We start by looking at bootstrapping and code organization and build
 up to the home page controller code.

 Chapter 4 builds on the work in Chapter 3 to develop the frontend look and feel of the website. We use the Zend_View and Zend_Layout components to develop a Composite View system that separates the display elements that are specific to a given page from
 those that are common across all pages.

 Chapter 5 introduces Ajax from first principles, then looks at integrating an Ajax request into a Zend Framework MVC application.

 Chapter 6 considers interaction with a database, using the Zend Framework database components, from database abstraction to the higher-level
 table abstraction.

 Chapter 7 is all about the users and how to authenticate access and then control their access to specific sections of a website.

 Chapter 8 explains how to take control of forms on your website by using the Zend_Form component.

 Chapter 9 tackles the thorny subject of site-wide searching to help your users find what they are looking for on your website.

 Chapter 10 discusses the Zend_Mail component that allows for sending and reading of email.

 Chapter 11 completes this part of the book by looking at management issues including version control, deployment, and testing.

More Power to Your Application

 Chapter 12 looks at integrating web applications together with XML_RPC and REST protocols. It also looks at integrating RSS and Atom
 feeds into an application.

 Chapter 13 explains how to add value to your website by integrating the plethora of data from public web services available on the Internet.

 Chapter 14 goes behind the scenes and shows how caching can be used to speed up a website and allow an application to scale.

 Chapter 15 considers how to provide a multilingual website that is also aware of the local idioms that your users’ expect on a polished
 website.

 Chapter 16 shows how to create PDF documents with text and graphics in them.

The Appendices

 Appendix A provides a short tour of the PHP syntax, mostly aimed at people coming from another language.

 Appendix B describes the PHP5 object model and so provides a leg up for those who have mainly programmed procedurally before using Zend
 Framework.

 Appendix C offers tips and tricks that allow you to develop your Zend Framework applications more easily.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. For most listings, the code is annotated to point out the key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code. We have tried to format
 the code so that it fits within the available page space in the book by adding line breaks and using indentation carefully.
 Sometimes, very long lines will include line-continuation markers.

 Source code for all the working examples is available for download from http://www.manning.com/ZendFrameworkinAction. A readme.txt file is provided in the root folder and also in each chapter folder; they provide details on how to install
 and run the code. In cases where we have not been able to show every detail in the book, the accompanying source code has
 the full details. You will need a working PHP installation on the Apache web server and a MySQL database for the examples
 to run.

Author Online

 Purchase of Zend Framework in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to www.manning.com/ZendFrameworkinAction or www.manning.com/allen. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or to
 solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they
 want it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The illustration on the cover of Zend Framework in Action is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs. This book was first
 published in Paris in 1788, one year before the French Revolution. Each illustration is colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were
 just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or the countryside,
 they were easy to place—sometimes with an error of no more than a dozen miles—just by their dress. Dress codes have changed
 everywhere with time and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
 of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied
 personal life—certainly a more varied and faster-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. The essentials

 The first two chapters of this book introduce Zend Framework. Chapter 1 considers what Zend Framework is and why you would want to use it in your PHP web development process. Chapter 2 builds a simple Zend Framework application that shows how the parts fit together. The introduction of the Model View Controller
 (MVC) design pattern will bring order to your application and set the foundations for the rest of the book.

Chapter 1. Introducing Zend Framework

	This chapter covers

	

	Why you should use Zend Framework

 	What Zend Framework can do

 	The philosophy behind Zend Framework

PHP has been used to develop dynamic websites for over 10 years. Initially, all PHP websites were written as PHP code interspersed
 within HTML on the same page. This worked very well, as there is immediate feedback, and for simple scripts this was what
 was needed. PHP grew in popularity through versions 3 and 4, so it was inevitable that larger and larger applications would
 be written in PHP. It quickly became obvious that intermixing PHP code and HTML was not a long-term solution for large websites.

 The problems are obvious in hindsight: maintainability and extensibility. While PHP intermixed with HTML allows for extremely
 rapid results, it is hard to continue to update the website in the longer term. One of the really cool features of publishing
 on the web is that it is dynamic, with content and site layouts changing. Large websites change all the time, and the look
 and feel of most sites is updated regularly, as the needs of the users (and advertisers!) change. Something had to be done.

 Zend Framework was created to help ensure that the production of PHP-based web-sites is easier and more maintainable in the
 long term. It contains a rich set of reusable components including everything from a set of Model-View-Controller (MVC) application
 components to PDF generation classes. Over the course of this book, we will look at how to use all the Zend Framework components
 within the context of a real website.

 In this chapter, we will discuss what Zend Framework is and why you should use it, and we’ll look at some of the design philosophies
 behind it. This introduction to the framework will act as a guide for the rest of the book and it will help make the design
 decisions behind each component clearer. Let’s start by looking at how Zend Framework can provide structure for a website’s
 code base.

1.1. Introducing Structure to PHP Websites

 The solution to this tangled mess of PHP code and HTML on a website is structure. The most basic approach to structuring applications
 within PHP sites is applying the concept of “separation of concerns.” This means that the code that does the display should
 not be in the same file as the code that connects to the database and collects the data. The usual novice approach mixes the
 two types of code, as shown in figure 1.1.

 Figure 1.1. The organization of a typical PHP file created by a novice interleaves HTML and PHP code in a linear fashion as the file is
 created.

 [image:]

 Most developers begin to introduce structure to a website’s code by default, and the concept of reusability dawns. Generally,
 this means that the code that connects to the database is separated into a file called something like db.inc.php. Having separated
 out the database code, it then seems logical to separate out the code that displays the common header and footer elements
 on every page. Functions are then introduced to help solve the problem of global variables affecting one another by ensuring
 that variables live only within the scope of their own function.

 As the website grows, common functionality shared between multiple pages is grouped into libraries. Before you know it, the
 application is much easier to maintain, and adding new features without breaking existing code becomes simpler. The web-site
 continues to expand until it gets to the point where the supporting code is so large that you can’t hold a picture in your
 head of how it all works.

 PHP coders are used to standing on the shoulders of giants because our language provides easy access to libraries such as
 the GD image library, the many database client access libraries, and even system-specific libraries such as COM on Microsoft
 Windows. It was inevitable that object-oriented programming, known as OOP, would enter the PHP landscape. While classes in PHP4 provided limited OOP features, PHP5 provides excellent support for all the things you’d
 expect in an object-oriented language. There are visibility specifiers for class members (public, private, and protected)
 along with interfaces, abstract classes, and support for exceptions.

 PHP’s improved object-oriented support allowed for more complicated libraries (known as frameworks) to evolve, such as Zend
 Framework, which supports the Model-View-Controller design pattern—a way of organizing web application files. This design
 pattern is shown in figure 1.2.

 Figure 1.2. A typical MVC application separates the code of an application into separate concerns.

 [image:]

 An application designed using MVC principles results in more files, but each file is specialized in what it does, which makes
 maintenance much easier. For example, all the code that performs database queries is stored in classes known as models. The actual HTML code is known as the view (which may also contain simple PHP logic), and the controller files handle the connection of the correct models to the correct views to display the desired page.

 Zend Framework isn’t the only option for organizing a website based on MVC principles; there are many others in the PHP world.
 Let’s look at what Zend Framework contains and why it should be considered.

1.2. Why Use Zend Framework?

 Before we dive into using it, we will first look at why we use Zend Framework over all the other PHP frameworks out there.
 In a nutshell, Zend Framework introduces a standardized set of components that allow for easy development of web applications
 that can be easily developed, maintained, and enhanced.

 Zend Framework has a number of key features that make it worth investigating:

	Everything is in the box.

 	It has a modern design.

 	It is easy to learn.

 	It has full documentation.

 	Development is simple.

 	Development is rapid.

That list is rather stark, so let’s look at each item in turn and see what it means to us as website developers.

 1.2.1. Everything is in the Box

 Zend Framework is a comprehensive loosely coupled framework that contains everything you need to develop your application.
 This includes a robust MVC component to ensure that your website is structured according to best practices and other components
 for authentication, searching, localization, PDF creation, email, and connecting to web services, along with a few more esoteric
 items. These components can be grouped into the six categories shown in figure 1.3.

 Figure 1.3. There are many components in Zend Framework, but we can group them into these six categories for ease of reference.

 [image:]

 That’s not to say that Zend Framework doesn’t play nice with other libraries; it does that too. A core feature of the design
 of the framework is that it is easy to use just those bits you want to use with your application or with other libraries such
 as PEAR, the Doctrine ORM database library, or the Smarty template library. You can even use Zend Framework components with
 other PHP MVC frameworks, such as Symfony, CakePHP, or CodeIgniter.

 1.2.2. Modern Design

 Zend Framework is written in object-oriented PHP5 using modern design techniques known as design patterns. Software design
 patterns are recognized high-level solutions to design problems and, as such, are not specific implementations of the solutions.
 The actual implementation depends on the nature of the rest of the design. Zend Framework makes use of many design patterns,
 and its implementation has been carefully designed to allow the maximum flexibility for application developers without making
 them do too much work!

 The framework recognizes the PHP way and doesn’t force you into using all the components, so you are free to pick and choose.
 This is especially important as it allows you to introduce specific components into an existing site. The key is that each
 component within the framework has few dependencies on other components. This allows you to introduce specific Zend Framework
 components, such as Zend_Search, Zend_Pdf, or Zend_Cache into your current project without having to replace all the rest of your project code.

 1.2.3. Easy to Learn

 If you are anything like us, learning how a vast body of code works is difficult! Fortunately, Zend Framework is modular,
 encouraging developers with a “use at will” design philosophy that helps make it easy to learn, one step at a time. Individual components don’t depend on lots of other components,
 so they are easy to study. The design of each component is such that you do not need to understand how it works in its entirety
 before you can use it and benefit from it. Once you have some experience in using the component, learning to use the more
 advanced features is straightforward, as it can be done in steps. This reduces the barrier to entry.

 For example, the Zend_Config configuration component is used to provide an object-oriented interface to a configuration file. It supports two advanced
 features: section overloading and nested keys, but neither of these features needs to be understood in order to use the component.
 Once the user has a working implementation of Zend_Config in her code, confidence increases, and using the advanced features is a small step.

 1.2.4. Full Documentation

 No matter how good the code is, lack of documentation can kill a project through lack of adoption. As Zend Framework is aimed
 at developers who do not want to have to dig through all the source code to get their job done, Zend Framework puts documentation
 on an equal footing with the code. This means that the core team will not allow new code into the framework unless it has
 accompanying documentation.

 Two types of documentation are supplied with the framework: API and end-user. The API documentation is created using phpDocumenter
 and is automatically generated using special DocBlock comments in the source code. These comments are typically found just
 above every class, function, and member variable declaration. One key advantage of using DocBlocks is that IDEs such as the
 Eclipse PDT project or Zend’s Studio are able to supply autocompletion tool tips while coding, which can improve developer
 productivity.

	

 Included documentation
 Zend Framework supplies a full manual that can be downloaded, and it’s also available online at http://framework.zend.com/manual. The manual provides details on all components of the framework and shows what functionality is available. Examples are provided
 to help you get started in using the component in an application. More importantly, in the case of the more complicated components
 (such as Zend_Controller), the theory of operation is also covered, so that you can understand why the component works the way it does.

 The documentation provided with the framework does not explain how to fit all the components together to make a complete application.
 As a result, a number of tutorials have sprung up on the web, created by community members to help developers get started
 on the framework. These have been collated on a web page on Zend Framework’s wiki at http://framework.zend.com/wiki/x/q. The tutorials, while a useful starting point, do not tend to go in depth with each component or show how it works within
 a nontrivial application, which is why this book exists.

	

1.2.5. Simple Development

 As we have noted, one of PHP’s strengths is that developing simple, dynamic web pages is very easy. This ease of use has enabled
 millions of people to have fantastic websites who may not have had them otherwise. As a result, PHP programmers range in ability
 from beginner hobbyists through to enterprise developers. Zend Framework is designed to make development simpler and easier
 for developers of all levels.

 So how does it make development simpler? The key feature that the framework brings to the table is tested, reliable code that
 does the grunt work of an application. This means that the code you write is the code you need for your application. The code
 that does the boring bits is taken care of for you and does not clutter up your code.

 1.2.6. Rapid Development

 Zend Framework makes it easy to get going on your web application or to add new functionality to a current website. The framework
 provides many of the underlying components of an application, so you are free to concentrate on the core parts of your application.
 You can get started quickly on a given piece of functionality and immediately see the results.

 Another way the framework speeds up development is that the default use of most components is the most common case. In other
 words, you don’t have to set lots of configuration settings for each component just to get started using it. For example,
 the most simplistic use of the whole MVC is bootstrapped with just the following code:

 require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();
Zend_Controller_Front::run('/path/to/controllers');

 Once it’s up and running, adding a new page to your application can be as easy as adding a new function to a class, along
 with a new view script file in the correct directory. Similarly, Zend_Session provides a multitude of options that can be set so that you can manage your session exactly as you want to; however, none
 need to be set in order to use the component for most use-cases.

 1.2.7. Structured Code is Easy to Maintain

 As we have seen, separating out different responsibilities makes for a structured application. It also means that when you
 are fixing bugs, it’s easier to find what you are looking for. Similarly, when you need to add a new feature to the display
 code, the only files you need to look at are related to the display logic. This helps to avoid bugs that might be created
 by breaking something else while adding the new feature. The framework also encourages you to write object-oriented code,
 which makes maintaining your application simpler.

 We have now looked at why Zend Framework has been developed and at the key advantages it brings to developing PHP websites
 and applications. We’ll now turn our attention to the components Zend Framework contains and how they will help us to build
 websites more easily.

1.3. What is Zend Framework?

 Zend Framework is a PHP glue library for building PHP web applications. The components fit together to provide a full-stack
 framework with all the components required to build modern, easily built, maintainable applications. That rather simple description
 doesn’t tell the whole story though, so we’ll look at where this framework came from and what it actually contains.

 1.3.1. Where did it Come From?

 Frameworks have been around for years. The very first web framework Rob used in a real project was Fusebox, which was originally
 written for ColdFusion. Many other frameworks have come along since then, with the next major highlight being Struts, written
 in Java. A number of PHP clones of Struts were written, but didn’t translate well to PHP. The biggest problem was that Java
 web applications run in a virtual machine that runs continuously, so the startup time of the web application is not a factor
 for every web request. PHP initializes each request from a clean slate, so the large initiation required for Struts clones
 made them relatively slow as a result.

 A couple of years ago, a new framework called Rails entered the world, based on a relatively unknown language called Ruby.
 Rails (or Ruby on Rails as it is also known) promoted the concept of convention over configuration and has taken the web development
 world by storm. Shortly after Rails came along, a number of direct PHP clones appeared, along with a number of frameworks
 inspired by Rails, rather than direct copies.

 In late 2005, Zend Technologies, a company that specializes in PHP, started Zend Framework as part of its PHP Collaboration
 project to advance the use of PHP. Zend Framework is an open source project that provides a web framework for PHP and is intended
 to become one of the standard frameworks that PHP applications of the future will be based on.

 1.3.2. What’s in it?

 Zend Framework is composed of many distinct components that can be grouped into six top-level categories. Because it is a
 complete framework, you have everything you need to build enterprise-ready web applications. However, the system is very flexible
 and has been designed so that you can pick and choose to use those bits of the framework that are applicable to your situation.
 Following on from the high-level overview shown earlier in figure 1.3, figure 1.4 lists the main components within each category of the framework.

 Figure 1.4. Zend Framework contains lots of components that include everything required to build an enterprise application.

 [image:]

 Each component of the framework contains a number of classes, including the main class for which the component is named. For
 example, the Zend_Config component contains the Zend_Config class along with the Zend_Config_Ini and Zend_Config_Xml classes. Each component also contains a number of other classes that are not listed in figure 1.4. We will discuss the classes as we go through the book and learn about each component.

The MVC Components

 The MVC components provide a full-featured MVC system for building applications that separates out the view templates from
 the business logic and controller files. Zend Framework’s MVC system is made up of Zend_Controller (the controller) and Zend_View (the view) with Zend_Db and the Zend_Service classes forming the model. Figure 1.5 shows the basics of Zend Framework’s MVC system, using Zend_Db as a model.

 Figure 1.5. The MVC flow in a Zend Framework application uses a front controller to process the request and delegate to a specific action
 controller that uses models and views to craft the response.

 [image:]

 The Zend_Controller family of classes provides a Front Controller design pattern, which dispatches requests to controller actions (also known
 as commands) so that all processing is centralized. As you’d expect from a fully featured system, the controller supports
 plug-ins at all levels of the process and has built-in flex points to enable you to change specific parts of the behavior
 without having to do too much work.

 The view script system is called Zend_View, which provides a PHP-based template system. This means that, unlike Smarty or PHPTAL, all the view scripts are written in
 PHP. Zend_View provides a helper plug-in system to allow for the creation of reusable display code. It is designed to allow for overriding
 for specific requirements, or even for using another template system entirely, such as Smarty. Working in conjunction with
 Zend_View is Zend_Layout, which provides for aggregating multiple view scripts to build the entire web page.

 Zend_Db_Table implements a Table Data Gateway pattern which, along with the web services components, can be used to form the basis of the
 model within the MVC system. The model provides the business logic for the application, which is usually but not always database-based in a web application. Zend_Db_Table uses Zend_Db, which provides object-oriented database-independent access to a variety of different databases, such as MySQL, PostgreSQL,
 SQL Server, Oracle, and SQLite.

 The most simplistic setup of the MVC components can be done with this code:

 require_once 'Zend/Controller/Front.php';
Zend_Controller_Front::run('/path/to/your/controllers');

 It is more likely, however, that a more complicated bootstrap file will be required for a nontrivial application. We will
 explore this in Chapter 2 when we build a complete application with Zend Framework.

 The MVC classes work in combination with some of the core classes that create the nucleus of a complete application. The framework
 itself does not require configuration, but some configuration of your application is invariably required (such as database
 login details). Zend_Config allows an application to read configuration data from PHP arrays or INI or XML files and includes a useful inheritance system
 for supporting different configuration settings on different servers, such as production, staging, and test servers.

 Security is very much on the minds of every PHP developer worth his salt. Input data validation and filtering is the key to
 a secure application. Zend_Filter and Zend_Validate are provided to help the developer ensure that input data is safe for use in the application.

 The Zend_Filter class provides a set of filters that typically remove or transform unwanted data from the input as it passes through the
 filter. For example, a numeric filter will remove any characters that are not numbers from the input, and an HTML entities filter will convert the “<” character to the sequence “<”. Appropriate filters can be set up to ensure that the
 data is valid for the context in which it will be used.

 Zend_Validate provides a very similar function to Zend_Filter, except that it provides a yes/no answer to the question, “Is this data what I expect?” Validation is generally used to ensure
 that the data is correctly formed, such as ensuring that the data entered in an email address field is actually an email address.
 In the case of failure, Zend_Validate also provides a message indicating why the input failed validation so that appropriate error messages can be returned to
 the end user.

Authentication and Access Components

 Not every application needs to identify its users, but it is a surprisingly common requirement. Authentication is the process
 of identifying a user, usually via a token, such as a username/password pair, but it could equally be via a fingerprint. Access
 control is the process of deciding whether the authenticated user is allowed to have access to, and operate on, a given resource,
 such as a database record.

 As there are two separate processes, Zend Framework provides two separate components: Zend_Acl and Zend_Auth. Zend_Auth is used to identify the user and is typically used in conjunction with Zend_Session, which can store that information across multiple page requests (known as token persistence). Zend_Acl then uses the authentication token to provide access to private information using a role-based access control (RBACL) system.

 Flexibility is a key design goal within the Zend_Auth component. There are so many ways to authenticate a user that the Zend_Auth system is built with the intention that the user will provide his own method if none of the provided solutions are suitable.
 Authentication adapters are provided for HTTP digest, database tables, OpenID, Info-Card, and LDAP. For any other method,
 you must create a class that extends Zend_Auth_Adapter. Fortunately, this is not difficult, as we will see in Chapter 7.

 As Zend_Acl is an implementation of an RBACL system, the manual describes this component in abstract terms. RBACL is a generic system
 that can provide access to anything by anyone, so specific terms are discouraged. Hence, we talk about roles requesting access to resources. A role is anything that may want to access something that is under the protection of the Zend_Acl system. Generally, for a web application, this means that a role is a user group that has been identified using Zend_Auth. A resource is anything that is to be protected. This is generally a record in a database, but could equally be an image file stored
 on disk. As there is such a variety of resources, the Zend_Acl system enables us to create our own very simply by implementing Zend_Acl_Role_Interface within our class.

Internationalization Components

 We live in a multicultural world with multiple languages, so Zend Framework provides a rich set of functionality for localizing
 your applications to match your target users. This covers minor issues, like ensuring that the correct currency symbol is
 used throughout, to full support for changing all the text on the page to the correct language. Date and time routines are also provided with a simple, object-oriented interface, as are settings for the many ways that
 a calendar can be displayed.

 Zend Framework provides the Zend_Locale class, which is responsible, along with Zend_Currency and Zend_Measure, for ensuring that the correct language and idioms are used. The Zend_Translate component is concerned with the actual translation of a website’s text into the desired language.

Interapplication Communication Components

 Zend Framework provides a component to read data from other websites. Zend_Http_Client makes it easy to collect data from other websites and services and then present it on your site. This component works much
 like the curl PHP extension, but it is implemented in PHP and so can be used in situations where curl is not enabled.

 When you need to communicate with another application over HTTP, the most common transfer format is one of two flavors of
 XML: XML-RPC and SOAP. PHP5 contains excellent built-in SOAP support, and Zend Framework provides Zend_XmlRpc_Client to allow for easy processing of XML-RPC. More recently, the lightweight JSON (JavaScript Object Notation) protocol has been
 gaining favor, mainly due to how easy it is to process within the JavaScript of an Ajax application. Zend_Json provides a nice solution to both creating and reading JSON data.

Web Services Components

 Zend Framework provides a rich set of functionality to allow access to services provided by other suppliers. These components
 cover generic RSS feeds along with specific components for working with the public APIs from Google, Yahoo!, and Amazon. RSS
 has come a long way from its niche among the more technologically minded bloggers and is now used by the majority of news
 sites. Zend_Feed provides a consistent interface to reading feeds in the various RSS and Atom versions that are available without having to
 worry about the details.

 Google, Yahoo!, Amazon, and other websites have provided public APIs to their online services in order to encourage developers
 to create extended applications around the core service. For Amazon, the API provides access to the data on amazon.com in
 the hope that the new application will encourage more sales. Similarly, Yahoo! provides API access to its Flickr photo data
 in order to allow additional services for Flickr users, such as the print service provided by moo.com. The traditional Yahoo!
 properties such as search, news, and images are also available. Zend Framework groups these and many more components into
 a set of classes prefixed with Zend_Service. There is Zend_Service_Amazon, Zend_Service_Delicious, Zend_Service_Simpy, Zend_Service_SlideShare, and Zend_Service_Yahoo to name but a few within this family.

 Google has a number of online applications allowing for API access that are supported by the Zend_Gdata component. Zend_Gdata provides access to Google’s Blogger, Calendar, Base, YouTube, and Code Search applications. In order to provide consistency,
 the Zend_Gdata component provides the data using Zend_Feed, so if you can process an RSS feed, you can process Google Calendar data too.

Core Components

 There is a set of other components provided with Zend Framework that do not fit easily into any category, so we have grouped
 them together into the core category. This potpourri of components includes classes for caching, searching, and PDF creation.
 The rather esoteric measurement class is also in this category.

 Everyone wants a faster website, and caching is one tool that can be used to help speed up your site. While it’s not a sexy
 component, the Zend_Cache component provides a generic and consistent interface for caching any data in a variety of backend systems, such as disks,
 databases, or even APC’s shared memory. This flexibility ensures that you can start small with Zend_Cache, and as the load on your site increases, the caching solution can grow to help ensure you get the most out of your server
 hardware.

 Every modern website provides a search facility, but most are so terrible that the site’s users would rather search Google
 than use the site’s own system. Zend_Search_Lucene is based on the Apache Lucene search engine for Java and provides an industrial-strength text-search system that will allow
 your users to find what they are looking for. As required by a good search system, Zend_Search_Lucene supports ranked searching (so that the best results are at the top) along with a powerful query system.

 Another core component is Zend_Pdf, which can create PDF files programmatically. PDF is a very portable format for documents intended for printing. You can
 control the position of everything on the page with pixel-perfect precision, without having to worry about differences in
 the way web browsers render the page. Zend_Pdf

