

 [image: cover]

Storm Applied: Strategies for real-time event processing

 Sean T. Allen, Matthew Jankowski, and Peter Pathirana

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 	Special Sales Department
	Manning Publications Co.
	20 Baldwin Road
	PO Box 761
	Shelter Island, NY 11964
	Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Dan Maharry
Technical development editor Aaron Colcord
Copyeditor: Elizabeth Welch
Proofreader: Melody Dolab
Technical proofreader: Michael Rose
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291890

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Introducing Storm

 Chapter 2. Core Storm concepts

 Chapter 3. Topology design

 Chapter 4. Creating robust topologies

 Chapter 5. Moving from local to remote topologies

 Chapter 6. Tuning in Storm

 Chapter 7. Resource contention

 Chapter 8. Storm internals

 Chapter 9. Trident

 Afterword

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Introducing Storm

 1.1. What is big data?

 1.1.1. The four Vs of big data

 1.1.2. Big data tools

 1.2. How Storm fits into the big data picture

 1.2.1. Storm vs. the usual suspects

 1.3. Why you’d want to use Storm

 1.4. Summary

 Chapter 2. Core Storm concepts

 2.1. Problem definition: GitHub commit count dashboard

 2.1.1. Data: starting and ending points

 2.1.2. Breaking down the problem

 2.2. Basic Storm concepts

 2.2.1. Topology

 2.2.2. Tuple

 2.2.3. Stream

 2.2.4. Spout

 2.2.5. Bolt

 2.2.6. Stream grouping

 2.3. Implementing a GitHub commit count dashboard in Storm

 2.3.1. Setting up a Storm project

 2.3.2. Implementing the spout

 2.3.3. Implementing the bolts

 2.3.4. Wiring everything together to form the topology

 2.4. Summary

 Chapter 3. Topology design

 3.1. Approaching topology design

 3.2. Problem definition: a social heat map

 3.2.1. Formation of a conceptual solution

 3.3. Precepts for mapping the solution to Storm

 3.3.1. Consider the requirements imposed by the data stream

 3.3.2. Represent data points as tuples

 3.3.3. Steps for determining the topology composition

 3.4. Initial implementation of the design

 3.4.1. Spout: read data from a source

 3.4.2. Bolt: connect to an external service

 3.4.3. Bolt: collect data in-memory

 3.4.4. Bolt: persisting to a data store

 3.4.5. Defining stream groupings between the components

 3.4.6. Building a topology for running in local cluster mode

 3.5. Scaling the topology

 3.5.1. Understanding parallelism in Storm

 3.5.2. Adjusting the topology to address bottlenecks inherent within design

 3.5.3. Adjusting the topology to address bottlenecks inherent within a data stream

 3.6. Topology design paradigms

 3.6.1. Design by breakdown into functional components

 3.6.2. Design by breakdown into components at points of repartition

 3.6.3. Simplest functional components vs. lowest number of repartitions

 3.7. Summary

 Chapter 4. Creating robust topologies

 4.1. Requirements for reliability

 4.1.1. Pieces of the puzzle for supporting reliability

 4.2. Problem definition: a credit card authorization system

 4.2.1. A conceptual solution with retry characteristics

 4.2.2. Defining the data points

 4.2.3. Mapping the solution to Storm with retry characteristics

 4.3. Basic implementation of the bolts

 4.3.1. The AuthorizeCreditCard implementation

 4.3.2. The ProcessedOrderNotification implementation

 4.4. Guaranteed message processing

 4.4.1. Tuple states: fully processed vs. failed

 4.4.2. Anchoring, acking, and failing tuples in our bolts

 4.4.3. A spout’s role in guaranteed message processing

 4.5. Replay semantics

 4.5.1. Degrees of reliability in Storm

 4.5.2. Examining exactly once processing in a Storm topology

 4.5.3. Examining the reliability guarantees in our topology

 4.6. Summary

 Chapter 5. Moving from local to remote topologies

 5.1. The Storm cluster

 5.1.1. The anatomy of a worker node

 5.1.2. Presenting a worker node within the context of the credit card authorization topology

 5.2. Fail-fast philosophy for fault tolerance within a Storm cluster

 5.3. Installing a Storm cluster

 5.3.1. Setting up a Zookeeper cluster

 5.3.2. Installing the required Storm dependencies to master and worker nodes

 5.3.3. Installing Storm to master and worker nodes

 5.3.4. Configuring the master and worker nodes via storm.yaml

 5.3.5. Launching Nimbus and Supervisors under supervision

 5.4. Getting your topology to run on a Storm cluster

 5.4.1. Revisiting how to put together the topology components

 5.4.2. Running topologies in local mode

 5.4.3. Running topologies on a remote Storm cluster

 5.4.4. Deploying a topology to a remote Storm cluster

 5.5. The Storm UI and its role in the Storm cluster

 5.5.1. Storm UI: the Storm cluster summary

 5.5.2. Storm UI: individual Topology summary

 5.5.3. Storm UI: individual spout/bolt summary

 5.6. Summary

 Chapter 6. Tuning in Storm

 6.1. Problem definition: Daily Deals! reborn

 6.1.1. Formation of a conceptual solution

 6.1.2. Mapping the solution to Storm concepts

 6.2. Initial implementation

 6.2.1. Spout: read from a data source

 6.2.2. Bolt: find recommended sales

 6.2.3. Bolt: look up details for each sale

 6.2.4. Bolt: save recommended sales

 6.3. Tuning: I wanna go fast

 6.3.1. The Storm UI: your go-to tool for tuning

 6.3.2. Establishing a baseline set of performance numbers

 6.3.3. Identifying bottlenecks

 6.3.4. Spouts: controlling the rate data flows into a topology

 6.4. Latency: when external systems take their time

 6.4.1. Simulating latency in your topology

 6.4.2. Extrinsic and intrinsic reasons for latency

 6.5. Storm’s metrics-collecting API

 6.5.1. Using Storm’s built-in CountMetric

 6.5.2. Setting up a metrics consumer

 6.5.3. Creating a custom SuccessRateMetric

 6.5.4. Creating a custom MultiSuccessRateMetric

 6.6. Summary

 Chapter 7. Resource contention

 7.1. Changing the number of worker processes running on a worker node

 7.1.1. Problem

 7.1.2. Solution

 7.1.3. Discussion

 7.2. Changing the amount of memory allocated to worker processes (JVMs)

 7.2.1. Problem

 7.2.2. Solution

 7.2.3. Discussion

 7.3. Figuring out which worker nodes/processes a topology is executing on

 7.3.1. Problem

 7.3.2. Solution

 7.3.3. Discussion

 7.4. Contention for worker processes in a Storm cluster

 7.4.1. Problem

 7.4.2. Solution

 7.4.3. Discussion

 7.5. Memory contention within a worker process (JVM)

 7.5.1. Problem

 7.5.2. Solution

 7.5.3. Discussion

 7.6. Memory contention on a worker node

 7.6.1. Problem

 7.6.2. Solution

 7.6.3. Discussion

 7.7. Worker node CPU contention

 7.7.1. Problem

 7.7.2. Solution

 7.7.3. Discussion

 7.8. Worker node I/O contention

 7.8.1. Network/socket I/O contention

 7.8.2. Disk I/O contention

 7.9. Summary

 Chapter 8. Storm internals

 8.1. The commit count topology revisited

 8.1.1. Reviewing the topology design

 8.1.2. Thinking of the topology as running on a remote Storm cluster

 8.1.3. How data flows between the spout and bolts in the cluster

 8.2. Diving into the details of an executor

 8.2.1. Executor details for the commit feed listener spout

 8.2.2. Transferring tuples between two executors on the same JVM

 8.2.3. Executor details for the email extractor bolt

 8.2.4. Transferring tuples between two executors on different JVMs

 8.2.5. Executor details for the email counter bolt

 8.3. Routing and tasks

 8.4. Knowing when Storm’s internal queues overflow

 8.4.1. The various types of internal queues and how they might overflow

 8.4.2. Using Storm’s debug logs to diagnose buffer overflowing

 8.5. Addressing internal Storm buffers overflowing

 8.5.1. Adjust the production-to-consumption ratio

 8.5.2. Increase the size of the buffer for all topologies

 8.5.3. Increase the size of the buffer for a given topology

 8.5.4. Max spout pending

 8.6. Tweaking buffer sizes for performance gain

 8.7. Summary

 Chapter 9. Trident

 9.1. What is Trident?

 9.1.1. The different types of Trident operations

 9.1.2. Trident streams as a series of batches

 9.2. Kafka and its role with Trident

 9.2.1. Breaking down Kafka’s design

 9.2.2. Kafka’s alignment with Trident

 9.3. Problem definition: Internet radio

 9.3.1. Defining the data points

 9.3.2. Breaking down the problem into a series of steps

 9.4. Implementing the internet radio design as a Trident topology

 9.4.1. Implementing the spout with a Trident Kafka spout

 9.4.2. Deserializing the play log and creating separate streams for each of the fields

 9.4.3. Calculating and persisting the counts for artist, title, and tag

 9.5. Accessing the persisted counts through DRPC

 9.5.1. Creating a DRPC stream

 9.5.2. Applying a DRPC state query to a stream

 9.5.3. Making DRPC calls with a DRPC client

 9.6. Mapping Trident operations to Storm primitives

 9.7. Scaling a Trident topology

 9.7.1. Partitions for parallelism

 9.7.2. Partitions in Trident streams

 9.8. Summary

 Afterword

 You’re right, you don’t know that

 There’s so much to know

 Metrics and reporting

 Trident is quite a beast

 When should I use Trident?

 Abstractions! Abstractions everywhere!

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 “Backend rewrites are always hard.”

 That’s how ours began, with a simple statement from my brilliant and trusted colleague, Keith Bourgoin. We had been working
 on the original web analytics backend behind Parse.ly for over a year. We called it “PTrack”.

 Parse.ly uses Python, so we built our systems atop comfortable distributed computing tools that were handy in that community,
 such as multiprocessing and celery. Despite our mastery of these, it seemed like every three months, we’d double the amount of traffic we had to handle and
 hit some other limitation of those systems. There had to be a better way.

 So, we started the much-feared backend rewrite. This new scheme to process our data would use small Python processes that
 communicated via ZeroMQ. We jokingly called it “PTrack3000,” referring to the “Python3000” name given to the future version
 of Python by the language’s creator, when it was still a far-off pipe dream.

 By using ZeroMQ, we thought we could squeeze more messages per second out of each process and keep the system operationally
 simple. But what this setup gained in operational ease and performance, it lost in data reliability.

 Then, something magical happened. BackType, a startup whose progress we had tracked in the popular press,[1] was acquired by Twitter. One of the first orders of business upon being acquired was to publicly release its stream processing
 framework, Storm, to the world.

 1 This article, “Secrets of BackType’s Data Engineers” (2011), was passed around my team for a while before Storm was released:
 http://readwrite.com/2011/01/12/secrets-of-backtypes-data-engineers.

 My colleague Keith studied the documentation and code in detail, and realized: Storm was exactly what we needed!

 It even used ZeroMQ internally (at the time) and layered on other tooling for easy parallel processing, hassle-free operations,
 and an extremely clever data reliability model. Though it was written in Java, it included some documentation and examples
 for making other languages, like Python, play nicely with the framework. So, with much glee, “PTrack9000!” (exclamation point
 required) was born: a new Parse.ly analytics backend powered by Storm.

 Nathan Marz, Storm’s original creator, spent some time cultivating the community via conferences, blog posts, and user forums.[2] But in those early days of the project, you had to scrape tiny morsels of Storm knowledge from the vast web.

 2 Nathan Marz wrote this blog post about his early efforts at evangelizing the project in “History of Apache Storm and lessons
 learned” (2014): http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html.

 Oh, how I wish Storm Applied, the book you’re currently reading, had already been written in 2011. Although Storm’s documentation on its design rationale
 was very strong, there were no practical guides on making use of Storm (especially in a production setting) when we adopted
 it. Frustratingly, despite a surge of popularity over the next three years, there were still no good books on the subject
 through the end of 2014!

 No one had put in the significant effort required to detail how Storm components worked, how Storm code should be written,
 how to tune topology performance, and how to operate these clusters in the real world. That is, until now. Sean, Matthew,
 and Peter decided to write Storm Applied by leveraging their hard-earned production experience at TheLadders, and it shows. This will, no doubt, become the definitive
 practitioner’s guide for Storm users everywhere.

 Through their clear prose, illuminating diagrams, and practical code examples, you’ll gain as much Storm knowledge in a few
 short days as it took my team several years to acquire. You will save yourself many stressful firefights, head-scratching
 moments, and painful code re-architectures.

 I’m convinced that with the newfound understanding provided by this book, the next time a colleague turns to you and says,
 “Backend rewrites are always hard,” you’ll be able to respond with confidence: “Not this time.”

 Happy hacking!

 ANDREW MONTALENTI

 COFOUNDER & CTO, PARSE.LY[3]

 3 Parse.ly’s web analytics system for digital storytellers is powered by Storm: http://parse.ly.

 CREATOR OF STREAMPARSE, A PYTHON PACKAGE FOR STORM[4]

 4 To use Storm with Python, you can find the streamparse project on Github: https://github.com/Parsely/streamparse.

Preface

 At TheLadders, we’ve been using Storm since it was introduced to the world (version 0.5.x). In those early days, we implemented
 solutions with Storm that supported noncritical business processes. Our Storm cluster ran uninterrupted for a long time and
 “just worked.” Little attention was paid to this cluster, as it never really had any problems. It wasn’t until we started
 identifying more business cases where Storm was a good fit that we started to experience problems. Contention for resources
 in production, not having a great understanding of how things were working under the covers, sub-optimal performance, and
 a lack of visibility into the overall health of the system were all issues we struggled with.

 This prompted us to focus a lot of time and effort on learning much of what we present in this book. We started with gaining
 a solid understanding of the fundamentals of Storm, which included reading (and rereading many times) the existing Storm documentation,
 while also digging into the source code. We then identified some “best practices” for how we liked to design solutions using
 Storm. We added better monitoring, which enabled us to troubleshoot and tune our solutions in a much more efficient manner.

 While the documentation for the fundamentals of Storm was readily available online, we felt there was a lack of documentation
 for best practices in terms of dealing with Storm in a production environment. We wrote a couple of blog posts based on our
 experiences with Storm, and when Manning asked us to write a book about Storm, we jumped at the opportunity. We knew we had
 a lot of knowledge we wanted to share with the world. We hoped to help others avoid the frustrations and pitfalls we had gone
 through.

 While we knew that we wanted to share our hard-won experiences with running a production Storm cluster—tuning, debugging,
 and troubleshooting—what we really wanted was to impart a solid grasp of the fundamentals of Storm. We also wanted to illustrate
 how flexible Storm is, and how it can be used across a wide range of use cases. We knew ours were just a small sampling of
 the many use cases among the many companies leveraging Storm.

 The result of this is Storm Applied. We’ve tried to identify as many different types of use cases as possible to illustrate how Storm can be used in many scenarios.
 We cover the core concepts of Storm in hopes of laying a solid foundation before diving into tuning, debugging, and troubleshooting
 Storm in production. We hope this format works for everyone, from the beginner just getting started with Storm, to the experienced
 developer who has run into some of the same troubles we have.

 This book has been the definition of teamwork, from everyone who helped us at Manning to our colleagues at TheLadders, who
 very patiently and politely allowed us to test our ideas early on.

 We hope you are able to find this book useful, no matter your experience level with Storm. We have enjoyed writing it and
 continue to learn more about Storm every day.

Acknowledgments

 We would like to thank all of our coworkers at TheLadders who provided feedback. In many ways, this is your book. It’s everything
 we would want to teach you about Storm to get you creating awesome stuff on our cluster.

 We’d also like to thank everyone at Manning who was a part of the creation of this book. The team there is amazing, and we’ve
 learned so much about writing as a result of their knowledge and hard work. We’d especially like to thank our editor, Dan
 Maharry, who was with us from the first chapter to the last, and who got to experience all our first-time author growing pains,
 mistakes, and frustrations for months on end.

 Thank you to all of the technical reviewers who invested a good amount of their personal time in helping to make this book
 better: Antonios Tsaltas, Eugene Dvorkin, Gavin Whyte, Gianluca Righetto, Ioamis Polyzos, John Guthrie, Jon Miller, Kasper
 Madsen, Lars Francke, Lokesh Kumar, Lorcon Coyle, Mahmoud Alnahlawi, Massimo Ilario, Michael Noll, Muthusamy Manigandan, Rodrigo
 Abreau, Romit Singhai, Satish Devarapalli, Shay Elkin, Sorbo Bagchi, and Tanguy Leroux. We’d like to single out Michael Rose
 who consistently provided amazing feedback that led to him becoming the primary technical reviewer.

 To everyone who has contributed to the creation of Storm: without you, we wouldn’t have anything to tune all day and write
 about all night! We enjoy working with Storm and look forward to the evolution of Storm in the years to come.

 We would like to thank Andrew Montalenti for writing a review of the early manuscript in MEAP (Manning Early Access Program)
 that gave us a good amount of inspiration and helped us push through to the end. And that foreword you wrote: pretty much
 perfect. We couldn’t have asked for anything more.

 And lastly, Eleanor Roosevelt, whose famously misquoted inspirational words, “America is all about speed. Hot, nasty, badass
 speed,” kept us going through the dark times when we were learning Storm.

 Oh, and all the little people. If there is one thing we’ve learned from watching awards shows, it’s that you have to thank
 the little people.

Sean Allen

 Thanks to Chas Emerick, for not making the argument forcefully enough that I probably didn’t want to write a book. If you
 had made it better, no one would be reading this now. Stephanie, for telling me to keep going every time that I contemplated
 quitting. Kathy Sierra, for a couple of inspiring Twitter conversations that reshaped my thoughts on how to write a book.
 Matt Chesler and Doug Grove, without whom chapter 7 would look rather different. Everyone who came and asked questions during the multiple talks I did at TheLadders; you helped
 me to hone the contents of chapter 8. Tom Santero, for reviewing the finer points of my distributed systems scribbling. And Matt, for doing so many of the things
 required for writing a book that I didn’t like doing.

Matthew Jankowski

 First and foremost, I would like to thank my wife, Megan. You are a constant source of motivation, have endless patience,
 and showed unwavering support no matter how often writing this book took time away from family. Without you, this book wouldn’t
 get completed. To my daughter, Rylan, who was born during the writing of this book: I would like to thank you for being a
 source of inspiration, even though you may not realize it yet. To all my family, friends, and coworkers: thank you for your
 endless support and advice. Sean and Peter: thank you for agreeing to join me on this journey when this book was just a glimmer
 of an idea. It has indeed been a long journey, but a rewarding one at that.

About this Book

 With big data applications becoming more and more popular, tools for handling streams of data in real time are becoming more
 important. Apache Storm is a tool that can be used for processing unbounded streams of data.

 Storm Applied isn’t necessarily a book for beginners only or for experts only. Although understanding big data technologies and distributed
 systems certainly helps, we don’t necessarily see these as requirements for readers of this book. We try to cater to both
 the novice and expert. The initial goal was to present some “best practices” for dealing with Storm in a production environment.
 But in order to truly understand how to deal with Storm in production, a solid understanding of the fundamentals is necessary.
 So this book contains material we feel is valuable for engineers with all levels of experience.

 If you are new to Storm, we suggest starting with chapter 1 and reading through chapter 4 before you do anything else. These chapters lay the foundation for understanding the concepts in the chapters that follow.
 If you are experienced with Storm, we hope the content in the later chapters proves useful. After all, developing solutions
 with Storm is only the start. Maintaining these solutions in a production environment is where we spend a good percentage
 of our time with Storm.

 Another goal of this book is to illustrate how Storm can be used across a wide range of use cases. We’ve carefully crafted
 these use cases to illustrate certain points. We hope the contrived nature of some of the use cases doesn’t get in the way
 of the points we are trying to make. We attempted to choose use cases with varying levels of requirements around speed and
 reliability in the hopes that at least one of these cases may be relatable to a situation you have with Storm.

 The goal of this book is to focus on Storm and how it works. We realize Storm can be used with many different technologies:
 various message queue implementations, database implementations, and so on. We were careful when choosing what technologies
 to introduce in each of our use case implementations. We didn’t want to introduce too many, which would take the focus away
 from Storm and what we are trying to teach you with Storm. As a result, you will see that each implementation uses Java. We
 could have easily used a different language for each use case, but again, we felt this would take away from the core lessons
 we’re trying to teach. (We actually use Scala for many of the topologies we write.)

Roadmap

 Chapter 1 introduces big data and where Storm falls within the big data picture. The goal of this chapter is to provide you with an
 idea of when and why you would want to use Storm. This chapter identifies some key properties of big data applications, the
 various types of tools used to process big data, and where Storm falls within the gamut of these tools.

 Chapter 2 covers the core concepts in Storm within the context of a use case for counting commits made to a GitHub repository. This
 chapter lays the foundation for being able to speak in Storm-specific terminology. In this chapter we introduce you to your
 first bit of code for building Storm projects. The concepts introduced in this chapter will be referenced throughout the book.

 Chapter 3 covers best practices for designing Storm topologies, showing you how to decompose a problem to fit Storm constructs within
 the context of a social heat map application. This chapter also discusses working with unreliable data sources and external
 services. In this chapter we introduce the first bits of parallelism that will be the core topic of later chapters. This chapter
 concludes with a higher-level discussion of the different ways to approach topology design.

 Chapter 4 discusses Storm’s ability to guarantee messages are processed within the context of a credit card authorization system. We
 identify how Storm is able to provide these guarantees, while implementing a solution that provides varying degrees of reliability.
 This chapter concludes with a discussion of replay semantics and how you can achieve varying degrees of reliability in your
 Storm topologies.

 Chapter 5 covers the Storm cluster in detail. We discuss the various components of the Storm cluster, how a Storm cluster provides
 fault tolerance, and how to install a Storm cluster. We then discuss how to deploy and run your topologies on a Storm cluster
 in production. The remainder of the chapter is devoted to explaining the various parts of the Storm UI, as the Storm UI is
 frequently referenced in the chapters that follow.

 Chapter 6 presents a repeatable process for tuning a Storm topology within the context of a flash sales use case. We also discuss latency
 in dealing with external systems and how this can affect your topologies. We end the chapter with a discussion of Storm’s
 metrics-collecting API and how to build your own custom metrics.

 Chapter 7 covers various types of contention that may occur in a Storm cluster where you have many topologies running at once. We discuss
 contention for resources within a single topology, contention for system resources between topologies, and contention for
 system resources between Storm and other processes, such as the OS. This chapter is meant to get you to be mindful of the
 big picture for your Storm cluster.

 Chapter 8 provides you with a deeper understanding of Storm so you can debug unique problems you may come across on your own. We dive
 under the covers of one of Storm’s central units of parallelization, executors. We also discuss many of the internal buffers
 Storm uses, how those buffers may overflow, and tuning those buffers. We end the chapter with a discussion of Storm’s debug
 log-out.

 Chapter 9 covers Trident, the high-level abstraction that sits on top of Storm, within the context of developing an internet radio
 application. We explain why Trident is useful and when you might want to use it. We compare a regular Storm topology with
 a Trident topology in order to illustrate the difference between the two. This chapter also touches on Storm’s distributed
 remote procedure calls (DRPC) component and how it can be used to query state in a topology. This chapter ends with a complete
 Trident topology implementation and how this implementation might be scaled.

Code downloads and conventions

 The source code for the example application in this book can be found at https://github.com/Storm-Applied. We have provided source code for the following chapters:

 	
Chapter 2, GitHub commit count

 	
Chapter 3, social heat map

 	
Chapter 4, credit card authorization

 	
Chapter 6, flash sale recommender

 	
Chapter 9, internet radio play-log statistics

 Much of the source code is shown in numbered listings. These listings are meant to provide complete segments of code. Some
 listings are annotated to help highlight or explain certain parts of the code. In other places throughout the text, code fragments
 are used when necessary. Courier typeface is used to denote code for Java, XML, and JSON. In both the listings and fragments, we make use of a bold code font to help identify key parts of the code that are being explained in the text.

Software requirements

 The software requirements include the following:

 	The solutions were developed against Storm 0.9.3.

 	All solutions were written in Java 6.

 	The solutions were compiled and packaged with Maven 3.2.0.

Author Online

 Purchase of Storm Applied includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access the forum and subscribe to it, point your web browser
 to www.manning.com/StormApplied. This Author Online (AO) page provides information on how to get on the forum once you’re registered, what kind of help is
 available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions,
 lest their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book
 is in print.

About the Cover Illustration

 The figure on the cover of Storm Applied is captioned “Man from Konavle, Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of traditional
 Croatian costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia,
 in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in
 the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
 The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of
 the costumes and of everyday life.

 Konavle is a small region located southeast of Dubrovnik, Croatia. It is a narrow strip of land picturesquely tucked in between
 Snijeznica Mountain and the Adriatic Sea, on the border with Montenegro. The figure on the cover is carrying a musket on his
 back and has a pistol, dagger, and scabbard tucked into his wide colorful belt. From his vigilant posture and the fierce look
 on his face, it would seem that he is guarding the border or on the lookout for poachers. The most interesting parts of his
 costume are the bright red socks decorated with an intricate black design, which is typical for this region of Dalmatia.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Chapter 1. Introducing Storm

 This chapter covers

 	What Storm is

 	The definition of big data

 	Big data tools

 	How Storm fits into the big data picture

 	Reasons for using Storm

 Apache Storm is a distributed, real-time computational framework that makes processing unbounded streams of data easy. Storm
 can be integrated with your existing queuing and persistence technologies, consuming streams of data and processing/transforming
 these streams in many ways.

 Still following us? Some of you are probably feeling smart because you know what that means. Others are searching for the
 proper animated GIF to express your level of frustration. There’s a lot in that description, so if you don’t grasp what all
 of it means right now, don’t worry. We’ve devoted the remainder of this chapter to clarifying exactly what we mean.

 To appreciate what Storm is and when it should be used, you need to understand where Storm falls within the big data landscape.
 What technologies can it be used with? What technologies can it replace? Being able to answer questions like these requires some context.

1.1. What is big data?

 To talk about big data and where Storm fits within the big data landscape, we need to have a shared understanding of what
 “big data” means. There are a lot of definitions of big data floating around. Each has its own unique take. Here’s ours.

 1.1.1. The four Vs of big data

 Big data is best understood by considering four different properties: volume, velocity, variety, and veracity.[1]

 1 http://en.wikipedia.org/wiki/Big_data

Volume

 Volume is the most obvious property of big data—and the first that comes to most people’s minds when they hear the term. Data
 is constantly being generated every day from a multitude of sources: data generated by people via social media, data generated
 by software itself (website tracking, application logs, and so on), and user-generated data, such as Wikipedia, only scratch
 the surface of sources of data.

 When people think volume, companies such as Google, Facebook, and Twitter come to mind. Sure, all deal with enormous amounts
 of data, and we’re certain you can name others, but what about companies that don’t have that volume of data? There are many
 other companies that, by definition of volume alone, don’t have big data, yet these companies use Storm. Why? This is where
 the second V, velocity, comes into play.

Velocity

 Velocity deals with the pace at which data flows into a system, both in terms of the amount of data and the fact that it’s
 a continuous flow of data. The amount of data (maybe just a series of links on your website that a visitor is clicking on)
 might be relatively small, but the rate at which it’s flowing into your system could be rather high. Velocity matters. It
 doesn’t matter how much data you have if you aren’t processing it fast enough to provide value. It could be a couple terabytes;
 it could be 5 million URLs making up a much smaller volume of data. All that matters is whether you can extract meaning from
 this data before it goes stale.

 So far we have volume and velocity, which deal with the amount of data and the pace at which it flows into a system. In many
 cases, data will also come from multiple sources, which leads us to the next V: variety.

Variety

 For variety, let’s step back and look at extracting meaning from data. Often, that can involve taking data from several sources
 and putting them together into something that tells a story. When you start, though, you might have some data in Google Analytics,
 maybe some in an append-only log, and perhaps some more in a relational database. You need to bring all of these together
 and shape them into something you can work with to drill down and extract meaningful answers from questions such as the following:

 	Q: Who are my best customers?

 	A: Coyotes in New Mexico.

 	Q: What do they usually purchase?

 	A: Some paint but mostly large heavy items.

 	Q: Can I look at each of these customers individually and find items others have liked and market those items to them?

 	A: That depends on how quickly you can turn your variety of data into something you can use and operate on.

 As if we didn’t have enough to worry about with large volumes of data entering our system at a quick pace from a variety of
 sources, we also have to worry about how accurate that data entering our system is. The final V deals with this: veracity.

Veracity

 Veracity involves the accuracy of incoming and outgoing data. Sometimes, we need our data to be extremely accurate. Other
 times, a “close enough” estimate is all we need. Many algorithms that allow for high fidelity estimates while maintaining
 low computational demands (like hyperloglog) are often used with big data. For example, determining the exact mean page view
 time for a hugely successful website is probably not required; a close-enough estimate will do. These trade-offs between accuracy
 and resources are common features of big data systems.

