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How to Use This Book

Painless calculus? It is not as impossible as you might think. I believe that anyone can learn to love and appreciate one of the most challenging topics in mathematics. I have been teaching math for over 15 years. Math has its own language. Once you understand the language and can visualize the calculus concepts, you too will see that calculus really is painless.

Painless Icons and Features

This book is designed with several unique features to help make learning calculus easy.

    [image: images] PAINLESS TIP

You will see Painless Tips throughout the book. These include helpful tips, hints, and strategies on the surrounding topics.

    [image: images] CAUTION—Major Mistake Territory!

Caution boxes will help you avoid common pitfalls or mistakes. Be sure to read them carefully.

    [image: images] MATH TALK!

These boxes translate “math talk” into plain English to make it even easier to understand calculus.

    [image: images] REMINDER

Reminders will call out information that is important to remember. Each reminder will relate to the current chapter or will reference key information you learned in a previous chapter.

[image: images] BRAIN TICKLERS

There are brain ticklers throughout each chapter in the book. These quizzes are designed to make sure you understand what you’ve just learned and to test your progress as you move forward in the chapter. Complete all the Brain Ticklers and check your answers. If you get any wrong, make sure to go back and review the topics associated with the questions you missed.

PAINLESS STEPS

Complex procedures are divided into a series of painless steps. These steps help you solve problems in a systematic way. Follow the steps carefully, and you’ll be able to solve most calculus problems.

EXAMPLES

Most topics include examples with solutions. If you are having trouble, research shows that writing or copying the problem may help you understand it.

Chapter Breakdown

Chapter One is titled “Limits and Continuity” and serves as an introduction to the building blocks of calculus. Limits allow us to discover one of the major branches of calculus. Limits help us get out of trouble when we are evaluating what seems to be impossible.



Chapter Two discusses one of the major branches of calculus, differentiation. In this chapter, you will learn the different meanings of a derivative and how to use limits to calculate the derivative at a point and the derivative function.



Chapter Three will become your new best friend. In this chapter, you will learn all of the derivative shortcut rules to make finding derivatives faster and easier.



Chapter Four is where you will learn to apply your newfound derivative rules. The derivative has many different meanings and uses. A lot of the math you have learned in the past makes a return, and calculus is there to help explain why it works!



Chapter Five is the other major branch of calculus, antidifferentiation. Think of it as the opposite of differentiation. In this chapter, you will learn that an antiderivative is an integral. Then you will discover all the different integration shortcut techniques.



Chapter Six is much like Chapter Four, where you will gain a deeper understanding of integrals and what they represent. This will get you in tip-top shape for their applications in the next chapter.



Chapter Seven will put your understanding of integrals to the test when it explores the many different applications of antidifferentiation. Many of the three-dimensional formulas you learned in geometry come back to light as this chapter will show you how calculus can find areas and volumes of some pretty wacky shapes. You will also leave with a new appreciation for finding the distance between two points.



Chapter Eight is a great way to tie up loose ends from previous chapters. This is where the connection between derivatives and integrals comes to light. You will discover how well they work together and the amazing connections they have. Be sure to get your pencil and paper ready, and don’t be afraid to show off your graphing skills!



If you are learning calculus for the first time or if you are trying to remember what you have learned but may have forgotten, this book is for you. It is a painless introduction to calculus that is both explicit and instructive. Turn forward to the first page. There’s nothing to be afraid of. Remember: calculus is painless.





 


Chapter 1


Limits and Continuity

The concept of a limit plays a vital role in calculus. A limit will help to evaluate expressions that normally would be undefined or indeterminate.


[image: images] MATH TALK!

An expression can be undefined in a few ways, such as a 0 in the denominator or approaching ±∞. Indeterminate is different from undefined. Indeterminate means the expression may still have a value, but alternative methods of solution need to be implemented. Indeterminate forms may be [image: images], and others.



Definition of a Limit

Given a function f (x), the limit of f (x) as x approaches c is a real number L if f (x) can be made arbitrarily close to L by having x approach close to c (but not equal to c).



This is notated in the table below.




	Notation

	Read as




	[image: images]

	The limit as x approaches c of f (x) equals L






If the limit equals a value L, the limit exists. It is understood that the values of f (x) approach L as x approaches c from the left and from the right.



This is notated in the table below.




	Notation

	Read as




	[image: images]

	The limit as x approaches c from the left of f (x) equals L




	[image: images]

	The limit as x approaches c from the right of f (x) equals L







[image: images] MATH TALK!

Evaluating a limit from the left means that the x-values are arbitrarily close to c but less than c. Evaluating a limit from the right means that the x-values are arbitrarily close to c but greater than c.

For example, consider the table of values below for f (x) = x2.

[image: images]

The [image: images] because starting on the left of the table and as x moves closer to 3, f (x) is approaching 9. Similarly, starting on the right of the table and as x moves closer to 3, f (x) is approaching 9.



Evaluating limits is painless. In addition to looking at a table of values as shown above, another way to evaluate a limit is by looking at the graph of f (x).

Graphic Approach to Limits

If you are given the graph of f (x) or if you have access to a graphing calculator, you can evaluate the limit graphically using a visual approach. Anytime a limit is being evaluated, it must be checked coming from the left and right directions. Only if the left-hand and right-hand limits equal each other does the limit exist.



[image: images] PAINLESS TIP

When applying the graphic approach to evaluating limits, use your finger to trace along the graph until you arrive at the specific x-value you are trying to approximate. When coming from the left, start all the way at the left end of the graph and move to the right. When coming from the right, start all the way at the right end of the graph and move to the left. If the function values from both sides are equal, the limit exists. Alternatively, if the function values coming from the two sides do not equal each other, the limit does not exist.

[image: images]



Example 1:

Using the graph below, evaluate the following limits. If the value does not exist, write DNE:

[image: images]

[image: images]


[image: images] CAUTION—Major Mistake Territory!

It is common in the beginning to confuse the concept of a limit with a function value. The [image: images] is not necessarily the same as f (a). When evaluating limits graphically, an open circle at an x-value does not necessarily mean that the limit does not exist even though the function value does not exist. In Example 1, the [image: images] exists and is equal to 2 even though it is approaching an open circle. However, f (1) ≠ 2 since there is an open circle there and, instead, f (1) = 1.5.



Example 2:

For the function g (x) graphed here, find the following limits or explain why they do not exist.

[image: images]

1.[image: images]

2.[image: images]

3.[image: images]

Solution:

1.[image: images] does not exist because [image: images] and [image: images]. Since the left-hand limit does not equal the right-hand limit, the limit does not exist.

2.[image: images] because [image: images] and [image: images]. Since the left-hand limit equals the right-hand limit, the limit does exist and is 1.

3.[image: images] because [image: images] and [image: images]. Since the left-hand limit equals the right-hand limit, the limit does exist and is 0.

Graphic Approach to Limits at Infinity

The symbol ∞ is used to represent infinity. Infinity is the idea of something unlimited or without bound, meaning without boundaries. Infinity can appear in limits in two ways: as what x is approaching or what the function approaches.



You are given the graph of [image: images]. The behavior of the graph is interesting at x = 0 since f (0) does not exist. However, by evaluating the limit as x approaches 0, the behavior of the graph can be understood in more detail.

[image: images]

The [image: images]. By starting on the left and tracing along the graph until x gets close to zero, our finger moves upward without bound. In other words, [image: images]. The same thing happens when starting on the right and tracing along the graph until x gets close to zero: [image: images]. Since both limits match, [image: images]. Because the limit approaches positive infinity at this value, the graph has a vertical asymptote at x = 0. Since infinity is not a value, [image: images] can also be answered as does not exist. However, using infinity is a more specific answer and allows for a better understanding of the graph.

Example 3:

Given the graph of [image: images], find the following limits.



1.[image: images]

2.[image: images]

3.[image: images]

[image: images]

Solution:



1.[image: images] because starting all the way on the left and tracing the graph until x gets close to zero, our finger moves downward without bound.

2.[image: images] because starting all the way on the right and tracing the graph until x gets close to zero, our finger moves upward without bound.

3.[image: images] does not exist because the left-hand limit and the right-hand limit go in two different directions. However, there still exists a vertical asymptote at x = 0.


[image: images] REMINDER

If the [image: images], there exists a vertical asymptote at x = a and vice versa.



Although infinity is not a real number value, limits can still be evaluated as x approaches either positive or negative infinity.



Let’s return to the graph of [image: images]. As x decreases without bound, g(x) approaches 0. This means that [image: images].

Similarly, as x increases without bound, g(x) approaches 0. This means that [image: images]. Graphically, g(x) has a horizontal asymptote at y = 0, which is the same value of each of the limits.

[image: images]

Example 4:

Given the graph of [image: images], evaluate the following limits.



1.[image: images]

2.[image: images]

3.What do the above limits imply about the graph of f (x)?

[image: images]

Solution:

1.[image: images]. By starting in the middle of the graph and tracing along the graph to the left where x decreases without bound, f (x) approaches 3.

2.[image: images]. By starting in the middle of the graph and tracing along the graph to the right where x increases without bound, f (x) approaches 3.

3.Since the limits of f (x) as x approaches ±∞ are 3, there exists a horizontal asymptote at y = 3.


[image: images] REMINDER

If the [image: images], there exists a horizontal asymptote at y = a and vice versa.



[image: images] BRAIN TICKLERSSet # 1

Using the graph of f (x), evaluate the following limits.

[image: images]

1.[image: images]

2.[image: images]

3.[image: images]

4.[image: images]

(Answers are on page 34.)

So far, a limit does not exist if it approaches infinity or if the left-hand and right-hand limits are not equal. Additionally, a limit will not exist if the graph is oscillating in such a way that it is impossible to determine the value the function is approaching.



Consider the graph of f (x) = sin x.

[image: images]

Limits can be evaluated at specific x-values, such as [image: images] and [image: images]. However, the behavior of the function as x increases or decreases without bound is unable to be determined since the function continuously oscillates between –1 and 1.



Therefore, [image: images] does not exist. Another graph to consider is [image: images]. The [image: images] does not exist since the graph is rapidly oscillating as x approaches 0 from both the left and right sides.

[image: images]

Look at the table of values for g (x). As x gets closer to 0 from both the left and right sides, the function values are oscillating from negative to positive so quickly that no common y-value is being approached.


[image: images] REMINDER

There are three cases where a limit does not exist:

1.The left-hand limit does not equal the right-hand limit: [image: images].

2.The limit approaches positive or negative infinity: [image: images].

3.The graph of the function is oscillating or periodic.



Properties of Limits

There are nine limit properties to learn and apply when evaluating limits algebraically. Let a, k, and n represent real numbers.

Property 1: The limit of a constant, k, is equal to that constant.



[image: images]

Property 2: The limit of the identity function, f (x) = x, is equal to the x-value the limit is approaching.



[image: images]

Property 3: The limit of the reciprocal function, [image: images], as x decreases or increases without bound is equal to 0.

[image: images]

Property 4: The limit of the sum or difference of two or more functions is equal to the sum or difference of the limits of the functions.

[image: images]

Property 5: The limit of the product of two or more functions is equal to the product of the limits of the functions.

[image: images]

Property 6: The limit of the quotient of two functions is equal to the quotient of the limits of the functions if the limit of the denominator is not equal to zero.

[image: images]

Property 7: The limit of a power of a function is equal to the power of the limit.

[image: images]

Property 8: The limit of a root of a function is equal to the root of the limit provided that the limit of the function is nonnegative if the root is even.

[image: images]

Property 9: The limit of a constant, k, multiplied by a function is equal to the constant multiplied by the limit of the function.



[image: images]

Example 5:

If [image: images] and [image: images], evaluate the following.



1.[image: images]

2.[image: images]

Solution:



1.[image: images] by Property 4

= 7 + 5 by Property 1 and by substituting the given information

= 12.

2.[image: images] by Property 6

= [image: images] by substituting the given information and by Property 2.

Example 6:

Using limit properties, evaluate [image: images].

Solution:

Using Property 4, find the limit of each of the terms in the sum and difference.

[image: images]

Rewrite by applying Property 7 and Property 9.

[image: images]

Evaluate the limit using Property 1 and Property 2.

(5)2 – 4(5) + 3 = 8

As shown in Example 6, the limit of any polynomial function is equal to the function evaluated at the x-value. If f (x) = x2 – 4x + 3, then f (5) = (5)2 – 4(5) + 3 = 8. This is the same value as [image: images]. This would also be true for rational functions.


[image: images] MATH TALK!

If f (x) is a polynomial function, [image: images].

In other words, when evaluating the limit of a polynomial function, substitute the x-value into the function and simplify.

Similarly, if a rational function, h(x), is the ratio of two polynomial functions, f (x) and g(x), [image: images] as long as g(a) ≠ 0.

In other words, when evaluating the limit of a rational function, substitute the x-value into the functions of the numerator and denominator and then simplify.



Example 7:

Evaluate [image: images].

Solution:

Since the limit is of a rational function, substitute 0 for t into the numerator and denominator and then simplify:

[image: images]

[image: images] BRAIN TICKLERSSet # 2

Evaluate the following limits.



1.[image: images]

2.[image: images]

3.[image: images]

4.[image: images]

(Answers are on page 34.)

Algebraic Approach to Limits

Evaluating limits algebraically is painless. There are three steps to evaluating the limit of a function algebraically.



Step 1: Separate the limit into the left-hand and right-hand limits if necessary.

Step 2: Apply the appropriate limit properties.

Step 3: Simplify.



Piecewise functions are different from polynomial and rational functions. It is important to consider the left-hand and right-hand limits for piecewise functions.

Example 8:

Given [image: images], evaluate the following.



1.[image: images]

2.[image: images]

3.[image: images]

Solution:



1.Since [image: images] has x approaching –2, which is on the boundary of two different functions, it is necessary to split the limit into the left-hand and right-hand limits and to use the appropriate functions for each side.



[image: images]



Since [image: images] does not exist, [image: images] does not exist.

2.Since [image: images] has x approaching 0, which is in the interval of the middle polynomial function, it is not necessary to split the limit into the left-hand and right-hand limits.

The [image: images].

3.Since [image: images] has x approaching 3, which is on the boundary of two different functions, it is necessary to split the limit into the left-hand and right-hand limits and to use the appropriate functions for each side.



[image: images]



Since [image: images], then [image: images].

The limits can be verified by using the graph of the piecewise function as well.

[image: images]

Sometimes when limits are evaluated algebraically, the answers are indeterminate. These can take on various forms, such as [image: images]. If this occurs, different algebraic techniques need to be used in order to determine if the limit exists.


[image: images] CAUTION—Major Mistake Territory!

If a limit simplifies to [image: images], it is not equivalent to 0 or 1. This is indeterminant, meaning that the limit may or may not exist and a different algebraic technique must be used to evaluate the limit.



If evaluating a limit of a rational function yields an indeterminate form, try factoring the numerator and denominator and remove any common factors. Then evaluate the limit again.

Example 9:

Evaluate [image: images].

Solution:

[image: images]

This is indeterminate. Since it is a rational function, an alternative method is to factor the numerator and denominator to see if any common factors can be removed.

[image: images]

By removing the common factor (x – 3), the limit simplifies to [image: images].

Example 10:

Evaluate [image: images].

Solution:

[image: images]

This is indeterminate. Since it is a rational function, an alternative method is to factor the numerator and denominator to see if any common factors can be removed.

[image: images]

By removing the common factor (x – 5), the limit simplifies to [image: images]. So, the limit does not exist.

[image: images] BRAIN TICKLERSSet # 3

1.If [image: images], evaluate [image: images].

2.Evaluate [image: images].

3.Evaluate [image: images].

4.Evaluate [image: images].

(Answers are on page 34.)

Finding the limits of radical expressions involves the use of Property 8.

Example 11:

Evaluate [image: images].

Solution:

Use Property 8.

[image: images]

Sometimes rational expressions involve radicals. When the limit is indeterminate, another technique must be used. For instance, you can often multiply the rational expression by the conjugate of either the numerator or denominator, whichever one has the radical in the expression.

Example 12:

Evaluate [image: images].

Solution:

[image: images]

This is indeterminate. Since this is a rational expression with a radical binomial in the denominator, multiply the numerator and denominator by the conjugate of the denominator. After multiplying, remove any common factors.

[image: images]

After removing the common factor (x – 1), the limit simplifies to [image: images].


[image: images] PAINLESS TIP

When multiplying by the conjugate, it is necessary to multiply only the conjugate expressions together. In Example 12, only the conjugates were multiplied together and not the terms in the numerator. Leaving the numerator as a product made it easier to see the common factors.



Example 13:

Find [image: images].



Solution:

[image: images]

This is indeterminate. Since this is a rational expression with a radical binomial in the numerator, multiply the numerator and denominator by the conjugate of the numerator. After multiplying, remove any common factors.

[image: images]

After removing the common factor (x + 1), the limit simplifies to [image: images].


[image: images] CAUTION—Major Mistake Territory!

Whether the radical binomial expression is in the denominator or is in the numerator does not matter. In the past, multiplying conjugates was to rationalize the denominator of an expression. When evaluating limits, the radical binomial can appear in either the numerator or denominator.



Limits for other functions like exponential, logarithmic, and trigonometric follow the limit properties as well and can often be evaluated simply by substituting in the value x is approaching. Graphing the function to evaluate the limit is also a good way to verify answers.

Example 14:

Evaluate the following limits.



1.[image: images]

2.[image: images]

3.[image: images]

Solution:

1.[image: images]

2.[image: images]

3.[image: images]



Two important trigonometric limits help to evaluate limits algebraically:

1.[image: images]

2.[image: images]


[image: images] MATH TALK!

The first trigonometric limit can further extend to the following: [image: images], where a is a constant not equal to zero.



Example 15:

Evaluate the following limits:

1.[image: images]

2.[image: images]

3.[image: images]

4.[image: images]

Solution:

1.[image: images] by expanding the fraction. Use Property 4.

[image: images]

2.[image: images]

3.[image: images], which is indeterminate. Since [image: images], use substitution.

[image: images]

4.[image: images] looks like the trigonometric limit [image: images]. Divide the numerator and denominator by x.

[image: images]

[image: images] BRAIN TICKLERSSet # 4



Evaluate each of the following limits.

1.[image: images]

2.[image: images]

3.[image: images]

4.[image: images]

(Answers are on page 34.)

Algebraic Approach to Limits at Infinity

Limits approaching positive or negative infinity and limits that result in infinity can also be found through algebraic means.



When taking the limit as x approaches ±∞ of a polynomial function, the end behavior of the function is being evaluated. No matter how many terms the polynomial function has, the end behavior will depend on the leading coefficient of the term with the highest power, or degree. To evaluate the limit of a polynomial function as x approaches either ±∞, determine if the leading coefficient of the polynomial is either positive or negative and determine if the degree is either even or odd. This leads to four possible scenarios as explained in the table below.

[image: images]

This behavior can easily be identified in two of our parent functions, f (x) = x2 and g(x) = x3.



For f (x) = x2, the leading coefficient (1) is positive and the degree (2) is even. As seen in the accompanying figure, [image: images].

[image: images]

For g(x) = x3, the leading coefficient (1) is positive and the degree (3) is odd. As seen in the accompanying figure, [image: images] and [image: images].

[image: images]

Example 16:

Given p(x) = –2x3 – 7x2 – 4x + 6, evaluate [image: images] and [image: images]. Confirm your answer graphically.

Solution:

When evaluating limits for a polynomial function as x approaches ±∞, refer to the function’s end behavior. Since the leading coefficient of p(x) is –2, which is negative, and since the degree of p(x) is 3, which is odd, the graph will rise on the left and fall on the right.



This means [image: images].

Confirm graphically:

[image: images]

Rational functions have their own type of infinite limit behavior, which is illustrated in the table below.



[image: images]



Not all rational functions will have constants in the numerator and, instead, are a ratio of polynomial functions. If this is the case, evaluating rational functions as x approaches infinity is painless. Follow these two steps.



Step 1: Identify the degree of the numerator and denominator.

Step 2: Compare the degrees.

•If the degree in the numerator is less than the degree in the denominator, the limit is equal to 0.

•If the degrees are equal, the limit is equal to the ratio of the leading coefficients.

•If the degree in the numerator is greater than the degree in the denominator, the limit does not exist.

Example 17:

Evaluate the following limits.



1.[image: images]

2.[image: images]

3.[image: images]

Solution:

1.For [image: images], the degree of the numerator is 2 and the degree of the denominator is 3. Since 2 < 3, [image: images].

2.For [image: images], the degree of the numerator is 1 and the degree of the denominator is 1. Since 1 = 1, [image: images].

3.For [image: images], the degree of the numerator is 3 and the degree of the denominator is 1. Since 3 > 1, [image: images] does not exist or, more specifically, approaches –∞.

Example 18:

Evaluate [image: images].

Solution:

Using Property 8, [image: images]. Since the degrees of the numerator and denominator both equal 2, [image: images].

[image: images] BRAIN TICKLERSSet # 5

Evaluate each of the following limits.

1.[image: images]

2.[image: images]

3.[image: images]

4.[image: images]

(Answers are on page 34.)

Exponential and logarithmic functions have their own infinite limit behaviors as shown in the table below.



[image: images]

Another interesting function is the absolute value function, [image: images]. The absolute value function can also be written as a piecewise function:

[image: images]


[image: images] MATH TALK!

Think of the absolute value of x as two different pieces of two different functions. On the left it behaves like f (x) = –x, and on the right it behaves like f (x) = +x.



Absolute value functions have their own infinite limit behaviors as shown in the table below.

[image: images]

Example 19:

If [image: images], find [image: images].

Solution:

Rewrite f (x) as a piecewise function.

[image: images]

This simplifies to [image: images]. At x = 0, the graph is undefined.



To evaluate [image: images], consider the left-hand and right-hand limits. The [image: images] and [image: images]. Since the two limits do not equal, [image: images] does not exist. This can be confirmed graphically.

[image: images]

[image: images] BRAIN TICKLERSSet # 6

Evaluate each of the following limits.

1.[image: images]

2.[image: images]

3.[image: images]

4.[image: images]

(Answers are on page 34.)

Continuity

For a function, f (x), to be continuous at a point where x = a, three conditions must be met.



1.The limit must exist for some real number L.

[image: images]

2.The function value must exist for some real number L.

f (a) = L

3.The limit and the function value must be equal.

[image: images]



If any of the three criteria are not met, the function is discontinuous (not continuous) at that point.



The graph of y = f (x) below displays two different types of discontinuities.

[image: images]

At x = 2 and at x = 3, the function has a removable discontinuity. At each point, the limit exists. However, the function value either does not exist, like at x = 3, or the function value does not equal the limit value, like at x = 2.



At x = 4, there is a jump discontinuity. The limit on the left as x approaches 4 is 0.75, and the limit on the right as x approaches 4 is 1.75. Since the limit does not exist, the function is not continuous at x = 4. It is described as a jump discontinuity since your hand “jumps” as it moves along the graph near x = 4.



The graph of [image: images] shows an infinite discontinuity at x = 0. However, the graph of [image: images] has an oscillating discontinuity at x = 0.

[image: images]

Example 20:

Is f (x) = x2 + 6x + 3 continuous at x = 1?

Solution:

Determine whether the three conditions for a continuous function are met.



1.[image: images]

2.f (1) = (1)2 + 6(1) + 3 = 10

3.[image: images]



The function f (x) is continuous at x = 1.



Since all polynomial functions have the same limit value as their function value, all polynomial functions are continuous for all real numbers. All polynomial functions are continuous functions.

Example 21:

Is [image: images] continuous at x = 3?

Solution:

Determine whether the three conditions for a continuous function are met.



1.[image: images], which is indeterminate. Factoring and simplifying, [image: images].

2.f (3) = 6

3.[image: images]



The function f (x) is continuous at x = 3.


[image: images] MATH TALK!

Factoring out the common factor in Example 21 demonstrates a removable discontinuity since the common factor was “removed,” allowing the limit to be evaluated successfully.



Example 22:

What value of k would make the function [image: images] continuous at x = 5?

Solution:



1.[image: images], which is indeterminate. Factoring and simplifying, [image: images].

2.f (5) = k

3.[image: images]; therefore, 10 = k.



If a function, f (x), is continuous at each number in an open interval (a, b), then f (x) is continuous on (a, b). If f (x) is continuous on the open interval (–∞, ∞), then f (x) is continuous everywhere. For example, polynomial functions and [image: images] are continuous everywhere.



For a function to be continuous at each number in a closed interval [a, b], then f (x) is continuous on the open interval (a, b) and its value at each endpoint is equal to the appropriate one-sided limit at that endpoint.


[image: images] MATH TALK!

For f (x) to be continuous over [a, b], the following conditions must be met:



1.f (x) is continuous over (a, b)

2.[image: images]

3.[image: images]

[image: images]



Example 23:

Describe the continuity of the function [image: images].

Solution:

[image: images]

Using the graph of f (x), the following can be seen.



1.f (x) is continuous over (–3, 3).

2.[image: images]

3.[image: images]



[image: images] is continuous over [–3, 3].

Intermediate Value Theorem

The Intermediate Value Theorem states that if f (x) is continuous on a closed interval [a, b] and if C is any number between f (a) and f (b), inclusive, then there is at least one number x in the interval [a, b] such that f (x) = C.


[image: images] MATH TALK!

The Intermediate Value Theorem, also referred to as the IVT, is one of the existence theorems in calculus. What is interesting about the IVT is that it uses function values in the range to prove the existence of a corresponding x-value in the domain. Think of the IVT as a diet, where your starting weight is 170 pounds and you achieve your goal weight of 140 pounds on the 75th day. The IVT guarantees that you would weigh 160 pounds on some day between the first and 75th day.



The Intermediate Value Theorem can be particularly useful if the goal is to find zeros (the x-values that make a polynomial function equal to 0) of polynomial functions. The IVT proves the existence of zeros in an interval.

Example 24:

Show that the function f (x) = x2 + x – 1 has at least one zero in the interval [–1, 5].

Solution:

Since f (x) = x2 + x – 1 is a polynomial function, it is continuous everywhere, including the interval [–1, 5]. Evaluating the function at the endpoints of the interval gives f (–1) = –1 and f (5) = 29. Since 0 is between –1 and 29, by the IVT there exists at least one x in [–1, 5] where f (x) = 0.

[image: images] BRAIN TICKLERSSet # 7

1.Find the value of k that would make [image: images] continuous at x = 3.

2.Describe why [image: images] is not continuous at x = 0.

3.Describe why f (x) = tan x is not continuous on [image: images].

4.The function f (x) is continuous on the closed interval [1, 10]. If f (1) = 1, f (5) = c, and f (10) = 2, then the equation [image: images] must have at least two solutions in the interval [1, 10] if c equals what value?

(Answers are on page 34.)



BRAIN TICKLERS—THE ANSWERS

Set # 1, page 8

1.1

2.+∞ or does not exist

3.–1

4.0

Set # 2, page 12

1.–2

2.3

3.112

4.0

Set # 3, page 16

1.2

2.[image: images]

3.8

4.4



Set # 4, page 20

1.[image: images]

2.2

3.0

4.3

Set # 5, page 25

1.–∞

2.–∞

3.0

4.Does not exist or +∞

Set # 6, page 28

1.Does not exist or +∞

2.0

3.+∞

4.+∞

Set # 7, page 33

1.[image: images]

2.g(x) is not continuous at x = 0 because [image: images] does not exist.

3.f (x) = tan x is not continuous on [image: images] because [image: images] does not exist.

4.If c is any real number less than [image: images], then [image: images] must have at least two solutions in the interval.
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