

 [image: cover]

PowerShell in Depth, Second Edition

 Don Jones, Jeffery Hicks, Richard Siddaway

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Karen Miller
Copyeditor: Liz Welch
Proofreaders: Toma Mulligan, Andy Carroll
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617292187

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 1. PowerShell fundamentals

 Chapter 1. Introduction

 Chapter 2. PowerShell hosts

 Chapter 3. Using the PowerShell help system

 Chapter 4. The basics of PowerShell syntax

 Chapter 5. Working with PSSnapins and modules

 Chapter 6. Operators

 Chapter 7. Working with objects

 Chapter 8. The PowerShell pipeline

 Chapter 9. Formatting

 2. PowerShell management

 Chapter 10. PowerShell Remoting

 Chapter 11. Background jobs and scheduling

 Chapter 12. Working with credentials

 Chapter 13. Regular expressions

 Chapter 14. Working with HTML and XML data

 Chapter 15. PSDrives and PSProviders

 Chapter 16. Variables, arrays, hash tables, and script blocks

 Chapter 17. PowerShell security

 Chapter 18. Advanced PowerShell syntax

 3. PowerShell scripting and automation

 Chapter 19. PowerShell’s scripting language

 Chapter 20. Basic scripts and functions

 Chapter 21. Creating objects for output

 Chapter 22. Scope

 Chapter 23. PowerShell workflows

 Chapter 24. Advanced syntax for scripts and functions

 Chapter 25. Script modules and manifest modules

 Chapter 26. Custom formatting views

 Chapter 27. Custom type extensions

 Chapter 28. Data language and internationalization

 Chapter 29. Writing help

 Chapter 30. Error handling techniques

 Chapter 31. Debugging tools and techniques

 Chapter 32. Functions that work like cmdlets

 Chapter 33. Tips and tricks for creating reports

 4. Advanced PowerShell

 Chapter 34. Working with the Component Object Model (COM)

 Chapter 35. Working with .NET Framework objects

 Chapter 36. Accessing databases

 Chapter 37. Proxy functions

 Chapter 38. Building a GUI

 Chapter 39. WMI and CIM

 Chapter 40. Working with the web

 Chapter 41. Desired State Configuration

 Appendix A. Best practices

 Appendix B. PowerShell Web Access

 Appendix C. PowerShell versions

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this Book

 1. PowerShell fundamentals

 Chapter 1. Introduction

 1.1. Who this book is for

 1.2. What this book will teach you

 1.3. What this book won’t teach you

 1.4. Where we drew the line

 1.5. Beyond PowerShell

 1.6. Ready?

 Chapter 2. PowerShell hosts

 2.1. 32-bit vs. 64-bit, and administrator vs. not

 2.2. The console

 2.3. The PowerShell ISE

 2.4. Command history buffer vs. PowerShell’s history

 2.5. Transcripts

 2.6. Summary

 Chapter 3. Using the PowerShell help system

 3.1. The help commands

 3.2. Where’s the help?

 3.3. Saving help

 3.4. Using the help

 3.5. “About” help files

 3.6. Provider help

 3.7. Interpreting command help

 3.8. Common parameters

 3.9. Summary

 Chapter 4. The basics of PowerShell syntax

 4.1. Commands

 4.1.1. Aliases: nicknames for commands

 4.1.2. Command name tab completion

 4.2. Parameters

 4.2.1. Truncating parameter names

 4.2.2. Parameter name tab completion

 4.3. Typing trick: line continuation

 4.4. Parenthetical commands and expressions

 4.5. Script blocks

 4.6. Summary

 Chapter 5. Working with PSSnapins and modules

 5.1. There’s only one shell

 5.2. PSSnapins vs. modules

 5.3. Loading, autoloading, and profiles

 5.4. Using extensions

 5.4.1. Discovering extensions

 5.4.2. Loading extensions

 5.4.3. Discovering extensions’ additions

 5.4.4. Managing extensions

 5.5. Command name conflicts

 5.6. Managing module autoloading

 5.7. Summary

 Chapter 6. Operators

 6.1. Logical and comparison operators

 6.1.1. The –contains operator

 6.1.2. The -in and -notin operators

 6.1.3. Boolean, or logical, operators

 6.1.4. Bitwise operators

 6.2. Arithmetic operators

 6.3. Other operators

 6.3.1. String and array manipulation operators

 6.3.2. Object type operators

 6.3.3. Format operator

 6.3.4. Miscellaneous operators

 6.4. Math operators

 6.5. Summary

 Chapter 7. Working with objects

 7.1. Introduction to objects

 7.2. Members: properties, methods, and events

 7.3. Sorting objects

 7.4. Selecting objects

 7.4.1. Use 1: choosing properties

 7.4.2. Use 2: choosing a subset of objects

 7.4.3. Use 3: making custom properties

 7.4.4. Use 4: extracting and expanding properties

 7.4.5. Use 5: choosing properties and a subset of objects

 7.5. Filtering objects

 7.5.1. Simplified syntax

 7.5.2. Full syntax

 7.5.3. The Where method

 7.6. Grouping objects

 7.7. Measuring objects

 7.8. Enumerating objects

 7.8.1. Full syntax

 7.8.2. Simplified syntax

 7.8.3. The ForEach method

 7.9. Importing, exporting, and converting objects

 7.10. Comparing objects

 7.11. Summary

 Chapter 8. The PowerShell pipeline

 8.1. How the pipeline works

 8.1.1. The old way of piping

 8.1.2. The PowerShell way of piping

 8.2. Parameter binding ByValue

 8.3. Pipeline binding ByPropertyName

 8.4. Troubleshooting parameter binding

 8.5. When parameter binding lets you down

 8.6. Nested pipelines

 8.7. The pipeline with external commands

 8.8. Summary

 Chapter 9. Formatting

 9.1. The time to format

 9.2. The formatting system

 9.2.1. Is there a predefined view?

 9.2.2. What properties should be displayed?

 9.2.3. List or table?

 9.3. The Format cmdlets

 9.3.1. Formatting wide lists

 9.3.2. Formatting tables

 9.3.3. Formatting lists

 9.3.4. Same objects, different formats

 9.3.5. Custom formatting

 9.4. Eliminating confusion and “gotchas”

 9.4.1. Formatting is the end of the line

 9.4.2. Select or format?

 9.4.3. Format, out, export—which?

 9.5. Summary

 2. PowerShell management

 Chapter 10. PowerShell Remoting

 10.1. The many forms of remote control

 10.2. Remoting overview

 10.2.1. Authentication

 10.2.2. Firewalls and security

 10.3. Using Remoting

 10.3.1. Enabling Remoting

 10.3.2. 1-to-1 Remoting

 10.3.3. 1-to-many Remoting

 10.3.4. Remoting caveats

 10.3.5. Remoting options

 10.4. PSSessions

 10.4.1. Creating a persistent session

 10.4.2. Using a session

 10.4.3. Managing sessions

 10.4.4. Disconnecting and reconnecting sessions

 10.5. Advanced session techniques

 10.5.1. Session parameters

 10.5.2. Session options

 10.6. Creating a custom endpoint

 10.6.1. Custom endpoints for delegated administration

 10.7. Connecting to non-default endpoints

 10.8. Enabling the “second hop”

 10.9. Setting up WinRM listeners

 10.9.1. Creating an HTTP listener

 10.9.2. Adding an HTTPS listener

 10.10. Other configuration scenarios

 10.10.1. Cross-domain Remoting

 10.10.2. Quotas

 10.10.3. Configuring on a remote machine

 10.10.4. Key WinRM configuration settings

 10.10.5. Adding a machine to your Trusted Hosts list

 10.10.6. Using Group Policy to configure Remoting

 10.11. Implicit Remoting

 10.12. Standard troubleshooting methodology

 10.13. Summary

 Chapter 11. Background jobs and scheduling

 11.1. Remoting-based jobs

 11.1.1. Starting jobs

 11.1.2. Checking job status

 11.1.3. Working with child jobs

 11.1.4. Waiting for a job

 11.1.5. Stopping jobs

 11.1.6. Getting job results

 11.1.7. Removing jobs

 11.1.8. Investigating failed jobs

 11.2. WMI jobs

 11.3. Scheduled jobs

 11.3.1. Scheduled jobs overview

 11.3.2. Creating a scheduled job

 11.3.3. Managing scheduled jobs

 11.3.4. Working with scheduled job results

 11.3.5. Removing scheduled jobs

 11.4. Job processes

 11.4.1. Jobs created with Start-Job

 11.4.2. Jobs created with Invoke-Command

 11.4.3. Jobs created through the WMI cmdlets

 11.4.4. Jobs created through the scheduler

 11.5. Summary

 Chapter 12. Working with credentials

 12.1. About credentials

 12.2. Using credentials

 12.3. Crazy credentials ideas

 12.3.1. Packaging your script

 12.3.2. Saving a credential object

 12.3.3. Creating a credential without the GUI

 12.3.4. Supporting credentials in your script

 12.4. Summary

 Chapter 13. Regular expressions

 13.1. Basic regular expression syntax

 13.2. The –match operator

 13.3. The Select-String cmdlet

 13.4. The Switch statement

 13.5. The REGEX object

 13.5.1. Replacing with REGEX

 13.5.2. Splitting with REGEX

 13.6. Subexpressions and named captures

 13.7. Summary

 Chapter 14. Working with HTML and XML data

 14.1. Working with HTML

 14.1.1. Retrieving an HTML page

 14.1.2. Working with the HTML results

 14.1.3. Practical example

 14.1.4. Creating HTML output

 14.2. Using XML to persist data

 14.3. XML basics

 14.4. Reading XML files

 14.5. Modifying XML

 14.6. Creating XML

 14.7. Select-XML

 14.8. Summary

 Chapter 15. PSDrives and PSProviders

 15.1. Why use PSProviders?

 15.2. What are PSProviders?

 15.3. What are PSDrives?

 15.4. Working with PSDrives

 15.4.1. Filter, Include, and Exclude

 15.4.2. Working with PSDrive items

 15.4.3. Working with item properties

 15.5. Transactional operations

 15.6. Every drive is different

 15.7. Summary

 Chapter 16. Variables, arrays, hash tables, and script blocks

 16.1. Variables

 16.1.1. Variable names

 16.1.2. Variable types

 16.1.3. Being strict with variables

 16.2. Built-in variables and the Variable: drive

 16.3. Variable commands

 16.4. Arrays

 16.5. Hash tables and ordered hash tables

 16.5.1. Ordered hash tables

 16.5.2. Common uses for hash tables

 16.5.3. Defining default parameter values

 16.6. Script blocks

 16.7. Summary

 Chapter 17. PowerShell security

 17.1. PowerShell security goals

 17.2. PowerShell security mechanisms

 17.2.1. Script execution requires a path

 17.2.2. Filename extension associations

 17.3. Execution policy

 17.3.1. A digital signature crash course

 17.3.2. Understanding script signing

 17.3.3. The execution policy in depth

 17.4. Blocked files

 17.5. The PowerShell security debate

 17.6. Summary

 Chapter 18. Advanced PowerShell syntax

 18.1. Splatting

 18.2. Defining default parameter values

 18.3. Running external utilities

 18.4. Expressions in quotes: $($cool)

 18.5. Parentheticals as objects

 18.6. Increasing the format enumeration limit

 18.7. Hash tables as objects

 18.8. Summary

 3. PowerShell scripting and automation

 Chapter 19. PowerShell’s scripting language

 19.1. Defining conditions

 19.2. Loops: For, Do, While, Until

 19.2.1. The For loop

 19.2.2. The other loops

 19.3. ForEach

 19.4. Break and Continue

 19.5. If . . . ElseIf . . . Else

 19.6. Switch

 19.7. Mastering the punctuation

 19.8. Summary

 Chapter 20. Basic scripts and functions

 20.1. Script or function?

 20.2. Execution lifecycle and scope

 20.3. Starting point: a command

 20.4. Accepting input

 20.5. Creating output

 20.6. “Filtering” scripts

 20.7. Moving to a function

 20.8. Filter construct

 20.9. Summary

 Chapter 21. Creating objects for output

 21.1. Why output objects?

 21.2. Syntax for creating custom objects

 21.2.1. Technique 1: using a hash table

 21.2.2. Technique 2: using Select-Object

 21.2.3. Technique 3: using Add-Member

 21.2.4. Technique 4: using a Type declaration

 21.2.5. Technique 5: creating a new class

 21.2.6. What’s the difference?

 21.3. Complex objects: collections as properties

 21.4. Applying a type name to custom objects

 21.5. So, why bother?

 21.6. Summary

 Chapter 22. Scope

 22.1. Understanding scope

 22.2. Observing scope in action

 22.3. Dot sourcing

 22.4. Manipulating cross-scope elements

 22.5. Being private

 22.6. Being strict

 22.7. Summary

 Chapter 23. PowerShell workflows

 23.1. Workflow overview

 23.2. Workflow basics

 23.2.1. Common parameters for workflows

 23.2.2. Activities and stateless execution

 23.2.3. Persisting state

 23.2.4. Suspending and resuming workflows

 23.2.5. Workflow limitations

 23.2.6. Parallelism

 23.3. General workflow design strategy

 23.4. Example workflow scenario

 23.5. Writing the workflow

 23.6. Workflows vs. functions

 23.7. Specific workflow techniques

 23.7.1. Sequences

 23.7.2. InlineScript

 23.8. Running a workflow

 23.8.1. Workflow jobs

 23.8.2. Suspending and restarting a workflow

 23.8.3. Workflow credentials

 23.9. A practical example

 23.10. Invoke-AsWorkflow

 23.11. PSWorkflowSession

 23.12. Troubleshooting a workflow

 23.13. Summary

 Chapter 24. Advanced syntax for scripts and functions

 24.1. Starting point

 24.2. Advanced parameters

 24.3. Variations on parameter inputs

 24.4. Parameter aliases

 24.5. Parameter validation

 24.6. Parameter sets

 24.7. WhatIf and Confirm parameters

 24.8. Verbose output

 24.9. Summary

 Chapter 25. Script modules and manifest modules

 25.1. Making a script module

 25.2. Exporting module members

 25.3. Making a module manifest

 25.4. Creating dynamic modules

 25.5. Summary

 Chapter 26. Custom formatting views

 26.1. Object type names

 26.2. Getting view templates

 26.3. Starting a view file

 26.4. Adding view types

 Table views

 List views

 Wide views

 26.5. Importing view data

 26.6. Using named views

 26.7. Going further

 26.8. Summary

 Chapter 27. Custom type extensions

 27.1. What are type extensions?

 27.2. Creating and loading a type extension file

 27.3. Making type extensions

 27.3.1. AliasProperty

 27.3.2. ScriptProperty

 27.3.3. ScriptMethod

 27.3.4. DefaultDisplayPropertySet

 27.4. A complete example

 27.5. Updating type data dynamically

 27.6. Get-TypeData

 27.7. Remove-TypeData

 27.8. Summary

 Chapter 28. Data language and internationalization

 28.1. Internationalization basics

 28.2. Adding a data section

 28.3. Storing translated strings

 28.4. Testing localization

 28.5. Summary

 Chapter 29. Writing help

 29.1. Comment-based help

 29.2. Writing About topics

 29.3. XML-based help

 29.4. Summary

 Chapter 30. Error handling techniques

 30.1. About errors and exceptions

 30.2. Using $ErrorActionPreference and –ErrorAction

 30.3. Using –ErrorVariable

 30.4. Using $?

 30.5. Using $Error

 30.6. Trap constructs

 30.7. Try...Catch...Finally constructs

 30.8. Summary

 Chapter 31. Debugging tools and techniques

 31.1. Debugging: all about expectations

 31.2. Write-Debug

 31.3. Breakpoints

 31.4. Using Set-PSDebug

 31.5. Remote debugging

 31.6. Debugging workflows

 31.7. Debugging in third-party editors

 31.8. Summary

 Chapter 32. Functions that work like cmdlets

 32.1. Defining the task

 32.2. Building the command

 32.3. Parameterizing the pipeline

 32.4. Adding professional features

 32.5. Error handling

 32.5.1. Adding verbose and debug output

 32.5.2. Defining a custom object name

 32.6. Making it a function and adding help

 32.7. Creating a custom view

 32.8. Creating a type extension

 32.9. Making a module manifest

 32.10. Summary

 Chapter 33. Tips and tricks for creating reports

 33.1. What not to do

 33.2. Working with HTML fragments and files

 33.2.1. Getting the information

 33.2.2. Producing an HTML fragment

 33.2.3. Assembling the final HTML page

 33.3. Sending email

 33.4. Summary

 4. Advanced PowerShell

 Chapter 34. Working with the Component Object Model (COM)

 34.1. Introduction to COM objects

 34.2. Instantiating COM objects in PowerShell

 34.3. Accessing and using COM objects’ members

 34.4. PowerShell and COM examples

 34.5. Summary

 Chapter 35. Working with .NET Framework objects

 35.1. Classes, instances, and members

 35.2. .NET Framework syntax in PowerShell

 35.3. .NET support in PowerShell

 35.4. Accessing static members

 35.5. Finding the right framework bits

 35.6. Creating and working with instances

 35.7. Summary

 Chapter 36. Accessing databases

 36.1. Native SQL vs. OLEDB

 36.2. Connecting to data sources

 36.3. Querying data

 36.3.1. Databases with DataAdapters

 36.3.2. Databases with DataReaders

 36.4. Adding, changing, and deleting data

 36.5. Calling stored procedures

 36.6. A module to make it easier

 36.7. Summary

 Chapter 37. Proxy functions

 37.1. The purpose of proxy functions

 37.2. How proxy functions work

 37.3. Creating a basic proxy function

 37.4. Adding a parameter

 37.5. Removing a parameter

 37.6. Turning it into a function

 37.7. Summary

 Chapter 38. Building a GUI

 38.1. WinForms via PowerShell Studio

 38.1.1. Creating the GUI

 38.1.2. Adding the code

 38.1.3. Using the script

 38.2. Windows Presentation Foundation (WPF) and ShowUI

 38.3. WinForms vs. WPF

 38.4. Ideas for leveraging a GUI tool

 38.5. Summary

 Chapter 39. WMI and CIM

 39.1. What is WMI?

 39.2. WMI cmdlets

 39.2.1. Get-WmiObject

 39.2.2. Remove-WmiObject

 39.2.3. Set-WmiInstance

 39.2.4. Invoke-WmiMethod

 39.2.5. Register-WmiEvent

 39.3. CIM cmdlets

 39.3.1. Get-CimClass

 39.3.2. Get-CimInstance

 39.3.3. Remove-CimInstance

 39.3.4. Set-CimInstance

 39.3.5. Invoke-CimMethod

 39.3.6. Register-CimIndicationEvent

 39.4. CIM sessions

 39.5. “Cmdlets over objects”

 39.6. Summary

 Chapter 40. Working with the web

 40.1. Getting data from the web

 40.2. Using web sessions

 40.3. Working with web responses

 40.3.1. Working with HTML documents

 40.3.2. Working with JSON data

 40.4. Using REST services

 40.5. Using SOAP web services

 40.6. Just in case

 40.7. Summary

 Chapter 41. Desired State Configuration

 41.1. What is DSC?

 41.2. DSC architecture

 41.3. Writing the configuration script

 41.4. Getting the configuration to the computer

 41.4.1. Pull model

 41.5. Creating and testing a DSC pull server

 41.5.1. Configuring a DSC pull server

 41.5.2. Sample configuration

 41.5.3. Configuring a machine to use the pull server

 41.6. Writing DSC resources

 41.6.1. Create the MOF Schema

 41.6.2. Create the script module

 41.6.3. Create the module manifest

 41.6.4. Putting it all together

 41.7. DSC vs. Group Policy

 41.8. Summary

 Appendix A. Best practices

 PowerShell general best practices

 PowerShell scripting best practices

 PowerShell in the enterprise best practices

 Appendix B. PowerShell Web Access

 Appendix C. PowerShell versions

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 A thorough look at PowerShell from three of the best writers in the PowerShell community.

 Mike Shepard, Solutions Architect Jack Henry & Associates

 The most wonderful PowerShell administrative guide.

 Kais Ayari, PowerShell Expert, Microsoft

 Another great PowerShell book for my desk!

 Thomas Lee, PowerShell Consultant, PS Partnership

 Hicks, Jones, and Siddaway have come together to deliver the ultimate PowerShell resource.

 James Berkenbile, Principal Consultant Berkenbile Consulting

 I have many books on my shelves. This is one that will be on my desk!

 Trent Whiteley, Software Engineer, Fiserv

 The authors know their audience and never lose sight of their readers. They use their knowledge and understanding in very
 clever ways to help readers understand even complex subjects.

 Rolf Åberg, Platform Architect Active Directory, SEB

 An end-all, be-all resource in the working man’s hands. I can finally give Google a rest.

 Eric Stoker, Network Administrator, Spokane Teacher’s Credit Union

 Hands-down the best PowerShell book to date. The authors are some of the most respected in the PowerShell community and this
 book illustrates why! These guys know this stuff inside and out.

 Adam Bell, Solution Architect, ZOE Systems Pty Ltd.

 Priceless, practical guidance.

 Klaus Schulte, System administrator, www.kvwl.de

Preface

 Windows PowerShell is viewed by many IT professionals as a necessary evil, but we see it as a management marvel. The challenge
 from the beginning has been to wrap one’s head around the PowerShell paradigm of an object-based shell. Some people view PowerShell
 as just another scripting language like VBScript, but the truth is that PowerShell is an automation and management engine.
 You can run this engine in a traditional console application, which is how most IT pros are first exposed to it. You can also
 run it in a graphical environment like the PowerShell Integrated Scripting Environment (ISE), or through a third-party tool
 like PowerGUI or PowerShell Plus.

 As you might imagine, the fourth version of a product offers substantially more features and benefits than the first, and
 PowerShell 4.0 fits this model. This version of PowerShell naturally builds on what came before, but it takes off from there.
 If you think of Windows 8.1 and Windows Server 2012 R2 as operating systems for the cloud, then PowerShell 4.0 is the automation
 and management engine for the cloud, although PowerShell “scales down” to help you better manage any size environment.

 Collectively, we have close to 70 years of IT experience. We have worked with PowerShell from its days as a beta product and
 have written on the topic for nearly as long. Our goal is to bring this knowledge and experience into a single reference book.
 Notice the key word, “reference.” This is not a how-to or teach yourself PowerShell book, although you can learn much from
 reading it cover to cover. Rather, this book is intended as the reference guide you keep at your desk or on your mobile device
 so that when you need to better understand a topic, like PowerShell remoting, you have a place to which you can turn.

 We have tried to keep our examples practical and targeted towards IT professionals responsible for Windows system administration.
 It is our hope that this will be the book you go to for answers.

Acknowledgments

 As you can imagine, a book of this scope and magnitude is not an easy undertaking, even with three coauthors. There are many,
 many people who had a hand in making this possible. First, we’d like to thank the entire PowerShell product team at Microsoft.
 Many of them took time from their busy schedules to answer our questions and offer guidance on a number of new features, even
 while they were still being developed!

 The authors would also like to thank the fine folks at Manning Publications: Cynthia Kane, Karen Miller, Maureen Spencer,
 Liz Welch, Linda Recktenwald, Andy Carroll, Janet Vail, and Mary Piergies. They have taken what can be a grueling process
 and turned it into something pleasant yet productive in helping us bring this book to publication. That is not easy.

 We also thank the cadre of what we think of as “real-world” reviewers who offered their opinions on how we could make this
 a book that they, and you, would want on your bookshelf. They include Arthur Zubarev, Braj Panda, David Moravec, Jan Vinterberg,
 Jim Gray, Lincoln Bovee, Michel Clomp, Nick Selpa, Stuart Caborn, and Wayne Boaz.

 We would especially like to thank Aleksandar Nikolicć for his time and dedication in reviewing the technical content of our
 book. Aleksandar shares our desire to produce the best possible PowerShell reference and we truly appreciate his efforts.

 DON would like to thank everyone at Manning for their support of, and commitment to, this project. He’d also like to thank
 his coauthors for their hard work, and his family for being so giving of their time.

 JEFF would like to thank the members of the PowerShell community who make a book like this possible. He would also like to
 thank his coauthors for making this one of the best authoring experiences possible.

 RICHARD would like to thank everyone who has taken the time to comment on the book and the PowerShell community for their
 willingness to share. He would like to thank Don and Jeff for making this a very enjoyable experience—working across eight
 time zones makes for some interesting conversations.

About this Book

 This book was written as a reference for system administrators. You can read the book cover to cover, and we’ve tried to arrange
 the chapters in a logical progression, but in the end it works best as a reference, where you can explore a topic more deeply
 in the chapter that is devoted to a particular subject. Chapter 1 will tell you more about what you will learn in the book, and what you need to know before you start.

 The 41 chapters in the book are arranged into four parts, as follows:

 	
Part 1, “PowerShell Fundamentals,” includes chapters 1 through 9, which cover the basics associated with using PowerShell. Although we didn’t write this book as a tutorial, there are a few
 basics you’ll need to explore before you can use PowerShell effectively: the pipeline, the concept of PowerShell hosts, the
 shell’s help system, and so forth. We’ll dive deeper into some of these topics than a tutorial normally would, so even if
 you’re already familiar with these foundational concepts, it’s worth a quick read-through of these chapters.

 	
Part 2, “PowerShell management,” covers topics such as remote control, background jobs, regular expressions, and HTML and XML. These
 are just a few of the core technologies accessible within PowerShell that make server and client management easier, more scalable,
 and more effective. Chapters 10 through 18 tackle these technologies individually, and we dive as deeply as we can into them, so that you can master their intricacies
 and subtleties.

 	
Part 3, “PowerShell scripting and automation,” includes chapters 19 through 33, which have a single goal: repeatability. Using PowerShell’s scripting language, along with associated technologies like
 workflow, you can begin to create reusable tools that automate key tasks and processes in your environment.

 	
Part 4, “Advanced PowerShell,” consists of chapters 34 through 41. One of PowerShell’s greatest strengths is its ability to connect to other technologies, such as WMI, CIM, COM, .NET, and
 a host of other acronyms. The chapters in part 4 look at each of these and demonstrate how PowerShell can utilize them. We give you a starting place for doing this, and then
 we provide you with some direction for further independent exploration.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 The code samples are based on PowerShell 4.0. We intended the samples to be instructive, but we did not design them for production
 use. They may not always be the “best” PowerShell—our code examples were designed to reinforce concepts and make points.

 We have tried to fit code samples into the confines of a printed page, which means that sometimes we have had to bend some
 rules. You are welcome to try the code snippets on your computer, but remember that the book is not intended as a tutorial.
 Longer code samples are displayed as code listings; we don’t expect you to type these. If you want to try them, the files
 can be downloaded from the book’s page on the publisher’s website at www.manning.com/PowerShellinDepthSecondEdition.

 We, along with our technical reviewer, strove to test and retest everything, but sometimes errors will still sneak through.
 We encourage you to use the Author Online forum for this book at www.manning.com/PowerShellinDepthSecondEdition to post any corrections, as well as your comments or questions on the book’s content.

Author Online

 Purchase of PowerShell in Depth, Second Edition includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/PowerShellinDepthSecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some
 challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 DON JONES has more than 20 years of experience in the IT industry and is a recognized expert in Microsoft’s server platform.
 He’s a multiple-year recipient of Microsoft’s prestigious Most Valuable Professional (MVP) award and writes the “Windows PowerShell”
 column for Microsoft TechNet Magazine. Don has authored more than 50 books on information technology topics, including three
 books in the popular Learn PowerShell in a Month of Lunches series from Manning. He is a regular and top-rated speaker at numerous technology conferences and symposia worldwide, and
 a founding director of PowerShell.org, a community-owned and community-operated resource for PowerShell users.

 JEFFERY HICKS is an IT veteran with over 25 years of experience, much of it spent as an IT infrastructure consultant specializing
 in Microsoft server technologies with an emphasis in automation and efficiency. He is a multi-year recipient of the Microsoft
 MVP Award in Windows PowerShell. He works today as an independent author, trainer, and consultant. Jeff has authored or co-authored
 numerous books written for a variety of online sites and print publications, is a contributing editor at Petri.com, and is
 a frequent speaker at technology conferences and user groups. You can keep up with Jeff at his blog (http://jdhitsolutions.com/blog) or on Twitter (@jeffhicks).

 RICHARD SIDDAWAY has been working with Microsoft technologies for over 25 years, having spent time in most IT roles. He has
 always been interested in automation techniques (including automating job creation and submission on mainframes many years
 ago). PowerShell caught his interest, and Richard has been using it since the early beta versions. He regularly blogs about
 PowerShell, and using PowerShell, at http://blogs.msmvps.com/richardsiddaway/. Richard founded the UK PowerShell User Group and has been a PowerShell MVP for the last seven years. He’s a regular speaker
 and writer on PowerShell topics, and his previous Manning books include PowerShell in Practice and PowerShell and WMI.

 THE AUTHORS would love to hear from you and are eager to help spread the good news about PowerShell. We hope you’ll come up
 to us at conferences like TechEd and let us know how much (hopefully) you enjoyed the book. If you have any other PowerShell
 questions, we encourage you to use the forums at PowerShell.org, where we all are active participants, or Manning’s Author
 Online forum at www.manning.com/PowerShellinDepthSecondEdition.

About the cover illustration

 The figure on the cover of PowerShell in Depth, Second Edition is captioned a “Man from Split, Dalmatia.” The illustration is taken from the reproduction published in 2006 of a nineteenth-century
 collection of costumes and ethnographic descriptions entitled Dalmatia by Professor Frane Carrara (1812–1854), an archaeologist and historian and the first director of the Museum of Antiquity
 in Split, Croatia. The illustrations were obtained from a helpful librarian at the Ethnographic Museum (formerly the Museum
 of Antiquity), itself situated in the Roman core of the medieval center of Split: the ruins of Emperor Diocletian’s retirement
 palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied
 by descriptions of the costumes and of everyday life.

 The man on the cover is wearing dark blue woolen trousers and a black vest over a white linen shirt. Over his shoulder is
 a brown jacket, and a red belt and a red cap complete the outfit; in his hand he holds a long pipe. The elaborate and colorful
 embroidery on his costume is typical for this region of Croatia.

 Dress codes have changed since the nineteenth century and the diversity by region, so rich at the time, has faded away. It
 is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. PowerShell fundamentals

 In part 1, we’ll cover some of the basics associated with using PowerShell. Although we didn’t write this book as a tutorial, there
 are nonetheless a few basics you’ll need to explore before you can use PowerShell effectively: the pipeline, the concept of
 PowerShell hosts, the shell’s help system, and so forth. We’ll dive a bit deeper into some of these topics than a tutorial
 normally might do, so even if you’re already familiar with these foundational concepts, it’s worth a quick read-through of
 these chapters.

Chapter 1. Introduction

 This chapter covers

 	What the book will and won’t teach

 	The boundaries of this book

 	Going beyond PowerShell

 As of this writing, Windows PowerShell is on to its seventh year of existence and in its fourth major release, with a fifth
 version in preview. In that time, it’s changed the way people look at administering many Microsoft, and even some non-Microsoft,
 products. Although the graphical user interface (GUI) will always be an important part of administration in many ways, PowerShell
 has given administrators options: Use an easy, intuitive GUI; manage from a rich, interactive command-line console; or fully
 automate with a simple scripting language. We’re delighted that so many administrators have started using PowerShell, and
 we’re honored that you’ve chosen this book to further your own PowerShell education.

1.1. Who this book is for

 We wrote this book for system administrators, not developers. In the Microsoft world, administrators go by the catchall title
 “IT professional” or “IT pro” and that’s who we had in mind. As such, we assume you’re not a full-time programmer, although
 if you have some programming or scripting experience it’ll make certain parts of PowerShell easier to learn.

 We assume you’re primarily interested in automating various administrative tasks and processes, or at least being more efficient,
 but we don’t make any assumptions about the products with which you work. You may be an Exchange Server administrator, or
 maybe SharePoint or SQL Server is your thing. Perhaps you manage Active Directory, or you’re in charge of file servers. You
 may even manage a Citrix or VMware environment (yes, they can be managed by PowerShell). It doesn’t matter, because what we’ll
 focus on in this book is the core technologies of PowerShell itself: the techniques and features you’ll need to use no matter
 what products you’re administering. We do use Active Directory in a few examples, but every technique, pattern, practice,
 and trick we show you will apply equally well, no matter where you’ve chosen to use PowerShell.

1.2. What this book will teach you

 You can certainly read this book cover to cover, and we’ve tried to arrange the chapters in a logical progression. But in
 the end, we intend for this book to be a reference. Need to figure out PowerShell Remoting? Skip to that chapter. Confused
 about how commands pipe data from one to another? We’ve written a chapter for that. Need to access a database from within
 a PowerShell script? There’s a chapter for that.

 We’ve no intention of making you a programmer—we don’t claim to be programmers—we all have backgrounds as IT pros. Yes, PowerShell
 can support some robust scripts, but you can also accomplish a lot by running commands. If you have programming experience,
 it’ll serve you well, and you may be tempted to approach PowerShell more as a scripting language, which is fine. If you’ve
 never scripted or programmed a single line of code, you’ll probably see PowerShell as a pure command-line interface, where
 you run commands to make stuff happen, and that’s fine, too. Either way you win because you get to automate your tedious,
 repetitive work. The other winning feature is that what you learn by using PowerShell at the command line is directly usable
 when you start writing scripts—there’s no wasted learning with PowerShell.

1.3. What this book won’t teach you

 We assume you’re already an experienced administrator and that you’re familiar with the inner workings of whatever technology
 you manage. We aren’t going to teach you what an Active Directory user account is, or what an Exchange mailbox does, or how
 to create a SharePoint site. PowerShell is a tool that lets you accomplish administrative tasks, but like any tool it assumes
 you know what you’re doing.

 To use a noncomputer analogy, PowerShell is a hammer, and this book will teach you how to swing that hammer and not smash
 your thumb. We won’t teach you about building houses, though—we assume you already know how to do that and that you’re looking
 for a more efficient way to do it than pounding nails with a rock.

1.4. Where we drew the line

 It’s safe to say that PowerShell can’t do everything for you. You’ll find some things with which it’s completely incapable
 of helping, as with any technology. But you’ll also find tasks for which PowerShell works well. And you’ll encounter that
 weird middle ground where you could do something in PowerShell, but to do it you’d have to go beyond the strict boundaries of what PowerShell is. For example,
 PowerShell doesn’t natively contain a way to map a network printer.

 	

 Note

 There is a PrintManagement module containing an Add-Printer cmdlet, but it’s part of Windows (specifically Windows 8/2012
 and later) rather than PowerShell.

 	

 You could instantiate a Component Object Model (COM) object to accomplish the task from within PowerShell, but it has nothing to do with PowerShell. Instead, it’s the shell giving you a way to access completely external
 technologies. In these cases (which are becoming increasingly rare in the latest version of Windows), we’ll only say, “You
 can’t do that in PowerShell yet.” We know our statement isn’t 100% true, but we want to keep this book focused on what PowerShell
 is and what it does natively. If we turn this book into “everything you can do with PowerShell natively, plus all the external
 stuff like .NET and COM and so on that you can get to from PowerShell,” it’d grow to 7,000 pages in length and we’d never
 finish.

 That said, we’re including material in the book on using some of these external technologies, along with some guidance on
 where you can find resources to educate yourself on them more completely if you’ve a mind to do so.

1.5. Beyond PowerShell

 PowerShell is a lot like the Microsoft Management Console (MMC), with which you’re probably familiar. On its own, it’s useless.
 Both the MMC and PowerShell only become useful when you add extensions, which in the MMC would be “snap-ins,” and in PowerShell
 would be either a “snap-in” or a “module.” Those extensions give you access to Exchange, Active Directory, SharePoint, SQL
 Server, and so on. The later versions of Windows (Windows 8 and later) ship with over 50 additional modules, not counting
 the Remote Server Administration Tools (RSAT) modules. This additional functionality is blurring the boundaries of PowerShell.
 The thing to remember is that in this book we’re concentrating on the core of PowerShell so that you understand how it works.
 Using the other modules will become obvious once you understand PowerShell itself.

 Understand that the folks at Microsoft who write PowerShell don’t write the extensions. They provide some tools and rules for the developers who do create extensions, but their job is to
 create the core PowerShell stuff. Extensions are made by other product teams: The Exchange team makes the Exchange PowerShell
 extension, the Active Directory team makes its extension, and so on. If you’re looking at a particular extension and don’t
 like what you see, blame the product team that produced it, not PowerShell. If you’d like to administer something—maybe Windows
 Internet Name Service (WINS) Server, for example—and PowerShell has no way to administer it, it’s not the PowerShell team’s fault. Blame
 the owners of the technology you’re trying to work with, and encourage them to get on board and produce a PowerShell extension
 for their product.

 This division of labor is one reason why we’re keeping this book focused on the core of PowerShell. That core is what you’ll
 use no matter what extensions you end up deploying to achieve your administrative goals.

1.6. Ready?

 Okay, that’s enough of an introduction. If you want to follow along, make sure you have PowerShell v4 installed on a Windows
 7 or later client. You’ll also find it useful to have a test server running PowerShell v4, ideally on Windows Server 2012
 R2.

 	

 Note

 The examples and code in this book will work with PowerShell v5 if you have that installed. The major new feature in PowerShell
 v5 is software management through the OneGet module.

 	

 Now, pick a chapter and jump in.

Chapter 2. PowerShell hosts

 This chapter covers

 	The purpose of PowerShell hosts

 	The PowerShell console and ISE hosts

 	The differences between 64-bit and 32-bit hosts

 	PowerShell transcripts

 PowerShell can be confusing to use because it behaves differently in different situations. Here’s an example from PowerShell
 v2: When you run the Read-Host command in the PowerShell.exe console, it behaves differently than if you run that same command in the PowerShell Integrated
 Scripting Editor (ISE). The reason you encounter these differences has to do with the fact that you don’t interact directly
 with PowerShell. Instead, you give commands to the PowerShell engine by means of a host. It’s up to the host to determine how to interact with the PowerShell engine.

 	

 Note

 The difference in the response of Read-Host between the console and the ISE has been eliminated in PowerShell v3 and later.

 	

 The PowerShell engine is a set of .NET Framework classes stored in a DLL file. You can’t interact with it directly. Instead,
 the application you interact with loads the engine. For example, if you’ve ever used the Exchange Server 2007 (or later) graphical management console (called the Exchange
 Management Console, or EMC), then you’ve used a PowerShell host. The EMC lets you interact by clicking icons, filling in dialog
 boxes, and so forth, but it’s PowerShell that performs the actions it takes. You never “see” the shell, but it’s hiding under
 the GUI. That’s why it can show you the PowerShell commands for the actions it has performed. Exchange also provides a console-based
 shell that exposes the underlying PowerShell engine together with the Exchange cmdlets.

 When we talk about “using PowerShell,” we’re most often talking about using it through a host that looks more like a command-line
 shell. Microsoft provides two different hosts for that purpose: the console and the ISE. Third-party vendors can also produce host applications, and many popular PowerShell editors—PrimalScript, Power-GUI, PowerShell
 Plus, PowerSE, and so forth—all host the PowerShell engine. You can write your own .NET programs to run PowerShell scripts
 or even call the underlying classes directly. How you interact with the shell and what your results look like will depend
 on the host you’re using. Results might look and work one way in the Microsoft-supplied console, but they might look and work
 differently in a third-party application—or in some cases may not work at all. Conversely, some things that have worked in
 a third-party host don’t work in the Microsoft hosts.

 	

 Tip

 Remember that if things work in one host but not in another, it’s mostly likely due to the differences in the hosts rather
 than it being a PowerShell error. If you have an error in a third-party host that you can’t resolve, make sure you test it
 in the Microsoft PowerShell console as a lowest common denominator.

 	

 For this book, we’ll assume you’re using one of the two Microsoft-supplied hosts, which we’ll describe in this chapter.

2.1. 32-bit vs. 64-bit, and administrator vs. not

 The way you access the shortcuts for Microsoft’s PowerShell host applications depends on the version of the operating system
 and the install options you’ve chosen. The first thing you need to be aware of is that PowerShell v4 isn’t available on all
 versions of Windows. It’s installed as part of the base build on

 	Windows 8.1 x86 and x64

 	Windows Server 2012 R2 x64

 The Windows Management Framework (WMF) download (PowerShell v4, WinRM v3 [the version of WinRM hasn’t changed between PowerShell
 v3 and v4], and the new WMI API) is available for

 	Windows 7 SP1 (or above) x86 and x64

 	Windows Embedded Standard 7

 	Windows Server 2008 R2 SP1 (or above) x64

 	Windows Server 2012

 The WMF download is available from www.microsoft.com/en-us/download/details.aspx?id=40855. Check the version you need for your system in the download instructions. You’ll notice that PowerShell v4 isn’t available
 for Windows 8. This is deliberate because it’s included in the free Windows 8.1 upgrade.

 	

 Note

 If you’re using Windows XP, Windows Vista, Windows Server 2008, or any flavor of Windows Server 2003, you can’t install PowerShell
 v4. Check appendix C for further information on the differences between the PowerShell versions.

 	

 	

 Application incompatibilities

 Don’t install WMF 4.0 on a system running any of the following:

 	System Center 2012 Configuration Manager (but you can install SP1 to remove the incompatibility)

 	Microsoft Exchange Server 2013

 	Microsoft Exchange Server 2010

 	Microsoft Exchange Server 2007

 	Microsoft SharePoint Server 2013

 	Microsoft SharePoint Server 2010

 	Windows Small Business Server 2011 Standard

 These restrictions also apply to WMF 3.0 (PowerShell 3.0), but they may be changed with the issue of Service Packs for these
 applications. Please check the application documentation to see if there are any changes.

 	

 You’ll need to install Microsoft .NET Framework 4.5 (use the full offline installer from http://msdn.microsoft.com/en-us/library/5a4x27ek(v=vs.110).aspx) before installing WMF 4.0. The 4.5 version of the framework is preinstalled on Windows 8.1 and Windows Server 2012 R2.

 Microsoft, and other vendors, have produced tablet devices with Windows RT installed. These devices, such as the Microsoft
 Surface, do have PowerShell installed, but the instance of PowerShell is constrained in that you can’t access some features.
 Which features are unavailable depends on whether the device is running Windows 8 or Windows 8.1 RT, but here are some examples:

 	You can’t remote into the device.

 	You can’t run workflows.

 	You can’t use Desired State Configuration.

 In addition, the ISE isn’t available on Surface devices.

 	

 Note

 The Microsoft Surface Pro devices run a full version of PowerShell, including the ISE.

 	

 In the Windows 8/2012 family of products, the way you access applications has changed. You use the Start screen instead of
 the Start menu. If you’re on the Windows Desktop, press the Win button to access the Start screen or click the Start button in Windows 8.1/2012 R2. Scroll to the right
 to find the PowerShell icon. Alternatively, press Win-Q to access the application search menu.

 On earlier versions of Windows you’ll find shortcuts to Microsoft’s host applications on your computer’s Start menu. If you’re
 on a Server Core (Windows Server 2008 R2 or later) system that doesn’t have a Start menu, run powershell to start the console host. You’ll need to install PowerShell because it isn’t part of the default Windows Server 2008 R2
 server core install. The shortcuts can usually be found under Accessories > Windows PowerShell.

 	

 Note

 PowerShell and the old command prompt use the same underlying console technology, which means you can type Powershell in a command prompt or cmd in a PowerShell console and “switch” to the other shell. Typing exit will revert back to the starting shell.

 	

 On a 32-bit system (on any Windows version), you’ll find shortcuts for PowerShell—what we refer to as “the console”—and for
 the PowerShell ISE. Obviously, these shortcuts both point to 32-bit versions of PowerShell. But on a 64-bit system you’ll
 find four shortcuts:

 	Windows PowerShell—the 64-bit console

 	Windows PowerShell ISE—also 64-bit

 	Windows PowerShell (x86)—the 32-bit console

 	Windows PowerShell ISE (x86)—also 32-bit

 It’s important to run the proper version, either 32-bit or 64-bit. PowerShell itself behaves the same either way, but when
 you’re ready to load extensions you can only load ones built on the same architecture. The 64-bit shell can only load 64-bit
 extensions. If you have a 32-bit extension, you’ll have to load it from the 32-bit shell. Once you launch, the window title
 bar will also display “(x86)” for the 32-bit versions, which means you can always see which one you’re using.

 	

 Tip

 We recommend that you pin PowerShell to your taskbar. Doing so makes access much quicker. Right-clicking the icon on the taskbar
 provides access to the PowerShell console and the ISE in addition to providing links to run as Administrator for both hosts.

 	

 On computers that have User Account Control (UAC) enabled, you’ll need to be a bit careful. If your PowerShell window title
 bar doesn’t say “Administrator,” you’re not running PowerShell with Administrator authority.

 	

 Warning

 Watch the top-left corner of the host as it starts. It will say “Administrator: Windows PowerShell” or “Administrator: Windows
 PowerShell ISE” during at least some of the startup period. Some of us, like Richard, modify the title bar to display the
 path to the current working directory so the title bar won’t show “Administrator” once the profile has finished executing.

 	

 If you’re not running as an Administrator, some tasks may fail with an “Access Denied” error. For example, you can only access
 some WMI classes when you’re using PowerShell with the elevated privileges supplied by running as Administrator. If your title
 bar doesn’t say “Administrator” and you need to be an Administrator to do what you’re doing, close the shell. Reopen it by
 right-clicking one of the Start menu shortcuts and selecting Run as Administrator from the context menu. That’ll get you a
 window title bar like the one shown in figure 2.1, which is what you want. In Windows 8, either right-click the taskbar shortcut or right-click the title on the Start screen
 to access the Run as Administrator option.

 Figure 2.1. An elevated PowerShell session from Windows 8.1. Notice the Administrator label in the caption.

 [image:]

 It’s always worth taking a moment to verify whether your session is elevated before continuing with your work. One way you
 can do this is to modify your profile so that the console top border indicates whether PowerShell is elevated (in addition
 to specifying whether it’s x86 or x64 and the current folder). You can then set a smaller prompt so that you have more of
 the console to type in. By default the current path is shown at the prompt, as you can see in figure 2.1. The function you need to add to your profile appears in listing 2.1.

 Listing 2.1. Prompt function for PowerShell profile

 [image:]

 The function in listing 2.1 specifies whether you’re running the 32- or 64-bit version of PowerShell [image:]. The current user is retrieved and used to create a Security.Principal .WindowsPrincipal object [image:]. That object is then used to determine whether the user is running PowerShell as Administrator—that is, with elevated privileges
 [image:]. The window title is set using the information gathered earlier [image:], and then the prompt is set [image:]. Any string you want can be used as the prompt. The results of including listing 2.1 in your profile are shown in figure 2.2. The ISE will also run this function at startup.

 Figure 2.2. The Windows PowerShell console from Windows 8.1 after running the function in listing 2.1 in your profile.

 [image:]

 The PowerShell console is the simpler of the two available hosts, which is why we’ll consider it before ISE.

2.2. The console

 Most people’s first impression of PowerShell is the Microsoft-supplied console, shown in figure 2.2 in the previous section. This console is built around an older piece of console software that’s built into Windows—the same
 one used for the old Cmd.exe shell. Although PowerShell’s programmers tweaked the console’s initial appearance—it has a blue
 background rather than black, for example—it’s still the same piece of software that’s been more or less unchanged since the
 early 1990s. As a result, it has a few limitations. For example, it can’t properly display double-byte character set (DBCS)
 languages, making it difficult to use with Asian languages that require a larger character set. The console also has primitive
 copy-and-paste functionality, along with fairly simplistic editing capabilities.

 You may wonder then, why use the console? If you’ve ever used a command-line shell before, even one in a Unix or Linux environment,
 the console looks and feels familiar. That’s the main reason. If you’re using Server Core, then the console is your only choice,
 because the ISE won’t run on Server Core.

 	

 Note

 “Server Core” is a term that originated in Windows Server 2008. In Windows Server 2012 and later, Server Core is the default
 server installation that doesn’t have the Server Graphical Shell feature installed. PowerShell wasn’t available on the Windows
 Server 2008 version of Server Core, but it’s available in Windows Server 2008 R2 and later.

 	

 Within the console, you can use a few tricks to make it a bit easier to work with:

 	Pressing the up and down arrows on your keyboard will cycle through the command history buffer, enabling you to recall previous
 commands, edit them, and run them again.

 	Pressing F7 will display the command history buffer in a pop-up window. Use the up and down arrow keys to select a previous
 command, and then either press Enter to rerun the command or press the right arrow key to display the command for editing.

 	Use your mouse to highlight blocks of text by left-clicking and dragging. Then, press Enter to copy that block of text to
 the Windows clipboard. Quick Edit Mode must be enabled in the console’s properties for this to work.

 	Right-click to paste the Windows clipboard contents into the console.

 	Use the Tab key to complete the PowerShell cmdlet, function, and parameter names. In PowerShell v4, variable names and .NET
 classes can also be completed in this way.

 You can also do a few things to make the console more comfortable for yourself. Click the control box, which is at the top-left
 corner of the console window, and select Properties. You’ll want to make a few adjustments in this dialog box:

 	On the Options tab, you can increase the command history buffer. A bigger buffer takes more memory but preserves more of the
 commands you’ve run, allowing you to recall them and run them again more easily.

 	On the Colors tab, choose text and background colors you’re comfortable reading.

 	On the Font tab, select a font face and size you like. This is important: You want to be sure you can easily distinguish between
 the single quote and backtick characters, between parentheses and curly brackets, and between single and double quotes. Distinguishing
 these characters isn’t always easy to do using the default font. The backtick and single quote confusion is particularly annoying.
 The Consolas font is a good choice. Consider changing the text color to pure white (RGB 255:255:255) for better readability.

 	

 Note

 On a U.S. or U.K. keyboard, the backtick character is located on the upper-left key, under the Esc key. It shares space with
 the tilde (~) character. It’s also referred to as a “grave accent mark.” On other keyboards, you may find it in a different
 location.

 	

 	On the Layout tab, make sure both Width settings are the same. The bottom one controls the physical window size, whereas the
 top one controls the logical width of the window. When they’re both the same, you won’t have a horizontal scrollbar. If the
 upper “screen buffer” width is larger than the “window size,” you’ll have a horizontal scrollbar. That means viewing much
 of PowerShell’s output will require horizontal scrolling, which can become cumbersome and annoying to work with.

 As you’re customizing your console window, take a moment to make sure it can display all the characters from the character
 set with which you work. If any characters aren’t displaying properly, you may want to switch to the PowerShell ISE instead.
 Its ability to use TrueType fonts and to display DBCS languages makes it a real advantage.

2.3. The PowerShell ISE

 The PowerShell Integrated Scripting Environment, or ISE (usually pronounced “aye ess eee,” not “ice”), was created to offer
 a better script-editing experience than Windows Notepad, as well as provide a console experience that supports the use of
 DBCS languages and TrueType fonts. In general, the ISE works similarly to the console host, with a few exceptions:

 	The ISE can maintain several PowerShell runspaces in a single window by placing each onto a separate tab. Each runspace is an instance of PowerShell, much like opening multiple
 console windows.

 	The ISE can have multiple PowerShell scripts open simultaneously. Each is available through a separate tab.

 	The ISE displays graphical dialog boxes for many prompts and messages, rather than displaying them on a command line as text.

 	The ISE doesn’t support transcripts, which we’ll describe later in this chapter (this changes in PowerShell v5).

 	You can change the font, starting size, and color schemes by selecting Tools from the menu and then selecting the appropriate
 options. To adjust the text display size, use the slider at the bottom right of the ISE window.

 	

 Note

 Some server operating systems don’t have the ISE installed by default. If you need it, and it isn’t present, you can install
 it using Server Manager like any other Windows feature. You can also use PowerShell to install ISE on servers. The command
 syntax is Add-WindowsFeature -Name PowerShell-ISE. The ISE may be installed but not exposed through the Start screen, in which case you need to pin it to the Start screen
 and/or taskbar.

 	

 The ISE supports two basic layouts, which are controlled by the three buttons on its toolbar. The default layout, shown in
 figure 2.3, uses two vertically stacked panes.

 Figure 2.3. The default ISE layout uses two vertically stacked panes together with the Command Addon pane (which we’ve removed here).
 The title shows that ISE is being run in a nonelevated manner—using the function in listing 2.1 as part of our profile.

 [image:]

 The top pane is the script editor, and the bottom pane is where you can interactively type commands and receive output. In
 PowerShell v3, the interactive and output panes were combined to effectively duplicate the PowerShell console. This configuration
 is maintained in PowerShell v4.

 Clicking the second layout button in the toolbar gives you the layout shown in figure 2.4, where the script editor takes up one side and the console takes up the other.

 Figure 2.4. The split view gives you more room to edit a script.

 [image:]

 Finally, the last button switches to a full-screen editor, which is useful if you’re working on a long script. In some views,
 you’ll notice that the script pane has a little blue arrow in the top-right corner. This can be used to hide or expose the
 script pane.

 The other toolbar buttons, labeled in figure 2.5, provide access to the majority of the ISE’s functions (the button layout is identical in PowerShell v3 and v4). You’ll also
 find additional options on the menu. The File, Edit, and View menus are self-explanatory, and we’ll discuss the Debug menu
 when we come to the topic of debugging in chapter 31.

 Figure 2.5. Getting to know the ISE toolbar can save you time when performing common tasks.

 [image:]

 Let’s try something: In the ISE, select New PowerShell Tab from the File menu. (You’ll also see a New Remote PowerShell Tab
 option. We’ll discuss that in chapter 10 on Remoting.) What pops up is a whole new instance of PowerShell, called a runspace, which we mentioned earlier. Each tab
 has its own set of script file tabs, with each file tab representing a single script file. Each PowerShell tab also has its
 own output area and command-line pane. Each PowerShell tab is truly separate: If you load an extension into one, for example,
 it’s only available in that one. To load an extension into every open PowerShell tab, you have to manually load it into each
 one, one at a time. Figure 2.6 shows what the ISE looks like with two PowerShell tabs open and with several script files opened within one PowerShell tab.

 Figure 2.6. The ISE supports multiple PowerShell tabs, as well as multiple script files within each tab.

 [image:]

 A lot of folks tend to think of the ISE as “just a script editor,” but it’s designed to be a complete, usable replacement
 for the PowerShell console host. The ISE offers better copy-and-paste capabilities (using the standard Ctrl-C, Ctrl-X, and
 Ctrl-V shortcut keys), better color-coding for PowerShell syntax, and more. Even if you hide the script editor pane and only
 use the ISE as an interactive command line, you’ll often have a better PowerShell experience than you would with the console.
 The ISE even supports the up/down arrow keys for recalling previous commands and lets you edit those commands by putting your
 cursor anywhere on the line and typing away.

 The ISE is also extensible. Information on some of the available extensions, sample code, and guidance on writing your own
 extensions to the ISE can be found at http://social.technet.microsoft.com/wiki/contents/articles/2969.windows-powershell-ise-add-on-tools.aspx.

2.4. Command history buffer vs. PowerShell’s history

 The console application maintains its own command history buffer, which contains a list of the commands you’ve run. It holds
 the 50 most recent commands by default, and we explained earlier how you can adjust that number. When you’re using the up
 and down arrow keys, or pressing F7 in the console, you’re accessing this buffer.

 PowerShell maintains its own independent list of the commands you’ve run, and you can view that list by running the Get-History command. By default this buffer maintains the last 4,096 commands. We’re not going to dive into a lot of detail on PowerShell’s
 history at this point, although we’ll work it into the discussion in upcoming chapters as needed. For now, you should be aware
 of the two different histories, being maintained in two different ways. Also be aware that a number of cmdlets are available
 for viewing and working with the PowerShell history (Get-Help *history).

2.5. Transcripts

 The PowerShell console—but not the ISE currently—supports the Start-Transcript and Stop-Transcript commands. When you start a transcript, every PowerShell command you run, along with its output and errors, will be saved
 to a text file. Legacy commands such as ping and ipconfig will have the command recorded only in the transcript file, not the output. When you close the shell or stop the transcript,
 the shell stops recording your actions. If you run Start-Transcript without any parameters, it creates a file in your Documents folder that includes a timestamp. Or you can specify your own
 filename:

 PS C:\> Start-Transcript c:\work\Monday.txt

 You’ll find transcripts useful when you’re experimenting with the shell, because they enable you to keep a log of everything
 you’ve tried. You can then review the file in Notepad or another text editor, copy out the parts you want, and save them for
 future use. If necessary, you can append to an existing transcript file. This can be handy when you’re working with PowerShell
 features that can exist between PowerShell sessions, such as workflows. Use the –append parameter:

 PS C:\> Start-Transcript c:\work\mytranscript.txt -append

 Non-Microsoft hosts often don’t support transcripts. If you try to start a transcript in a host that doesn’t support it (such
 as the ISE), you’ll get an error message that clearly explains what’s wrong. It’s not your fault; the authors of that host
 didn’t do the work necessary to make transcripts possible.

2.6. Summary

 You can use Windows PowerShell within a variety of host applications, and the ones you’ll probably use most commonly are the
 Microsoft-supplied console and ISE hosts. The ISE offers a richer experience, but it lacks support for a small number of features
 such as transcripts. On 64-bit systems, Microsoft supplies 32-bit and 64-bit versions of both hosts, although on server operating
 systems you may have to take extra steps to install them. You should spend a little time familiarizing yourself with these
 hosts’ user interfaces, as well as some time customizing them to suit your needs.

Chapter 3. Using the PowerShell help system

 This chapter covers

 	Defining PowerShell help commands

 	Updating help

 	Saving help

 	Using help

 	Working with common parameters

 One of the difficulties associated with command-line interfaces is their inherent lack of discoverability. You won’t find
 any tooltips, toolbars, context menus, or menus—none of the elements that a graphical user interface (GUI) offers to help
 you figure out what you can do and how to do it. PowerShell attempts to make up for this shortcoming with an effective and
 comprehensive help system. We firmly believe that becoming proficient at using the help system is a critical factor in anyone’s
 ability to succeed at PowerShell. “Be prepared to read the help,” Don says, “or you’ll fail at PowerShell.”

3.1. The help commands

 PowerShell’s official command for searching and retrieving help is Get-Help. But you’ll often see people using help or man instead. These aren’t technically nicknames (or aliases, which we cover in the next chapter), but rather they’re a function (help) and an alias to that function (man). Both help and man run Get-Help under the hood, but they pipe its output to more (much like running Get-Help Get-Service|more), resulting in a page-at-a-time display (that you can advance one line at a time by pressing Enter) or a screenful at a time
 (by pressing the spacebar). For this chapter, we’ll mostly show our examples using help. Note that the page display doesn’t work in the PowerShell ISE, because it doesn’t directly support the use of more. The help in the PowerShell v2 ISE is provided as a compiled help file. Creating a shortcut on your desktop to that file
 gives an alternative method of accessing help information. In PowerShell v3 and later, the updatable help functionality takes
 over and there isn’t a compiled help file available for the PowerShell cmdlets.

 	

 Note

 Technically, help is a function and man is an alias to help. They both accomplish the same thing.

 	

 Get-Help produces output, like all other cmdlets, as objects; we’ll get to those in chapter 7, which focuses on working with objects. Piping those to more, as happens with help and man, results in output that’s pure text. For the most part, the conversion to pure text won’t have any impact on you accessing
 help information whatsoever, which means you can feel free to use any of the commands with which you feel more comfortable.

3.2. Where’s the help?

 PowerShell v3 introduced a new feature called updatable help. This is a great feature that has, unfortunately, led to a lot of confusion and gnashing of teeth. For a number of reasons,
 both technical and nontechnical, Microsoft doesn’t include any of PowerShell’s help files with PowerShell itself. Instead,
 you must download and install those help files on any computer where you’ll want to read them. To do so, run Update-Help. The command can even download updated help for non-Microsoft shell extensions that have been designed to take advantage
 of this feature. You should also set yourself a reminder to run it every month or so in order to have the most recent help
 files on your system, possibly as a scheduled job using another feature introduced in PowerShell v3 (see chapter 11). You can also subscribe to an RSS feed at http://sxp.microsoft.com/feeds/msdntn/PowerShellHelpVersions that will provide information when new versions of the help files are made available. If you don’t download help, you’ll
 be prompted to do so the first time you use the Get-Help cmdlet.

 	

 Warning

 If you don’t download the help files (which are XML files), PowerShell will automatically generate a fairly stripped-down
 help display when you ask for help. Needless to say, we strongly recommend taking the 30 seconds you’ll need to download the
 help before you start using the shell.

 	

 The Update-Help command has a few parameters that let you customize its behavior. Some of these are designed to accommodate specific operational
 restrictions that some organizations deal with, so we’ll cover those:

 	
The –Module parameter accepts one or more module names (in a comma-separated list) and attempts to update help for only those modules.
 This can be quicker than forcing the shell to check for updated help for every installed module, if you know that only one
 or two have been updated.

 	The –SourcePath parameter provides a comma-separated list of local file paths (UNCs, or Universal Naming Conventions, are valid) where you
 can find help files. Use this to pull updated help that you’ve downloaded to a file server, for example, rather than attempting
 to download help directly from the internet.

 You don’t need to restart the shell once you’ve downloaded and updated help; it’ll start using the new help immediately. But
 we have a great big caveat to alert you to about updating the help: Because the Microsoft-provided PowerShell extensions live
 in the Windows System32 folder, their help files also must live there. Because System32 is protected, you must be running the shell under elevated credentials in order for Update-Help to have permission to write to the necessary folders. You’ll want to make sure the shell’s window title bar says “Administrator”
 before running Update-Help. You can run Update-Help as often as you like, but it won’t do anything after the first attempt of the day unless you use the –Force parameter.

 Help has three cmdlets associated with it:

 	
Get-Help—Displays help information

 	
Save-Help—Downloads help files for later use via Update-Help

 	
Update-Help—Downloads and immediately updates help files (as discussed earlier)

 You can use Save-Help in situations where you want to download help files to a network location that all machines can access, and update their
 help files from this one location:

 Save-Help -DestinationPath c:\source\powershellhelp -UICulture en-US -Force
[image:] -Verbose

 You’ll see a progress bar and messages for each help file that’s downloaded, like the following:

 VERBOSE: Resolving URI: "http://go.microsoft.com/fwlink/?linkid=285756"
VERBOSE: Your connection has been redirected to the following URI:
"http://download.microsoft.com/download/F/1/8/F184E1E5-22B3-4899-9C45-5C0E757A7E9A/"
VERBOSE: Microsoft.PowerShell.Management: Saved
C:\Source\PowerShellhelp\Microsoft.PowerShell.Management_eefcb906-b326-4e99-9f54-8b4bb6ef3c6d_en-US_HelpContent.cab.
Culture en-US Version 4.0.3.0

 By design Microsoft limits you to one update per day, although you can use the –Force parameter to override that behavior, which allows you to run a Save-Help or Update-Help command for the same module more than once each day. We’ve found it’s sometimes necessary to run Save-Help or Update-Help a couple of times to get all the files downloaded. Notice the use of the –UICulture parameter. The help files come as a pair, for example:

 Microsoft.PowerShell.Management_eefcb906-b326-4e99-9f54-8b4bb6ef3c6d_en-US_HelpContent.cab
Microsoft.PowerShell.Management_eefcb906-b326-4e99-9f54-8b4bb6ef3c6d_HelpInfo.xml

 The correct culture has to be downloaded to match your system. You can test the UI culture:

 PS C:\> Get-UICulture | select -ExpandProperty Name
en-US

 You can also test the culture of your system:

 PS C:\> Get-Culture | select -ExpandProperty Name
en-GB

 	

 PowerShell culture

 The use of Get-Culture and Get-UICulture may seem confusing, but there’s a difference.

 The Get-Culture cmdlet gets information about the current culture settings. This includes information about the current language settings
 on the system, such as the keyboard layout, and the display format of such items as numbers, currency, and dates.

 The Get-UIculture cmdlet gets information on the user interface (UI) culture. The UI culture determines which text strings are used for UI
 elements, such as menus and messages.

 	

 The help files can then be updated like the following:

 Update-Help -Source c:\source\powershellhelp -UICultureen-US -Force –Verbose

 You’ll get messages like the following:

 VERBOSE: Microsoft.PowerShell.Management: Updated
C:\Windows\System32\WindowsPowerShell\v1.0\en-US\Microsoft.PowerShell.Commands.Management.dll-help.xml. Culture en-US
Version 4.0.3.0
VERBOSE: Microsoft.PowerShell.Management: Updated
C:\Windows\SysWOW64\WindowsPowerShell\v1.0\en-US\Microsoft.PowerShell.Commands.Management.dll-help.xml. Culture en-US
Version 4.0.3.0

 	

 Tip

 Use Group Policy to set the Source value. Under the Computer Configuration, go to Policies > Administrative Templates > Windows
 Components > Windows PowerShell and configure the setting “Set the default source path for Update-Help.”

 	

 If you’re running a 64-bit OS, the previous example shows that the help for 64-bit and 32-bit versions of PowerShell is updated
 simultaneously. Updatable help is a great feature that’ll ensure your help information is kept up to date. We strongly recommend
 that you update your help on a regular basis because Microsoft fixes documentation issues in the help files as they’re reported.

3.3. Saving help

 As we mentioned earlier, you can save help to a local share and direct your clients to it. In PowerShell v3 you could download
 help only for modules installed on your computer. We generally recommended running Save-Help from a Windows 8 desktop that had Remote Server Administration Tools (RSAT) installed (this machine had to be using the en-US
 culture for RSAT to be installable). With this approach you were likely to include help for most server-based modules. But
 this approach was not 100% effective because some modules are only installed on servers, which meant you had to download or
 save help on those computers.

 In PowerShell v4, you can download help content for modules that aren’t located on your computer. All you need to do is get the module from the remote computer, which will include the HelpInfoUri, and pass that information to Save-Help. Here’s an example:

 PS C:\> Get-Module -Name Hyper-V -CimSession chi-hvr2
[image:] -ListAvailable | Save-Help -DestinationPath
[image:] \\chi-fp02\PSHelp -Force

 We ran this command on a Windows 8.1 desktop (CHI-FP02). The computer CHI-HVR2 is running Hyper-V on Windows Server 2012 R2.
 We retrieved the module and passed it to Save-Help, saving the help content locally.

 Even though your Windows 8.1 desktop has RSAT installed, there are still some gaps. But using PowerShell you can identify
 the modules that don’t exist locally and save help. First, you need to create a variable with the names of all the locally
 installed modules:

 PS C:\> $local = (Get-Module -ListAvailable).name

 Then you can get all the modules on a remote server that aren’t on your local machine:

 PS C:\> Get-Module -CimSession chi-hvr2.globomantics.local -ListAvailable |
[image:] where {$local -notcontains $_.name}

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Manifest 1.1 Hyper-V
Manifest 1.0.0.0 NetWNV {Get-NetVirtualiza...
Manifest 1.0.0.0 ServerCore {Get-DisplayResolu...
Manifest 1.0.0.0 SoftwareInventoryLogging {Get-SilComputer, ...
Manifest 1.0.0.0 UserAccessLogging {Enable-Ual, Disab...
Manifest 1.0.0.0 WindowsServerBackup

 Once you’ve confirmed this works as expected, you can pipe this to Save-Help:

 PS C:\> Get-Module -CimSession chi-hvr2.globomantics.local -ListAvailable |
[image:] where {$local -notcontains $_.name} |
[image:] Save-Help -DestinationPath \\chi-fp02\PSHelp -Force

 The benefit is that you can set up a scheduled PowerShell job on a single computer running PowerShell v4 and have it save
 help for all of the servers in your enterprise. Each server can then have a separate job to periodically download help from
 the local source, assuming you need updated help on the server.

 	

 Note

 If you’ll be in a mixed PowerShell environment—that is, running PowerShell v3 and v4—and plan on saving help, you’ll have
 to take some extra steps. Help files for the different versions are generally not interchangeable. You wouldn’t want to download
 v4 help files for a PowerShell v3 system. If you plan on saving help, you’ll need to have separate processes and paths for
 each version.

 	

3.4. Using the help

 The help system in PowerShell v3 is smart. For example, it supports the use of wildcards (the * character), enabling you to
 search for help topics when you don’t know the name of the specific command you need. When executing a search, it searches
 not only the shell extensions loaded into memory at the time but also any other installed extensions that are located in the
 defined module path. That way, you’re searching across not only what’s in memory but also what’s available on the entire computer.
 If your search term isn’t found in the name of a command or a help file, the help system will proceed to perform a full-text
 search across the help files’ synopses and descriptions. That can be a bit more time-consuming, but it can help uncover obscure
 help topics for you.

 For example, if you want to find a command for working with services, you might do the following:

 PS C:\> help *service*
Name Category Module Synopsis
---- -------- ------ --------
Get-Service Cmdlet Microsoft.PowerShell.Management Gets ...
New-Service Cmdlet Microsoft.PowerShell.Management Creat...
New-WebServiceProxy Cmdlet Microsoft.PowerShell.Management Creat...
Restart-Service Cmdlet Microsoft.PowerShell.Management Stops...
Resume-Service Cmdlet Microsoft.PowerShell.Management Resum...
Set-Service Cmdlet Microsoft.PowerShell.Management Start...
Start-Service Cmdlet Microsoft.PowerShell.Management Start...
Stop-Service Cmdlet Microsoft.PowerShell.Management Stops...
Suspend-Service Cmdlet Microsoft.PowerShell.Management Suspe...
Stop-DnsService Cmdlet DnsShell Stop-...
Start-DnsService Cmdlet DnsShell Start...
Get-NetFirewallServiceFilter Function NetSecurity ...
Set-NetFirewallServiceFilter Function NetSecurity ...

 Notice that the last four results are from modules you haven’t loaded into memory yet. PowerShell v3 and v4, by default, automatically
 load all modules on your module path for you. The shell will search as broadly as possible for you.

 This isn’t Bing or Google; the help system is only capable of doing basic pattern matches, not a contextual search. When choosing
 your search “keyword,” follow these tips:

 	Choose a single word or partial word, not multiple words and not phrases.

 	Put wildcards (*) on either side of your word. The help system will sometimes do this implicitly. For example, run help iscsi and, because “iscsi” doesn’t match the name of a command or help file, the shell will implicitly run help *iscsi* for you.

 	Stick with singular words rather than plurals: “Service” rather than “Services,” for example.

 	Go with partial words: “*serv*” will generate more hits than “*service*” will.

 	

 Warning

 The help system isn’t searching for available commands; it’s searching for available help files. Because Microsoft ships help
 files for all of its commands, it amounts to much the same thing. But it’s possible for a command to exist without a corresponding
 help file, in which case the help system won’t find it. A separate command, Get-Command, also accepts wildcards and searches across available commands, so it’s a good companion to the help system.

 	

 Once you’ve located the command you want, ask for the help on that specific command in order to learn how to use it:

 PS C:\> help Invoke-Command
NAME
 Invoke-Command
SYNOPSIS
 Runs commands on local and remote computers.
SYNTAX
 Invoke-Command [-ScriptBlock] <ScriptBlock> [-ArgumentList<Object[]>]
 [-InputObject<PSObject>] [-NoNewScope [<SwitchParameter>]]
[<CommonParameters>]
 Invoke-Command [[-ConnectionUri] <Uri[]>] [-ScriptBlock] <ScriptBlock>
 [-AllowRedirection [<SwitchParameter>]]
[-ArgumentList<Object[]>] [-AsJob [<SwitchParameter>]]
[-Authentication <AuthenticationMechanism>]
[-CertificateThumbprint<String>] [-ConfigurationName<String>]
[-Credential <PSCredential>] [-Disconnected[<SwitchParameter>]]
[-HideComputerName [<SwitchParameter>]]
[-InputObject<PSObject>] [-JobName<String>]
[-SessionOption<PSSessionOption>] [-ThrottleLimit<Int32>]
 [<CommonParameters>]
 Invoke-Command [[-ConnectionUri] <Uri[]>] [-FilePath] <String>
[-AllowRedirection [<SwitchParameter>]]
[-ArgumentList<Object[]>] [-AsJob [<SwitchParameter>]]
[-Authentication <AuthenticationMechanism>]
[-ConfigurationName<String>] [-Credential <PSCredential>]
[-Disconnected [<SwitchParameter>]] [-HideComputerName
[<SwitchParameter>]] [-InputObject<PSObject>] [-JobName<String>]
[-SessionOption<PSSessionOption>]
[-ThrottleLimit<Int32>] [<CommonParameters>]
...

 You can include a few options when you’re getting help for a command, and these are specified with the following parameters:

 	
-Full—Displays the full help, including details for each command parameter and usually including usage examples. We suggest you
 get into the habit of always viewing the full help, because it reveals a lot more detail about the command and its various
 use cases.

 	
-Examples—Displays usage examples only. That’s useful for learning how to use the cmdlet.

 	
-Detailed—Displays details on each command parameter but doesn’t display usage examples.

 	
-Online—Opens the help in the system’s default web browser, loading from Microsoft’s website. This is a great way to check for the
 most up-to-date help, and it displays the help in a separate window so that you can look at it as you’re typing a command.

 	
-ShowWindow—Opens full help in a pop-up window. This makes it much easier to browse through help without giving up your PowerShell prompt.
 You can also search the help content in this window. See figure 3.1; the display was produced with the command Get-Help Get-Process –ShowWindow. Using –ShowWindow doesn’t lock your PowerShell prompt; the help display is separate. You can have multiple help files open simultaneously by
 using –ShowWindow and still have a working PowerShell prompt.

 Figure 3.1. Results of using the –ShowWindow parameter with Get-Help

 [image:]

 Sometimes you may want the detail on a specific parameter. You don’t have to wade through pages of full help; instead, use
 the Get-Help cmdlet. You may want to run help on Get-Help. If you do, you’ll see that you can run commands like the following:

 PS C:\> Get-Help Get-service -Parameter name
-Name <String[]>
 Specifies the service names of services to be retrieved. Wildcards are
permitted. By default, Get-Service gets all of the services on the
computer.
 Required? false
 Position? 1
 Default value All services
 Accept pipeline input? true (ByPropertyName, ByValue)
 Accept wildcard characters? true

3.5. “About” help files

 In addition to providing help on commands, PowerShell includes help for general concepts, troubleshooting, and so forth. Usually
 referred to as “about” files because their filenames start with the word “about,” these files act as PowerShell’s formal documentation.
 To see a complete list you can run the command yourself, but we’ll truncate it as follows:

 PS C:\> help about*
Name Category Module
---- -------- ------
about_AliasesHelpFile
about_Arithmetic_OperatorsHelpFile
about_ArraysHelpFile
about_Assignment_OperatorsHelpFile
about_Automatic_VariablesHelpFile
about_BreakHelpFile
about_Command_PrecedenceHelpFile
about_Command_SyntaxHelpFile
about_Comment_Based_HelpHelpFile
about_CommonParametersHelpFile
about_Comparison_OperatorsHelpFile
about_ContinueHelpFile
about_Core_CommandsHelpFile
about_Data_SectionsHelpFile
about_DebuggersHelpFile
about_DoHelpFile
about_Environment_VariablesHelpFile
about_Escape_CharactersHelpFile
about_EventlogsHelpFile
about_Execution_PoliciesHelpFile

 To view any of these files, you can ask for help on the complete help filename:

 PS C:\> help about_debuggers
TOPIC
about_Debuggers
SHORT DESCRIPTION
 Describes the Windows PowerShell debugger.
LONG DESCRIPTION
 Debugging is the process of examining a script while it is running in
 order to identify and correct errors in the script instructions. The
 Windows PowerShell debugger is designed to help you examine and
Identify

 These files are also part of the updatable help system. We strongly recommend using the –ShowWindow parameter with about files because it makes them much easier to read.

3.6. Provider help

 As you’ll learn in upcoming chapters, PowerShell relies heavily on providers (technically, PSProviders) to connect PowerShell
 to various external data stores and systems such as Active Directory or the Registry. Both of these elements can provide help.
 For example, here’s how to get help on the FileSystem provider:

 PS C:\> help filesystem
PROVIDER NAME
FileSystem
DRIVES
 C, D
SYNOPSIS
 Provides access to files and directories.
DESCRIPTION
 The Windows PowerShell FileSystem provider lets you get, add, change,
 clear, and delete files and directories in Windows PowerShell.
 The FileSystem provider exposes Windows PowerShell drives that
 correspond to the logical drives on your computer, including drives
 that are mapped to network shares. This lets you reference these
 drives from within Windows PowerShell.

 The help for providers can be quite extensive, and it often includes valuable details on how to use the provider for various
 management tasks, including usage examples. These files also document the dynamic changes that providers make to cmdlets.
 You can find the providers installed on your system by using Get-PSProvider.

3.7. Interpreting command help

 Despite the usefulness of provider help and the about help files, you’ll find yourself working primarily with help for individual
 commands. Learning to interpret the help displays is an incredibly important skill—perhaps one of the most important skills in PowerShell. Let’s look at a quick overview (listing 3.1).

 Listing 3.1. Sample help

 [image:]

 What you’re looking at are three different parameter sets, each of which represents a slightly different way to use this cmdlet. These parameter sets can be a big source of confusion,
 so we’ll provide a simple rule to remember: When you’re running the command, you can only choose parameters from a single
 parameter set to use together. In this case, that means you couldn’t use both –Name and –InputObject at the same time, because they appear in different parameter sets. You can mix and match parameters from one set, but you
 can’t mix and match parameters from multiple sets.

 Now let’s focus on the syntax display by looking at help for Get-WmiObject:

 SYNTAX
 Get-WmiObject [-Class] <String> [[-Property] <String[]>] [-Amended]
 [-AsJob] [-Authentication {Default | None | Connect | Call | Packet | PacketIntegrity | PacketPrivacy | Unchanged}] [-Authority <String>]
 [-ComputerName <String[]>] [-Credential <PSCredential>]
 [-DirectRead] [-EnableAllPrivileges] [-Filter <String>]
 [-Impersonation {Default | Anonymous | Identify | Impersonate |
 Delegate}] [-Locale <String>] [-Namespace <String>]
 [-ThrottleLimit <Int32>] [<CommonParameters>]

 If you know the meaning of all the punctuation, you can extract quite a bit of information from this concise display. Note
 that the meaning of the punctuation within the help file isn’t the same as when these same symbols are used elsewhere in the
 shell. Here’s what we know:

 	We know that the –Class parameter is positional, because the parameter name (but not its data type <String>) is contained in square brackets. Positional means that you don’t have to type –Class, provided you put the String value in the first position, because –Class is listed first in this help file. In other words you can type Get-WmiObject Win32_ComputerSystem instead of Get-WmiObject -Class Win32_ComputerSystem. Positional parameters are fine to use at the command line, but we recommend you don’t use them in your scripts.

 	
We know that the –Class parameter is mandatory, because its name and data type aren’t both contained in square brackets.

 	We know that the –Property parameter is entirely optional for this command. That’s because the entire parameter, both its name and data type, is contained
 in square brackets: [[-Property]<String[]>].

 	We know that the –Amended parameter doesn’t accept a value—it’s a switch. This means you either provide the parameter or not, but if you do, it doesn’t need a value.

 	We know that the –Class parameter accepts a String value, meaning a string of characters. If the string contains a space, tab, or other whitespace,
 it must be enclosed within single or double quotes.

 	We know that the –Property parameter accepts one or more strings, because its value is shown with two square brackets jammed together: <String[]>. That’s a PowerShell indication for an array. You could provide those multiple values as a comma-separated list.

 	We know that the –Authentication and –Impersonation parameters are limited to a discrete set of values because those values are supplied in curly braces {}.

 	

 Tip

 Try to avoid using parameters positionally if you’re getting started with PowerShell. Positional parameters make it harder
 to interpret commands, and you’re taking on the responsibility of getting everything lined up in perfect order. By typing
 the parameter names, you’re removing the worry of getting everything in the right order. The order doesn’t matter if you type
 the parameter names. You’re also making the command line easier to read. Positional parameters should be avoided in scripts
 or functions. Typing the parameter name now makes reading and maintenance in the future a whole lot easier.

 	

 Yes, that’s a lot of information. You can find most of that in a more detailed fashion when you’re viewing the detailed or
 full help. For example, what follows is the section specifically for the –Class parameter:

 -Class <String>
 Specifies the name of a WMI class. When this parameter is used,
 the cmdlet retrieves instances of the WMI class.
 Required? true
 Position? 1
 Default value
 Accept pipeline input? false
 Accept wildcard characters? False

 In this example, you can see that the parameter is mandatory (required), that its value can be passed in position 1, and that
 it accepts data of the String type. There’s also a bit more detail about what the parameter does—some parameters’ detailed
 help even includes brief examples. The list of acceptable values is also often provided in the case of parameters only taking
 values from a restricted group, as follows:

 PS C:\> Get-Help Get-EventLog -Parameter EntryType
-EntryType<string[]>
 Gets only events with the specified entry type. Valid values are Error,
 Information, FailureAudit, SuccessAudit, and Warning. The default is all
 events.
 Required? false
 Position? named
 Default value All events
 Accept pipeline input? false
 Accept wildcard characters? false

3.8. Common parameters

 You’ll notice that every command’s help file references <CommonParameters> at the end of each parameter set. These are a set of parameters that are automatically added by PowerShell to every command.
 You can read about them in an about file:

 PS C:\> help about_common*
TOPIC
about_CommonParameters
SHORT DESCRIPTION
 Describes the parameters that can be used with any cmdlet.
LONG DESCRIPTION
 The common parameters are a set of cmdlet parameters that you can
 use with any cmdlet. They are implemented by Windows PowerShell, not
 by the cmdlet developer, and they are automatically available to any
 cmdlet.
 You can use the common parameters with any cmdlet, but they might
 not have an effect on all cmdlets. For example, if a cmdlet does not
 generate any verbose output, using the Verbose common parameter
 has no effect.

 The common parameters are:

 	
Debug

 	
ErrorAction

 	
ErrorVariable

 	
OutVariable

 	
OutBuffer

 	
PipelineVariable

 	
Verbose

 	
WarningAction

 	
WarningVariable

 We’ll address each of the common parameters throughout this book, in the chapters that deal with each one’s specific function,
 so we won’t cover them any further here.

 Most commands that modify the system in some way support two other “semi-common” parameters:

 	
-Confirm—Asks you to confirm each operation before performing it.

 	
-WhatIf—Doesn’t perform the operation, but instead indicates what would’ve been done. This is kind of a “test run” and generally
 must only be used with the last command on the command line, because it prevents the command from doing anything. This parameter is usually available
 only on cmdlets that can perform modifications to your system.

 These parameters (referred to in the help file as risk mitigation parameters) must be defined by the cmdlet and supported
 by the provider. For example, Stop-Service has a –WhatIf parameter that you can see when you’re looking at help:

 PS C:\> Stop-Service wuauserv -WhatIf
What if: Performing operation "Stop-Service" on Target "Windows Update
 (wuauserv)".

 –WhatIf is an example of a great sanity check to make sure your command will execute what you intend. You may also have to check
 the PSProvider to see if it supports ShouldProcess:

 PS C:\> Get-PSProvider | where {$_.Capabilities -match "ShouldProcess"} | Select name
 Name

 Alias
 Environment
 FileSystem
 Function
 Registry
 Variable

 For example, New-Item supports –WhatIf and it works fine in the filesystem. But you may have a snap-in or a module that adds a new provider that might not support
 it. If in doubt, check the provider.

3.9. Summary

 PowerShell’s help system is a powerful tool—and because it’s fundamental to using the shell, we included this chapter in the
 beginning of the book in hopes you’d find it right away. PowerShell v3 introduced a couple of caveats, such as the need to
 download the help to your computer before the help system becomes fully functional, but we hope that’ll be a minor hurdle
 for most administrators. The ability to download help based on the modules installed on a remote machine is an additional
 feature introduced with PowerShell v4.

Chapter 4. The basics of PowerShell syntax

 This chapter covers

 	Using commands in PowerShell

 	Using command parameters

 	Working with command aliases

 	Using script blocks

 Any time you’re learning to use a new tool, particularly one that involves typed commands, the syntax can be the biggest “gotcha.”
 We won’t pretend that every single bit of PowerShell’s syntax is easy to remember, makes perfect sense, and is totally consistent.
 In the end, the syntax is what it is—we (and you) have to learn it and deal with it.

 If you’ve used PowerShell a bit already, and if you’ve picked up some of its syntax from reading other people’s blogs and
 articles on the internet, you may have an inaccurate view of the syntax. You also need to remember that best practice has
 evolved over the eight-plus years we’ve had between the original release of PowerShell and the latest version. This chapter
 will help set you straight.

4.1. Commands

 PowerShell has four features that we think of as commands:

 	Internal cmdlets, which only run inside PowerShell and are written in a .NET Framework language such as Visual Basic or C#

 	Functions, which are written in PowerShell’s scripting language

 	PowerShell v3 and v4 cmdlets, which are produced from WMI (Windows Management Instrumentation) classes using the “cmdlets
 over objects” capabilities

 	External commands, such as ping.exe, which could also be run from the old cmd.exe shell

 In this chapter, we’ll focus only on the first two command types.

 	

 Note

 What’s in a name? Sometimes, a lot of cleverness. Microsoft chose the name “cmdlet” for PowerShell’s internal commands, because
 that word hadn’t been used for anything else, ever. If you hop on your favorite search engine and include “cmdlet” in your
 search query, the results you get will be almost 100% PowerShell-related, because the word “cmdlet” isn’t used in any other
 context.

 	

 PowerShell cmdlets have a specific naming convention. Functions should follow this same convention, but PowerShell doesn’t require them to do so. That convention is called verb-noun. A cmdlet name starts with a verb, which is followed by a dash, which is followed by a singular noun. PowerShell isn’t case
 sensitive, so capitalization of commands is a matter of personal preference and convention. Tab completion will capitalize
 for you according to convention. Consider some of these cmdlet names:

 	
Get-Service

 	
New-ADUser

 	
Set-Service

 	
Write-EventLog

 	
Enter-PSSession

 Microsoft strictly controls the verbs that everyone can use for a cmdlet name. Although it’s possible for someone to create
 a cmdlet—or a function—that uses nonstandard verbs, PowerShell will display a warning when loading those into memory. You
 can find the official list of approved verbs at http://msdn.microsoft.com/en-us/library/windows/desktop/ms714428(v=vs.85).aspx, which is part of the PowerShell Software Development Kit (SDK) documentation. You can also see the list by running the Get-Verb cmdlet (Get-Verb is actually a function but it’s treated as a cmdlet).

 	

 Note

 The approved verbs list hasn’t changed between PowerShell v3 and PowerShell v4.

 	

 Nouns aren’t controlled, but they should always be singular (“Service” versus “Services”), and they should clearly describe
 whatever it is they’re examining or manipulating. For example, we recommend using “Mailbox,” which is clearer than something
 like “mbx.”

 Why are these rules in place? They’re for your benefit. If you’d never worked with System Center Virtual Machine Manager,
 you could guess that the cmdlet used to retrieve a list of virtual machines would be named something like “Get-VirtualMachine.”
 You could then use PowerShell’s help functionality to look for help on that cmdlet name, which would validate your guess.

 	

 Tip

 Wildcard searching is often the best way to start. Get-Command *net* will give a significant number of responses but will enable you to quickly discover the networking cmdlets.

 	

 But with the exception of Microsoft Exchange Server, you’ll find that most products that offer PowerShell-based tools have
 cmdlet nouns that include a short prefix. It’s not “Get-User,” but rather “Get-ADUser.” The idea behind the prefixes is to tie a cmdlet to a specific technology or vendor. For example, Quest (now a part of
 Dell) has a set of cmdlets for managing Active Directory. Their user cmdlet is called “Get-QADUser.” By using a prefix, the
 cmdlet name is clear about what kind of user it’s working with or at least what product. It’s not a SQL Server user, it’s
 not a local user, it’s an ADUser or a QADUser. This is important because the Microsoft and Quest cmdlets produce different object types, which would confuse PowerShell’s
 formatting engine, along with everyone else. Exchange Server is an exception: It uses “Get-Mailbox” rather than “Get-ExMailbox.”
 If they had it to do over, we’re sure Microsoft would’ve chosen the latter, but Exchange Server shipped before anyone thought
 of using the noun prefixes.

 	

 Warning

 When people speak aloud about cmdlets, they tend to be a bit lazy. They’ll say, “Get Service,” which might lead you to believe
 that you could type “Get Service” and have it work. Nope. Never forget that there’s always a dash between the verb and noun.
 Even though people might not say “Get dash Service,” you’d type Get-Service.

 	

 You might feel that cmdlet names are long and hard to type. They certainly can be—Reset-ADAccountPassword is a mouthful whether you’re saying it or typing it. PowerShell offers two features to help make typing easier.

 4.1.1. Aliases: nicknames for commands

 An alias is a nickname for a command name. Aliases can point to cmdlets or to functions, and they provide a short way to type
 the command’s name. Typing dir is a lot easier than typing Get-ChildItem, for example.

 An alias is only a shortcut for a command’s name. As you’ll learn in a moment, commands can be accompanied by parameters, which specify and modify a command’s behavior. An
 alias never includes any parameters. You can’t create an alias to run dir $env:temp –File –Recurse, although you could create a simple function and define an alias for the function.

 We strongly recommend using aliases only when you’re interactively typing commands into the PowerShell console. If you decide
 to create a script, or even if you copy and paste a command into a script, use full command names (some commercial editors can expand aliases into their full
 command names for you).

 	

 Warning

 Never use your own created aliases in scripts that you’re distributing to others. They may not have those aliases or, even
 worse, they may have defined those aliases to something else. Never assume the presence or meaning of an alias.

 	

 Although the aliases are easy to type, they’re more difficult to read, particularly for someone with less PowerShell experience.
 Using full command names helps make it clearer what a script is doing, making the script easier to maintain.

 4.1.2. Command name tab completion

 Most PowerShell hosts—including the console and ISE provided by Microsoft—provide a feature called tab completion. It’s a way of letting the shell type for you. For example, open a PowerShell console window and type Get-P. Then, press the Tab key on your keyboard. Keep pressing Tab, and you’ll see PowerShell cycle through all of the available
 commands that match what you’d already typed. Press Shift+Tab to cycle backward.

 We think this is a great way to use full command names without having to type so much.

4.2. Parameters

 Even if you’ve never used PowerShell before, we can guarantee you’ve used parameters. Take a look at figure 4.1, a dialog box you’ve probably seen before. It shows the User Properties dialog box from Active Directory Users and Computers.

 Figure 4.1. Even dialog boxes have parameters.

 [image:]

 The labels in the dialog box in figure 4.1—“First name,” “Last name,” “Description,” and so forth—are parameters. What you type into the text boxes are parameter values.
 PowerShell uses a more text-friendly way of representing parameters and values. Take a look at figure 4.2 and you’ll see what we mean.

 Figure 4.2. Graphical parameters map to the text-based parameters used by PowerShell.

 [image:]

 In figure 4.2, we’re running a command called New-ADUser that’s part of Microsoft Active Directory module. It has several parameters, which all start with a hyphen or a dash, followed
 by the parameter name. Because parameter names can’t contain spaces, the parameter names sometimes look a little strange,
 like –GivenName. After the parameter name you have a space and then the parameter value. You always have to enclose string values in quotation
 marks (either single or double, it doesn’t matter) when the string contains a space. None of our values included spaces, so
 we didn’t have to use the quotes, but it doesn’t hurt to do so anyway.

 	

 Tip

 PowerShell’s cmdlet and parameter names aren’t case sensitive. If you use tab completion, you’ll get capitalization, but if
 you type the names, any old case will do. We regularly work interactively in lowercase. We will say that capitalization of
 cmdlet and parameter names makes your scripts easier to read.

 	

 PowerShell v3 introduced a new cmdlet called Show-Command (also present in v4 and later), which takes another PowerShell command and displays its parameters in a graphical dialog
 box. You can fill in the dialog box and either run the command or click a different button to see what the command would look
 like written out in text. Figure 4.3 shows the Show-Command cmdlet in action on Windows 8.

 Figure 4.3. PowerShell’s Show-Command cmdlet graphically prompts you to fill in a command’s parameters.

 [image:]

 This cmdlet is also turned on in the ISE, which makes it easy to create a command by checking parameters and inserting it
 into your script. Show-Command is available as a docked window in the ISE; see chapter 2 to learn more.

 We sometimes see people struggle with parameters. For example, if they want to get a service named BITS, they’ll type “Get-Service
 –BITS.” That’s not correct. The correct command would be Get-Service –Name BITS. Remember, after the hyphen comes the parameter name—the piece of information you’re setting. That’s followed by a space,
 then the value you want to give to the parameter. In his classes, Don makes students chant “dash name space value, dash name
 space value, dash name space value” for several minutes, to be sure the pattern sinks in.

 Like command names, parameter names can get a bit tedious to type. As with commands, PowerShell provides some shortcuts.

 4.2.1. Truncating parameter names

 PowerShell requires that you type only enough of the parameter name to differentiate it from the other parameters available
 to the command. For example, consider the Get-Service cmdlet, which has the following syntax:

 Get-Service [[-Name] <string[]>] [-ComputerName <string[]>]
[-DependentServices] [-RequiredServices]
[-Include <string[]>][-Exclude <string[]>]
[<CommonParameters>]

Get-Service -DisplayName <string[]> [-ComputerName <string[]>]
[-DependentServices] [-RequiredServices]
[-Include <string[]>][-Exclude <string[]>]
[<CommonParameters>]

Get-Service [-InputObject <ServiceController[]>]
[-ComputerName <string[]>]
[-DependentServices] [-RequiredServices]
[-Include <string[]>][-Exclude <string[]>]
[<CommonParameters>]

 Only one parameter starts with the letter “C,” and that’s –ComputerName. Therefore, instead of typing Get-Service –ComputerName SRV23 you could type Get-Service –c SRV23. Two parameters start with the letter “D,” though: -DependentServices and -DisplayName. You couldn’t shorten those to only one letter; you’d need to type –de or –di at a minimum.

 As with command aliases, shortened parameter names are easy to type but hard to read. When someone else comes along and reads
 a script with lines like the following:

 gsv –di BITS –c SERVER2 -de

 they’re likely to be a little confused, don’t you think? Coming back to that code six months after writing it, you may be
 confused as well. That’s why we suggest including full, complete parameter names when you’re putting commands into a script.
 With tab completion available it’s just as easy to use the full name and saves having to remember all of the aliases.

 4.2.2. Parameter name tab completion

 The good news is that tab completion works for parameter names, too. Type Get-S, press Tab multiple times to complete the command name to Get-Service, and then type –c and press Tab. PowerShell will fill in –ComputerName for you. You can still truncate your parameter names when you’re typing, or one or two extra keystrokes on the Tab key will
 get you the fully spelled-out name that’s easier to read. Not sure about any of the parameters? After entering a cmdlet name,
 if you type a dash and then press Tab you can cycle through all the parameters.

 While we’re talking about parameter completion, later versions of PowerShell can also guess what value you want. Try this:
 At a PowerShell prompt type Get-Service –n and press Tab. That should complete –Name. Then press the spacebar and hit the Tab key again. PowerShell should display the first service. You can keep pressing Tab to find the service you want. Use Shift-Tab
 to go backwards. This even works for positional parameters. At a new prompt type Get-Service followed by a space. Then start pressing the Tab key. How cool is that!

 	

 Tip

 This tab completion trick works with other things in PowerShell like WMI classes. Start typing a command like Get-WmiObject win32_ then wait a few seconds and start pressing Tab. You should be able to cycle through the class names. The names should be
 cached so that the next time you use Get-WmiObject or Get-CimInstance you can start tabbing immediately.

 	

4.3. Typing trick: line continuation

 Sometimes, typing in PowerShell can be frustrating. For example, you might find yourself looking at a strange prompt, like
 the following:

 PS C:\> Get-Process -Name "svchost
>>

 What the heck?

 That “>>” prompt is PowerShell’s way of telling you, “I know you’re not finished typing, so keep going!” If you look carefully,
 you’ll notice that we forgot to include the closing quotation mark after “svchost.” PowerShell knows that quotes always come
 in pairs, so it’s waiting for us to finish typing the last quote. In this case, we goofed, so we press Ctrl-C to break out
 of that “continuation prompt” and try our command again.

 Sometimes, this can be a useful trick. PowerShell will let you “continue” like this whenever you have an unclosed structure:
 Quotation marks, square brackets, curly brackets, and parentheses all enclose a structure. PowerShell will also let you “continue”
 when a line ends in a comma, pipe character, or semicolon, because those all tell it that there’s “more to come.” Finally,
 if a line ends in a backtick (`) and a carriage return, that also tells the shell to let you continue typing. Using these
 tricks, you can break a long, complex command onto several lines, as follows:

 PS C:\> Get-Service -Name B*,
>> A*,
>> C* |
>> where {
>> $_.Status -eq 'Running'
>> } |
>> sort Status
>>

Status Name DisplayName
------ ---- -----------
Running COMSysApp COM+ System Application
Running CryptSvc Cryptographic Services
Running BFE Base Filtering Engine
Running ADWS Active Directory Web Services
Running AppHostSvc Application Host Helper Service

 We ran the following command in the example:

 Get-Service –Name B*,A*,C* | where { $_.Status –eq 'Running' } | sort Status

 But we used PowerShell’s little “continuation” tricks to break it onto several lines. Notice that we had to press Enter on
 the final, blank line, to tell the shell that we were finally finished typing and that it should execute the command.

 These same “continuation rules” apply when you’re in a script, too, and folks will use these rules to help format a script’s
 commands so that they’re more readable. In our case, we use them to help keep each line of the script short enough to fit
 in this book. In scripts we recommend the pipe character, braces, and commas. The backtick is usually not needed unless you
 have a very long line of code.

4.4. Parenthetical commands and expressions

 Do you remember algebra? Whether you loved it or hated it, we hope you remember one thing: parentheses. In algebra, parentheses
 mean “do this first.” Take a mathematical expression like this one:

 (5 + 5) * 10

 The answer is 100, because you first add the 5 and 5, getting 10, and then multiply that by 10. When you were first learning
 algebra, you probably wrote out each step:

 (5 + 5) * 10
 10 * 10
 100

 PowerShell works the same way, both with mathematical expressions and with more complex commands.

 For example, use Notepad to create a simple text file that includes one computer name per line. Figure 4.4 shows the text file.

 Figure 4.4. Creating a list of computer names in Notepad

 [image:]

 Next, return to PowerShell and display the contents of the file. You do this by running the Get-Content cmdlet, although you may be more familiar with the type or cat alias:

 PS C:\> Get-Content names.txt
localhost
server-r2
windowsdc1

 Suppose you want to retrieve a list of running processes from each of those computers. One way to do so involves typing their
 names:

 Get-Process –ComputerName localhost,server-r2,windowsdc1

 That’s going to become tedious if you have to keep doing it over and over. Because you’ve got the names in a text file, why
 not let PowerShell type the names for you?

 Get-Process –ComputerName (Get-Content names.txt)

 Think about algebra when you read this: PowerShell executes whatever’s inside the parentheses first. The parentheses will,
 in effect, be replaced by whatever is produced. So if you were going to write this out, step by step, as you would in algebra,
 it might look like the following:

 Get-Process –ComputerName (Get-Content names.txt)
Get-Process –ComputerName localhost,server-r2,windowsdc1

 That second version is exactly what you could’ve typed manually—but you let PowerShell arrive at that on its own. This demonstrates
 that a parenthetical expression, or parenthetical command, can stand in for any manually typed data. You only need to make
 sure that the command is producing the exact type of data that you’d have provided manually.

 You’ll see a lot more examples of parenthetical commands as we progress through this book. It’s an important technique in
 PowerShell and one that we’ll reinforce as we go.

4.5. Script blocks

 PowerShell supports a special kind of structure called a script block. A script block can contain any set of PowerShell commands, and it can contain as many of them as you need. In the same way
 that strings are enclosed in quotation marks, a script block is enclosed in curly brackets, or braces:

 $sb={ Get-CimInstance –ClassName Win32_OperatingSystem ; Get-CimInstance
[image:] –ClassName Win32_ComputerSystem }

 This example uses a semicolon to separate two commands, which allows them to each execute sequentially and independently.
 The script block has been saved to a variable, $sb. You could also have written the script block as follows:

 $sb={
 Get-CimInstance –ClassName Win32_OperatingSystem
 Get-CimInstance –ClassName Win32_ComputerSystem
}

 Separate code lines like the second example are generally easier to read if you have a complicated block of code. In any event,
 both commands are contained within that same script block. This can be passed as a single unit to anything capable of accepting
 a script block such as Invoke-Command. Script blocks can also be invoked using the call operator (&). We’re a bit early in the book to provide a real-world example of using script blocks, but we want to bring them to your
 attention. We’ll remind you of them when we’re ready to put them to use.

4.6. Summary

 We’ve looked at some of the basics of PowerShell’s syntax. We have more to cover, but most of what’s ahead will build on these
 basics. Yes, PowerShell uses a lot of punctuation in its syntax: You’ve seen dashes, curly brackets, parentheses, semicolons,
 quotation marks, and a bit more in this chapter. Keeping track of all of them is the price of admission for using PowerShell.
 The shell can do a lot for you, but only after you learn to speak its language, so that you can tell it what you need. You’re
 on the right track, and this chapter covered some of the most important bits that you’ll need.

 PowerShell is an extensible environment. We’ve mentioned the Active Directory and Exchange cmdlets in this chapter, both of
 which are delivered as extensions to the PowerShell base. In chapter 5 you’ll learn how to work with the PowerShell snap-ins and modules used to provide these extensions.

Chapter 5. Working with PSSnapins and modules

 This chapter covers

 	Extending PowerShell functionality

 	Using PSSnapins and modules

 	Module discovery and automatic loading

 PowerShell’s real value lies not in the hundreds of built-in commands that it ships with but in its ability to have more commands
 added. PowerShell extensions—our collective term for the PSSnapins and modules that can be loaded—permit PowerShell to manage
 anything: IIS, Exchange, SQL Server, VMware, Citrix, NetApp, SharePoint, Cisco, you name it. Being able to efficiently work
 with these extensions is probably one of the most important things you’ll do in the shell.

5.1. There’s only one shell

 Before we jump into working with these extensions, let’s get something straight: There’s no such thing as a product-specific
 version of PowerShell. It’s easy to get the impression that such a thing exists, because Microsoft tends to create Start menu
 shortcuts with names like “Exchange Management Shell,” “SharePoint Management Shell,” and so forth.

 	

 Note

 The PowerShell functionality in SQL Server 2008 and 2008 R2 is the only exception to this rule of which we know. It had its
 own version of PowerShell—sqlps.exe—that was a recompiled version of PowerShell with the SQL Server functionality added and
 the snap-in functionality removed. SQL Server 2012 delivers its PowerShell functionality as a module (confusingly called sqlps)
 so we’ll forget (and possibly even forgive) the oddity that was sqlps.exe.

 	

 The fact is that these Start menu shortcuts are running plain ol’ powershell.exe and passing a command-line argument that
 has the shell do one of four things:

 	Autoload a PowerShell console (.psc) file, which specifies one or more PSSnapins to load into memory at startup

 	Autorun a PowerShell script (.ps1) file, which can define commands, load extensions, show a “tip of the day,” and whatever
 else the authors desire

 	Autoload a module

 	Autoload a PSSnapin

 You can look at the properties of these Start menu shortcuts to see which of these four tricks they’re using to provide the
 illusion of a product-specific shell—and you can manually perform the same task in a “plain” PowerShell console to replicate
 the results. There’s nothing stopping you from loading the Exchange stuff into the same shell where you’ve already loaded
 the SharePoint stuff, creating a “custom” shell in much the same way that you could always create a custom graphical Microsoft
 Management Console (MMC) environment. In fact, it’s less confusing if you do this because you don’t have to worry about which
 “shell” supplies which functionality.

5.2. PSSnapins vs. modules

 PowerShell has two types of extensions: PSSnapins and modules. Both are capable of adding cmdlets and PSProviders to the shell
 (we’ll get into PSProviders in chapter 15); modules are also capable of adding functions to the shell (we refer to functions and cmdlets as “commands” because they
 do the same thing in the same way).

 PSSnapins are the “v1 way” of extending the shell, although they’re still supported in v2, v3, and v4. Microsoft’s advice
 is for folks to not make PSSnapins anymore, but it isn’t preventing anyone from doing so. PSSnapins are written in a .NET
 language like C# or Visual Basic, and they’re packaged as DLL files. They have to be installed and registered with the system
 before PowerShell can see them and load them into memory.

 Modules, introduced in v2, are the preferred way of extending the shell. Sometimes they have to be installed, but most of
 the time they can be copied from system to system—it depends a bit on the underlying dependencies the module may have on other
 components or code. Modules can benefit from autoloading, too, which we’ll discuss next.

5.3. Loading, autoloading, and profiles

 Prior to PowerShell v3, you had to figure out what extensions were on your system and manually load them into memory. Doing
 so could be tricky, and you had to load them each time you started a new shell session.

OEBPS/2.jpg
F%

OEBPS/3.jpg

OEBPS/011fig01_alt.jpg
function prompt { Determine 64-

if ([System.IntPer]::Size -eq 8) ($size = '64 bit') S

clse (Ssize - 132 bit') S
ScurrentUser - [Security.Principal WindowsTdentity : :GetCurrent () T Principal
Ssecprin - New-Object Security.Principal.WindowsPrincipal ScurrentUser object
i€ (ssecprin.IalnRole((Security. Principal Windowsiuiltinkole] : Adninistrator) |
(sadmin « ‘Adninistrator’) Determineif

else (Sadnin - 'non-Administrator'} clevated

Shost .ul . Rawll WindowTitle = "Sadmin §size §(get-location)® S

= i tide

OEBPS/1.jpg
&b

OEBPS/0ivfig02.jpg

OEBPS/02fig01_alt.jpg
Administrator: Windo rShell

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/0ivfig01.jpg

OEBPS/02fig02_alt.jpg
indows Pouershell.
[copyright (€) 2013 Microsofe Corporation. ALL rights reserved.

>

OEBPS/4.jpg
(4]

OEBPS/5.jpg

OEBPS/cover.jpg
IN DEP

SECOND EDITION

me Sid

OEBPS/04fig04.jpg
names.txt - lotepad

OEBPS/04fig03.jpg

OEBPS/02fig04_alt.jpg
= ‘non-Administrator 64 bit Chscripts o
O ki B s» @ s@oioa

OEBPS/02fig03_alt.jpg
= ‘non-Administrator 64 bit Cscripts o

RS LI] nolsa

OEBPS/02fig06_alt.jpg
= Mascripts Y

B4 woa T IR oo

2 | TCanetsindiog

aracete (and

parasater (Hand

10 Join-pan _path 5) ~crstapacn
1445 (o (Tesep Y
1 CGer-Content -path $1516)

OEBPS/02fig05_alt.jpg
Save Cut_Paste output Undo art
N Copy pane. 2. Powershellexe Show
open \ | TP ° " Redo mmand

Layout
buitons

OEBPS/03fig01_alt.jpg
Find: Previous| | Next Settings |

Bynopsis &
Gets the processes that are running on the local computer or a remote computer. [

Syntax
Get-Process [[-Name] <String(]>) [-ComputerName <String()>) [-FileVersionInfo
<SwitchParaneter>] [-Module <SwitchParaseter>] [<CommonParameters>]

Get-Process [-ComputerName <String(]>] [-Fileversionlnfo <SwitchParaseter>] [~
Module <SwitchParaseter>] -Id <Int32(]> [<ComsonParameters>]

Get-Process [-ComputerName <String[]>] [-FileVersionInfo <SwitchParaseter>] [~
Module <SwitchParameter>] -InputObject <Process(]> [<CommonParameters>]

Description
The Get-Process cadlet gets the processes on a local or remote computer.

Without parameters, Get-Process gets all of the processes on the local cosputer.
You can also specify 3 particular process by process name or process 10 (PID) or
pass 2 process object through the pipeline to Get-Process.

By default, Get-Process returns a process object that has detailed information
about the process and supports methods that let you start and stop the process. You
can also use the parameters of Get-Process to get file version information for the
program that runs in the process and to get the modules that the process loaded.

100% [}

OEBPS/enter.jpg

OEBPS/04fig01.jpg
Daln | Envionment | Sessons | Remotecontol |
Remote Desktop Services Profie | Personal Vitual Desktop | COM+-
General | Address | Account | Profie | Telephones | Organization | Member OF

&Mm
%

Fistname: == ees [

=l [5

OEBPS/029fig01_alt.jpg
s,
Get-service

sywops1s
Gets the services on a local or remote computer.

SNTAX

SYNTAX
Get-Service {[-Name] <String(]>] (-ComputerName<String(l>]
“Dependentservices] [-Exclude <seringl>) i
(-Include <Stringl(]>] [-RequiredServices] [<CommonParameters>]
Get-Service (-ComputerNamecstring(]>] (-DependentServices] #
[-Exclude <String[)>] [-Include <String(]>] v
{-RequiredServices] -DisplayName<String(]> (<CommonParameters>]
Get-Service [-ComputerName<String(]>] [-DependentServices]
(-Exclude <String(]>] [-Include <String(l>) Parameter
[-Inputobject cServiceController(]>] [-RequiredServices] set3

[<CommonParaneterss]

OEBPS/04fig02_alt.jpg
Oan | Ewoomet | Sessos | Remstecows |
RemteDein Svcen Pl | Pecod VDo | Coe |
o | o | ccart | Pl | Tdgeoes | pmistion | erber |
2
-

C:\> new-aduser -name 'RhondaH’
-samAccountName 'RhondaH'
-GivenName 'Rhonda’

-Surname 'Hinz'

-Department 'Account

-Title 'Accountant’

~City 'Bowie'

[

