

 [image:]

 Istio in Action

 Christian E. Posta, Rinor Maloku

 Foreword by Eric Brewer

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image: Manning_M_small]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Brent Stains

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Gregory Reshetniak

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617295829

 dedication

 I dedicate this book to my wife and daughters.

 —Christian Posta

 I dedicate this book to everybody who shares knowledge on the web.

 —Rinor Maloku

contents

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1 Understanding Istio

 1 Introducing the Istio service mesh

 1.1 Challenges of going faster

 Our cloud infrastructure is not reliable

 Making service interactions resilient

 Understanding what’s happening in real time

 1.2 Solving these challenges with application libraries

 Drawbacks to application-specific libraries

 1.3 Pushing these concerns to the infrastructure

 The application-aware service proxy

 Meet the Envoy proxy

 1.4 What’s a service mesh?

 1.5 Introducing the Istio service mesh

 How a service mesh relates to an enterprise service bus

 How a service mesh relates to an API gateway

 Can I use Istio for non-microservices deployments?

 Where Istio fits in distributed architectures

 What are the drawbacks to using a service mesh?

 2 First steps with Istio

 2.1 Deploying Istio on Kubernetes

 Using Docker Desktop for the examples

 Getting the Istio distribution

 Installing the Istio components into Kubernetes

 2.2 Getting to know the Istio control plane

 Istiod

 Ingress and egress gateway

 2.3 Deploying your first application in the service mesh

 2.4 Exploring the power of Istio with resilience, observability, and traffic control

 Istio observability

 Istio for resiliency

 Istio for traffic routing

 3 Istio’s data plane: The Envoy proxy

 3.1 What is the Envoy proxy?

 Envoy’s core features

 Comparing Envoy to other proxies

 3.2 Configuring Envoy

 Static configuration

 Dynamic configuration

 3.3 Envoy in action

 Envoy’s Admin API

 Envoy request retries

 3.4 How Envoy fits with Istio

 Part 2 Securing, observing, and controlling your service’s network traffic

 4 Istio gateways: Getting traffic into a cluster

 4.1 Traffic ingress concepts

 Virtual IPs: Simplifying service access

 Virtual hosting: Multiple services from a single access point

 4.2 Istio ingress gateways

 Specifying Gateway resources

 Gateway routing with virtual services

 Overall view of traffic flow

 Istio ingress gateway vs. Kubernetes Ingress

 Istio ingress gateway vs. API gateways

 4.3 Securing gateway traffic

 HTTP traffic with TLS

 HTTP redirect to HTTPS

 HTTP traffic with mutual TLS

 Serving multiple virtual hosts with TLS

 4.4 TCP traffic

 Exposing TCP ports on an Istio gateway

 Traffic routing with SNI passthrough

 4.5 Operational tips

 Split gateway responsibilities

 Gateway injection

 Ingress gateway access logs

 Reducing gateway configuration

 5 Traffic control: Fine-grained traffic routing

 5.1 Reducing the risk of deploying new code

 Deployment vs. release

 5.2 Routing requests with Istio

 Cleaning up our workspace

 Deploying v1 of the catalog service

 Deploying v2 of the catalog service

 Routing all traffic to v1 of the catalog service

 Routing specific requests to v2

 Routing deep within a call graph

 5.3 Traffic shifting

 Canary releasing with Flagger

 5.4 Reducing risk even further: Traffic mirroring

 5.5 Routing to services outside your cluster by using Istio’s service discovery

 6 Resilience: Solving application networking challenges

 6.1 Building resilience into the application

 Building resilience into application libraries

 Using Istio to solve these problems

 Decentralized implementation of resilience

 6.2 Client-side load balancing

 Getting started with client-side load balancing

 Setting up our scenario

 Testing various client-side load-balancing strategies

 Understanding the different load-balancing algorithms

 6.3 Locality-aware load balancing

 Hands-on with locality load balancing

 More control over locality load balancing with weighted distribution

 6.4 Transparent timeouts and retries

 Timeouts

 Retries

 Advanced retries

 6.5 Circuit breaking with Istio

 Guarding against slow services with connection-pool control

 Guarding against unhealthy services with outlier detection

 7 Observability: Understanding the behavior of your services

 7.1 What is observability?

 Observability vs. monitoring

 How Istio helps with observability

 7.2 Exploring Istio metrics

 Metrics in the data plane

 Metrics in the control plane

 7.3 Scraping Istio metrics with Prometheus

 Setting up Prometheus and Grafana

 Configuring the Prometheus Operator to scrape the Istio control plane and workloads

 7.4 Customizing Istio’s standard metrics

 Configuring existing metrics

 Creating new metrics

 Grouping calls with new attributes

 8 Observability: Visualizing network behavior with Grafana, Jaeger, and Kiali

 8.1 Using Grafana to visualize Istio service and control-plane metrics

 Setting up Istio’s Grafana dashboards

 Viewing control-plane metrics

 Viewing data-plane metrics

 8.2 Distributed tracing

 How does distributed tracing work?

 Installing a distributed tracing system

 Configuring Istio to perform distributed tracing

 Viewing distributed tracing data

 Trace sampling, force traces, and custom tags

 8.3 Visualization with Kiali

 Installing Kiali

 Conclusion

 9 Securing microservice communication

 9.1 The need for application-networking security

 Service-to-service authentication

 End-user authentication

 Authorization

 Comparison of security in monoliths and microservices

 How Istio implements SPIFFE

 Istio security in a nutshell

 9.2 Auto mTLS

 Setting up the environment

 Understanding Istio’s PeerAuthentication resource

 9.3 Authorizing service-to-service traffic

 Understanding authorization in Istio

 Setting up the workspace

 Behavior changes when a policy is applied to a workload

 Denying all requests by default with a catch-all policy

 Allowing requests originating from a single namespace

 Allowing requests from non-authenticated legacy workloads

 Allowing requests from a single service account

 Conditional matching of policies

 Understanding value-match expressions

 Understanding the order in which authorization policies are evaluated

 9.4 End-user authentication and authorization

 What is a JSON web token?

 End-user authentication and authorization at the ingress gateway

 Validating JWTs with RequestAuthentication

 9.5 Integrating with custom external authorization services

 Hands-on with external authorization

 Configuring Istio for ExtAuthz

 Using a custom AuthorizationPolicy resource

 Part 3 Istio day-2 operations

 10 Troubleshooting the data plane

 10.1 The most common mistake: A misconfigured data plane

 10.2 Identifying data-plane issues

 How to verify that the data plane is up to date

 Discovering misconfigurations with Kiali

 Discovering misconfigurations with istioctl

 10.3 Discovering misconfigurations manually from the Envoy config

 Envoy administration interface

 Querying proxy configurations using istioctl

 Troubleshooting application issues

 Inspect network traffic with ksniff

 10.4 Understanding your application using Envoy telemetry

 Finding the rate of failing requests in Grafana

 Querying the affected Pods using Prometheus

 11 Performance-tuning the control plane

 11.1 The control plane’s primary goal

 Understanding the steps of data-plane synchronization

 Factors that determine performance

 11.2 Monitoring the control plane

 The four golden signals of the control plane

 11.3 Tuning performance

 Setting up the workspace

 Measuring performance before optimizations

 Ignoring events: Reducing the scope of discovery using discovery selectors

 Event-batching and push-throttling properties

 11.4 Performance tuning guidelines

 Part 4 Istio in your organization

 12 Scaling Istio in your organization

 12.1 The benefits of a multi-cluster service mesh

 12.2 Overview of multi-cluster service meshes

 Istio multi-cluster deployment models

 How workloads are discovered in multi-cluster deployments

 Cross-cluster workload connectivity

 Common trust between clusters

 12.3 Overview of a multi-cluster, multi-network, multi-control-plane service mesh

 Choosing the multi-cluster deployment model

 Setting up the cloud infrastructure

 Configuring plug-in CA certificates

 Installing the control planes in each cluster

 Enabling cross-cluster workload discovery

 Setting up cross-cluster connectivity

 Load-balancing across clusters

 13 Incorporating virtual machine workloads into the mesh

 13.1 Istio’s VM support

 Simplifying sidecar proxy installation and configuration in a VM

 Virtual machine high availability

 DNS resolution of in-mesh services

 13.2 Setting up the infrastructure

 Setting up the service mesh

 Provisioning the VM

 13.3 Mesh expansion to VMs

 Exposing istiod and cluster services to the VM

 Representing a group of workloads with a WorkloadGroup

 Installing and configuring the istio-agent in the VM

 Routing traffic to cluster services

 Routing traffic to the WorkloadEntry

 VMs are configured by the control plane: Enforcing mutual authentication

 13.4 Demystifying the DNS proxy

 How the DNS proxy resolves cluster hostnames

 Which hostnames is the DNS proxy aware of?

 13.5 Customizing the agent’s behavior

 13.6 Removing a WorkloadEntry from the mesh

 14 Extending Istio on the request path

 14.1 Envoy’s extension capabilities

 Understanding Envoy’s filter chaining

 Filters intended for extension

 Customizing Istio’s data plane

 14.2 Configuring an Envoy filter with the EnvoyFilter resource

 14.3 Rate-limiting requests with external call-out

 Understanding Envoy rate limiting

 14.4 Extending Istio’s data plane with Lua

 14.5 Extending Istio’s data plane with WebAssembly

 Introducing WebAssembly

 Why WebAssembly for Envoy?

 Building a new Envoy filter with WebAssembly

 Building a new Envoy filter with the meshctl tool

 Deploying a new WebAssembly Envoy filter

 appendix A Customizing the Istio installation

 appendix B Istio’s sidecar and its injection options

 appendix C Istio security: SPIFFE

 appendix D Troubleshooting Istio components

 appendix E How the virtual machine is configured to join the mesh

 index

 front matter

foreword

 A service mesh can maximize the development speed of your whole organization by enabling thousands of independent microservices that are automatically compliant with a wide range of evolving policies. This book discusses many other benefits of Istio, but they largely follow from this premise.

 This brings us to the central question, “What is a service mesh, and why do I need one?” I’m asked this question frequently, and the answer is not trivial. It is not about security or telemetry or most of the benefits some people claim. Nor is it automatically the case that you need a service mesh for your application, especially if it is a monolith.

 The real answer has to do with decoupling applications from infrastructure. Istio is the third major step in that direction. First, Docker provided a way to package an application (and its library choices) separately from the machine on which it runs. Next, Kubernetes made it easy to create a service with automation to help with autoscaling and management. Together, Docker and Kubernetes enabled the practical movement to fine-grain services, often called microservices. This book guides you through implementing a service mesh with Istio to achieve this third step: application decoupling.

 Microservices allow greater overall velocity by enabling teams to be more autonomous. Ideally, your team can update its microservice(s) without deep interactions with other teams. The top-level goal for Istio is to enable this at scale—to make it easy to have thousands of microservices (Google has more than a million!).

 But enabling velocity for a service is not just about decoupling it from the machine; the service must also be decoupled from shared policies. Every enterprise has policies that apply to all services, and we must be able to change those policies quickly if needed. Traditionally, such policies are embedded inside services as part of the code or as libraries that services are expected to use. Either way, such policies are hard to update and enforce.

 Istio moves a wide range of such policies (primarily those involving an API) out of the service and into the service mesh, which is essentially a proxy that sits in front of the service and implements the policies. When this is done correctly, all services meet the policies with no work—and, conversely, policy changes do not require updating the services. This is the decoupling we are after.

 In Istio in Action, Christian and Rinor present a clear-headed vision of how to achieve the goal of decoupling applications from infrastructure. I hope you’ll enjoy this book as much as I have.

 —Eric Brewer, VP Infrastructure and Google Fellow

preface

 Building software is hard. Connecting different services across a network is harder. Any time you put a packet, message, or request on the network, there are no guarantees about its outcome. Will the request make it? How long will it take? Will anyone know if the communication fails?

 Docker and Kubernetes have done a lot to support distributed services architectures like microservices, but they exacerbate the existing communication problems. One misbehaving service might take down everything.

 While working with organizations worldwide that are trying to adopt microservices, I find that getting teams to consistently think about and solve these communication problems is very difficult. There are many questions: How will they do service discovery? Timeouts? Retries? Circuit breaking? Tracing? Authentication? Large cloud companies like Netflix, Twitter, and Google pioneered some of the early, successful microservices architectures. These companies had to build a lot of their own developer tooling and infrastructure to solve these problems, and fortunately, they open sourced much of it. Could other organizations use the NetflixOSS stack or Twitter Finagle? They could, and some did, but doing so created a new operational nightmare.

 For example, the NetflixOSS stack was primarily written for Java developers. What about NodeJS, Golang, and Python teams? Teams had to either build libraries themselves or hack together the functionality with various bits they found on the internet. They also had to intermingle this “networking” code into their business logic. This approach added transitive dependencies, cluttered the code, and made revisions more difficult. Operating a service architecture with these application networking libraries, upgrading, patching, and doing this consistently across many different languages was extremely complex and error prone.

 A service mesh is a cleaner solution to this application-networking problem. With a service mesh, we abstract away the application-networking logic into a dedicated piece of infrastructure and apply it to all services regardless of what languages they are written in.

 Istio is a scalable, mature, powerful service-mesh implementation that originally came out of a project from IBM and Google. I was introduced to the Istio team in January 2017 and began working on the project very early. At the end of 2018, I went to work as global field CTO at a startup, Solo.io, to focus full-time on service mesh technology and advancing the state of application networking.

 Building a startup from the ground up, pushing the boundaries on this technology, and writing an in-depth book on this topic is not an easy combination. I needed someone with dedication and passion to help me move the book forward; so, when I was halfway through, the Manning team and I invited Rinor Maloku to join the effort. Thanks to the time we both spend in the community and working with our customers at Solo.io, some of which are the largest deployments of Istio in the world, Rinor and I have been able to compile an excellent resource for Istio based on real-world experience. We hope this book will show you the value and power of Istio and make you comfortable adopting this technology into production, as many others have.

acknowledgments

 Writing this book has been possible only due to the support of many people.

 Special thanks to our personal friends Gentrina Gashi, Dimal Zeqiri, and Taulant Mehmeti, who provided such valuable feedback.

 Thank you to the Manning Early Access Program (MEAP) readers who posted comments in the online forum—Takahiko Suzuki, George Tseres, Amol Nayak, Mark O’Crally—and the forum moderator, Ayush Singh.

 Sincere gratitude to our editor, Elesha Hyde, who was always patient when responding to our questions and concerns. Most important, thank you for being understanding and supportive when we missed deadlines, and for keeping our focus on writing a better book for our readers.

 A big thank you also goes to our technical editors, Gregor Zurowski and Brent Stains, as well as our technical proofreader, Gregory Reshetniak.

 Thank you to all the reviewers: Alceu Rodrigues de Freitas Junior, Alessandro Campeis, Allan Makura, Amitabh Cheekoth, Andrea Cosentino, Andrea Tarocchi, Andres Sacco, Borko Djurkovic, Christoph Schubert, Dinkar Gupta, Eriks Zelenka, Ernesto Cardenas, Fotis Stamatelopoulos, Giuseppe Catalano, James Liu, Javier Muñoz, Jeff Hajewski, Karthikeyan Mohan, Kelum Prabath Senanayake, Kent R. Spillner, Leonardo Jose Gomes da Silva, Maciej Droz.dz.owski,Michael Bright, Michael J Haller, Morgan Nelson, Paolo Antinori, Salvatore Campagna, Satadru Roy, Stanley Anozie, Taylor Dolezal, Vijay Thakorlal, and Yogesh Shetty. Your excellent suggestions made this a better book.

 Thank you to key people in the Istio community, including Louis Ryan (Google), Shriram Rajagopalan (Google), and Sven Mawson (Google) who are the three founders of the Istio project; along with Dan Berg (Digital.ai), Lin Sun (Solo.io), Dan Ciruli (Zuora), Idit Levine (Solo.io), John Howard (Google), Kevin Connor (Red Hat), Jason McGee (IBM), Zack Butcher (Tetrate), Ram Vennam (Solo.io), and Neeraj Poddar (Solo.io).

 Finally, we thank the entire Istio community, who are working to build an amazing technology that is a joy to work on and write about on a daily basis.

 I am extremely fortunate to work on technology, which has been my passion since I was young. I wouldn’t have been able to get here without the love and support of my family. My father, Cask Posta, immigrated to the United States in the early 1970s; he provided me and my sister with a strong foundation and taught me the value of hard work. My beautiful wife Jackie has been by my side through all the unknowns and uncertainties and has shown nothing but unwavering support and love. Thank you, Jackie: without you, we wouldn’t have been able to accomplish all we’ve done.

 Finally, I’m thankful for my two lovely daughters, Maddie and Claire, who can put a smile on my face no matter how the day has been and for whom my wife and I work so hard.

 —Christian E. Posta

 I’d like to thank my parents, Sahadi and Sheride, and my brothers, Aurel and Drilon, for giving me a worry-less childhood that allowed me to explore my many hobbies. One of those, programming, turned into a joyful career; and another, writing, contributed to this book. I’d also like to thank my girlfriend, Rinora, for her endless love and support. To Christian Posta, I’d like to express my eternal gratitude for the trust you put in me. It was crucial in enabling me to do my best work as a first-time writer.

 —Rinor Maloku

about this book

Who should read this book

 This book is meant for developers, architects, and or service operators who operate or are planning to operate distributed services such as user-facing web applications, APIs, and backend services and want to provide highly available services to their end users. If you are a member of a platform engineering team and provide infrastructure and other supporting components such as log management, monitoring, container orchestration, and so on to many development teams within your organization, this book will show you how to give your users the tools to make their apps resilient, secure, and observable as well as reduce the risk of shipping new features.

 If you are already using Istio in a testing or staging environment but many of its workings are a mystery to you, this book will demystify Istio’s components. The latter chapters, in particular, will show you how to scale the service mesh in your organization, troubleshoot it when its behavior doesn’t match your expectations, and customize it to meet your enterprise’s needs.

 If you are already an Istio expert, you may still find this book useful, as we took great care to ingrain into this book what we’ve learned from working in the field over the last three years.

 If building a container is new to you, or you are unsure what a Kubernetes deployment, pod, or service is, this book may not be for you—yet. There are a lot of resources to get you started. We highly recommend Kubernetes in Action by Marko Lukša (Manning, 2017); in addition to being a thorough introduction to this topic, the book is a real page-turner. Once you understand the foundation of Kubernetes and its resources and how Kubernetes controllers work, you can return here and dive into the Istio service mesh.

 You should also have a basic understanding of networking, and we do mean basic. If you are familiar with the network layer (layer 3), the transport layer (layer 4), and how they differ from the application (layer 7) according to the Open Systems Interconnection model, you are ready for this book.

How this book is organized: A roadmap

 This book has four parts and 14 chapters. Part 1 of the book introduces the concept of a service mesh and explains how Istio implements it. These three chapters cover the architecture of Istio, how Envoy fits into it, and how it can benefit your organization:

 	
 Chapter 1 introduces the benefits of Istio and the value that adopting service meshes can bring to an organization.

 	
 Chapter 2 is a hands-on tutorial for installing Istio in a Kubernetes cluster. You deploy and integrate your first application into the mesh and configure it with Istio’s custom resources. Using the demo application, this chapter provides an overview of what you get out of the box with Istio and covers traffic management, observability, and security.

 	
 Chapter 3 is all about Envoy: how it came to be, what problems it solves, and how it fits within the service mesh architecture.

 Part 2 is a deep dive into Istio. The focus switches to practical examples, and we answer key operational questions: how to secure traffic coming into your cluster, make services more resilient, and make your system observable using the telemetry generated by the service proxies. This part contains six chapters:

 	
 Chapter 4 teaches you how to use and configure the Istio ingress gateway to route traffic securely from the public network to your services (what we call north-south traffic).

 	
 Chapter 5 proceeds after traffic is admitted into the cluster. It shows how VirtualService. and DestinationRule. are used to route traffic in a fine-grained manner, enabling complex deployment patterns to reduce risk when you release new software.

 	
 Chapter 6 explores how Istio benefits application teams. We discuss making services robust by implementing retries, circuit-breaking, load balancing across regions, and locality-aware load balancing right in the service mesh.

 	
 Chapter 7 teaches you how Istio makes services observable by generating metrics, traces, and logs. Here we dive deeper into the metrics generated by service proxies, what information the metrics record, and how the recorded information can be customized.

 	
 Chapter 8 shows you how to use telemetry visualization tools to make sense of the collected data. You use Prometheus to collect metrics and Grafana to visualize them. You use Jaeger to stitch together the traces of a request traveling through your services. And we show how Kiali intertwines this information to make troubleshooting services in the mesh a breeze.

 	
 Chapter 9 elaborates on how Istio secures service-to-service traffic, how services receive their identity, and how the identity is used to implement access control and reduce the potential attack scope.

 Part 3 is all about day-2 operations. It shows you how to troubleshoot issues in the data plane and maintain the control plane’s stability and performance. By the end of this part, you will have a firm understanding of Istio’s internals, and you will be able to discover and fix issues on your own:

 	
 Chapter 10 shows you how to troubleshoot issues in the data plane using tools such as Istioctl, Kiali, and telemetry that is collected and visualized.

 	
 Chapter 11 discusses Istio’s performance factors. It shows how Istio can be configured to make the control plane more performant—the foundation of a robust service mesh.

 The fourth and final part of the book shows you how to make Istio yours. Enterprises have services running across boundaries, such as different clusters, different networks, or a mixture of cloud-native and legacy workloads. By the end of part 4, you will know how to join your workloads into a single mesh and customize the mesh’s behavior using WebAssembly to meet your unique requirements:

 	
 Chapter 12 shows you how to connect workloads in different Kubernetes clusters wherever they are running, such as different cloud providers, on premises, or in a hybrid cloud.

 	
 Chapter 13 shows how to integrate legacy workloads running in virtual machines into the mesh and extend to those workloads the mesh’s capabilities of resiliency and high availability.

 	
 Chapter 14 teaches you how to extend and customize Istio’s capabilities with existing Envoy functionality or your code using Lua scripting and WebAssembly.

About the code

 This book contains many examples of source code in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/istio-in-action. The complete code for the examples in the book is available for download from the Manning website at www.manning.com, and from GitHub at https://github.com/istioinaction/book-source-code.

liveBook discussion forum

 Purchase of Istio in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/istio-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interests stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 	
 [image: ChristianPosta_photo]

 	
 Christian Posta (@christianposta) is VP, Global Field CTO at Solo.io. He is well known in the cloud-native community for being an author, blogger (https://blog.christianposta.com), speaker, and contributor to various open-source projects in the service mesh and cloud-native ecosystem. Christian has spent time at enterprises and web-scale companies and now helps organizations create and deploy large-scale, cloud-native, resilient, distributed architectures. He enjoys mentoring, training, and leading teams to be successful with distributed systems concepts, microservices, DevOps, and cloud-native application design.

 	
 [image: RinorMaloku]

 	
 Rinor Maloku (@rinormaloku) is an engineer at Solo.io, where he consults clients adopting application networking solutions, such as service meshes. Previously, he worked at Red Hat, where he built middleware software that enabled teams to ensure the high availability of their services. As a freelancer, he consulted multiple DAX 30 members in their endeavor to fully utilize the potential of cloud computing technologies.

about the cover illustration

 The figure on the cover of Istio in Action is “Femme Islandoise,” or “Icelandic woman,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Understanding Istio

 What programming language do you use to implement your microservices or applications? Java? NodeJS? Golang? Whichever language or framework you use will eventually have to communicate with services over the network. The network is a perilous place for applications. What do you do for service discovery? timeouts? retries? circuit-breaking? security?

 Istio is an open source service mesh that helps solve service-to-service connectivity challenges in your cloud and microservices environment regardless of what language or framework you use. In chapters 1-3, we explain why a service mesh is critical infrastructure for a microservices and cloud-native application architecture, how Istio helps, and what you can expect from the rest of the book. Istio is built on an open source proxy named Envoy, which we cover in detail to set the foundations for the rest of the Istio functionality covered in future chapters.

1 Introducing the Istio service mesh

 This chapter covers

 	
Addressing the challenges of service-oriented architectures with service meshes

 	
Introducing Istio and how it helps solve microservice issues

 	
Comparing service meshes to earlier technologies

 Software is the lifeblood of today’s companies. As we move to a more digital world, consumers will expect convenience, service, and quality when interacting with businesses, and software will be used to deliver these experiences. Customers don’t conform nicely to structure, processes, or predefined boxes. Customers’ demands and needs are fluid, dynamic, and unpredictable, and our companies and software systems will need to have these same characteristics. For some companies (such as startups), building software systems that are agile and able to respond to unpredictability will be the difference between surviving or failing. For others (such as existing companies), the inability to use software as a differentiator will mean slower growth, decay, and eventual collapse.

 As we explore how to go faster and take advantage of newer technology like cloud platforms and containers, we’ll encounter an amplification of some past problems. For example, the network is not reliable and when we start to build larger, more distributed systems, the network must become a central design consideration in our applications. Should applications implement network resilience like retries, timeouts, and circuit breakers? What about consistent network observability? Application-layer security?

 Resilience, security, and metrics collection are cross-cutting concerns and not application-specific. Moreover, they are not processes that differentiate your business. Developers are critical resources in large IT systems, and their time is best spent writing capabilities that deliver business value in a differentiating way. Application networking, security, and metrics collection are necessary practices, but they aren’t differentiating. What we’d like is a way to implement these capabilities in a language- and framework-agnostic way and apply them as policy.

 Service mesh is a relatively recent term used to describe a decentralized application-networking infrastructure that allows applications to be secure, resilient, observable, and controllable. It describes an architecture made up of a data plane that uses application-layer proxies to manage networking traffic on behalf of an application and a control plane to manage proxies. This architecture lets us build important application-networking capabilities outside of the application without relying on a particular programming language or framework.

 Istio is an open source implementation of a service mesh. It was created initially by folks at Lyft, Google, and IBM, but now it has a vibrant, open, diverse community that includes individuals from Lyft, Red Hat, VMWare, Solo.io, Aspen Mesh, Salesforce, and many others. Istio allows us to build reliable, secure, cloud-native systems and solve difficult problems like security, policy management, and observability in most cases with no application code changes. Istio’s data plane is made up of service proxies, based on the Envoy proxy, that live alongside the applications. Those act as intermediaries between the applications and affect networking behavior according to the configuration sent by the control plane.

 Istio is intended for microservices or service-oriented architecture (SOA)-style architectures, but it is not limited to those. The reality is, most organizations have a lot of investment in existing applications and platforms. They’ll most likely build services architectures around their existing applications, and this is where Istio really shines. With Istio, we can implement these application-networking concerns without forcing changes in existing systems. Since the service proxies live outside of the application, any application for any architecture is a welcome first-class citizen in the service mesh. We’ll explore more of this in a hybrid brownfield application landscape.

 This book introduces you to Istio, helps you understand how all this is possible, and teaches you how to use Istio to build more resilient applications that you can monitor and operate in a cloud environment. Along the way, we explore Istio’s design principles, explain why it’s different from past attempts to solve these problems, and discuss when Istio is not the solution for your problem.

 But we certainly don’t want to start using new technology just because it’s “new,” “hip,” or “cool.” As technologists, we find ourselves easily getting excited about technology; however, we’d be doing ourselves and our organizations a disservice by not fully understanding when and when not to use a technology. Let’s spend a few moments understanding why you would use Istio, what problems it solves, what problems to avoid, and why this technology is exciting going forward.

1.1 Challenges of going faster

 The technology teams at ACME Inc. have bought into microservices, automated testing, containers, and continuous integration and delivery (CI/CD). They decided to split out module A and B from ACMEmono, their core revenue-generation system, into their own standalone services. They also needed some new capabilities that they decided to build as service C, resulting in the services shown in figure 1.1.

 [image: CH01_F01_Posta2]

 Figure 1.1 ACMEMono modernization with complementary services

 They packaged their new services in containers and used a Kubernetes-based platform into which to deploy. As they began to implement these approaches, they quickly experienced some challenges.

 The first thing ACME noticed was that sometimes services in the architecture were very inconsistent in how long they took to process requests. During peak customer usage, some services experienced intermittent issues and were unable to serve any traffic. Furthermore, ACME identified that if service B experienced trouble processing requests, service A also did, but only for certain requests.

 The second thing ACME noticed was that when they practiced automated deployments, at times they introduced bugs into the system that weren’t caught by automated testing. They practiced a deployment approach called blue-green deployment, which means they brought up the new deployment (the green deployment) in its own cluster and then at some point cut over the traffic from the old cluster (the blue deployment) to the new cluster. They had hoped the blue-green approach would lower the risk of doing deployments, but instead they experienced more of a “big bang” release, which is what they wanted to avoid.

 Finally, ACME found that the teams implementing services A and B were handling security completely differently. Team A favored secure connections with certificates and private keys, while team B created their own custom framework built on passing tokens and verifying signatures. The team operating service C decided they didn’t need any additional security since these were “internal” services behind the company firewall.

 These challenges are not unique to ACME, nor is the extent of the challenges limited to what they encountered. The following things must be addressed when moving to a services-oriented architecture:

 	
 Keeping faults from jumping isolation boundaries

 	
 Building applications/services capable of responding to changes in their environment

 	
 Building systems capable of running in partially failed conditions

 	
 Understanding what’s happening to the overall system as it constantly changes and evolves

 	
 Inability to control the runtime behaviors of the system

 	
 Implementing strong security as the attack surface grows

 	
 Lowering the risk of making changes to the system

 	
 Enforcing policies about who or what can use system components, and when

 As we dig into Istio, we’ll explore these in more detail and explain how to deal with them. These are core challenges to building services-based architectures on any cloud infrastructure. In the past, non-cloud architectures did have to contend with some of these problems; but in today’s cloud environments, they are highly amplified and can take down your entire system if not taken into account correctly. Let’s look a little bit closer at the problems encountered with unreliable infrastructure.

1.1.1 Our cloud infrastructure is not reliable

 Even though, as consumers of cloud infrastructure, we don’t see the actual hardware, clouds are made up of millions of pieces of hardware and software. These components form the compute, storage, and networking virtualized infrastructure that we can provision via self-service APIs. Any of these components can, and do, fail. In the past, we did everything we could to make infrastructure highly available, and we built our applications on top of it with assumptions of availability and reliability. In the cloud, we have to build our apps assuming the infrastructure is ephemeral and will be unavailable at times. This ephemerality must be considered upfront in our architectures.

 Let’s take a very simple example. Let’s say a Preference service is in charge of managing customer preferences and ends up making calls to a Customer service. In figure 1.2, the Preference service calls the Customer service to update some customer data and experiences severe slowdowns when it sends a message. What does it do? A slow downstream dependency can wreak havoc on the Preference service, including causing it to fail (thus initiating a cascading failure). This scenario can happen for any number of reasons, such as these:

 	
 The Customer service is overloaded and running slowly.

 	
 The Customer service has a bug.

 	
 The network has firewalls that are slowing the traffic.

 	
 The network is congested and is slowing traffic.

 	
 The network experienced some failed hardware and is rerouting traffic.

 	
 The network card on the Customer service hardware is experiencing failures.

 [image: CH01_F02_Posta2]

 Figure 1.2 Simple service communication over an unreliable network

 The problem is, the Preference service cannot distinguish whether this is a failure of the Customer service. Again, in a cloud environment with millions of hardware and software components, these types of scenarios happen all the time.

1.1.2 Making service interactions resilient

 The Preference service can try a few things. It can retry the request, although in a scenario where things are overloaded, that might just add to the downstream issues. If it does retry the request, it cannot be sure that previous attempts didn’t succeed. It can time out the request after some threshold and throw an error. It can also retry to a different instance of the Customer service, maybe in a different availability zone. If the Customer service experiences these or similar issues for an extended period of time, the Preference service may opt to stop calling the Customer service altogether for a cool-off period (a form of circuit breaking, which we’ll cover in more depth in later chapters).

 Some patterns have evolved to help mitigate these types of scenarios and help make applications more resilient to unplanned, unexpected failures:

 	
 Client-side load balancing—Give the client the list of possible endpoints, and let it decide which one to call.

 	
 Service discovery—A mechanism for finding the periodically updated list of healthy endpoints for a particular logical service.

 	
 Circuit breaking—Shed load for a period of time to a service that appears to be misbehaving.

 	
 Bulkheading—Limit client resource usage with explicit thresholds (connections, threads, sessions, and so on) when making calls to a service.

 	
 Timeouts—Enforce time limitations on requests, sockets, liveness, and so on when making calls to a service.

 	
 Retries—Retry a failed request.

 	
 Retry budgets—Apply constraints to retries: that is, limit the number of retries in a given period (for example, only retry 50% of the calls in a 10-second window).

 	
 Deadlines—Give requests context about how long a response may still be useful; if outside the deadline, disregard processing the request.

 Collectively, these types of patterns can be thought of as application networking. They have a lot of overlap with similar constructs at lower layers of the networking stack, except that they operate at the layer of messages instead of packets.

1.1.3 Understanding what’s happening in real time

 A very important aspect of going faster is making sure we’re going in the right direction. We try to get deployments out quickly, so we can test how customers react to them, but they will not have an opportunity to react (or will avoid our service) if it’s slow or not available. As we make changes to our services, do we understand what impact (positive or negative) they will have? Do we know how things are running before we make changes?

 It is critical to know things about our services architecture like which services are talking to each other, what typical service load looks like, how many failures we expect to see, what happens when services fail, service health, and so on. Each time we make a change by deploying new code or configuration, we introduce the possibility of negatively impacting our key metrics. When network and infrastructure unreliability rear their ugly heads, or if we deploy new code with bugs in it, can we be confident we have enough of a pulse on what’s really happening to trust that the system isn’t on verge of collapse? Observing the system with metrics, logs, and traces is a crucial part of running a services architecture.

1.2 Solving these challenges with application libraries

 The first organizations to figure out how to run their applications and services in a cloud environment were the large internet companies, many of which pioneered cloud infrastructure as we know it today. These companies invested massive amounts of time and resources into building libraries and frameworks for a select set of languages that everyone had to use, which helped solve the challenges of running services in a cloud-native architecture. Google built frameworks like Stubby, Twitter built Finagle, and, in 2012, Netflix open sourced its microservices libraries to the open source community. For example, with NetflixOSS, libraries targeted for Java developers handle cloud-native concerns:

 	
 Hystrix—Circuit breaking and bulkheading

 	
 Ribbon—Client-side load balancing

 	
 Eureka—Service registration and discovery

 	
 Zuul—Dynamic edge proxy

 Since these libraries were targeted for Java runtimes, they could only be used in Java projects. To use them, we’d have to create an application dependency on them, pull them into our classpath, and then use them in our application code. The following example of using NetflixOSS Hystrix pulls a dependency on Hystrix into your dependency control system:

 <dependency>
 <groupId>com.netflix.hystrix</groupId>
 <artifactId>hystrix-core</artifactId>
 <version>x.y.z</version>
</dependency>

 To use Hystrix, we wrap our commands with a base Hystrix class, HystrixCommand.

 public class CommandHelloWorld extends HystrixCommand<String> {

 private final String name;

 public CommandHelloWorld(String name) {
 super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
 this.name = name;
 }

 @Override
 protected String run() {
 // a real example would do work like a network call here
 return "Hello " + name + "!";
 }
}

 If each application is responsible for building resilience into its code, we can distribute the handling of these concerns and eliminate central bottlenecks. In large-scale deployments on unreliable cloud infrastructure, this is a desirable system trait.

1.2.1 Drawbacks to application-specific libraries

 Although we’ve mitigated a concern about large-scale services architectures when we decentralize and distribute the implementation of application resiliency into the applications themselves, we’ve introduced some new challenges. The first challenge is around the expected assumptions of any application. If we wish to introduce a new service into our architecture, it will be constrained to implementation decisions made by other people and other teams. For example, to use NetflixOSS Hystrix, you must use Java or a JVM-based technology. Typically, circuit breaking and load balancing go together, so you’d need to use both of those resilience libraries. To use Netflix Ribbon for load balancing, you’d need some kind of registry to discover service endpoints, which might mean using Eureka. Going down this path of using libraries introduces implicit constraints around a very undefined protocol for interacting with the rest of the system.

 The second issue is around introducing a new language or framework to implement a service. You may find that NodeJS is a better fit for implementing user-facing APIs but the rest of your architecture uses Java and NetflixOSS. You may opt to find a different set of libraries to implement resilience patterns. Or you may try to find analogous packages like resilient (www.npmjs.com/package/resilient) or hystrixjs (www.npmjs.com/package/hystrixjs). And you’ll need to search for each language you wish to introduce (microservices enable a polyglot development environment, although standardizing on a handful of languages is usually best), certify it, and introduce it to your development stack. Each of these libraries will have a different implementation making different assumptions. In some cases you may not be able to find analogous replacements for each framework/language combination. You end up with a partial implementation for some languages and overall inconsistency in the implementation that is very difficult to reason about in failure scenarios and possibly contributes to obscuring/propagating failures. Figure 1.3 shows how services end up implementing the same set of libraries to manage application networking.

 [image: CH01_F03_Posta2]

 Figure 1.3 Application networking libraries commingled with an application

 Finally, maintaining a handful of libraries across a bunch of programming languages and frameworks requires a lot of discipline and is very hard to get right. The key is ensuring that all of the implementations are consistent and correct. One deviation, and you’ve introduced more unpredictability into your system. Pushing out updates and changes across a fleet of services all at the same time can be a daunting task as well.

 Although the decentralization of application networking is better for cloud architectures, the operational burden and constraints this approach puts on a system in exchange will be difficult for most organizations to swallow. Even if they take on that challenge, getting it right is even harder. What if there was a way to get the benefits of decentralization without paying the price of massive overhead in maintaining and operating these applications with embedded libraries?

1.3 Pushing these concerns to the infrastructure

 These basic application-networking concerns are not specific to any particular application, language, or framework. Retries, timeouts, client-side load balancing, circuit breaking, and so on are also not differentiating application features. They are critical concerns to have as part of your service, but investing massive time and resources into language-specific implementations for each language you intend to use (including the other drawbacks from the previous section) is a waste of time. What we really want is a technology-agnostic way to implement these concerns and relieve applications from having to do so themselves.

1.3.1 The application-aware service proxy

 Using a proxy is a way to move these horizontal concerns into the infrastructure. A proxy is an intermediate infrastructure component that can handle connections and redirect them to appropriate backends. We use proxies all the time (whether we know it or not) to handle network traffic, enforce security, and load balance work to backend servers. For example, HAProxy is a simple but powerful reverse proxy for distributing connections across many backend servers. mod_proxy is a module for the Apache HTTP server that also acts as a reverse proxy. In our corporate IT systems, all outgoing internet traffic is typically routed through forwarding proxies in a firewall. These proxies monitor traffic and block certain types of activities.

 What we want for this problem, however, is a proxy that’s application aware and able to perform application networking on behalf of our services (see figure 1.4). To do so, this service proxy will need to understand application constructs like messages and requests, unlike more traditional infrastructure proxies, which understand connections and packets. In other words, we need a layer 7 proxy.

 [image: CH01_F04_Posta2]

 Figure 1.4 Using a proxy to push horizontal concerns such as resilience,traffic control, and security out of the application implementation

1.3.2 Meet the Envoy proxy

 Envoy (http://envoyproxy.io) is a service proxy that has emerged in the open source community as a versatile, performant, and capable application-layer proxy. Envoy was developed at Lyft as part of the company’s SOA infrastructure and is capable of implementing networking concerns like retries, timeouts, circuit breaking, client-side load balancing, service discovery, security, and metrics collection without any explicit language or framework dependencies. Envoy implements all of that out-of-process from the application, as shown in figure 1.5.

 [image: CH01_F05_Posta2]

 Figure 1.5 The Envoy proxy is an out-of-process participant in application networking.

 The power of Envoy is not limited to these application-layer resilience aspects. Envoy also captures many application-networking metrics like requests per second, number of failures, circuit-breaking events, and more. By using Envoy, we can automatically get visibility into what’s happening between our services, which is where we start to see a lot of unanticipated complexity. The Envoy proxy forms the foundation for solving cross-cutting, horizontal reliability and observability concerns for a services architecture and allows us to push these concerns outside of the applications and into the infrastructure. We’ll cover more of Envoy in ensuing sections and chapters.

 We can deploy service proxies alongside our applications to get these features (resilience and observability) out-of-process from the application, but at a fidelity that is very application specific. Figure 1.6 shows how in this model, applications that wish to communicate with the rest of the system do so by passing their requests to Envoy first, which then handles the communication upstream.

 Service proxies can also do things like collect distributed tracing spans so we can stitch together all the steps taken by a particular request. We can see how long each step took and look for potential bottlenecks or bugs in our system. If all applications talk through their own proxy to the outside world, and all incoming traffic to an application goes through our proxy, we gain some important capabilities for our application without changing any application code. This proxy + application combination forms the foundation of a communication bus known as a service mesh.

 We can deploy a service proxy like Envoy along with every instance of our application as a single atomic unit. For example, in Kubernetes, we can co-deploy a service proxy with our application in a single Pod. Figure 1.7 visualizes the sidecar deployment pattern in which the service proxy is deployed to complement the main application instance.

 [image: CH01_F06_Posta2]

 Figure 1.6 The Envoy proxy out-of-process from the application

 [image: CH01_F07_Posta2]

 Figure 1.7 A sidecar deployment is an additional process that works cooperatively with the main application process to deliver a piece of functionality.

1.4 What’s a service mesh?

 Service proxies like Envoy help add important capabilities to our services architecture running in a cloud environment. Each application can have its own requirements or configurations for how a proxy should behave, given its workload goals. With an increasing number of applications and services, it can be difficult to configure and manage a large fleet of proxies. Moreover, having these proxies in place at each application instance opens opportunities for building interesting higher-order capabilities that we would otherwise have to do in the applications themselves.

 A service mesh is a distributed application infrastructure that is responsible for handling network traffic on behalf of the application in a transparent, out-of-process manner. Figure 1.8 shows how service proxies form the data plane through which all traffic is handled and observed. The data plane is responsible for establishing, securing, and controlling the traffic through the mesh. The data plane behavior is configured by the control plane. The control plane is the brains of the mesh and exposes an API for operators to manipulate network behaviors. Together, the data plane and the control plane provide important capabilities necessary in any cloud-native architecture:

 	
 Service resilience

 	
 Observability signals

 	
 Traffic control capabilities

 	
 Security

 	
 Policy enforcement

 [image: CH01_F08_Posta2]

 Figure 1.8 A service mesh architecture with co-located application-layer proxies (data plane) and management components (control plane)

 The service mesh takes on the responsibility of making service communication resilient to failures by implementing capabilities like retries, timeouts, and circuit breakers. It’s also capable of handling evolving infrastructure topologies by handling things like service discovery, adaptive and zone-aware load balancing, and health checking. Since all the traffic flows through the mesh, operators can control and direct traffic explicitly. For example, if we want to deploy a new version of our application, we may want to expose it to only a small fraction, say 1%, of live traffic. With the service mesh in place, we have the power to do that. Of course, the converse of control in the service mesh is understanding its current behavior. Since traffic flows through the mesh, we’re able to capture detailed signals about the behavior of the network by tracking metrics like request spikes, latency, throughput, failures, and so on. We can use this telemetry to paint a picture of what’s happening in our system. Finally, since the service mesh controls both ends of the network communication between applications, it can enforce strong security like transport-layer encryption with mutual authentication: specifically, using the mutual Transport Layer Security (mTLS) protocol.

 The service mesh provides all of these capabilities to service operators with very few or no application code changes, dependencies, or intrusions. Some capabilities require minor cooperation with the application code, but we can avoid large, complicated library dependencies. With a service mesh, it doesn’t matter what application framework or programming language you’ve used to build your application; these capabilities are implemented consistently and correctly and allow service teams to move quickly, safely, and confidently when implementing and delivering changes to systems to test their hypotheses and deliver value.

1.5 Introducing the Istio service mesh

 Istio is an open source implementation of a service mesh founded by Google, IBM, and Lyft. It helps you add resilience and observability to your services architecture in a transparent way. With Istio, applications don’t have to know that they’re part of the service mesh: whenever they interact with the outside world, Istio handles the networking on their behalf. It doesn’t matter if you’re using microservices, monoliths, or anything in between—Istio can bring many benefits. Istio’s data plane uses the Envoy proxy and helps you configure your application to have an instance of the service proxy (Envoy) deployed alongside it. Istio’s control plane is made up of a few components that provide APIs for end users/operators, configuration APIs for the proxies, security settings, policy declarations, and more. We’ll cover these control-plane components in future sections of this book.

 Istio was originally built to run on Kubernetes but was written from the perspective of being deployment-platform agnostic. This means you can use an Istio-based service mesh across deployment platforms like Kubernetes, OpenShift, and even traditional deployment environments like virtual machines (VMs). In later chapters, we’ll take a look at how powerful this can be for hybrid deployments across combinations of clouds, including private data centers.

 NOTE Istio is Greek for “sail,” which goes along nicely with the rest of the Kubernetes nautical words.

 With a service proxy next to each application instance, applications no longer need language-specific resilience libraries for circuit breaking, timeouts, retries, service discovery, load balancing, and so on. Moreover, the service proxy also handles metrics collection, distributed tracing, and access control.

 Since traffic in the service mesh flows through the Istio service proxy, Istio has control points at each application to influence and direct its networking behavior. This allows a service operator to control traffic flow and implement fine-grained releases with canary releases, dark launches, graduated roll outs, and A/B style testing. We’ll explore these capabilities in later chapters.

 Figure 1.9 shows the following:

 	
 Traffic comes into the cluster from a client outside the mesh through the Istio ingress gateway.

 	
 Traffic goes to the Shopping Cart service. The traffic first passes through its service proxy. The service proxy can apply timeouts, metric collection, security enforcement, and so on, for the service.

 	
 As the request makes its way through various services, Istio’s service proxy can intercept the request at various steps and make routing decisions (for example, to route some requests intended for the Tax service to v1.1 of the Tax service, which may have a fix for certain tax calculations).

 	
 Istio’s control plane (istiod) is used to configure the Istio proxies, which handle routing, security, telemetry collection, and resilience.

 	
 Request metrics are periodically sent back to various collection services. Distributed tracing spans (like Jaeger or Zipkin) are sent back to a tracing store, which can be used later to track the path and latency of a request through the system.

 [image: CH01_F09_Posta2]

 Figure 1.9 Istio is an implementation of a service mesh with a data plane based on Envoy and a control plane.

 An important requirement for any services-based architecture is security. Istio has security enabled by default. Since Istio controls each end of the application’s networking path, it can transparently encrypt the traffic by default. In fact, to take it a step further, Istio can manage key and certificate issuance, installation, and rotation so that services get mutual TLS out of the box. If you’ve ever experienced the pain of installing and configuring certificates for mutual TLS, you’ll appreciate both the simplicity of operation and how powerful this capability is. Istio can assign a workload identity and embed that into the certificates. Istio can also use the identities of different workloads to further implement powerful access-control policies.

 Finally, but no less important than the previous capabilities, with Istio you can implement quotas, rate limiting, and organizational policies. Using Istio’s policy enforcement, you can create very fine-grained rules about what services are allowed to interact with each other, and which are not. This becomes especially important when deploying services across clouds (public and on premises).

 Istio is a powerful implementation of a service mesh. Its capabilities allow you to simplify running and operating a cloud-native services architecture, potentially across a hybrid environment. Throughout the rest of this book, we’ll show you how to take advantage of Istio’s functionality to operate your microservices in a cloud-native world.

1.5.1 How a service mesh relates to an enterprise service bus

 An enterprise service bus (ESB) from SOA days has some similarities to a service mesh, at least in spirit. If we take a look at how the ESB was originally described in the early days of SOA, we even see some similar language:

 The enterprise service bus (ESB) is a silent partner in the SOA logical architecture. Its presence in the architecture is transparent to the services of your SOA application. However, the presence of an ESB is fundamental to simplifying the task of invoking services—making the use of services wherever they are needed, independent of the details of locating those services and transporting service requests across the network to invoke those services wherever they reside within your enterprise. (http://mng.bz/5K7D)

 In this description of an ESB, we see that it’s supposed to be a silent partner, which means applications should not know about it. With a service mesh, we expect similar behavior. The service mesh should be transparent to the application. An ESB also is “fundamental to simplifying the task of invoking services.” For an ESB, this included things like protocol mediation, message transformation, and content-based routing. A service mesh is not responsible for all the things an ESB does, but it does provide request resilience through retries, timeouts, and circuit breaking, and it does provide services like service discovery and load balancing.

 Overall, there are a few significant differences between a service mesh and an ESB:

 	
 The ESB introduced a new silo in organizations that was the gatekeeper for service integrations within the enterprise.

 	
 It was a very centralized deployment/implementation.

 	
 It mixed application networking and service mediation concerns.

 	
 It was often based on complicated proprietary vendor software.

 Figure 1.10 shows how ESB integrated applications by placing itself in the center and then comingled application business logic with application routing, transformation, and mediation.

 [image: CH01_F10_Posta2]

 Figure 1.10 An ESB as a centralized system that integrates applications

 A service mesh’s role is only in application networking concerns. Complex business transformations (such as X12, EDI, and HL7), business process orchestration, process exceptions, service orchestration, and so on do not belong in a service mesh. Additionally, the service mesh data plane is highly distributed, with its proxies collocated with applications. This eliminates single points of failure or bottlenecks that often appear with an ESB architecture. Finally, both operator and service teams are responsible for establishing service-level objectives (SLOs) and configuring the service mesh to support them. The responsibility for integration with other systems is no longer the purview of a centralized team; all service developers share that duty.

1.5.2 How a service mesh relates to an API gateway

 Istio and service-mesh technology also have some similarities to and differences from API gateways. API gateway infrastructure (not the microservices pattern from http://microservices.io/patterns/apigateway.html) is used in API management suites to provide a public-facing endpoint for an organization’s public APIs. Its role is to provide security, rate limiting, quota management, and metrics collection for these public APIs and tie into an overall API management solution that includes API plan specification, user registration, billing, and other operational concerns. API gateway architectures vary wildly but have been used mostly at the edge of architectures to expose public APIs. They have also been used for internal APIs to centralize security, policy, and metrics collection. However, this creates a centralized system through which traffic travels, which can become a source of bottlenecks, as described for the ESB and messaging bus.

 Figure 1.11 shows how all internal traffic between services traverses the API gateway when used for internal APIs. This means for each service in the graph, we’re taking two hops: one to get to the gateway and one to get to the actual service. This has implications not just for network overhead and latency but also for security. With this multi-hop architecture, the API gateway cannot secure the transport mechanism with the application unless the application participates in the security configuration. And in many cases, an API gateway doesn’t implement resilience capabilities like circuit breakers or bulkheading.

 [image: CH01_F11_Posta2]

 Figure 1.11 API gateway for service traffic

 In a service mesh, proxies are collocated with the services and do not take on additional hops. They’re also decentralized so each application can configure its proxy for its particular workloads and not be affected by noisy neighbor scenarios.1 Since each proxy lives with its corresponding application instance, it can secure the transport mechanism from end to end without the application knowing or actively participating.

 Figure 1.12 shows how the service proxies are becoming a place to enforce and implement API gateway functionality. As service mesh technologies like Istio continue to mature, we’ll see API management built on top of the service mesh and not need specialized API gateway proxies.

 [image: CH01_F12_Posta2]

 Figure 1.12 The service proxies implement ESB and API gateway functionalities.

1.5.3 Can I use Istio for non-microservices deployments?

 Istio’s power shines as you move to architectures that experience large numbers of services, interconnections, and networks over unreliable cloud infrastructure, potentially spanning clusters, clouds, and data centers. Furthermore, since Istio runs out-of-process from the application, it can be deployed to existing legacy or brownfield environments as well, thus incorporating those into the mesh.

 For example, if you have existing monolith deployments, the Istio service proxy can be deployed alongside each monolith instance and will transparently handle network traffic for it. At a minimum, this can add request metrics that become very useful for understanding the application’s usage, latency, throughput, and failure characteristics. Istio can also participate in higher-level features like policy enforcement about what services are allowed to talk to it. This capability becomes highly important in a hybrid-cloud deployment with monoliths running on premises and cloud services potentially running in a public cloud. With Istio, we can enforce policies such as “cloud services cannot talk to and use data from on-premises applications.”

 You may also have an older vintage of microservices implemented with resilience libraries like NetflixOSS. Istio brings powerful capabilities to these deployments as well. Even if both Istio and the application implement functionality like a circuit breaker, you can feel secure, knowing that the more restrictive policies will kick in and everything should work fine. Scenarios with timeouts and retries may conflict, but using Istio, you can test your service and find these conflicts before you ever make it to production.

1.5.4 Where Istio fits in distributed architectures

 You should pick the technology you use in your implementations based on the problems you have and the capabilities you need. Technologies like Istio, and service meshes in general, are powerful infrastructure capabilities and touch a lot of areas of a distributed architecture—but they are not right for and should not be considered for every problem you may have. Figure 1.13 shows how an ideal cloud architecture would separate different concerns from each layer in the implementation.

 [image: CH01_F13_Posta2]

 Figure 1.13 An overview of separation of concerns in cloud-native applications. Istio plays a supporting role to the application layer and sits above the lower-level deployment layer.

 At the lower level of your architecture is your deployment automation infrastructure. This is responsible for getting code deployed onto your platform (containers, Kubernetes, public cloud, VMs, and so on). Istio does not encroach on or prescribe what deployment automation tools you should use.

 At a higher level, you have application business logic: the differentiating code that a business must write to stay competitive. This code includes the business domain as well as knowing which services to call and in what order, what to do with service interaction responses (such as how to aggregate them together), and what to do when there are process failures. Istio does not implement or replace any business logic. It does not do service orchestration, business payload transformation, payload enrichment, splitting/aggregating, or rules computation. These capabilities are best left to libraries and frameworks inside your applications.

 Istio plays the role of connective tissue between the deployment platform and the application code. Its role is to facilitate taking complicated networking code out of the application. It can do content-based routing based on external metadata that is part of the request (HTTP headers, and so on). It can do fine-grained traffic control and routing based on service and request metadata matching. It can also secure the transport and offload security token verification and enforce quota and usage policies defined by service operators.

 Now that we have a basic understanding of what Istio is, the best way to get further acquainted with its power is to use it. In chapter 2, we’ll look at using Istio to achieve basic metrics collection, reliability, and traffic control.

1.5.5 What are the drawbacks to using a service mesh?

 We’ve talked a lot about the problems of building a distributed architecture and how a service mesh can help, but we don’t want to give the impression that a service mesh is the one and only way to solve these problems or that a service mesh doesn’t have drawbacks. Using a service mesh does have a few drawbacks you must be aware of.

 First, using a service mesh puts another piece of middleware, specifically a proxy, in the request path. This proxy can deliver a lot of value; but for those unfamiliar with the proxy, it can end up being a black box and make it harder to debug an application’s behavior. The Envoy proxy is specifically built to be very debuggable by exposing a lot about what’s happening on the network—more so than if it wasn’t there—but for someone unfamiliar with operating Envoy, it could look very complex and inhibit existing debugging practices.

 Another drawback of using a service mesh is in terms of tenancy. A mesh is as valuable as the services running in the mesh. That is, the more services in the mesh, the more valuable the mesh becomes for operating those services. However, without proper policy, automation, and forethought going into the tenancy and isolation models of the physical mesh deployment, you could end up in a situation where misconfiguring the mesh impacts many services.

 Finally, a service mesh becomes a fundamentally important piece of your services and application architecture since it’s on the request path. A service mesh can expose a lot of opportunities to improve security, observability, and routing control posture. The downside is that a mesh introduces another layer and another opportunity for complexity. It can be difficult to understand how to configure, operate, and, most importantly, integrate it within your existing organizational processes and governance and between existing teams.

 In general, a service mesh brings a lot of value—but not without trade-offs. Just as with any tool or platform, you should evaluate these trade-offs based on your context and constraints, determine whether a service mesh makes sense for your scenarios, and, if so, make a plan to successfully adopt a mesh.

 Overall, we love service meshes; and now that Istio is mature, it is already improving the operations of many businesses. With the continuous stream of contributions to both Istio and Envoy, it is exciting to see where it’s going next. Hopefully, this chapter has passed some of the excitement on to you and given you ideas about how Istio can improve the security and reliability of your services.

Summary

 	
 Operating microservices in the cloud involves many challenges: network unreliability, service availability, traffic flow that is hard to understand, traffic encryption, application health, and performance, to name a few.

 	
 Those difficulties are alleviated by patterns (such as service discovery, client-side load balancing, and retries) that are implemented using libraries within every application.

 	
 Additional libraries and services are required to create and distribute metrics and traces to gain observability over the services.

 	
 A service mesh is an infrastructure that implements those cross-cutting concerns on behalf of applications in a transparent, out-of-process manner.

 	
 Istio is an implementation of a service mesh composed of the following:

 	

 	
 The data plane, which is composed of service proxies that are deployed alongside applications and complement them by implementing policies, managing traffic, generating metrics and traces, and much more.

 	
 The control plane, which exposes an API for operators to manipulate the data plane’s network behavior.

 	
 Istio uses Envoy as its service proxy due to its versatility and because it can be dynamically configured.

 1. The term noisy neighbor describes the scenario where a service is degraded due to the activity of another service. Learn more at http://mng.bz/mxvM.

2 First steps with Istio

 This chapter covers

 	
Installing Istio on Kubernetes

 	
Understanding the Istio control-plane components

 	
Deploying an application with the Istio proxy

 	
Controlling traffic with the Istio VirtualService resource

 	
Exploring complementary components for tracing, metrics, and visualization

 Istio solves some of the difficult challenges of service communication in cloud environments and provides a lot of capabilities to both developers and operators. We’ll cover these capabilities and how it all works in subsequent chapters; but to help you get a feel for some of the features of Istio, in this chapter we do a basic installation (more advanced installation options can be found in appendix A) and deploy a few services. The services and examples come from the book’s source code, which you can find at https://github.com/istioinaction/book-source-code. From there, we explore the components that make up Istio and what functionality we can provide to our example services. Finally, we look at how to do basic traffic routing, metrics collection, and resilience. Further chapters will dive deeper into the functionality.

2.1 Deploying Istio on Kubernetes

 We’re going to deploy Istio and our example applications using containers, and we’ll use the Kubernetes container platform to do that. Kubernetes is a very powerful container platform capable of scheduling and orchestrating containers over a fleet of host machines known as Kubernetes nodes. These nodes are host machines capable of running containers, but Kubernetes handles those mechanisms. As we’ll see, Kubernetes is a great place to initially kick the tires with Istio—although we should be clear that Istio is intended to support multiple types of workloads, including those running on virtual machines (VMs).

2.1.1 Using Docker Desktop for the examples

 To get started, we need access to a Kubernetes distribution. For this book, we use Docker Desktop (www.docker.com/products/docker-desktop), which provides a slim VM on your host computer that’s capable of running Docker and Kubernetes.

 Allocating the recommended resources to Docker Desktop

 Although Istio won’t require many resources on your local machine for Docker Desktop, we install many other supporting components in some chapters. It may be worth giving Docker 8 GB of memory and four CPUs. You can do that under the advanced settings in Docker Desktop’s preferences.

 Docker Desktop also has nice integration between the host machine and the VM. You’re not constrained to using Docker Desktop to run these examples and follow along in this book: these examples should run well on any variant of Kubernetes, including Google Kubernetes Engine (GKE), OpenShift, or your own self-bootstrapped Kubernetes distribution. To set up Kubernetes, see the Docker Desktop documentation (www.docker.com/products/docker-desktop) for your machine. After successfully setting up Docker Desktop and enabling Kubernetes, you should be able to connect to your Kubernetes clusters as shown next:

 $ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-desktop Ready master 15h v1.21.1

 NOTE Istio 1.13.0, used in this book, requires a minimum of Kubernetes version 1.19.x.

2.1.2 Getting the Istio distribution

 Next, we want to install Istio into our Kubernetes distribution. We use the istioctl command-line tool to install Istio. To do that, download the Istio 1.13.0 distribution from the Istio release page at https://github.com/istio/istio/releases and download the distribution for your operating system. You can choose Windows, macOS/Darwin, or Linux. Alternatively, you can run this handy script:

 curl -L https://istio.io/downloadIstio | ISTIO_VERSION=1.13.0 sh -

 After downloading the distribution for your operating system, extract the compressed file to a directory. If you use the downloadIstio script, the archive is extracted automatically. From there, you can explore the contents of the distribution, including examples, installation resources, and a binary command-line interface for your OS. This example explores the Istio distribution for macOS:

 $ cd istio-1.13.0
$ ls -l
total 48
-rw-r--r-- 1 ceposta staff 11348 Mar 19 15:33 LICENSE
-rw-r--r-- 1 ceposta staff 5866 Mar 19 15:33 README.md
drwxr-x--- 3 ceposta staff 96 Mar 19 15:33 bin
-rw-r----- 1 ceposta staff 853 Mar 19 15:33 manifest.yaml
drwxr-xr-x 5 ceposta staff 160 Mar 19 15:33 manifests
drwxr-xr-x 20 ceposta staff 640 Mar 19 15:33 samples
drwxr-x--- 6 ceposta staff 192 Mar 19 15:33 tools

 Browse the distribution directories to get an idea of what comes with Istio. For example, in the samples directory, you’ll see a handful of tutorials and applications to help you get your feet wet with Istio. Going through each of these will give you a good initial idea of what Istio can do and how to interact with its components. We take a deeper look in the next section. The tools directory contains a few tools for troubleshooting Istio deployments, as well as bash-completion for istioctl. And the manifests directory contains Helm charts and istioctl profiles for customizing the installation of Istio for your specific platform. You likely won’t need to use these directly (as we’ll see), but they’re there for customization purposes.

 Of particular interest is the bin directory, where you’ll find a simple command-line interface (CLI) istioctl tool for interacting with Istio. This binary is similar to kubectl for interacting with the Kubernetes API, but it includes a handful of commands to enhance the user experience of using Istio. Run the istioctl binary to verify that everything works as expected:

 $./bin/istioctl version
no running Istio pods in "istio-system"
1.13.0

 At this point, you can add the istioctl CLI to your path, so it’s available wherever you navigate on the command line. This is platform specific and up to you to figure out.

 Finally, let’s verify that any prerequisites have been met in our Kubernetes cluster (such as the version) and identify any issues we may have before we begin the installation. We can run the following command to do that:

 $ istioctl x precheck

✔ No issues found when checking the cluster.
➥Istio is safe to install or upgrade!
 To get started, check out
 ➥https://istio.io/latest/docs/setup/getting-started/

 At this point, we’ve downloaded the distribution files and verified that the istioctl CLI tools are a fit for our operating system and Kubernetes cluster. Next, let’s do a basic installation of Istio to get hands-on with its concepts.

2.1.3 Installing the Istio components into Kubernetes

 In the distribution you just downloaded and unpacked, the manifests directory contains a collection of charts and resource files for installing Istio into the platform of your choice. The official method for any real installation of Istio is to use istioctl, istio-operator, or Helm. Appendix A guides you through installing and customizing Istio using istioctl and istio-operator.

 For this book, we use istioctl and various pre-curated profiles to take a step-by-step, incremental approach to adopting Istio. To perform the demo install, use the istioctl CLI tool as shown next:

 $ istioctl install --set profile=demo -y

✔ Istio core installed
✔ Istiod installed
✔ Ingress gateways installed
✔ Egress gateways installed
✔ Installation complete

 After running this command, you may have to wait a few moments for the Docker images to properly download and the deployments to succeed. Once things have settled in, you can run the kubectl

OEBPS/OEBPS/Images/CH01_F01_Posta2.png

OEBPS/OEBPS/Images/CH01_F11_Posta2.png

OEBPS/OEBPS/Images/CH01_F04_Posta2.png

OEBPS/OEBPS/Images/CH01_F08_Posta2.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F07_Posta2.png

OEBPS/OEBPS/Images/CH01_F10_Posta2.png

OEBPS/OEBPS/Images/ChristianPosta_photo.png

OEBPS/OEBPS/Images/RinorMaloku.png

OEBPS/OEBPS/Images/CH01_F03_Posta2.png

OEBPS/OEBPS/Images/CH01_F13_Posta2.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F12_Posta2.png

OEBPS/OEBPS/Images/CH01_F06_Posta2.png

OEBPS/OEBPS/Images/CH01_F02_Posta2.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F05_Posta2.png

OEBPS/OEBPS/Images/CH01_F09_Posta2.png

