

 inside front cover

 [image:]

 [image:]

 Testing JavaScript Applications

 Lucas da Costa

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Helen Stergius

 	
 Technical development editor:

 	
 Dennis Sellinger

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Lori Weidert

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Srihari Sridharan

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617297915

 dedication

 In memory of my grandmother, Marli Teixeira da Costa, who always did everything she could for me to succeed.

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Testing JavaScript applications

 1 An introduction to automated testing

 1.1 What is an automated test?

 1.2 Why automated tests matter

 Predictability

 Reproducibility

 Collaboration

 Speed

 2 What to test and when?

 2.1 The testing pyramid

 2.2 Unit tests

 2.3 Integration tests

 2.4 End-to-end tests

 Testing HTTP APIs

 Testing GUIs

 Acceptance tests and end-to-end tests are not the same

 2.5 Exploratory testing and the value of QA

 2.6 Tests, cost, and revenue

 Part 2. Writing tests

 3 Testing techniques

 3.1 Organizing test suites

 Breaking down tests

 Parallelism

 Global hooks

 Atomicity

 3.2 Writing good assertions

 Assertions and error handling

 Loose assertions

 Using custom matchers

 Circular assertions

 3.3 Test doubles: Mocks, stubs, and spies

 Mocking imports

 3.4 Choosing what to test

 Don’t test third-party software

 To mock, or not to mock: That’s the question

 When in doubt, choose integration tests

 3.5 Code coverage

 Automated coverage reports

 Coverage types

 What coverage is good for and what it isn’t

 4 Testing backend applications

 4.1 Structuring a testing environment

 End-to-end testing

 Integration testing

 Unit testing

 4.2 Testing HTTP endpoints

 Testing middleware

 4.3 Dealing with external dependencies

 Integrations with databases

 Integrations with other APIs

 5 Advanced backend testing techniques

 5.1 Eliminating nondeterminism

 Parallelism and shared resources

 Dealing with time

 5.2 Reducing costs while preserving quality

 Reducing overlap between tests

 Creating transitive guarantees

 Turning assertions into preconditions

 6 Testing frontend applications

 6.1 Introducing JSDOM

 6.2 Asserting on the DOM

 Making it easier to find elements

 Writing better assertions

 6.3 Handling events

 6.4 Testing and browser APIs

 Testing a localStorage integration

 Testing a History API integration

 6.5 Dealing with WebSockets and HTTP requests

 Tests involving HTTP requests

 Tests involving WebSockets

 7 The React testing ecosystem

 7.1 Setting up a test environment for React

 Setting up a React application

 Setting up a testing environment

 7.2 An overview of React testing libraries

 Rendering components and the DOM

 React Testing Library

 Enzyme

 The React test renderer

 8 Testing React applications

 8.1 Testing component integration

 Stubbing components

 8.2 Snapshot testing

 Snapshots beyond components

 Serializers

 8.3 Testing styles

 8.4 Component-level acceptance tests and component stories

 Writing stories

 Writing documentation

 9 Test-driven development

 9.1 The philosophy behind test-driven development

 What test-driven development is

 Adjusting the size of your iterations

 Why adopt test-driven development?

 When not to apply test-driven development

 9.2 Writing a JavaScript module using TDD

 9.3 Testing top-down versus testing bottom-up

 What bottom-up and top-down testing mean

 How top-down and bottom-up approaches impact a test-driven workflow

 The pros and cons of bottom-up versus top-down approaches

 9.4 Balancing maintenance costs, delivery speed, and brittleness

 Test-driven implementation

 Test-driven maintenance

 9.5 Setting up an environment for TDD to succeed

 Teamwide adoption

 Keeping distinct lanes

 Pairing

 Supplementary testing

 9.6 TDD, BDD, validations, and specificationsBDD (behavior-driven development)

 10 UI-based end-to-end testing

 10.1 What are UI-based end-to-end tests?

 10.2 When to write each type of test

 UI-based end-to-end tests

 Pure end-to-end tests

 Pure UI tests

 A note on acceptance testing and this chapter’s name

 10.3 An overview of end-to-end testing tools

 Selenium

 Puppeteer

 Cypress

 When to choose Cypress

 11 Writing UI-based end-to-end tests

 11.1 Your first UI-based end-to-end tests

 Setting up a test environment

 Writing your first tests

 Sending HTTP requests

 Sequencing actions

 11.2 Best practices for end-to-end-tests

 Page objects

 Application actions

 11.3 Dealing with flakiness

 Avoiding waiting for fixed amounts of time

 Stubbing uncontrollable factors

 Retrying tests

 11.4 Running tests on multiple browsers

 Using a testing framework to run tests within a browser

 Running UI-based tests in multiple browsers

 11.5 Visual regression tests

 Part 3. Business impact

 12 Continuous integration and continuous delivery

 12.1 What are continuous integration and continuous delivery?

 Continuous integration

 Continuous delivery

 12.2 The role of automated tests in a CI/CD pipeline

 12.3 Version-control checks

 13 A culture of quality

 13.1 Using type systems to make invalid states unrepresentable

 13.2 Reviewing code to catch problems machines can’t

 13.3 Using linters and formatters to produce consistent code

 13.4 Monitoring your systems to understand how they actually behave

 13.5 Explaining your software with good documentation

 index

 front matter

preface

 Testing JavaScript Applications is the testing book I wish I had read six years ago. At that time, I was a quality assurance (QA) intern. It was my first experience in the software industry. Unfortunately, it didn’t require me to do what I liked the most: casting spells on a keyboard. Instead, I had to manually go through screens, click buttons, fill forms, and make sure that the software we built was working as it should.

 “There must be a better way,” I thought. So I started crafting incantations of my own for machines to do the drudgery, liberating me to be the creative wizard I wanted to become.

 After 18 months, I thought I had figured most of it out. By then, I had automated myself out of my QA role and become a software engineer.

 Once I started writing applications, even more questions popped up in my mind. Having been into QA for a significant amount of time, I didn’t want to depend on others to build software that works. I also didn’t want to spend my precious spell-crafting time clicking buttons and filling forms, as I used to do.

 Once again, I thought that “there must be a better way.” That’s when I started reading more about software testing. Now that I had access to the source code, I discovered that I could build software more confidently, in less time. Furthermore, I could liberate my QA friends to perform more creative and proactive work instead of just throwing software over the wall for them to test manually.

 The tricky part was finding material that would teach me how to do it. Even though I could sometimes find helpful articles online, most of them were out of date or focused on a small part of the testing puzzle.

 Putting those pieces together was the most challenging part of learning about software testing. Should software engineers always write tests? If so, which types of tests, for what, and how many? How do software development and QA fit together?

 Years ago, there wasn’t a single piece of content that could answer all these questions. The book I wanted to read didn’t exist; therefore, I decided to write it myself.

 While good content is scattered all over the internet, much of it remains unwritten. A big part of the testing puzzle remains unstructured in the brains of those who maintain the testing libraries that others use.

 In Testing JavaScript Applications, I put those pieces together in a comprehensible manner. I combined what I’ve learned from many years of reading and practical work experience with what I’ve discovered while maintaining the testing libraries that millions of people use, like Chai and Sinon.

 I firmly believe that excellent testing practices are at the core of every successful piece of software out there. These practices help people write better software, in less time, for fewer dollars. Most importantly, they extricate us humans from drudgery and give us time to do what we do best: create software, which, to me, is still pretty much like magic.

acknowledgments

 My mom’s alarm clock has always gone off before 6:00 a.m., just like mine. If it wasn’t for her, I don’t know how I could’ve written the 500 pages you’re about to read, most of which I’ve written while the world was asleep. My mom taught me the value of discipline and hard work, and I’m very thankful for that.

 Like her, many other people deserve my gratitude for the lessons they taught me and the help they gave me.

 Among those people, the first ones I’d like to thank are my family, who cheer for me from the other side of the Atlantic. My father, Hercílio, who said he’d always support me in whatever I’d like to do; my sister, Luiza, the kindest person I know; and my mom, Patrícia, whose hard work I’ve praised in the very first paragraph.

 In addition to them, I must also thank my grandparents, the ones who took care of me as my parents were working, and, especially my grandmother, Marli Teixeira da Costa, to whom I dedicate this book.

 No matter how hard things were back in Brazil, she always did her best for me to have everything I needed for work, from books to computers. During the week, she used to prepare lunch for me and offered me a room in her house next to the university where I could rest so I could pay attention in class.

 Besides my family, there are also a few people without whom I wouldn’t have been able to complete this work: Douglas Melo and Lorenzo Garibotti, who taught me what friendship really means; Ana Zardo, who showed me the world was bigger than I thought; Alex Monk, my therapist, who helped me navigate change and deal with my frequent existential crises; and Gideon Farrell, who brought me to London and continues to trust me and help me do my best work.

 I also can’t forget to thank everyone in the JavaScript open source community for everything they’ve taught me over the years: Lucas Vieira, whom I met in college and is one of the most talented engineers I know; Carl-Erik Kopseng, who brought me into Sinon.js and with whom I had the pleasure of working in 2017; and Keith Cirkel, who invited me to be a core maintainer of Chai.js, and has always been a supportive friend. He helped me stay afloat when I moved to England three years ago. I’m glad the internet has connected me with such amazing people!

 To all the reviewers: Sergio Arbeo, Jeremy Chen, Giuseppe De Marco, Lucian Enache, Foster Haines, Giampiero Granatella, Lee Harding, Joanna Kupis, Charles Lam, Bonnie Malec, Bryan Miller, Barnaby Norman, Prabhuti Prakash, Dennis Reil, Satej Sahu, Liza Sessler, Raul Siles, Ezra Simeloff, Deniz Vehbi, Richard B. Ward, and Rodney Weis, your suggestions helped make this a better book.

 Finally, I’d like to thank my editors and the team at Manning, Helen Stergius, Dennis Sellinger, and Srihari Sridharan, for having reviewed each of these pages and patiently answering the numerous questions I’ve had throughout the process.

 Obrigado.

about this book

 Testing JavaScript Applications uses practical examples to teach you how to test your JavaScript code and explains what factors you should consider when deciding which tests to write and when.

 In addition to covering the most popular JavaScript testing tools and testing best practices, the book explains how different types of tests complement each other and how they could fit into your development process so that you can build better software, in less time, with fewer bugs and more confidence.

Who should read this book

 I’ve written Testing JavaScript Applications mostly for junior developers and for the software engineers who think that “there must be a better way” to build software that works but haven’t yet figured out how.

 This book assumes readers can already write code but doesn’t require any previous knowledge about software testing.

 In addition to covering the practical aspects of writing tests, it explains why they’re important and how they impact your projects and empowers you to make the best possible decisions for your context.

How this book is organized: A roadmap

 This book contains 12 chapters divided into three parts.

 The first part of Testing JavaScript Applications covers what automated tests are, why they are important, the different types of automated tests, and how each type of test impacts your projects.

 	
 Chapter 1 explains what automated tests are and the advantages of writing them.

 	
 Chapter 2 covers the different types of automated tests and teaches you the pros and cons of each one, so you know what to consider when deciding which tests to write. Additionally, it teaches you fundamental patterns you can apply to all kinds of tests.

 Part 2 uses practical examples to teach you how to write the different types of tests that you learned about in the first part.

 	
 Chapter 3 covers testing techniques that help you make the most out of your tests. It teaches you how to organize multiple tests within test suites so that you receive precise feedback, how to write thorough assertions so that you catch more bugs, and which parts of your code you should isolate during tests. Additionally, it explains what code coverage is and how to measure it and shows how misleading it can sometimes be.

 	
 Chapter 4 teaches how to write tests for a backend application. It covers essential aspects you should consider to make your application testable, demonstrates how to test your server’s routes and its middleware, and how to deal with external dependencies such as databases or third-party APIs.

 	
 Chapter 5 presents techniques to help you reduce your backend tests’ costs and make them quicker and more reliable. It does so by teaching you how to eliminate unpredictable tests, how to run tests concurrently, and how to reduce the overlap between them.

 	
 Chapter 6 describes how to test a vanilla JavaScript frontend application. This chapter explains how you can simulate a browser’s environment within your test framework and demonstrates how to write tests that interact with your application’s interface, interface with browser APIs, and handle HTTP requests and WebSockets.

 	
 Chapter 7 covers the React testing ecosystem. It builds upon what you’ve learned in the previous chapter to explain how tests for a React application work. Additionally, it gives you an overview of the different tools you can use to test React applications and demonstrates how to write your first React tests. Furthermore, it gives you tips on how to apply similar techniques to other JavaScript libraries and frameworks.

 	
 Chapter 8 digs deeper into the practicalities of testing a React application. In this chapter, I’ll explain how to test components that interact with each other, how to test a component’s styles, and what snapshot testing is and what to consider when deciding whether you should use it. Furthermore, you’ll learn about the importance of component-level acceptance testing and how this practice can help you build better React applications more quickly.

 	
 Chapter 9 is about test-driven development (TDD). It explains how to apply this software development technique, why it’s helpful to adopt it, and when to do so. Besides covering the practical aspects of TDD, it explains how this technique impacts teams and how to create an environment in which TDD can succeed. It also covers TDD’s relationship to a practice called behavior-driven development, which can help improve communication among different stakeholders and improve your software’s quality.

 	
 Chapter 10 describes what UI-based end-to-end tests are and how they impact your business. It also explains how these tests differ from other types of tests and teaches you how to decide when to write them.

 	
 Chapter 11 covers the practical aspect of UI-based end-to-end tests. This chapter will teach you how to write your first UI-based end-to-end tests, how to make them robust and reliable, and how to run them on multiple browsers. Additionally, it describes how to incorporate visual regression testing into your tests and explains how this new type of test could be helpful.

 Part 3 covers complementary techniques to amplify the positive impact that writing tests can have on your business.

 	
 Chapter 12 describes what continuous integration and continuous delivery are and explains why they’re helpful techniques and the essentials you need to know to apply them in your projects.

 	
 Chapter 13 covers technologies, tools, and techniques complementary to tests. It talks about how types can help you catch bugs and make your tests more efficient, explains how code reviews improve your code quality, and covers the impact that documentation and monitoring have in building software that works. Additionally, it describes how to debug your code more quickly and confidently.

 I recommend readers to read the first three chapters sequentially before reading any others. These first few chapters teach fundamental testing concepts and how they relate to each other. It’s essential to read these chapters first because you’ll need the information in them to make the most out of any further chapters.

 Then, readers can jump straight to the chapter that interests them the most, depending on the type of software they want to test.

 Ideally, readers should go through chapters 12 and 13 only when they have already put tests in place and want to understand how to supplement their testing techniques and infrastructure.

About the code

 Testing JavaScript Applications contains numerous practical examples. All of them are available online at this book’s GitHub repository, which readers can find at https://github.com/lucasfcosta/testing-javascript-applications. In that repository, I’ve separated examples into a folder for each chapter. Within each of those chapter’s folders, I’ve grouped examples by section.

 Both inline code and separate code listings are formatted using a fixed-width font similar to this one so that you can differentiate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 I’ve annotated every significant example in this book to highlight important concepts and explain to readers what each piece of code does.

 The code for the examples in this book is also available for download from the Manning website at www.manning.com/books/testing-javascript-applications.

System requirements

 All of this book’s code samples have been written and tested on macOS Catalina. However, they should work on all platforms, including Linux and Windows.

 The only changes you may have to do to get this book’s examples running is adapting how you set environment variables, depending on the shell and operating system you use. If you’re using PowerShell on a Windows machine, for example, you can’t merely prepend VAR_NAME=value to your commands to set an environment variable’s value.

 To run this book’s examples, you must install Node.js and NPM on your machine. These two usually come bundled together. When you install Node.js, you’ll usually get NPM, too. To download and install these two pieces of software, you can follow the instructions at https://nodejs.org/en/download/. The versions of Node.js and NPM I’ve used when building this book’s examples were, respectively, 12.18 and 6.14.

liveBook discussion forum

 Purchase of Testing JavaScript Applications includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/testing-javascript-applications/ discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Lucas da Costa is a software engineer, published author, international speaker, and professional problem solver. As an active member of the open source community, he is the core maintainer of some of the most popular JavaScript testing libraries, Chai and Sinon. Furthermore, he has contributed to numerous other projects, including Jest and NodeSchool.

 In the past few years, Lucas has presented at numerous software engineering conferences in more than 10 countries.

 His content has been voluntarily translated into many languages, including Russian, Mandarin, French, Portuguese, and Spanish, and is used as reference material in multiple software engineering courses around the world.

 Lucas loves opinionated books, beautiful code, well-engineered prose, command-line interfaces, and Vim. In fact, he loves Vim so much that he has a :w tattooed on his ankle.

about the cover illustration

 The figure on the cover of Testing JavaScript Applications is captioned “Bourgeois de Paris.” The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes civils de actuals de toue les peuples connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Testing JavaScript applications

 Whether you’re designing a website for your uncle’s bakery or a stock-trading platform, the most critical characteristic of your software is whether it works. Your uncle’s customers will certainly order more cheesecakes if you have an intuitive and beautifully designed website. In the same way, brokers on Wall Street will make more money if your platform is fast and responsive. Still, users will blatantly ignore all the effort invested in performance and design if your software is unreliable.

 If a program doesn’t work, it doesn’t matter how beautiful or fast it is. Ultimately, kids want more sugar and brokers want to trade more stocks. None of them wants more software.

 The first part of Testing JavaScript Applications explains how automated tests help you give people what they want: software that works. Furthermore, it teaches you how to deliver that software in less time with more confidence.

 In chapter 1, I’ll introduce automated tests and describe how they can help you and your team.

 Chapter 2 presents multiple types of automated tests. It explains when to write each type of test, the pros and cons of each type, and the fundamental patterns you’ll apply throughout the whole book.

1 An introduction to automated testing

 This chapter covers

 	
What an automated test is

 	
The goal of writing automated tests

 	
How automated tests can help you write better code, in less time, with more confidence

 When everything runs on software, from your uncle’s bakery to the country’s economy, the demand for new capabilities grows exponentially, and the more critical it becomes to ship software that works and ship it frequently—hopefully, multiple times a day. That’s what automated tests are here for. Long gone is the time when programmers could afford themselves the luxury of manually testing their software every once in a while. At this point, writing tests is not only good practice, it’s an industry standard. If you search job postings at this very moment, almost all of them require some degree of knowledge about automated software testing.

 It doesn’t matter how many customers you have or the volume of data you deal with. Writing effective tests is a valuable practice for companies of every size from venture-capital-backed Silicon Valley giants to your own recently bootstrapped startup. Tests are advisable for projects of all sizes because they facilitate communication among developers and help you avoid defects. Because of these reasons, the importance of having tests grows proportionally to the number of developers involved in a project and to the cost of failure associated with it.

 This book is targeted at professionals who can already write software but can’t yet write tests or don’t know why it’s critical to do so. While writing these pages, I had in mind people who are fresh out of bootcamps or recently got their first development job and want to grow into seniority. I expect readers to know the basics of JavaScript and understand concepts like promises and callbacks. You don’t need to be a JavaScript specialist. If you can write programs that work, that’s enough. In case the shoes fit, and you’re concerned about producing the most valuable kind of software—software that works—this book is for you.

 This book is not targeted at quality assurance professionals or nontechnical managers. It covers topics from a developer’s point of view, focusing on how they can use tests’ feedback to produce higher-quality code at a faster pace. I will not talk about how to perform manual or exploratory testing, nor about how to write bug reports or manage testing workflows. These tasks can’t be automated yet. If you want to learn more about them, it’s advisable to look a book targeted at QA roles instead.

 Throughout the book, the primary tool you will use is Jest. You will learn by writing practical automated tests for a few small applications. For these applications, you’ll use plain JavaScript and popular libraries like Express and React. It helps to be familiar with Express, and especially with React, but even if you are not, brief research should suffice. I’ll build all of the examples from scratch and assume as little knowledge as possible, so I recommend to research as you go instead of doing so up-front.

 In chapter 1, we’ll cover the concepts that will permeate all further practice. I find that the single most prominent cause of bad tests can be traced back to a misunderstanding of what tests are and what they can and should achieve, so that’s what I’m going to start with.

 Once we have covered what tests are and the goal of writing them, we will talk about the multiple cases where writing tests can help us produce better software in less time and facilitate collaboration among various developers. Having these conceptual foundations will be crucial when we start writing our first tests in chapter 2.

1.1 What is an automated test?

 Uncle Louis didn’t stand a chance in New York, but in London, he’s well-known for his vanilla cheesecakes. Because of his outstanding popularity, it didn’t take long for him to notice that running a bakery on pen and paper doesn’t scale. To keep up with the booming orders, he decided to hire the best programmer he knows to build his online store: you.

 His requirements are simple: customers must be able to order items from the bakery, enter the delivery address, and check out online. Once you implement these features, you decide to make sure the store works appropriately. You create the databases, seed them, spin up the server, and access the website on your machine to try ordering a few cakes. During this process, suppose you find a bug. You notice, for example, that you can have only one unit of an item in your cart at a time.

 For Louis, it would be disastrous if the website went live with such a defect. Everyone knows that it’s impossible to eat a single macaroon at a time, and therefore, no macaroons—one of Louis’s specialties—would sell. To avoid that happening again, you decide that adding multiple units of an item is a use case that always needs to be tested.

 You could decide to manually inspect every release, like old assembly lines used to do. But that’s an unscalable approach. It takes too long, and, as in any manual process, it’s also easy to make mistakes. To solve this problem, you must replace yourself, the customer, with code.

 Let’s think about how a user tells your program to add something to the cart. This exercise is useful to identify which parts of the action flow need to be replaced by automated tests.

 Users interact with your application through a website, which sends an HTTP request to the backend. This request informs the addToCart function which item and how many units they want to add to their cart. The customer’s cart is identified by looking at the sender’s session. Once the items were added to the cart, the website updates according to the server’s response. This process is shown in figure 1.1.

 [image:]

 Figure 1.1 An order’s action flow

 NOTE The f(x) notation is simply the icon I’ve chosen to represent functions throughout this book’s diagrams. It doesn’t necessarily indicate what the function’s parameters are.

 Let’s replace the customer with a piece of software that can call the addToCartFunction. Now, you don’t depend on someone to manually add items to a cart and look at the response. Instead, you have a piece of code that does the verification for you. That’s an automated test.

 Automated test Automated tests are programs that automate the task of testing your software. They interface with your application to perform actions and compare the actual result with the expected output you have previously defined.

 Your testing code creates a cart and tells addToCart to add items to it. Once it gets a response, it checks whether the requested items are there, as shown in figure 1.2.

 [image:]

 Figure 1.2 The action flow for testing addToCart

 Within your test, you can simulate the exact scenario in which users would be able to add only a single macaroon to their cart:

 	
 Create an instance of a cart.

 	
 Call addToCart and tell it to add a macaroon to that cart.

 	
 Check whether the cart contains two macaroons.

 By making your test reproduce the steps that would cause the bug to happen, you can prove that this specific bug doesn’t happen anymore.

 The next test we will write is to guarantee that it’s possible to add multiple macaroons to the cart. This test creates its own instance of a cart and uses the addToCart function to try adding two macaroons to it. After calling the addToCart function, your test checks the contents of the cart. If the cart’s contents match your expectations, it tells you that everything worked properly. We’re now sure it’s possible to add two macaroons to the cart, as shown in figure 1.3.

 [image:]

 Figure 1.3 The action flow for a test that checks whether you can add multiple macaroons to a cart

 Now that customers can have as many macaroons as they want—as it should be—let’s say you try to simulate a purchase your customer would make: 10,000 macaroons. Surprisingly, the order goes through, but Uncle Louis doesn’t have that many macaroons in stock. As his bakery is still a small business, he also can’t fulfill humongous orders like this on such short notice. To make sure that Louis can deliver flawless desserts to everyone on time, he asks you to make sure that customers can order only what’s in stock.

 To identify which parts of the action flow need to be replaced by automated tests, let’s define what should happen when customers add items to their carts and adapt our application correspondingly.

 When customers click the “Add to Cart” button on the website, as shown in figure 1.4, the client should send an HTTP request to the server telling it to add 10,000 macaroons to the cart. Before adding them to the cart, the server must consult a database to check if there are enough in stock. If the amount in stock is smaller or equal to the quantity requested, the macaroons will be added to the cart, and the server will send a response to the client, which updates accordingly.

 NOTE You should use a separate testing database for your tests. Do not pollute your production database with testing data.

 Tests will add and manipulate all kinds of data, which can lead to data being lost or to the database being in an inconsistent state.

 Using a separate database also makes it easier to determine a bug’s root cause. Because you are fully in control of the test database’s state, customers’ actions won’t interfere with your tests’ results.

 [image:]

 Figure 1.4 The desired action flow for adding only available items to a cart

 This bug is even more critical, so you need to be twice as careful. To be more confident about your test, you can write it before actually fixing the bug, so that you can see if it fails as it should.

 The only useful kind of test is a test that will fail when your application doesn’t work.

 This test is just like the one from earlier: it replaces the user with a piece of software and simulates its actions. The difference is that, in this case, you need to add one extra step to remove all macaroons from the inventory. The test must set up the scenario and simulate the actions that would cause the bug to happen; see figure 1.5.

 Once the test is in place, it’s also much quicker to fix the bug. Every time you make a change, your test will tell you whether the bug is gone. You don’t need to manually log in to the database, remove all macaroons, open the website, and try to add them to your cart. The test can do it for you much quicker.

 Because you have also written a test to check whether customers can add multiple items to the cart, if your fix causes the other bug to reappear, that test will warn you. Tests provide quick feedback and make you more confident that your software works.

 [image:]

 Figure 1.5 The necessary steps for a test to check whether we can add sold-out items to the cart

 I must warn you, however, that automated tests are not the panacea for producing software that works. Tests can’t prove your software works; they can only prove it doesn’t. If adding 10,001 macaroons to the cart still caused their availability to be ignored, you wouldn’t know unless you tested this specific input.

 Tests are like experiments. You encode our expectations about how the software works into your tests, and because they passed in the past, you choose to believe your application will behave the same way in the future, even though that’s not always true. The more tests you have, and the closer these tests resemble what real users do, the more guarantees they give you.

 Automated tests also don’t eliminate the need for manual testing. Verifying your work as end users would do and investing time into exploratory testing are still indispensable. Because this book is targeted at software developers instead of QA analysts, in the context of this chapter, I’ll refer to the unnecessary manual testing process often done during development just as manual testing.

1.2 Why automated tests matter

 Tests matter because they give you quick and fail-proof feedback. In this chapter, we’ll look in detail at how swift and precise feedback improves the software development process by making the development workflow more uniform and predictable, making it easy to reproduce issues and document tests cases, easing the collaboration among different developers or teams, and shortening the time it takes to deliver high-quality software.

1.2.1 Predictability

 Having a predictable development process means preventing the introduction of unexpected behavior during the implementation of a feature or the fixing of a bug. Reducing the number of surprises during development also makes tasks easier to estimate and causes developers to revisit their work less often.

 Manually ensuring that your entire software works as you expect is a time-consuming and error-prone process. Tests improve this process because they decrease the time it takes to get feedback on the code you write and, therefore, make it quicker to fix mistakes. The smaller the distance between the act of writing code and receiving feedback, the more predictable development becomes.

 To illustrate how tests can make development more predictable, let’s imagine that Louis has asked you for a new feature. He wants customers to be able to track the status of their orders. This feature would help him spend more time baking and less time answering the phone to reassure customers that their order will be on time. Louis is passionate about cheesecakes, not phone calls.

 If you were to implement the tracking feature without automated tests, you’d have to run through the entire shopping process manually to see if it works, as shown in figure 1.6. Every time you need to test it again, besides restarting the server, you also need to clear your databases to make sure they are in a consistent state, open your browser, add items to the cart, schedule a delivery, go through checkout, and only then you’d finally test tracking your order.

 [image:]

 Figure 1.6 The steps to test tracking an order

 Before you can even manually test this feature, it needs to be accessible on the website. You need to write its interface and a good chunk of the backend the client talks to.

 Not having automated tests will cause you to write too much code before checking whether the feature works. If you have to go through a long and tedious process every time you make changes, you will write bigger chunks of code at a time. Because it takes so long to get feedback when you write bigger chunks of code, by the time you do receive it, it might be too late. You have written too much code before testing, and now there are more places for bugs to hide. Where, among the thousand new lines of code, is the bug you’ve just seen?

 [image:]

 Figure 1.7 The tests for the trackOrder function can call that function directly, so you don’t have to touch other parts of the application.

 With an automated test like the ones in figure 1.7, you can write less code before getting feedback. When your automated tests can call the trackOrder function directly, you can avoid touching unnecessary parts of your application before you’re sure that trackOrder works.

 When a test fails after you’ve written only 10 lines of code, you have only 10 lines of code to worry about. Even if the bug is not within those 10 lines, it becomes way easier to detect which one of them provoked misbehavior somewhere else.

 The situation can get even worse if you break other parts of your application. If you introduce bugs into the checkout procedure, you need to check how your changes affected it. The more changes you’ve made, the harder it becomes to find where the problem is.

 When you have automated tests like the ones in figure 1.8, they can alert you as soon as something breaks so that you can correct course more easily. If you run tests frequently, you will get precise feedback on what part of your application is broken as soon as you break it. Remember that the less time it takes to get feedback once you’ve written code, the more predictable your development process will be.

 [image:]

 Figure 1.8 Automated tests can check parts of your code individually and give you precise feedback on what’s broken as soon as you break it.

 Often I see developers having to throw work away because they’ve done too many changes at once. When those changes caused so many parts of the application to break, they didn’t know where to start. It was easier to start from scratch than to fix the mess they had already created. How many times have you done that?

1.2.2 Reproducibility

 The more steps a particular task has, the more likely a human is to make mistakes following them. Automated tests make it easier and quicker to reproduce bugs and ensure they aren’t present anymore.

 For a customer to track the status of an order, they will have to go through multiple steps. They’d have to add items to their cart, pick a delivery date, and go through the checkout process. To test your application and ensure that it will work for customers, you must do the same. This process is reasonably long and error-prone, and you could approach each step in many different ways. With automated tests, we can ensure that these steps are followed to the letter.

 Let’s assume that you find bugs when you test your application, like being able to check out with an empty cart or with an invalid credit card. For you to find those bugs, you had to go through a series of steps manually.

 To avoid those bugs happening again, you must reproduce the exact same steps that cause each one of them. If the list of test cases grows too long or if there are too many steps, the room for human mistakes gets bigger. Unless you have a checklist that you follow to the letter every single time, bugs will slip in (see figure 1.9).

 Ordering a cake is something you will certainly remember to check, but what about ordering –1 cakes, or even NaN cakes? People forget and make mistakes, and, therefore, software breaks. Humans should do things that humans are good at, and performing repetitive tasks is not one of them.

 [image:]

 Figure 1.9 The steps that must be followed when testing each feature

 Even if you decide to maintain a checklist for those test cases, you will have the overhead of keeping that documentation always up-to-date. If you ever forget to update it and something not described in a test case happens, who’s wrong—the application or the documentation?

 Automated tests do the exact same actions every time you execute them. When a machine is running tests, it neither forgets any steps nor makes mistakes.

1.2.3 Collaboration

 Everyone who tastes Louis’s banoffee pies knows he’s one Great British Bake Off away from stardom. If you do everything right on the software side, maybe one day he’ll open bakeries everywhere from San Franciso to Saint Petersburg. In that scenario, a single developer just won’t cut it.

 If you hire other developers to work with you, all of a sudden, you start having new and different concerns. If you’re implementing a new discount system, and Alice is implementing a way to generate coupons, what do you do if your changes to the checkout procedure make it impossible for customers also to apply coupons to their orders? In other words, how can you ensure that your work is not going to interfere with hers and vice versa?

 If Alice merges her feature into the codebase first, you have to ask her how you’re supposed to test her work to ensure yours didn’t break it. Merging your work will consume your time and Alice’s.

 The effort you and Alice spent manually testing your changes will have to be repeated when integrating your work with hers. On top of that, there will be additional effort to test the integration between both changes, as illustrated by figure 1.10.

 [image:]

 Figure 1.10 The effort necessary to verify changes in each stage of the development process when doing manual testing

 Besides time-consuming, this process is also error-prone. You have to remember all the steps and edge cases to test in both your work and Alice’s. And, even if you do remember, you still need to follow them exactly.

 When a programmer adds automated tests for their features, everyone else benefits. If Alice’s work has tests, you don’t need to ask her how to test her changes. When the time comes for you to merge both pieces of work, you can simply run the existing automated tests instead of going through the whole manual testing process again.

 Even if your changes build on top of hers, tests will serve as up-to-date documentation to guide further work. Well-written tests are the best documentation a developer can have. Because they need to pass, they will always be up-to-date. If you are going to write technical documentation anyway, why not write a test instead?

 If your code integrates with Alice’s, you will also add more automated tests that cover the integration between your work and hers. These new tests will be used by the next developers when implementing correlated features and, therefore, save them time. Writing tests whenever you make changes creates a virtuous collaboration cycle where one developer helps those who will touch that part of the codebase next (see figure 1.11).

 This approach reduces communication overhead but does not eliminate the need for communication, which is the foundation stone for every project to succeed. Automated tests remarkably improve the collaboration process, but they become even more effective when paired with other practices, such as code reviews.

 [image:]

 Figure 1.11 The effort necessary to verify changes in each stage of the development process when automated tests exist

 One of the most challenging tasks in software engineering is to make multiple developers collaborate efficiently, and tests are one of the most useful tools for that.

1.2.4 Speed

 Louis doesn’t care about which language you use and much less about how many tests you have written. Louis wants to sell pastries, cakes, and whatever other sugary marvels he can produce. Louis cares about revenue. If more features make customers happier and generate more revenue, then he wants you to deliver those features as fast as possible. There’s only one caveat: they must work.

 For the business, it’s speed and correctness that matters, not tests. In all the previous sections, we talked about how tests improved the development process by making it more predictable, reproducible, and collaborative, but, ultimately, those are benefits only because they help us produce better software in less time.

 When it takes less time for you to produce code, prove that it doesn’t have specific bugs, and integrate it with everyone else’s work, the business succeeds. When you prevent regressions, the business succeeds. When you make deployments safer, the business succeeds.

 Because it takes time to write tests, they do have a cost. But we insist on writing tests because the benefits vastly outweigh the drawbacks.

 Initially, writing a test can be time-consuming, too, even more than doing a manual test, but the more you run it, the more value you extract from it. If it takes you one minute to do a manual test and you spend five minutes writing one that’s automated, as soon as it runs for the fifth time it will have paid for itself—and trust me, that test is going to run way more than five times.

 In contrast to manual testing, which will always take the same amount of time or more, automating a test causes the time and effort it takes to run it to drop to almost zero. As time passes, the total effort involved in manual tests grows much quicker. This difference in effort between writing automated tests and performing manual testing is illustrated in figure 1.12.

 [image:]

 Figure 1.12 The effort applied over time when doing manual testing versus automated testing

 Writing tests is like buying stocks. You may pay a big price up-front, but you will continue to reap the dividends for a long time. As in finance, the kind of investment you will make—and whether you will make it—depends on when you need the money back. Long-term projects are the ones that benefit the most from tests. The longer the project runs, the more effort is saved, and the more you can invest in new features or other meaningful activities. Short-term projects, like the ones you make in pizza-fueled hackathons, for example, don’t benefit much. They don’t live long enough to justify the effort you will save with testing over time.

 The last time Louis asked you if you could deliver features faster if you were not writing so many tests, you didn’t use the financial analogy, though. You told him that this would be like increasing an oven’s temperature for a cake to be ready sooner. The edges get burned, but the middle is still raw.

Summary

 	
 Automated tests are programs that automate the task of testing your software. These tests will interact with your application and compare its actual output to the expected output. They will pass when the output is correct and provide you with meaningful feedback when it isn’t.

 	
 Tests that never fail are useless. The goal of having tests is for them to fail when the application misbehaves no longer present.

 	
 You can’t prove your software works. You can prove only it doesn’t. Tests show that particular bugs are no longer present—not that there are no bugs. An almost infinite number of possible inputs could be given to your application, and it’s not feasible to test all of them. Tests tend to cover bugs you’ve seen before or particular kinds of situations you want to ensure will work.

 	
 Automated tests reduce the distance between the act of writing code and getting feedback. Therefore, they make your development process more structured and reduce the number of surprises. A predictable development process makes it easier to estimate tasks and allows developers to revisit their work less often.

 	
 Automated tests always follow the exact same series of steps. They don’t forget or make mistakes. They ensure that test cases are followed thoroughly and make it easier to reproduce bugs.

 	
 When tests are automated, rework and communication overhead decrease. On their own, developers can immediately verify other people’s work and ensure they haven’t broken other parts of the application.

 	
 Well-written tests are the best documentation a developer can have. Because tests need to pass, they must always be up-to-date. They demonstrate the usage of an API and help others understand how the codebase works.

 	
 Businesses don’t care about your tests. Businesses care about making a profit. Ultimately, automated tests are helpful because they drive up profits by helping developers deliver higher-quality software faster.

 	
 When writing tests, you pay a big price up-front by investing extra time in creating them. However, you get value back in dividends. The more often a test runs, the more time it has saved you. Therefore, the longer the life cycle of a project, the more critical tests become.

2 What to test and when?

 This chapter covers

 	
The different types of tests and when to use them

 	
Writing your first automated tests

 	
How to balance coupling, maintenance, and cost

 In the previous chapter, to facilitate explaining what tests are and their benefits, I put all the different types of tests in a single, big conceptual box. I showed tests that dealt with databases, tests that directly called one function, and tests that called multiple functions. In this chapter, I’ll take tests out of that box and put them into separate shelves, each one containing tests of a different kind.

 It’s essential to understand how tests fit into different categories because different types of tests serve different purposes. When building a car, for example, it’s crucial to test the engine and the ignition system individually, but it’s also vital to ensure they work together. If not, both the engine and the ignition system are useless. It’s equally as important to test whether people can drive the car once all parts are in place, or else nobody will go anywhere.

 When we build software, we want to have similar guarantees. We want to ensure our functions work in isolation as well as in integration. And, when we put all of these functions together in an application, we want to ensure customers can use it.

 These different types of tests serve different purposes, run at different frequencies, and take different amounts of time to complete. Some are more suited to guide you through the development phase, whereas others can make it easier to test a feature only after it’s complete. Some tests interface directly with your code, and others interact with your application through a graphical interface, as an end user would do. It’s your job to decide which of these tests to use and when.

 I’ll teach you about these different types of tests by writing examples for small functions and applications. Throughout the chapter, I’ll avoid being overprescriptive. Instead, I will focus on the outcomes and drawbacks of each kind of test so that you can make your own decisions. I want to empower you to decide which types of tests will benefit your project the most throughout the different phases of its development and give you a sense of how to incorporate different types of tests into your workflow.

 Learning about these different labels is helpful because they help you decide what your tests should and should not cover in each situation. In reality, these definitions are a bit blurry. You will rarely find yourself proactively labeling different types of tests, but knowing that labels exist and having good examples for each of them is invaluable for creating strong quality guarantees and for unambiguous communication with colleagues.

2.1 The testing pyramid

 Louis’s bakery is committed to producing the highest quality pastries East London has ever tasted. Louis and his team meticulously inspect every ingredient to guarantee it’s fresh and new. The same happens to all the parts of his cheesecakes. From the crust to the batter, each step in the recipe goes through rigorous quality control to scrutinize its texture and consistency. For every cheesecake made, Louis makes sure also to bake a “proof”: a small separate piece for him to savor—a sweet reward and the ultimate proof that Louis’s cheesecakes are undeniably delectable.

 When you keep your desserts up to such high standards, you don’t want your software to fall behind. For that, there’s a lot we can learn from the way Louis ensures his baked goods are the best in town.

 In the same way that low-quality ingredients ruin a cake, poorly written functions ruin a piece of software. If your functions don’t work, then your whole application won’t. Testing these tiny pieces of software is the first step in achieving high-quality digital products.

 The next step is to ensure that all the intermediary products of this process are as high quality as its parts. When combining those functions into larger components, like when combining ingredients to make dough, you must ensure that the blend is as good as its individual items.

 Finally, just as Louis tastes his cakes as his customers would, we must also try our software as our users would. If all of its modules work, but the application itself doesn’t, it’s a useless product.

 	
 Test individual ingredients.

 	
 Test the combination of the primary ingredients into intermediary products.

 	
 Test the final product.

 Mike Cohn’s testing pyramid (figure 2.1)—the metaphor whose name designates this section—comes from this idea that different parts of your software must be tested in diverse ways and with varying regularity.

 [image:]

 Figure 2.1 Mike Cohn’s test pyramid

 It divides tests into the following three categories:

 	
 UI tests

 	
 Service tests

 	
 Unit tests

 The higher the tests are in the pyramid, the less frequently they run and the more value they provide. Tests in the top are few, and tests in the bottom are numerous.

 Unit tests attest to the quality of the most atomic unit in your software: your functions. Service tests ensure these functions work in integration as a service. UI tests verify your work from a user’s perspective by interacting with your software through the user interface it provides.

 The size of the pyramid’s layers indicates how many tests of that kind we should write. Their placement in the pyramid suggests how strong the guarantees those tests provide are. The higher up a test fits into the pyramid, the more valuable it is.

 Back to our baking analogy: unit tests are analogous to inspecting individual ingredients. It’s a reasonably quick and cheap task that can be done multiple times quite early in the overall process, but it provides little value when compared to further quality control steps. Unit tests fit into the bottom part of the pyramid because we have many of them, but their quality assurance guarantees aren’t as strict as the other tests’.

 Service tests are analogous to inspecting the intermediary products of the recipe. In comparison to the inspection of individual ingredients, these tests are reasonably more complex and can be done only in the later phases of the overall process. Nonetheless, they provide more compelling evidence that a heavenly cheesecake is about to materialize. They fit into the middle of the pyramid because you should have fewer service tests than unit tests and because they provide stronger quality guarantees.

 UI tests are analogous to tasting your cheesecake once it’s done. They tell you whether the final product matches your expectations. To perform these tests, you must have gone through the entire recipe and have a finished product. They go into the top of the pyramid because these test should be the most sporadic and are the ones that provide the most stringent guarantees.

 Each one of the pyramid’s testing layers builds on top of the one underneath. All of them help us assert the quality of the final product, but at different stages of the process. Without fresh ingredients, for example, you can’t have a luxurious batter. Furthermore, without a luxurious batter, you can’t have a sublime cheesecake.

 Warning This terminology is not used consistently throughout the industry. You may see people referring to these same categories with different names. The separation between these categories is blurry, just as it is to differentiate one kind of test from another when we see the source code.

 Mike’s pyramid is, in general, an excellent mental framework. Separating tests into different categories is instrumental in determining how many of each type we should write and how often they should run. But I find it problematic to divide tests by their target, be it a function, service, or interface.

 If, for example, you are writing tests that target a web application, should all of its tests be considered UI tests? Even though you are testing the client itself, you may have separate tests for individual functions and other tests that actually interact with the GUI. If your product is a RESTful API and you test it by sending it HTTP requests, is this a service test or a UI test? Even though you are testing a service, the HTTP API is the interface provided to your users.

 Instead of dividing tests by their targets, I suggest that we separate tests by how broad their scope is. The larger the portion of your software a test makes up, the higher it will be placed in the pyramid.

 This revised pyramid (shown in figure 2.2) divides tests into three categories, too, but labels them differently and used the level of isolation of each test as the main criterion for its division. The new labels are as follows:

 	
 End-to-end tests

 	
 Integration tests

 	
 Unit tests

 [image:]

 Figure 2.2 A revised version of the original test pyramid

 Unit tests are the same as in Mike’s original pyramid. They validate the most atomic building blocks of your software: its functions. The tests that directly interact with individual functions in chapter 1 fit into this category. The scope of these tests is the smallest possible, and they assert only the quality of individual functions.

 Integration tests validate how the different pieces of your software work together. Tests that call a function and check whether it has updated items in a database are in this category. An example of an integration test is the test in chapter 1 that ensures that only available items can be added to the cart. The scope of these tests is broader than the scope of unit tests but smaller than the scope of end-to-end tests. They assert the quality of the intermediary steps of the process.

 End-to-end tests validate your application from a user’s perspective, treating your software as much as a black box as possible. A test that controls a web browser and interacts with your application by clicking buttons and verifying labels is in this category. End-to-end tests correspond to tasting a sample of your cheesecake. Their scope is the entire application and its features.

 As in the real world, tests don’t necessarily need to be in one category or the other. Many times they will fit between groups, and that’s fine. These categories don’t exist for us to write labels on top of each of our tests. They exist to guide us toward better and more reliable software, indicating which tests we should write, when, and how much. For a detailed comparison between the different aspects of each type of test, see table 2.1.

 Table 2.1 Characteristics of each kind of test

 	

 	
 Unit tests

 	
 Integration tests

 	
 End-to-end tests

 	
 Target

 	
 Individual functions

 	
 Observable behavior and the integration among multiple functions

 	
 User-facing functionality

 	
 Quantity

 	
 Numerous—several tests per function

 	
 Somewhat frequent—many tests per observable behavior

 	
 Sparse—a few tests per feature

 	
 Speed

 	
 Very quick—usually a few milliseconds

 	
 Average—usually up to very few seconds

 	
 Slow—usually up to many seconds or, in more complex cases, minutes

 	
 Execution frequency

 	
 Numerous times during the development of a function

 	
 Regularly during the development of a feature

 	
 When features are complete

 	
 Feedback level

 	
 Specific problematic input and output for individual functions

 	
 Problematic behavior

 	
 Incorrect functionality

 	
 Costs

 	
 Cheap—usually small, quick to update, run, and understand

 	
 Moderate—medium-sized, reasonably fast to execute

 	
 Expensive—take a long time to run, and tend to be more flaky and convoluted

 	
 Knowledge of the application

 	
 Coupled—require direct access to the code itself; address its functions

 	
 Address functionality, but also through direct access to the code; require access to components like databases, the network, or filesystems

 	
 As unaware of the code as possible; interact with the application through the interface given to its users

 	
 Main goals

 	
 Provide quick feedback during development time, aid refactoring, prevent regressions, and document the code’s APIs by providing usage examples

 	
 Guarantee adequate usage of third-party libraries, and check whether the unit under test performs the necessary side effects, such as logging or interacting with separate services

 	
 Guarantee the application works for its end users

 Using this new taxonomy, let’s think about how we’d classify specific examples of tests and where they’d fit in our revised test pyramid.

 If your end product is a RESTful API, tests that send requests to it are one kind of end-to-end test. If you build a web application that talks to this API, then tests that open a web browser and interact with it from a user’s perspective are also end-to-end tests, but they should be placed even higher in the pyramid.

 Tests for your React components fit somewhere between the integration and unit layers. You may be testing UI, but you are orienting your development process by interacting with individual parts of your application in integration with React’s API.

 NOTE Remember not to be too concerned about fitting tests into one category or another. The pyramid exists as a mental framework for you to think about the different types of guarantees you want to create around your software. Because every piece software is different, some pyramids may have a narrower base or a wider top than others, but, as a general rule, you should strive to keep the pyramid’s shape.

2.2 Unit tests

 In the same way that you can’t bake tasty desserts without fresh ingredients, you can’t write great software without well-written functions. Unit tests help you ensure that the smallest units of your software, your functions, behave as you expect them to. In this section, you’ll write your first automated test: a unit test.

 To visualize precisely what these tests cover, assume that the bakery’s online store, whose components are shown in figure 2.3, consists of a React client and a Node.js backend that talks to a database and an email service.

 [image:]

 Figure 2.3 The bakery’s website infrastructure

 The tests you will write cover a small portion of this application. They will deal only with individual functions within your server.

 Unit tests are at the bottom of the pyramid, so their scope, shown in figure 2.4, is small. As we move up, you will see that the surface covered by tests will increase.

 [image:]

 Figure 2.4 Unit tests’ scope

 Start by writing the function shown in listing 2.1 that will be the target of your test. Create a file called Cart.js, and write a class Cart that has an addToCart function.

 Unit under test Most of the literature related to testing refers to the target of your tests as the unit under test.

 NOTE All of the code in this book is also available on GitHub at https://github.com/lucasfcosta/testing-javascript-applications.

 Listing 2.1 Cart.js

 class Cart {
 constructor() {
 this.items = [];
 }

 addToCart(item) {
 this.items.push(item);
 }
}

module.exports = Cart;

 Now think about how you’d go about testing the addToCart function. One of the ways would be to integrate it into a real application and use it, but then we’d run into problems involving time, repeatability, and costs, as we mentioned in chapter 1.

 Having to write an entire application before you can test your code requires too much code to be written before knowing whether it works. Additionally, if it doesn’t work, it will be challenging to spot bugs. A quicker way would be to write code that imports your Cart, uses its addToCart function, and validates the result.

 Go on and write a Cart.test.js file that imports your Cart, uses its addToCart function, and checks whether a cart has the items you expected, as shown in listing 2.2.

 Listing 2.2 Cart.test.js

 const Cart = require("./Cart.js");

const cart = new Cart();
cart.addToCart("cheesecake");

const hasOneItem = cart.items.length === 1;
const hasACheesecake = cart.items[0] === "cheesecake";

if (hasOneItem && hasACheesecake) { ❶
 console.log("The addToCart function can add an item to the cart");
} else { ❷
 const actualContent = cart.items.join(", "); ❸

 console.error("The addToCart function didn't do what we expect!");
 console.error(`Here is the actual content of the cart: ${actualContent}`);

 throw new Error("Test failed!");
}

 ❶ If both checks have succeeded, prints a success message to the console

 ❷ If any of the tests failed, prints error messages

 ❸ Creates a comma-separated list of the actual items in the cart to display in the test’s error message

 When you execute this file using node Cart.test.js, it will tell you whether your code can successfully add cheesecake to the cart—instant and precise feedback.

 Congratulations! You have just written your first test.

 A test sets up a scenario, executes the target code, and verifies whether the output matches what you expected. Because tests tend to follow this same formula, you can use tools to abstract away the testing specific concerns of your code. One of these concerns, for example, is comparing whether the actual output matches the expected output.

 Node.js itself ships with a built-in module, called assert, to do those checks, which, in the context of tests, we call assertions. It contains functions to compare objects and throw errors with meaningful messages if the actual output doesn’t match what you expected.

 NOTE You can find the documentation for Node.js’s built-in assert library at https://nodejs.org/api/assert.html.

 Use assert’s deepStrictEqual function to compare the actual output with the expected output and therefore shorten your test, as shown next.

 Listing 2.3 Cart.test.js

 const assert = require("assert");
const Cart = require("./Cart.js");

const cart = new Cart();
cart.addToCart("cheesecake");

assert.deepStrictEqual(cart.items, ["cheesecake"]); ❶

console.log("The addToCart function can add an item to the cart");

 ❶ Compares the first and second arguments, and throws an insightful error if their values are different

 Using an assertion library enables you to get rid of the convoluted logic to determine whether objects are equal. It also generates meaningful output, so you don’t have to manipulate strings yourself.

 Try adding a new item to the array passed as the second argument to assert .deepStrictEqual so that you can see the kind of output it produces when an assertion fails.

 Now suppose you implement a removeFromCart function, as shown here.

 Listing 2.4 Cart.js

 class Cart {
 constructor() {
 this.items = [];
 }

 addToCart(item) {
 this.items.push(item);
 }

 removeFromCart(item) {
 for (let i = 0; i < this.items.length; i++) {
 const currentItem = this.items[i];
 if (currentItem === item) {
 this.items.splice(i, 1);
 }
 }
 }
}

module.exports = Cart;

 How would you test it? Probably, you’d write something like the following code.

 Listing 2.5 Cart.test.js

 const assert = require("assert");
const Cart = require("./Cart.js");

const cart = new Cart(); ❶
cart.addToCart("cheesecake");) ❶
cart.removeFromCart("cheesecake"); ❷

assert.deepStrictEqual(cart.items, []); ❸

console.log("The removeFromCart function can remove an item from the cart");

 ❶ Adds an item to the cart

 ❷ Removes the recently added item

 ❸ Checks whether the cart’s items property is an empty array

 First, your test sets up a scenario by adding a cheesecake to the cart. Then it calls the function you want to test (in this case, removeFromCart). Finally, it checks whether the content of the cart matches what you expected it to be. Again, the same formula: setup, execution, and verification. This sequence is also known as the three As pattern: arrange, act, assert.

 Now that you have multiple tests, think about how you’d add them to your Cart.test.js. If you paste your new test right after the old one, it won’t run if the first test fails. You will also have to be careful to give variables in both tests different names. But, most importantly, it would become harder to read and interpret the output of each test. To be honest, it would be a bit of a mess.

 Test runners can solve this problem. They enable you to organize and run multiple tests in a comprehensive manner, providing meaningful and easily readable results.

 At the present moment, the most popular testing tool in the JavaScript ecosystem is called Jest. It is the main tool I’ll use throughout this book.

 Jest is a testing framework created at Facebook. It focuses on simplicity and, therefore, ships with everything you need to start writing tests straightaway.

 Let’s install Jest so that we can write unit tests more concisely. Go ahead and install it globally with the command npm install -g jest.

 Without a configuration file, jest.config.js, or a package.json file, Jest will not run, so remember to add a package.json file to the folder that contains your code.

 TIP You can quickly add a default package.json file to a folder by running npm init -y.

 Now, instead of manually running your test file with Node.js, you will use Jest and tell it to load and execute tests.

 NOTE By default, Jest loads all files ending in .test.js, .spec.js, or tests inside folders named tests.

 Prepare your tests for Jest to run by wrapping them into the test function that Jest adds to the global scope. You can use this function to organize multiple tests within a single file and indicate what should run. It takes the test’s name as its first argument and a callback function containing the actual test as the second argument.

 Once you have wrapped the previous tests into Jest’s test function, your Cart.test.js file should look like this.

 Listing 2.6 Cart.test.js

 const assert = require("assert");
const Cart = require("./Cart.js");

test("The addToCart function can add an item to the cart", () => { ❶
 const cart = new Cart(); ❷
 cart.addToCart("cheesecake"); ❸

 assert.deepStrictEqual(cart.items, ["cheesecake"]); ❹
});

test("The removeFromCart function can remove an item from the cart", () => {❺
 const cart = new Cart(); ❻
 cart.addToCart("cheesecake"); ❻
 cart.removeFromCart("cheesecake"); ❼

 assert.deepStrictEqual(cart.items, []); ❽
});

 ❶ Encapsulates the first test into a different namespace, isolating its variables and producing more readable output

 ❷ Arrange: creates an empty cart

 ❸ Act: exercises the addToCart function

 ❹ Assert: checks whether cart contains the newly added item

 ❺ Encapsulates the second test into a different namespace

 ❻ Arrange: creates an empty cart, and adds an item to it

 ❼ Act: exercises the removeFromCart function

 ❽ Assert: checks whether the cart is empty

 Notice how you eliminated the previous if statements used to determine how to generate output by delegating that task to Jest. Whenever a test fails, Jest will provide you with a precise diff so that you can see how the actual output was different from what you expected. To see how much better Jest’s feedback is, try changing one of the assertions so that it fails.

 Finally, to avoid using anything but Jest for your tests, replace the assert library with Jest’s own alternative: expect. The expect module is just like Node.js’s assert module, but it’s tailored for Jest and helps it provide feedback that’s even more helpful.

 Like the test function, expect is available in the global scope when running tests within Jest. The expect function takes as an argument the actual subject of the assertion and returns an object that provides different matcher functions. These functions verify whether the actual value matches your expectations.

 Jest’s equivalent to deepStrictEqual is toEqual. Replacing your first test’s deepStrictEqual with toEqual should lead you to code that looks similar to the following listing.

 Listing 2.7 Cart.test.js

 test("The addToCart function can add an item to the cart", () => {
 const cart = new Cart();
 cart.addToCart("cheesecake");

 expect(cart.items).toEqual(["cheesecake"]); ❶
});

 ❶ Compares the value of the assertion’s target—the argument provided to expect—to the value of the argument passed to toEqual

 Try eliminating the necessity to import Node.js’s assert library by replacing deepStrictEqual in the second test, too.

 Important There’s a difference between “strict” equality checks and “deep” equality checks. Deep equality verifies whether two different objects have equal values. Strict equality verifies whether two references point to the same object. In Jest, you perform deep equality checks using toEqual, and strict equality checks using toBe. Read Jest’s documentation for the toEqual matcher to learn more about how it works. It’s available at https://jestjs.io/docs/en/expect#toequalvalue.

 Up to now, you have been using a global installation of Jest to run your tests, which is not a good idea. If you are using an assertion that is available only in the latest version of Jest and one of your coworkers’ global installation is older than yours, tests may fail if the assertion’s behavior changed from one version to another.

 You want tests to fail only when there’s something wrong with your application, not when people are running different versions of a test framework.

 Solve this problem by running npm install jest --save-dev to install Jest as a devDependency. It should be a devDependency because it doesn’t need to be available when you ship your application. It needs to be available in developers’ machines only so that they can execute tests after they download the project and run npm install.

 Once you run that command, you will see that your package.json file now lists a specific version of Jest within its devDependencies.

 NOTE Did you notice that the version of Jest within your package.json has ^ in front of it? That ^ indicates that when running npm install, NPM will install the latest major version of Jest. In other words, the leftmost version number will not change.

 In theory, when following semantic versioning practices, any nonmajor upgrades should be backward-compatible, but, in reality, they are not always. To force NPM to install an exact version of Jest when running npm install, remove the ^.

 I highly recommend readers read more about what semantic versioning is and how it works. The website https://semver.org is an excellent resource for that.

 Your project’s dependencies, including Jest, are available within the node_modules folder. You can run the specific version of Jest specified in your package.json by running its built version located in node_modules/.bin/jest. Go ahead and execute that file. You will see that it produces the same output as before.

 It’s still cumbersome to type the full path to your project’s Jest installation every time we want to run tests, though. To avoid that, edit your package.json file, and create a test script that executes the project’s Jest installation whenever you run the npm test command.

 Add a test property under scripts in your package.json, and specify that it should run the jest command, as shown next.

 Listing 2.8 package.json

 {
 "name": "5_global_jest",
 "version": "1.0.0",
 "scripts": {
 "test": "jest" ❶
 },
 "devDependencies": {
 "jest": "^26.6.0"
 }
}

 ❶ Runs the project’s jest executable when running npm test

 After creating this NPM script, whenever someone wants to execute your project’s tests, they can run npm test. They don’t need to know which tool you are using or worry about any other options they may need to pass to it. Whatever the command within the package.jsontest script is, it will run.

 NOTE When you run a command defined in your package.json scripts, it spawns a new shell environment, which has ./node_modules/.bin added to its PATH environment variable. Because of this PATH, you don’t need to prefix commands with ./node_modules/.bin. By default, any installed libraries you have will be preferred.

 As an exercise, I recommend adding more functions that manipulate items in the cart and writing tests for them using other Jest matchers.

 Once you have added more tests, try refactoring the Cart class so that its methods don’t mutate the array referenced by a cart’s items property, and see if the tests still pass.

 When refactoring, you want to ensure that you can shape your code differently while maintaining the same functionality. Therefore, having rigorous unit tests is a fantastic way to obtain quick and precise feedback during the process.

 Unit tests help you iterate confidently, by providing quick feedback as you write code, as we will see in detail when we talk about test-driven development in chapter 9. Because unit tests’ scope is limited to a function, their feedback is narrow and precise. They can immediately tell which function is failing. Strict feedback like this makes it faster to write and fix your code.

 These tests are inexpensive and quick to write, but they cover only a small part of your application, and the guarantees they provide are weaker. Just because functions work in isolation for a few cases doesn’t mean your whole software application works, too. To get the most out of these narrow and inexpensive tests, you should write many of them.

 Considering that unit tests are numerous and inexpensive, and run quickly and frequently, we place these tests at the bottom of the testing pyramid, as figure 2.5 shows. They’re the foundation other tests will build upon.

 [image:]

 Figure 2.5 Unit tests’ placement in the testing pyramid

2.3 Integration tests

 When looking at the application’s infrastructure diagram, you will see that the scope of integration tests, which is shown in figure 2.6, is broader than the scope of unit tests. They check how your functions interact and how your software integrates with third parties.

 [image:]

 Figure 2.6 Integration tests’ scope

 Integration tests help you ensure that the different parts of your software can work together. For example, they help you validate whether your software communicates appropriately with third-party RESTful APIs, or whether it can manipulate items in a database.

 Let’s start by creating one of the most classic examples of an integration test: a test that talks to a database. For the examples in this section, I’ll use the knex and sqlite3 packages. Knex is a query builder that can act on top of sqlite3. Knex will make it easier for you to interface with a sqlite3 database. Because these two packages need to be available when the application runs, you must install them as dependencies instead of dev dependencies. Go ahead and do that by running npm install --save knex sqlite3.

 NOTE By default, NPM will save those packages and automatically add them as dependencies. You can make this explicit by appending the --save option to the install command.

 Put your database’s configuration in a file named knexfile.js in the root of your project. It should have the following content.

 Listing 2.9 knexfile.js

 module.exports = {
 development: {
 client: "sqlite3", ❶
 connection: { filename: "./dev.sqlite" }, ❷
 useNullAsDefault: true ❸
 }
};

 ❶ Uses sqlite3 as the database client

 ❷ Specifies the file in which the database will store its data

 ❸ Uses NULL instead of DEFAULT for undefined keys

 Instead of just using a class Cart, as you’ve done in the previous chapter, this time you’ll create a table containing a cart’s id and its owner’s name. Then, you’ll create a separate table to store the items in each cart.

 NOTE Because this book is about tests and not about databases, I’ve opted for the most straightforward possible database design. To learn more about database systems, I’d highly recommend Fundamentals of Database Systems, written by Ramez Elmasri and Shamkant B. Navathe (Pearson, 2016).

 When using Knex, you define the structure of your tables through migrations. Knex uses a database table to keep track of the migrations that have already run and the new ones. It uses those records to guarantee that your database always has a current schema.

 Create an empty migration using your project’s installation of Knex by running ./node_modules/.bin/knex migrate:make --env development create_carts. This command creates a file whose name starts with the current time and ends with create_carts.js in the migrations directory. Use the code below to create the carts and cart_items tables.

 Listing 2.10 CURRENTTIMESTAMP_create_carts.js

 exports.up = async knex => { ❶
 await knex.schema.createTable("carts", table => { ❷
 table.increments("id");
 table.string("username");
 });

 await knex.schema.createTable("carts_items", table => { ❸
 table.integer("cartId").references("carts.id"); ❹
 table.string("itemName");
 });
};

exports.down = async knex => { ❺
 await knex.schema.dropTable("carts");
 await knex.schema.dropTable("carts_items");
};

 ❶ The exported up function migrates the database to the next state.

 ❷ Creates a table for the application’s carts containing a username column and an id column that autoincrements

 ❸ Creates a carts_items table that will keep track of the items in each cart

 ❹ Creates a cartId column that references a cart’s id in the carts table

 ❺ The exported down function migrates the database to the previous state, deleting the carts and carts_items tables.

 To execute all the migrations in the migrations folder, run ./node_modules/.bin/knex migrate:latest.

 Now you can finally create a module with methods to add items to your SQLite database, as shown next.

 Listing 2.11 dbConnection.js

 const db = require("knex")(require("./knexfile").development); ❶

const closeConnection = () => db.destroy(); ❷

module.exports = {
 db,
 closeConnection
};

 ❶ Sets up a connection pool for the development database

 ❷ Tears down the connection pool

 Listing 2.12 cart.js

 const { db } = require("./dbConnection");

const createCart = username => {
 return db("carts").insert({ username }); ❶
};

const addItem = (cartId, itemName) => {
 return db("carts_items").insert({ cartId, itemName });) ❷
};

module.exports = {
 createCart,
 addItem
};

 ❶ Inserts a row in the carts table

 ❷ Inserts a row in the carts_items table referencing the cartId passed

 Try to import the createCart and addItem function in another file and use them to add items to your local sqlite database. Don’t forget to use closeConnection to disconnect from the database once you’re done; otherwise, your program will never terminate.

 To test the functions in the cart.js module, you can follow a pattern similar to the one we used in chapter 1. First, you set up a scenario. Then you call the function you want to test. And, finally, you check whether it produced the desired results.

 After installing Jest as a devDependency, write a test for createCart. It should ensure that the database is clean, create a cart, and then check if the database contains the cart you’ve just created.

 Listing 2.13 cart.test.js

 const { db, closeConnection } = require("./dbConnection");
const { createCart } = require("./cart");

test("createCart creates a cart for a username", async () => {
 await db("carts").truncate(); ❶
 await createCart("Lucas da Costa");
 const result = await db.select("username").from("carts"); ❷
 expect(result).toEqual([{ username: "Lucas da Costa" }]);
 await closeConnection(); ❸
});

 ❶ Deletes every row in the carts table

 ❷ Selects value in the username column for all the items in the carts table

 ❸ Tears down the connection pool

 This time, you have asynchronous functions that you need to wait for by using await. Having to use await will cause you to make the function passed to Jest’s test an async function.

 Whenever a test returns a promise—as async functions do—it will wait for the promise to resolve before marking the test as finished. If the returned promise is rejected, the test fails automatically.

 An alternative to returning a promise is to use the done callback provided by Jest. When calling done, the test will be finished, as shown here.

 Listing 2.14 cart.test.js

 const { db, closeConnection } = require("./dbConnection");
const { createCart } = require("./cart");

test("createCart creates a cart for a username", done => {
 db("carts")
 .truncate() ❶
 .then(() => createCart("Lucas da Costa"))
 .then(() => db.select("username").from("carts"))
 .then(result => {
 expect(result).toEqual([{ username: "Lucas da Costa" }]);
 })
 .then(closeConnection) ❷
 .then(done); ❸
});

 ❶ Deletes every row in the carts table, and returns a promise on which you’ll explicitly chain other actions

 ❷ Tears down the connection pool

 ❸ Finishes the test

 I think it’s way uglier, but it works, too.

 Warning Be careful when adding the done parameter to your test functions. If you forget to call it, your tests will fail due to a timeout. Calling done with a truthy argument will also cause your test to fail. Even if you return a promise from a test that takes done as an argument, your test will terminate only when done is invoked.

 Add tests for the addItem function now.

 Listing 2.15 cart.test.js

 const { db, closeConnection } = require("./dbConnection");
const { createCart, addItem } = require("./cart");

// ...

test("addItem adds an item to a cart", async () => {
 await db("carts_items").truncate();
 await db("carts").truncate();

 const username = "Lucas da Costa";
 await createCart(username);
 const { id: cartId } = await db
 .select()
 .from("carts")
 .where({ username }); ❶
 await addItem(cartId, "cheesecake");
 const result = await db.select("itemName").from("carts_items");

 expect(result).toEqual([{ cartId, itemName: "cheesecake" }]);
 await closeConnection();
});

 ❶ Selects all the rows in the carts table whose username column matches the username used for the test

 If you execute both tests, you will run into an error. The error says that the second test was “unable to acquire a connection” to the database. It happens because, once the first test finishes, it closes the connection pool by calling closeConnection. To avoid this error, we must ensure that closeConnection is called only after all tests have run.

 Because it’s quite common to perform this sort of cleanup operation once tests run, Jest has hooks called afterEach and afterAll. These hooks are available on the global scope. They take, as arguments, functions to execute either after each test or after all tests.

 Let’s add an afterAll hook to close the connection pool only after all tests have run and remove the invocation of closeConnection from within the test.

 Listing 2.16 cart.test.js

 const { db, closeConnection } = require("./dbConnection");
const { createCart, addItem } = require("./cart");

afterAll(async () => await closeConnection()); ❶

// ...

test("addItem adds an item to the cart", async () => {
 await db("carts_items").truncate();
 await db("carts").truncate();

 const [cartId] = await createCart("Lucas da Costa");
 await addItem(cartId, "cheesecake");

 const result = await db.select().from("carts_items");
 expect(result).toEqual([{ cartId, itemName: "cheesecake" }]);
});

 ❶ Tears down the connection pool once all tests have finished, returning a promise so that Jest knows when the hook is done

 Jest also provides beforeAll and beforeEach hooks, shown in listing 2.17. Because both of your tests need to clean the database before they run, you can encapsulate that behavior into a beforeEach hook. If you do this, there’s no need to repeat those truncate statements on every test.

 Listing 2.17 cart.test.js

 const { db, closeConnection } = require("./dbConnection");
const { createCart, addItem } = require("./cart");

beforeEach(async () => { ❶
 await db("carts").truncate();
 await db("carts_items").truncate();
});
afterAll(async () => await closeConnection());

test("createCart creates a cart for a username", async () => {
 await createCart("Lucas da Costa");
 const result = await db.select("username").from("carts");
 expect(result).toEqual([{ username: "Lucas da Costa" }]);
});

test("addItem adds an item to the cart", async () => {
 const username = "Lucas da Costa";
 await createCart(username);
 const { id: cartId } = await db
 .select()
 .from("carts")
 .where({ username });
 await addItem(cartId, "cheesecake");
 const result = await db.select("itemName").from("carts_items");
 expect(result).toEqual([{ cartId, itemName: "cheesecake" }]);
});

 ❶ Clears the carts and carts_items tables before each test

 These tests help ensure that your code works and that the APIs you’re using behave as you expect. If you had any incorrect queries, but they were still valid SQL queries, these tests would catch it.

 Like the term “unit testing,” “integration testing” means different things to different people. As I’ve mentioned before, I recommend you not get too hung up on labels. Instead, think of how big the scope of your test is. The larger its scope, the higher it fits in the pyramid. Whether you call it an “integration” test or an “end-to-end” test doesn’t matter that much. The important thing is to remember that the bigger the test’s scope, the stronger the quality guarantee it provides, but the longer it takes to run and the less of it you need.

 Considering the characteristics of unit tests, they’d go in the middle of the pyramid, as shown in figure 2.7.

 [image:]

 Figure 2.7 Integration tests’ placement in the testing pyramid

 You should write integration tests whenever it’s fundamental to ensure that multiple parts of your program can work together or that they integrate correctly with third-party software.

 If you are using a library like React, for example, your software must integrate appropriately with it. The way React behaves is essential to how your application does, so you must test your code in integration with React. The same is valid for interacting with a database or with a computer’s filesystem. You rely on how those external pieces of software work, and, therefore, it’s wise to check if you’re using them correctly.

 This kind of test provides substantial value because it helps you verify whether your code does what you expect and whether the libraries you use do, too. Nonetheless, it’s important to highlight that the goal of an integration test is not to test any third-party pieces of software themselves. The purpose of an integration test is to check whether you are interacting with them correctly.

 If you are using a library to make HTTP requests, for example, you should not write tests for that library’s get or post methods. You should write tests to see if your software uses those methods correctly. Testing the request library is their author’s responsibility, not yours. And, if their authors didn’t write tests, it’s probably better to reconsider its adoption.

 Isolating your code in unit tests can be great for writing quick and simple tests, but unit tests can’t guarantee that you are using other pieces of software as you’re supposed to.

 We will talk more about the trade-offs between more isolated versus more integrated tests in chapter 3.

2.4 End-to-end tests

 End-to-end tests are the most coarse tests. These tests validate your application by interacting with it as your users would.

 They don’t use your software’s code directly as unit tests do. Instead, end-to-end tests interface with it from an external perspective. If it’s possible to use a button or access a page instead of calling a function or checking the database, they’ll do it. By taking this highly decoupled approach, they end up covering a large surface of the application, as shown in figure 2.8. They rely on the client side working as well as all the pieces of software in the backend.

 [image:]

 Figure 2.8 End-to-end tests’ scope

 An end-to-end test to validate whether it’s possible to add an item to the cart wouldn’t directly call the addToCart function. Instead, it would open your web application, click the buttons with “Add to Cart” written on them, and then check the cart’s content by accessing the page that lists its items. A test like this goes at the very top of the testing pyramid.

 Even the REST API for this application can have its own end-to-end tests. An end-to-end test for your store’s backend would send an HTTP request to add items to the cart and then another to get its contents. This test, however, fits below the previous one in the testing pyramid because it covers only the API. Testing an application using its GUI has a broader scope because it comprises both the GUI and the API to which it sends requests.

 Again, I’d like to reinforce that labeling tests as end-to-end, integration, or unit tests is not our primary goal. The testing pyramid serves to orient us on the role, value, and frequency of tests. What the placement of end-to-end tests in the pyramid (figure 2.9) tells us about this type of tests is that they’re very valuable and that you need a smaller quantity of them. Just a few can already cover large parts of your application. In contrast, unit tests focus on a single function and, therefore, need to be more frequent.

 [image:]

 Figure 2.9 End-to-end tests’ placement in the testing pyramid

 End-to-end tests avoid using any private parts of your application, so they resemble your users’ behavior very closely. The more your tests resemble a user interacting with your application, the more confidence they give you. Because end-to-end automated tests most closely simulate real use-case scenarios, they provide the most value.

OEBPS/OEBPS/Images/CH02_F09_DaCosta.png

OEBPS/OEBPS/Images/CH01_F11_DaCosta.png

OEBPS/OEBPS/Images/CH01_F12_DaCosta.png

OEBPS/OEBPS/Images/CH01_F01_DaCosta.png

OEBPS/OEBPS/Images/CH02_F07_DaCosta.png

OEBPS/OEBPS/Images/CH01_F02_DaCosta.png

OEBPS/OEBPS/Images/CH01_F04_DaCosta.png

OEBPS/OEBPS/Images/CH02_F08_DaCosta.png

OEBPS/OEBPS/Images/CH01_F03_DaCosta.png

OEBPS/OEBPS/Images/cover.jpeg

OEBPS/OEBPS/Images/CH01_F06_DaCosta.png

OEBPS/OEBPS/Images/CH01_F08_DaCosta.png

OEBPS/OEBPS/Images/CH01_F05_DaCosta.png

OEBPS/OEBPS/Images/CH01_F09_DaCosta.png

OEBPS/OEBPS/Images/CH01_F07_DaCosta.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH02_F02_DaCosta.png

OEBPS/OEBPS/Images/IFC_F01_DaCosta.png

OEBPS/OEBPS/Images/CH02_F01_DaCosta.png

OEBPS/OEBPS/Images/CH02_F03_DaCosta.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F06_DaCosta.png

OEBPS/OEBPS/Images/CH02_F05_DaCosta.png

OEBPS/OEBPS/Images/CH02_F04_DaCosta.png

OEBPS/OEBPS/Images/CH01_F10_DaCosta.png

