

 [image: cover]

IronPython in Action

 Michael Foord & Christian Muirhead

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Development Editor: Jeff Bleil
Copyeditors: Andrea Kaucher, Linda Recktenwald
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Dedication

 This book is dedicated to the littlest gangster and the mushroom, who endured much throughout its creation.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Getting started with IronPython

 Chapter 1. A new language for .NET

 Chapter 2. Introduction to Python

 Chapter 3. .NET objects and IronPython

 2. Core development techniques

 Chapter 4. Writing an application and design patterns with IronPython

 Chapter 5. First-class functions in action with XML

 Chapter 6. Properties, dialogs, and Visual Studio

 Chapter 7. Agile testing: where dynamic typing shines

 Chapter 8. Metaprogramming, protocols, and more

 3. IronPython and advanced .NET

 Chapter 9. WPF and IronPython

 Chapter 10. Windows system administration with IronPython

 Chapter 11. IronPython and ASP.NET

 Chapter 12. Databases and web services

 Chapter 13. Silverlight: IronPython in the browser

 4. Reaching out with IronPython

 Chapter 14. Extending IronPython with C#/VB.NET

 Chapter 15. Embedding the IronPython engine

 Appendix A. A whirlwind tour of C#

 Appendix B. Python magic methods

 Appendix C. For more information

 Index

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Getting started with IronPython

 Chapter 1. A new language for .NET

 1.1. An introduction to IronPython

 1.1.1. What is IronPython?

 1.1.2. A brief history of IronPython

 1.1.3. IronPython for Python programmers

 1.1.4. IronPython for .NET programmers

 1.2. Python on the CLR

 1.2.1. Dynamic languages on .NET and the DLR

 1.2.2. Silverlight: a new CLR

 1.2.3. The Python programming language

 1.2.4. Multiple programming paradigms

 1.3. Live objects on the console: the interactive interpreter

 1.3.1. Using the interactive interpreter

 1.3.2. The .NET framework: assemblies, namespaces, and references

 1.3.3. Live objects and the interactive interpreter

 1.3.4. Object introspection with dir and help

 1.4. Summary

 Chapter 2. Introduction to Python

 2.1. An overview of Python

 2.1.1. Python datatypes

 2.1.2. Names, objects, and references

 2.1.3. Mutable and immutable objects

 2.2. Python: basic constructs

 2.2.1. Statements and expressions

 2.2.2. Conditionals and loops

 2.2.3. Functions

 2.2.4. Built-in functions

 2.2.5. Classes

 2.3. Additional Python features

 2.3.1. Exception handling

 2.3.2. Closures and scoping rules

 2.3.3. List comprehensions

 2.3.4. Modules, packages, and importing

 2.3.5. Docstrings

 2.3.6. The Python standard library

 2.4. Summary

 Chapter 3. .NET objects and IronPython

 3.1. Introducing .NET

 3.1.1. Translating MSDN documentation into IronPython

 3.1.2. The Form class

 3.2. Structures, enumerations, and collections: .NET types

 3.2.1. Methods and properties inherited from Control

 3.2.2. Adding a Label to the Form: ControlCollection

 3.2.3. Configuring the Label: the Color structure

 3.2.4. The FormBorderStyle enumeration

 3.2.5. Hello World with Form and Label

 3.3. Handling events

 3.3.1. Delegates and the MouseMove event

 3.3.2. Event handlers in IronPython

 3.4. Subclassing .NET types

 3.5. Summary

 2. Core development techniques

 Chapter 4. Writing an application and design patterns with IronPython

 4.1. Data modeling and duck typing

 4.1.1. Python and protocols

 4.1.2. Duck typing in action

 4.2. Model-View-Controller in IronPython

 4.2.1. Introducing the running example

 4.2.2. The view layer: creating a user interface

 4.2.3. A data model

 4.2.4. A controller class

 4.3. The command pattern

 4.3.1. The SaveFileDialog

 4.3.2. Writing files: the .NET and Python ways

 4.3.3. Handling exceptions and the system message box

 4.3.4. The SaveCommand

 4.3.5. The SaveAsCommand

 4.4. Integrating commands with our running example

 4.4.1. Menu classes and lambda

 4.4.2. .NET classes: ToolBar and images

 4.4.3. Bringing the GUI to life

 4.5. Summary

 Chapter 5. First-class functions in action with XML

 5.1. First-class functions

 5.1.1. Higher order functions

 5.1.2. Python decorators

 5.1.3. A null-argument-checking decorator

 5.2. Representing documents with XML

 5.2.1. The .NET XmlWriter

 5.2.2. A DocumentWriter Class

 5.2.3. An alternative with an inner function

 5.3. Reading XML

 5.3.1. XMLReader

 5.3.2. An IronPython XmlDocumentReader

 5.4. Handler functions for MultiDoc XML

 5.5. The Open command

 5.6. Summary

 Chapter 6. Properties, dialogs, and Visual Studio

 6.1. Document observers

 6.1.1. Python properties

 6.1.2. Adding the OpenCommand

 6.2. More with TabPages: dialogs and Visual Studio

 6.2.1. Remove pages: OK and Cancel dialog box

 6.2.2. Rename pages: a modal dialog

 6.2.3. Visual Studio Express and IronPython

 6.2.4. Adding pages: code reuse in action

 6.2.5. Wiring the commands to the view

 6.3. Object serializing with BinaryFormatter

 6.4. Summary

 Chapter 7. Agile testing: where dynamic typing shines

 7.1. The unittest module

 7.1.1. Creating a TestCase

 7.1.2. setUp and tearDown

 7.1.3. Test suites with multiple modules

 7.2. Testing with mocks

 7.2.1. Mock objects

 7.2.2. Modifying live objects: the art of the monkey patch

 7.2.3. Mocks and dependency injection

 7.3. Functional testing

 7.3.1. Interacting with the GUI thread

 7.3.2. An AsyncExecutor for asynchronous interactions

 7.3.3. The functional test: making MultiDoc dance

 7.4. Summary

 Chapter 8. Metaprogramming, protocols, and more

 8.1. Protocols instead of interfaces

 8.1.1. A myriad of magic methods

 8.1.2. Operator overloading

 8.1.3. Iteration

 8.1.4. Generators

 8.1.5. Equality and inequality

 8.2. Dynamic attribute access

 8.2.1. Attribute access with built-in functions

 8.2.2. Attribute access through magic methods

 8.2.3. Proxying attribute access

 8.3. Metaprogramming

 8.3.1. Introduction to metaclasses

 8.3.2. Uses of metaclasses

 8.3.3. A profiling metaclass

 8.4. IronPython and the CLR

 8.4.1. .NET arrays

 8.4.2. Overloaded methods

 8.4.3. out, ref, params, and pointer parameters

 8.4.4. Value types

 8.4.5. Interfaces

 8.4.6. Attributes

 8.4.7. Static compilation of IronPython code

 8.5. Summary

 3. IronPython and advanced .NET

 Chapter 9. WPF and IronPython

 9.1. Hello World with WPF and IronPython

 9.1.1. WPF from code

 9.1.2. Hello World from XAML

 9.2. WPF in action

 9.2.1. Layout with the Grid

 9.2.2. The WPF ComboBox and CheckBox

 9.2.3. The Image control

 9.2.4. The Expander

 9.2.5. The ScrollViewer

 9.2.6. The TextBlock: a lightweight document control

 9.2.7. The XamlWriter

 9.3. XPS documents and flow content

 9.3.1. FlowDocument viewer classes

 9.3.2. Flow document markup

 9.3.3. Document XAML and object tree processing

 9.4. Summary

 Chapter 10. Windows system administration with IronPython

 10.1. System administration with Python

 10.1.1. Simple scripts

 10.1.2. Shell scripting with IronPython

 10.2. WMI and the System.Management assembly

 10.2.1. System.Management

 10.2.2. Connecting to remote computers

 10.3. PowerShell and IronPython

 10.3.1. Using PowerShell from IronPython

 10.3.2. Using IronPython from PowerShell

 10.4. Summary

 Chapter 11. IronPython and ASP.NET

 11.1. Introducing ASP.NET

 11.1.1. Web controls

 11.1.2. Pages and user controls

 11.1.3. Rendering, server code, and the page lifecycle

 11.2. Adding IronPython to ASP.NET

 11.2.1. Writing a first application

 11.2.2. Handling an event

 11.3. ASP.NET infrastructure

 11.3.1. The App_Script folder

 11.3.2. The Global.py file

 11.3.3. The Web.config file

 11.4. A web-based MultiDoc Viewer

 11.4.1. Page structure

 11.4.2. Code-behind

 11.5. Editing MultiDocs

 11.5.1. Swapping controls

 11.5.2. Handling view state

 11.5.3. Additional events

 11.6. Converting the Editor into a user control

 11.6.1. View state again

 11.6.2. Adding parameters

 11.7. Summary

 Chapter 12. Databases and web services

 12.1. Relational databases and ADO.NET

 12.1.1. Trying it out using PostgreSQL

 12.1.2. Connecting to the database

 12.1.3. Executing commands

 12.1.4. Setting parameters

 12.1.5. Querying the database

 12.1.6. Reading multirow results

 12.1.7. Using transactions

 12.1.8. DataAdapters and DataSets

 12.2. Web services

 12.2.1. Using a simple web service

 12.2.2. Using SOAP services from IronPython

 12.2.3. REST services in IronPython

 12.3. Summary

 Chapter 13. Silverlight: IronPython in the browser

 13.1. Introduction to Silverlight

 13.1.1. Dynamic Silverlight

 13.1.2. Your Python application

 13.1.3. Silverlight controls

 13.1.4. Packaging a Silverlight application

 13.2. A Silverlight Twitter client

 13.2.1. Cross-domain policies

 13.2.2. Debugging Silverlight applications

 13.2.3. The user interface

 13.2.4. Accessing network resources

 13.2.5. Threads and dispatching onto the UI thread

 13.2.6. IsolatedStorage in the browser

 13.3. Videos and the browser DOM

 13.3.1. The MediaElement video player

 13.3.2. Accessing the browser DOM

 13.4. Summary

 4. Reaching out with IronPython

 Chapter 14. Extending IronPython with C#/VB.NET

 14.1. Writing a class library for IronPython

 14.1.1. Working with Visual Studio or MonoDevelop

 14.1.2. Python objects from class libraries

 14.1.3. Calling unmanaged code with the P/Invoke attribute

 14.1.4. Methods with attributes through subclassing

 14.2. Creating dynamic (and Pythonic) objects from C#/VB.NET

 14.2.1. Providing dynamic attribute access

 14.2.2. Python magic methods

 14.2.3. APIs with keyword and multiple arguments

 14.3. Compiling and using assemblies at runtime

 14.4. Summary

 Chapter 15. Embedding the IronPython engine

 15.1. Creating a custom executable

 15.1.1. The IronPython engine

 15.1.2. Executing a Python file

 15.2. IronPython as a scripting engine

 15.2.1. Setting and fetching variables from a scope

 15.2.2. Providing modules and assemblies for the engine

 15.2.3. Python code as an embedded resource

 15.3. Python plugins for .NET applications

 15.3.1. A plugin class and registry

 15.3.2. Autodiscovery of user plugins

 15.3.3. Diverting standard output

 15.3.4. Calling the user plugins

 15.4. Using DLR objects from other .NET languages

 15.4.1. Expressions, functions, and Python types

 15.4.2. Dynamic operations with ObjectOperations

 15.4.3. The built-in Python functions and modules

 15.4.4. The future of interacting with dynamic objects

 15.5. Summary

 Appendix A. A whirlwind tour of C#

 A.1. Namespaces

 A.2. Using directive

 A.3. Classes

 A.4. Attributes

 A.5. Interfaces

 A.6. Enums

 A.7. Structs

 A.8. Methods

 A.8.1. Virtual and override methods

 A.8.2. Other method modifiers

 A.8.3. Parameter passing

 A.8.4. Method overloading

 A.9. Delegates

 A.10. Events

 A.11. Operator overloading

 A.12. Properties and indexers

 A.13. Loops

 A.13.1. while loop

 A.13.2. do loop

 A.13.3. for loop

 A.13.4. foreach loop

 A.14. Casts

 A.15. if

 A.16. switch

 A.17. try/catch/finally and throw

 A.18. lock

 A.19. new

 A.20. null

 A.21. using statement

 A.22. Operators

 A.23. Generics

 Appendix B. Python magic methods

 B.1. Object creation

 B.2. Comparison

 B.3. Miscellaneous

 B.4. Containers and iteration

 B.4.1. Mapping and sequence protocol methods

 B.4.2. Generator expressions and conditional expressions

 B.5. Conversion to string

 B.6. Attribute access

 B.7. Numeric types

 B.7.1. Arithmetic operations

 B.7.2. Conversion between numeric types

 B.8. Context managers and the with statement

 B.9. The descriptor protocol

 B.10. Magic attributes

 B.11. Functions and modules

 Appendix C. For more information

 C.1. IronPython and Python language sites

 C.2. Mailing lists and newsgroups

 C.3. Python and IronPython code examples

 C.4. Learning Python

 C.5. Blogs

 C.6. IronPython team

 C.7. Silverlight

 C.8. .NET and Mono

 C.9. Dynamic languages on .NET

 C.10. IDEs and tools

 Index

List of Figures

 Chapter 1. A new language for .NET

 Figure 1.1. Resolver One: A full application written in IronPython

 Figure 1.2. A slide from a presentation, emphasizing a guiding philosophy of Python

 Figure 1.3. How Python code and the IronPython engine fit into the .NET world

 Figure 1.4. Generated IronPython code in Visual Studio

 Figure 1.5. Using the Windows Forms designer with IronPython Studio running in Visual Studio 2008

 Figure 1.6. The Silverlight DLRConsole sample with a Python and Ruby Console

 Figure 1.7. The Zen of Python, as enshrined in the Python standard library

 Figure 1.8. The IronPython interactive interpreter

 Figure 1.9. A Hello World form, shown before the event loop is started

 Figure 1.10. Active Hello World form with a button

 Chapter 2. Introduction to Python

 Figure 2.1. Wing IDE, with its built-in project browser and interactive interpreter, is a great IDE for Python.

 Figure 2.2. This Python object pyramid shows some of the Python types. The layers are arranged in approximate order of complexity
 (from top to bottom).

 Figure 2.3. Names bound to objects by assignment statements

 Figure 2.4. Function definition, body, and return

 Figure 2.5. A class declaration

 Figure 2.6. The structure of a Python package on the filesystem

 Chapter 3. .NET objects and IronPython

 Figure 3.1. An outline of the structure of the .NET framework

 Figure 3.2. Example applications showing off a few Windows Forms controls

 Figure 3.3. The C# / VB.NET examples for the Form.Text property

 Figure 3.4. A Form with the title (Text property) set

 Figure 3.5. Visual Studio in designer mode, with an IronPython project. IronPython code is on the left, and control properties
 are on the right.

 Figure 3.6. The result of showing a Form with configured Label

 Figure 3.7. Hello World form with a label responding to MouseMove events

 Chapter 4. Writing an application and design patterns with IronPython

 Figure 4.1. The basic structure of Model-View-Controller. The Controller mediates between the View and the Data Model, which
 remain separated.

 Figure 4.2. The first cut of the MultiDoc editor: a single tab page with a multiline text box

 Figure 4.3. MultiDoc running under Mono on the Apple Mac

 Figure 4.4. A SaveFileDialog configured from the interactive interpreter and displayed with ShowDialog

 Figure 4.5. A system message box created from an interactive interpreter session

 Figure 4.6. A flow chart for the actions of the Save command

 Figure 4.7. Menus created with MenuStrip and ToolStripMenuItem

 Figure 4.8. The syntax for the lambda function

 Figure 4.9. The Resolver One application toolbar

 Figure 4.10. The MultiDoc Editor with Save and Save As commands, using a menu and a toolbar

 Chapter 5. First-class functions in action with XML

 Figure 5.1. An XML element in all its glory

 Figure 5.2. The mapping of an XML document to node handler calls

 Figure 5.3. Turning a MultiDoc XML document into model class instances

 Figure 5.4. The OpenFileDialog in action

 Chapter 6. Properties, dialogs, and Visual Studio

 Figure 6.1. MultiDoc Editor with the OpenCommand in place

 Figure 6.2. The Delete Page message box with OK and Cancel buttons

 Figure 6.3. A form with a fixed size and border style set to FormBorderStyle.FixedDialog

 Figure 6.4. The RenameTabDialog called from ShowDialog

 Figure 6.5. Creating a RenameTabDialog class library in Visual Studio Express

 Figure 6.6. Adding a form to the new class library

 Figure 6.7. Designing the RenameTabDialog with the Visual Studio forms designer

 Figure 6.8. The completed MultiDoc with all the new commands added to the user interface

 Chapter 7. Agile testing: where dynamic typing shines

 Figure 7.1. The anatomy of an assert method on TestCase

 Figure 7.2. The unit tests for Value, run without the Value class in place

 Figure 7.3. The unit tests for Value, run with the Value class in place

 Figure 7.4. Collecting TestCases together in a TestSuite and running them with the TextTestRunner

 Figure 7.5. Running tests with verbosity level set to 2

 Figure 7.6. How a method call becomes an attribute lookup followed by a call

 Figure 7.7. MultiDoc dancing under the invisible hand of Harold, our mythical user

 Chapter 8. Metaprogramming, protocols, and more

 Figure 8.1. Creating an integer array in C#

 Chapter 9. WPF and IronPython

 Figure 9.1. Timeline for the .NET framework

 Figure 9.2. Woodgrove Finance—a WPF application

 Figure 9.3. The WPF designer in IronPython Studio

 Figure 9.4. Hello World with WPF and IronPython

 Figure 9.5. A selection of WPF controls in a grid

 Figure 9.6. CheckBox and ComboBox

 Figure 9.7. Expander controls with contained buttons

 Figure 9.8. The ScrollViewer control

 Figure 9.9. The Mix Reader, a desktop WPF application with powerful document-reading capabilities

 Figure 9.10. The three flow document viewer classes displaying a flow content document

 Chapter 10. Windows system administration with IronPython

 Figure 10.1. The help message generated for search.py by argparse

 Figure 10.2. Configuring remote access from Component Services

 Figure 10.3. Configuring WMI access through Computer Management

 Figure 10.4. The PowerShell interactive environment

 Figure 10.5. The formatted output from a PowerShell pipeline

 Figure 10.6. Listening to the Windows event logs

 Chapter 11. IronPython and ASP.NET

 Figure 11.1. The ASP.NET page lifecycle

 Figure 11.2. Changes to the compilation model in ASP.NET for IronPython

 Figure 11.3. The skeleton web application structure in Visual Web Developer

 Figure 11.4. Sketch of the page layout for the MultiDoc Viewer

 Figure 11.5. The completed MultiDoc Viewer

 Figure 11.6. Editing a MultiDoc page in a browser

 Chapter 12. Databases and web services

 Figure 12.1. Application code can talk to databases using data providers directly or via DataSets.

 Figure 12.2. The structure of a DataSet

 Figure 12.3. The example database stores information on movies, people, and roles and how they’re related.

 Chapter 13. Silverlight: IronPython in the browser

 Figure 13.1. Tetrislite from the Silverlight Gallery

 Figure 13.2. The image displayed to the user if Silverlight is not installed

 Figure 13.3. Some of the standard Silverlight controls

 Figure 13.4. A TextBox with Button and TextBlock

 Figure 13.5. A user interface loaded from XAML

 Figure 13.6. An IronPython Silverlight Twitter client

 Figure 13.7. The HTML textarea containing the output of print statements from the Twitter client

 Figure 13.8. The Silverlight Twitter client login panel

 Figure 13.9. Requesting to increase the storage for a Silverlight application

 Figure 13.10. The MediaElement class in action

 Figure 13.11. A VideoBrush showing through the text on a TextBlock

 Chapter 14. Extending IronPython with C#/VB.NET

 Figure 14.1. The VB.NET version of Visual Studio Express

 Figure 14.2. MonoDevelop on Mac OS X, editing a C# console project

 Figure 14.3. PythonClass in use from IronPython with a Python callback function

 Figure 14.4. Printing the top window title once a second

 Figure 14.5. Creating a Silverlight class library project with VS 2008 Pro

 Chapter 15. Embedding the IronPython engine

 Figure 15.1. The major DLR hosting API components used to execute a Python file

 Figure 15.2. An executable application (.exe) that launches a Python program

 Figure 15.3. Core hosting classes

 Figure 15.4. Creating embedded resources in Visual Studio

 Figure 15.5. The IronPython Plugins example application

 Figure 15.6. Custom error message for syntax errors in plugin code

 Figure 15.7. The Python List type viewed from the Visual Studio 2008 Object Browser

List of Tables

 Chapter 1. A new language for .NET

 Table 1.1. Common .NET assemblies and namespaces

 Table 1.2. Hello World compared in C# and IronPython

 Table 1.3. Languages that run on the DLR

 Chapter 2. Introduction to Python

 Table 2.1. The built-in datatypes and their syntaxes

 Table 2.2. Some commonly used built-in functions

 Table 2.3. Useful standard library modules

 Chapter 4. Writing an application and design patterns with IronPython

 Table 4.1. The Python sequence and mapping protocol magic methods

 Table 4.2. Python exceptions mapping to .NET exceptions

 Chapter 5. First-class functions in action with XML

 Table 5.1. XML escaped characters and their corresponding entity references

 Table 5.2. The .NET XML namespaces

 Table 5.3. The properties of XmlWriterSettings and the default values

 Table 5.4. The properties of XmlReaderSettings and the default values

 Chapter 6. Properties, dialogs, and Visual Studio

 Table 6.1. Members of the MessageBoxButtons enumeration for specifying the buttons on the system message

 Table 6.2. Members of the DialogResult enumeration for interpreting the return value of a dialog or message box

 Table 6.3. Members of the MessageBoxIcon enumeration for specifying the icon in a message box

 Chapter 7. Agile testing: where dynamic typing shines

 Table 7.1. The assert methods available on TestCase subclasses. Where relevant, the failure message is always optional.

 Chapter 8. Metaprogramming, protocols, and more

 Table 8.1. The methods used to emulate numeric types

 Table 8.2. The methods used for rich comparison

 Table 8.3. .NET value and reference types

 Chapter 9. WPF and IronPython

 Table 9.1. The major new APIs of .NET 3.0

 Table 9.2. Important WPF namespaces

 Table 9.3. XML character entities

 Chapter 10. Windows system administration with IronPython

 Table 10.1. Standard library modules useful for shell scripting

 Chapter 12. Databases and web services

 Table 12.1. The core classes in a data provider

 Table 12.2. The operations provided by the notes service

 Chapter 13. Silverlight: IronPython in the browser

 Table 13.1. Silverlight controls

 Chapter 15. Embedding the IronPython engine

 Table 15.1. Methods on the Python class

 Table 15.2. ScriptScope methods for working with names and variables

 Table 15.3. Methods on ObjectOperations for working with dynamic objects

 Appendix A. A whirlwind tour of C#

 Table A.1. Differences between C# and Python operators

 Appendix B. Python magic methods

 Table B.1. Object creation

 Table B.2. Comparison methods

 Table B.3. Miscellaneous methods

 Table B.4. Mapping and sequence protocol methods

 Table B.5. String conversion methods

 Table B.6. Attribute access methods

 Table B.7. Binary arithmetic operations

 Table B.8. Unary arithmetic operations

 Table B.9. Type conversion

 Table B.10. The context management protocol

 Table B.11. Descriptor protocol methods

 Table B.12. Python magic attributes

 Table B.13. Magic functions and modules

List of Listings

 Chapter 3. .NET objects and IronPython

 Listing 3.1. Showing a Form with a Label

 Listing 3.2. Wiring up the MouseMove event on a Label control

 Listing 3.3. A form configured in the constructor of a Form subclass

 Chapter 4. Writing an application and design patterns with IronPython

 Listing 4.1. A custom mapping type

 Listing 4.2. TabControl with single TabPage and multiline TextBox

 Listing 4.3. Data model with Document and Page classes

 Listing 4.4. TabController with changed MainForm class

 Listing 4.5. Configuring and displaying SaveFileDialog

 Listing 4.6. SaveCommand, which handles necessary user actions and writes file to disk

 Listing 4.7. SaveAsCommand, which needs to override dialog title and execute method

 Listing 4.8. Full import code for expanded MainForm

 Listing 4.9. New MainForm constructor and initializeCommands

 Listing 4.10. Methods to create main toolbar and Save button

 Listing 4.11. Methods to create menu strip and submenus

 Chapter 5. First-class functions in action with XML

 Listing 5.1. A DocumentWriter class that writes out MultiDoc documents as XML

 Listing 5.2. Implementation of DocumentWriter.write using an inner function

 Listing 5.3. Importing code and constructor for XmlDocumentReader

 Listing 5.4. XmlDocumentReader read method

 Listing 5.5. Node handler for start element tags

 Listing 5.6. Node handler for element text values

 Listing 5.7. Node handler for end element tags

 Listing 5.8. Initializing the DocumentReader

 Listing 5.9. Setting up the handlers and calling XmlDocumentReader

 Listing 5.10. Handlers for the document element

 Listing 5.11. Handlers for the page element

 Listing 5.12. Initializing the OpenCommand

 Listing 5.13. execute method of OpenCommand

 Listing 5.14. The getDocument method of OpenCommand

 Chapter 6. Properties, dialogs, and Visual Studio

 Listing 6.1. An example of a property with methods for fetching, setting, and deleting it

 Listing 6.2. Creating a document property on MainForm

 Listing 6.3. Changing TabController to have document property

 Listing 6.4. Method on TabController to delete pages on the view and the model

 Listing 6.5. Keeping the model updated from user input in the view

 Listing 6.6. Asking for confirmation before calling deletePage on TabController

 Listing 6.7. Providing a currentPageTitle for fetching and setting title

 Listing 6.8. The constructor for RenameTabDialog

 Listing 6.9. Creating and laying out text box for RenameTabDialog

 Listing 6.10. Creating, configuring, and laying out buttons for RenameTabDialog

 Listing 6.11. ShowDialog function displaying RenameTabDialog and returning result

 Listing 6.12. RenameCommand: using the dialog

 Listing 6.13. Importing code and function calls for module as script

 Listing 6.14. Using the dialog created in Visual Studio with IronPython

 Listing 6.15. Creating a new page in model and adding corresponding tab page

 Listing 6.16. Displaying dialog, checking return value, and creating new page

 Listing 6.17. NewDocumentCommand

 Listing 6.18. Script to serialize all the image files using a BinaryFormatter

 Listing 6.19. Image deserializing method for MainForm

 Chapter 7. Agile testing: where dynamic typing shines

 Listing 7.1. A TestCase class for Value, which tests the specification

 Listing 7.2. An implementation of Value class, which should pass your tests

 Listing 7.3. The unit tests for Value rewritten to use setUp and tearDown

 Listing 7.4. testutils: module to support test running

 Listing 7.5. Running tests for Value class with help from functions in testutils

 Listing 7.6. OpenCommand.execute: the method we want to test

 Listing 7.7. A simple Mock class and a mock mainform instance

 Listing 7.8. A mock OpenFileDialog class

 Listing 7.9. Testing the use of OpenFileDialog

 Listing 7.10. Listener class that records arguments it’s called with

 Listing 7.11. Testing that getDocument isn’t called if the dialog is canceled

 Listing 7.12. Testing that accepting the dialog should call getDocument

 Listing 7.13. Testing getDocument and MainForm interaction

 Listing 7.14. A simple Scheduler class to test with dependency injection

 Listing 7.15. Testing that dependency injection is set up correctly

 Listing 7.16. Testing schedule method by injecting faked-up dependencies

 Listing 7.17. Interacting with Windows Forms controls from another thread

 Listing 7.18. A FunctionalTest base class for interacting with a running MultiDoc

 Listing 7.19. A FunctionalTest base class for interacting with a running MultiDoc

 Listing 7.20. A FunctionalTest base class for interacting with a running MultiDoc

 Listing 7.21. FunctionalTest base class for interacting with running MultiDoc

 Chapter 8. Metaprogramming, protocols, and more

 Listing 8.1. Specifying length of custom containers

 Listing 8.2. A class with custom string representations

 Listing 8.3. Specifying length of custom containers

 Listing 8.4. An example Iterator class

 Listing 8.5. Directory class that supports iteration with a generator

 Listing 8.6. Object equality and inequality methods

 Listing 8.7. Attribute protection with a factory function and proxy class

 Listing 8.8. The simplest example of a metaclass

 Listing 8.9. Timing a function call with the Stopwatch class

 Listing 8.10. A function decorator that times calls

 Listing 8.11. A profiling metaclass that wraps methods with profiler

 Listing 8.12. Timing method calls on objects with ProfilingMetaclass

 Chapter 9. WPF and IronPython

 Listing 9.1. Hello World with WPF and IronPython

 Listing 9.2. Hello World user interface in XAML

 Listing 9.3. Consuming XAML from IronPython

 Listing 9.4. Controls example framework with Grid in Window

 Listing 9.5. Helper functions for the controls example

 Listing 9.6. Creating ComboBox and CheckBox

 Listing 9.7. Image control

 Listing 9.8. Expander control

 Listing 9.9. ScrollViewer control with Rectangle and TextBlock

 Listing 9.10. TextBlock with flow content

 Listing 9.11. Creating XAML from WPF objects with XamlWriter

 Listing 9.12. Creating FlowDocumentReader

 Listing 9.13. Regular expression to insert image locations into XAML at runtime

 Listing 9.14. Wrapping a string as a stream

 Listing 9.15. Attaching click handlers to all hyperlinks in a document

 Chapter 10. Windows system administration with IronPython

 Listing 10.1. Script to clear out temp folder

 Listing 10.2. Parsing command-line arguments with argparse

 Listing 10.3. Reading config files with ConfigObj

 Listing 10.4. A generator for walking directory trees

 Listing 10.5. Filtering filenames using fnmatch.fnmatch

 Listing 10.6. A simple WQL query to display CPU usage

 Listing 10.7. Querying the system with ManagementObjectSearcher

 Listing 10.8. Responding to events with ManagementEventWatcher

 Listing 10.9. Creating timer events with ManagementClass

 Listing 10.10. Specifying username and password for a WMI connection

 Listing 10.11. A WMI connection with impersonation

 Listing 10.12. Monitoring memory use on a remote computer

 Listing 10.13. Executing PowerShell commands from IronPython

 Listing 10.14. WMI from PowerShell inside IronPython!

 Listing 10.15. The PowerShell pipeline

 Listing 10.16. IronPython 1 in PowerShell

 Listing 10.17. IronPython 2 in PowerShell

 Listing 10.18. Executing Python code from a function in PowerShell

 Listing 10.19. Setting the clipboard from PowerShell with IronPython 1

 Listing 10.20. Setting clipboard from PowerShell with IronPython 2

 Listing 10.21. Handling asynchronous events from PowerShell with IronPython

 Listing 10.22. Calling Python functions and returning values

 Chapter 11. IronPython and ASP.NET

 Listing 11.1. ASPX code for the MultiDoc Viewer user interface

 Listing 11.2. Reading MultiDoc file and finding pages

 Listing 11.3. MultiDoc Viewer Page_Load handler

 Listing 11.4. MultiDoc Viewer pageLink_Click handler

 Listing 11.5. MultiDoc Viewer Page_PreRender handler

 Listing 11.6. Changing page display to allow showing and hiding

 Listing 11.7. Controls to edit a MultiDoc page

 Listing 11.8. CustomScriptPage class for delegating view state handling to Python

 Listing 11.9. A class to group together page. state

 Listing 11.10. Loading and saving the MultiDoc Editor view state

 Listing 11.11. Loading and saving MultiDoc file

 Listing 11.12. MultiDoc Editor Page_PreRender handler

 Listing 11.13. Postback event handlers in MultiDoc Editor

 Listing 11.14. Delegating view state handling to Python

 Listing 11.15. Creating the Filename property

 Chapter 12. Databases and web services

 Listing 12.1. Inserting a record

 Listing 12.2. Trying to insert multiple people by constructing SQL strings

 Listing 12.3. Setting parameter values in a parameterized command

 Listing 12.4. Getting a value from the database with ExecuteScalar

 Listing 12.5. ExecuteScalar with NULL or no rows

 Listing 12.6. Finding out what data is in a DataReader

 Listing 12.7. Getting values from the current row

 Listing 12.8. Getting multiple result sets from one command

 Listing 12.9. Setting the transaction of a command before execution

 Listing 12.10. Executing another command as part of the same transaction

 Listing 12.11. Filling a DataSet from a DataAdapter

 Listing 12.12. What’s in the DataSet after filling it?

 Listing 12.13. Filling a DataSet with more than one result set

 Listing 12.14. Anatomy of an Atom XML weblog feed

 Listing 12.15. Extracting Atom feed details with simplexml

 Listing 12.16. Generating a C# proxy for a SOAP service with wsdl.exe

 Listing 12.17. Compiling the C# proxy into a class library with csc.exe (the C# compiler)

 Listing 12.18. Using the MathService proxy

 Listing 12.19. Calling a web service method asynchronously

 Listing 12.20. Calling a SOAP service using a dynamically generated proxy

 Listing 12.21. The notes service client: sendMessage

 Listing 12.22. Sending a note to the server from the client

 Listing 12.23. The notes service client: note operations

 Listing 12.24. The notes service main loop

 Listing 12.25. NotesService: dispatching requests in the handle method

 Listing 12.26. NotesService: the getNotes handler

 Listing 12.27. NotesService: the addNote handler

 Listing 12.28. NotesService: the getNote handler

 Listing 12.29. NotesService: the updateNote handler

 Listing 12.30. NotesService: the deleteNote handler

 Chapter 13. Silverlight: IronPython in the browser

 Listing 13.1. The HTML to embed the Silverlight control

 Listing 13.2. A Simple IronPython application for Silverlight

 Listing 13.3. IronPython Silverlight application that loads XAML

 Listing 13.4. Silverlight XAML for UI layout

 Listing 13.5. A TextBox with a Button in a horizontal StackPanel

 Listing 13.6. XAML for a UI using the extended controls

 Listing 13.7. The XML manifest file for an IronPython application

 Listing 13.8. A clientaccesspolicy.xml file to allow cross-domain calls into a website

 Listing 13.9. Diverting standard out to an HTML text area

 Listing 13.10. Configuring the Button and CheckBox in the login panel

 Listing 13.11. Creating and populating the main grid for the Twitter client

 Listing 13.12. The Fetcher class for downloading web resources with WebClient

 Listing 13.13. Making POST requests with HttpWebRequest

 Listing 13.14. Using the dispatcher to modify the user interface from another thread

 Listing 13.15. Using a DispatcherTimer for timed events on the UI thread

 Listing 13.16. Using the Silverlight isolated storage

 Listing 13.17. Using the MediaElement video control

 Listing 13.18. Setting a VideoBrush with a video on a TextBlock

 Listing 13.19. Interacting with DOM elements from inside Silverlight

 Listing 13.20. DOM events and JavaScript from Silverlight

 Chapter 14. Extending IronPython with C#/VB.NET

 Listing 14.1. A C# class for use from IronPython

 Listing 14.2. A VB.NET class for use from IronPython

 Listing 14.3. A thin wrapper that exports functions from User32.dll in C#

 Listing 14.4. A thin wrapper that exports functions from User32.dll in VB.NET

 Listing 14.5. Automation code getting the top window title by calling into native functions

 Listing 14.6. A stub C# class marked with scriptable attributes

 Listing 14.7. A stub VB.NET class marked with scriptable attributes

 Listing 14.8. Exposing a scriptable class and method to JavaScript

 Listing 14.9. A batch file for compiling .cs files into assemblies for Silverlight

 Listing 14.10. A C# class that allows dynamic attribute access from IronPython

 Listing 14.11. A VB.NET class that allows dynamic attribute access from IronPython

 Listing 14.12. Methods with multiple arguments and default arguments from C#

 Listing 14.13. Optional and multiple arguments from VB.NET

 Listing 14.14. A function to compile, and save or return, assemblies from source code

 Chapter 15. Embedding the IronPython engine

 Listing 15.1. Setting the command-line arguments for Python code from C#

 Listing 15.2. Populating the engine import paths from C#

 Listing 15.3. Populating the engine import paths from VB.NET

 Listing 15.4. Executing the ScriptSource, handling any exceptions (in C#)

 Listing 15.5. Creating an execution scope with access to contained variables (in C#)

 Listing 15.6. Adding a reference to an assembly on the ScriptRuntime (in VB.NET)

 Listing 15.7. Fetching an embedded resource from an assembly (in C#)

 Listing 15.8. Using the Engine to execute Python code, with error handling (in VB.NET)

 Listing 15.9. A base class for user plugins to inherit from (in C#)

 Listing 15.10. The PluginStore registry class (in VB.NET)

 Listing 15.11. IronPython plugin using PluginBase and PluginStore

 Listing 15.12. Finding and executing user plugins (in C#)

 Listing 15.13. Diverting output streams to a textbox (in C#)

 Listing 15.14. Adding toolbar buttons and click handlers per plugin (in C#)

 Listing 15.15. Adding toolbar buttons and click handlers per plugin (in VB.NET)

 Listing 15.16. Creating and using Python functions from C#

 Listing 15.17. Creating and using Python functions from VB.NET

 Listing 15.18. Creating a tuple in Python and using it from C#

 Listing 15.19. Creating class instances and calling methods using ObjectOperations

 Listing 15.20. Using the built-in functions isinstance and issubclass from C#

 Listing 15.21. Serializing and deserializing Python objects from C# with pickle

Foreword

 IronPython brings together two of my favorite things: the elegant Python programming language and the powerful .NET platform.

 I’ve been a fan of the Python language for almost 15 years, ever since it was recommended to me by a fellow juggler while
 we passed clubs in a park. From the start I found Python to be a simple and elegant language that made it easy to express
 my ideas in code. I’m amazed by Python’s ability to appeal to a broad range of developers, from hard-core hackers to amateur
 programmers, including scientists, doctors, and animators. I’ve been teaching my ten-year-old son to program, and even he
 tells me that “Python is a great language to learn with.” Beyond teaching my son, I’ve tried to contribute to the Python community
 that gave me this great language and continues to drive it forward. Prior to IronPython, I started the Numeric Python and
 Jython open source projects.

 It took a bit longer for me to become a fan of Microsoft’s .NET platform and the Common Language Runtime (CLR) that forms
 its core execution engine. I first learned about the CLR by reading countless reports on the web that said it was a terrible
 platform for dynamic languages in general and for Python in particular. IronPython started life as a series of quick prototypes
 to help me understand how this platform could be so bad. My plan was to prototype for a couple of weeks and then write a pithy
 paper titled, “Why the CLR is a terrible platform for dynamic languages.” This plan was turned upside down when the prototypes
 turned out to run very well—generally quite a bit faster than the standard C-based Python implementation.

 After getting over my initial skepticism, I’ve grown to love the CLR and .NET as much as Python. While no platform is perfect,
 this is the closest we’ve ever come to a universal runtime that can cleanly support a variety of different programming languages.
 Even more exciting to me is that the team is committed to the multi-language story and we’ve got great projects like the DLR,
 IronRuby, and F# to keep extending the range of languages that can coexist on this platform. I’ve even grown to like C# as
 the most enjoyable and versatile statically typed programming language I’ve used.

 As the architect for IronPython, I like to believe that it’s such a simple and elegant combination of the Python language
 and the .NET platform that it needs no documentation. After all, who could possibly not know that they should use clr.Reference to pass an out parameter to a .NET method? I guess that it’s assumptions like that one that would make me a poor choice for
 writing a book teaching people about IronPython. The best choice for writing a book like this would be a long-term user who’s
 deeply engaged with the community and who has been trying to understand and explain the system to others for years. Now, if
 only we could find such a person...

 I first met Michael Foord in July of 2006. I was preparing an IronPython talk for the OSCON conference in Portland, Oregon.
 This was going to be an exciting talk where I’d announce that the final release of IronPython 1.0 was weeks away. This was
 a terrible time to be preparing a talk since my mind and time were occupied with all the details of the actual release. To
 further complicate things, this was the Open Source Convention, and I knew that I needed to show IronPython running on Linux
 in order to have credibility with this audience. Unfortunately, I didn’t have the time to set up a Linux box and get some
 useful demos running. Oddly enough, my coworkers (at Microsoft) didn’t have any spare Linux boxes running in their offices
 that I could borrow for a few screen shots.

 I did a desperate internet search for “IronPython Linux” and one of the places that led me to was a blog called voidspace.
 There I found a tutorial on how to use Windows Forms with IronPython. The reason this tutorial showed up was that it included
 screen caps of the samples running under both Windows and Linux. This was just what I was looking for! By stealing these pictures
 for my talk I could show people IronPython running on Linux and also point them to an excellent online tutorial to help them
 learn more about using IronPython than I could cover in a 45-minute talk.

 I had a few hesitations about including this reference in my talk. I didn’t know anything about the author except that his
 screen name was Fuzzyman and that he had a personal blog that was subtitled, “the strange and deluded ramblings of a rather
 odd person.” However, I really liked the simple tutorial and I was incredibly happy to have some nice Linux samples to show
 the OSCON crowd. I was most grateful at the time to this person that I’d never met for helping me out of this jam.

 Fuzzyman turned out to be Michael Foord and one of the authors of the book you have in your hands now. Since that first online
 tutorial, Michael has been helping people to use IronPython through more online samples, presentations at conferences, and
 through active contributions to the IronPython users mailing list. I couldn’t think of a better way for you to learn how to
 get started and how to get the most out of IronPython than by following along with Michael and Christian in IronPython in Action.

 I’ve spent my career building programming languages and libraries targeted at other developers. This means that the software
 I write is used directly by a small number of people and it’s hard for me to explain to non-developers what I do. The only
 reason this kind of stuff has value is because of the useful or fun programs that other developers build using it. This book
 should give you everything you need to get started with IronPython. It will make your development more fun—and more productive.
 Now go out and build something cool!

 JIM HUGUNIN

 SOFTWARE ARCHITECT FOR THE .NET FRAMEWORK TEAM AND CREATOR OF IRONPYTHON

Preface

 A programming language is a medium of expression.

 Paul Graham

 Neither of us intended to develop with IronPython, least of all write a book on it. It sort of happened by accident. In 2005
 a startup called Resolver Systems[1] set up shop in London. They were creating a spreadsheet platform to tackle the myriad problems caused in business by the
 phenomenal success of spreadsheets. The goal was to bring the proven programming principles of modularity, testability, and
 maintainability to the spreadsheet world—and having an interpreted language embedded in Resolver One was a core part of this.
 As Resolver One was to be a desktop application used by financial organizations, it needed to be built on established and
 accepted technologies, which for the desktop meant .NET.

 1 See http://www.resolversystems.com/.

 At the time the choice of interpreted language engines for .NET was limited; even IronPython was only at version 0.7. The
 two developers who comprised Resolver Systems[2] evaluated IronPython and discovered three important facts:

 2 Giles Thomas, who is CEO and CTO, and William Reade, a hacker with a great mind for complex systems.

	Although neither of them was familiar with Python, it was an elegant and expressive language that was easy to learn.

 	The .NET integration of IronPython was superb. In fact it seemed that everything they needed to develop Resolver One was accessible
 from IronPython.

 	As a dynamic language, Python was orders of magnitude easier to test than languages they had worked with previously. This
 particularly suited the test-driven approach they were using.

They decided to prototype Resolver One with IronPython, expecting to have to rewrite at least portions of the application
 in C# at some point in the future. Three years later, Resolver One is in use in financial institutions in London, New York,
 and Paris; and consists of 40,000 lines of IronPython code[3] with a further 150,000 in the test framework. Resolver One has been optimized for performance several times, and this has
 always meant fine tuning our algorithms in Python. It hasn’t (yet) required even parts of Resolver One to be rewritten in
 C#.

 3 With perhaps as many as three hundred lines of C# in total.

 We are experienced Python developers but neither of us had used IronPython before. We joined Resolver Systems in 2006 and
 2007, and were both immediately impressed by the combination of the elegance of Python with the power and breadth of the .NET
 framework.

 Programming is a creative art. Above all Python strives to empower the programmer. It emphasizes programmer productivity and
 readability, instead of optimizing the language for the compiler. We’re passionate about programming, and about Python. In
 2007 one of us (Michael) set up the IronPython Cookbook[4] to provide concrete examples for the newly converging IronPython community. Shortly afterwards the two of us decided to write
 a book that would help both Python and .NET programmers take advantage of all that IronPython has to offer.

 4 At http://www.ironpython.info/ and still an excellent resource!

Acknowledgments

 Writing this book has been a labor of love for the past two years. One thing that has astonished us is the sheer number of
 people who are involved in such an endeavor, and how many individuals have helped us. Our thanks for support and assistance
 go out to our colleagues at Resolver Systems, the team at Manning, our reviewers, virtually the whole IronPython team who
 gave their advice and support at various times, and all those who bought the Early Access edition and gave feedback and pointed
 out typos.

 These reviewers took time out of their busy schedules to read the manuscript at various times in its development and to send
 us their input. It is a much better book as a result. Thanks to Leon Bambrick, Max Bolingbroke, Dave Brueck, Andrew Cohen,
 Dr. Tim Couper, Keith Farmer, Noah Gift, Clint Howarth, Denis Kurilenko, Alex Martelli, Massimo Perga, and Robi Sen.

 Without the help of these people, and more, this book wouldn’t have been possible. At Manning Publications, Michael Stephens
 gave us the opportunity, Jeff Bleiel was our tireless editor, Andrea Kaucher and Linda Recktenwald transformed the book through
 their copyediting, and Katie Tennant did the final proofread. Dino Viehland was our technical editor, and did great work.
 We also had help from Jimmy Schementi reviewing the Silverlight chapter and from Srivatsn Narayanan on chapter 14.

 Special thanks to Jonathan Hartley, a fellow Resolver One hacker, who did a wonderful job producing the figures for IronPython in Action and to Jim Hugunin, the creator of IronPython, for writing the foreword.

 Michael Foord would also like to express his gratitude to Andrew Lantsbery, for his friendship and technical expertise that
 proved invaluable.

About this Book

 IronPython is a radical project for Microsoft. It is the first project to be released under their Ms-PL (Microsoft Public
 License) open source license. It is also a radically different language from the ones that Microsoft has traditionally promoted
 for the .NET framework. IronPython is an implementation of the popular programming language Python for .NET. Python is an
 open source, object-oriented, dynamically typed language in use by organizations like Google, NASA and Pixar. Python is a
 multi-paradigm language, and brings new possibilities to .NET programmers: not just the added flexibility of dynamic typing,
 but programming styles such as functional programming and metaprogramming. For Python programmers the powerful runtime, with
 its JIT compiler and huge range of .NET libraries, also presents new opportunities.

 The goal of IronPython in Action is not just to teach the mechanics of using IronPython, but to demonstrate the power and effectiveness of object-oriented
 programming in the Python language. To this end we cover best practices in API design, testing, and the use of design patterns
 in structured application development. In part this is to dispel the myth that dynamic languages are merely scripting languages;
 but mostly it is to help you make the best of the language and the platform on which it runs.

 The addition of Python to the range of languages available as first-class citizens in .NET reflects the changes happening
 in the wider world of programming. No one says it better than Anders Hejlsberg, the architect of C#, when asked by Computer
 World[5] what advice he had for up-and-coming programmers:

 5 See http://www.computerworld.com.au/index.php/id;1149786074;pp;8.

 Go look at dynamic languages and meta-programming: those are really interesting concepts. Once you get an understanding of
 these different kinds of programming and the philosophies that underlie them, you can get a much more coherent picture of
 what’s going on and the different styles of programming that might be more appropriate for you with what you’re doing right
 now.

 Anyone programming today should check out functional programming and meta-programming as they are very important trends going
 forward.

Who should read this book?

 IronPython in Action is particularly aimed at two types of programmers: Python programmers looking to take advantage of the power of the .NET
 framework or Mono for their applications, and .NET programmers interested in the flexibility of dynamic languages. It assumes
 no experience of either Python or .NET, but does assume some previous programming experience. If you have some programming
 experience, but have never used either of these systems, you should find IronPython in Action an accessible introduction to both Python and .NET.

 Just as Python is suited to an enormous range of problem domains, so is IronPython. The book covers a range of different uses
 of IronPython: from web development to application development, one-off scripting to system administration, and embedding
 into .NET applications for extensible architectures or providing user scripting.

Roadmap

 This book contains 15 chapters organized into four parts.

 Part 1 Getting started with IronPython— The first part of the book introduces the fundamental concepts behind developing with IronPython and the .NET framework. Chapter 1 introduces IronPython along with key points of interest for both Python and .NET programmers. It finishes by diving into
 IronPython through the interactive interpreter; a powerful tool for both Python and IronPython. Chapter 2 is a Python tutorial, including areas where IronPython is different from the standard distribution of Python known as CPython.
 Where chapter 2 is particularly valuable to programmers who haven’t used Python before, chapter 3 is an introduction to the .NET framework. As well as covering the basic .NET types (classes, enumerations, delegates, and
 the like), this chapter shows how to use them from IronPython, ending with a more fully featured “Hello World” program than
 created in chapter 1.

 Part 2 Core development techniques— The next part extends your knowledge of the Python language and the classes available in the .NET framework. It does this
 by demonstrating a structured approach to Python programming by developing the MultiDoc application using several common design
 patterns. Figure 1 shows MultiDoc as it looks by the end of chapter 6. Along the way we’ll work with Windows Forms, lambdas, properties, decorators, XML, first-class functions, and using C# class
 libraries created in Visual Studio.

 This part finishes by covering testing techniques, to which dynamic languages are especially suited, and some more advanced
 Python programming techniques such as metaprogramming. The end of chapter 8 contains valuable information about how IronPython interacts with aspects of the Common Language Runtime, information that
 neither experience with Python nor another .NET framework language alone will furnish you with.

 Part 3 IronPython and advanced .NET— The third part takes IronPython into practical and interesting corners of .NET. Each chapter in this part takes an area of
 .NET programming and shows how best to use it from IronPython.

	
Chapter 9— Writing desktop applications using the Windows Presentation Foundation user interface library

 	
Chapter 10— System administration, including shell scripting, WMI, and PowerShell

 	
Chapter 11— Web development with ASP.NET

 	
Chapter 12— Databases and web services

 	
Chapter 13— Silverlight

Part 4 Reaching out with IronPython— The final part of this book takes IronPython out into the wilds of a polyglot programming environment. Chapter 14 shows how to create classes in C# and VB.NET for use from IronPython. Of special importance here is creating APIs that feel
 natural when used from Python, or even giving your objects dynamic behavior. Chapter 15 reverses the situation and embeds IronPython into .NET applications. It tackles the interesting and challenging problem of
 using dynamic objects from statically typed languages like C# and VB.NET. For many .NET programmers, being able to embed IronPython
 into applications, to provide a ready-made scripting solution, is the main use case for IronPython.

 Figure 1. The MultiDoc application as it appears in part 2

 [image:]

 There are also three appendixes. Appendix A covers the basics of C# and explains the core concepts of the language. Appendix B shows how to create your own objects in Python by implementing its protocol methods. Appendix C has a list of online resources with more information about IronPython and dynamic languages on the .NET framework.

Code conventions and downloads

 This book includes copious numbers of examples in Python, C#, and VB.NET. Source code in listings, or in text, is in a fixed-width font to separate it from ordinary text. Additionally, method names in text are also presented using fixed-width font.

 C# and VB.NET can be quite verbose, but even Python is not immune to the occasional long line. In many cases, the original
 source code (available online) has been reformatted, adding line breaks to accommodate the available page space in the book.
 In rare cases, even this was not enough, and listings will include line continuation markers. Additionally, comments in the
 source code have been removed from the listings.

 Code annotations accompany many of the source code listings, highlighting important concepts. In some cases, numbered bullets
 link to explanations that follow the listing.

 IronPython is an open source project, released under the very liberal Ms-PL software license. IronPython is available for
 download, in source or binary form, from the IronPython home page: www.codeplex.com/IronPython.

 The source code for all examples in this book is available from Manning’s web site: www.manning.com/foord. It is also available for download from the book’s website: www.ironpythoninaction.com/.

Author Online

 The purchase of IronPython in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/ironpythoninaction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s
 web site as long as the book is in print.

About the authors

 Michael Foord and Christian Muirhead both work full time with IronPython for Resolver Systems, creating a highly programmable
 spreadsheet called Resolver One. They have been using IronPython since before version 1.0 was released.

 Michael Foord has been developing with Python since 2002. He blogs and writes about Python and IronPython far more than is
 healthy for one individual and in 2008 was made the first Microsoft MVP for dynamic languages. As the Resolver Systems community
 champion he speaks internationally on Python and IronPython. He maintains the IronPython Cookbook[6] and IronPython-URLs[7] websites, and can also be found online at http://www.voidspace.org.uk/python/weblog/. In the real world he lives in Northampton, UK, with his wife Delia.

 6 See http://www.ironpython.info/.

 7 See http://ironpython-urls.blogspot.com/.

 Christian Muirhead began his career in a high-volume database environment, and for the last eight years has been building
 database-driven websites. He has five years of experience working with C#, the .NET framework, and ASP.NET. He has been using
 Python in most of his projects since discovering it in 1999, including building web applications for the BBC using Django.
 Christian is a New Zealander currently exiled in London with his wife Alice.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, re-telling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The caption of the figure on the cover of IronPython in Action reads “An Ironworker.” The illustration is taken from a French book of dress customs, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and illustrated guides
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions
 of the world, as well as to the regional costumes and uniforms of French soldiers, civil servants, tradesmen, merchants, and
 peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other,
 and when members of a social class or a trade or a profession could be easily distinguished by what they were wearing.

 Dress codes have changed since then and the diversity by region and social status, so rich at the time, has faded away. It
 is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
 traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and
 technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. Getting started with IronPython

 Like all good books, and possibly a few bad ones, this one starts with an introduction. In this section, we cover what IronPython
 is, how it came into being, and why a language like Python is a big deal for .NET. You’ll also get to use the IronPython interactive
 interpreter, which is both a powerful tool and a great way of showing off some of the features of Python. Chapter 2 is a swift tutorial for the Python language. It won’t make you a Python master, but it will prepare you for the examples
 used throughout this book, and serve as a useful reference well beyond. Chapter 3 briefly introduces .NET and then wades into programming with IronPython, taking Windows Forms as the example. While gaining
 an understanding of concepts essential to any real work with IronPython, you’ll be getting your hands dirty with some real
 code. First, though, let’s discuss how IronPython fits in with .NET.

Chapter 1. A new language for .NET

	
 This chapter covers

	

	An introduction to IronPython

 	Python and dynamic languages on .NET

 	The IronPython interactive interpreter

 	Live object introspection with help and dir

The .NET framework was launched in 2000 and has since become a popular platform for object-oriented programming. Its heart
 and soul is the Common Language Runtime (CLR), which is a powerful system including a just-in-time compiler, built-in memory
 management, and security features. Fortunately, you can write .NET programs that take advantage of many of these features
 without having to understand them, or even be aware of them. Along with the runtime comes a vast array of libraries and classes,
 collectively known as the framework classes. Libraries available in the .NET framework include the Windows Forms and Windows
 Presentation Foundation (WPF)[1] graphical user interfaces, as well as libraries for communicating across networks, working with databases, creating web applications, and a great deal more.

 1 Microsoft’s next generation user interface framework.

 The traditional languages for writing .NET programs are Visual Basic.NET, C#, and C++.[2] IronPython is a .NET compiler for a programming language called Python, making IronPython a first-class .NET programming
 language. If you’re a .NET developer, you can use Python for tasks from web development to creating simple administration
 scripts, and just about everything in between. If you’re a Python programmer, you can use your favorite language to take advantage
 of the .NET framework.

 2 In the C++/CLI flavor, which is sometimes still referred to by the name of its predecessor, Managed C++. Use of C# and VB.NET
 is more widespread for .NET programming.

 IronPython isn’t cast in the same mold as traditional .NET languages, although there are similarities. It’s a dynamically
 typed language, which means a lot of things are done differently and you can do things that are either impossible or more
 difficult with alternative languages. Python is also a multi-paradigm language. It supports such diverse styles of programming
 as procedural and functional programming, object-oriented programming, metaprogramming, and more.

 Microsoft has gone to a great deal of trouble to integrate IronPython with the various tools and frameworks that are part
 of the .NET family. They’ve built specific support for IronPython into the following projects:

	
Visual Studio— The integrated development environment

 	
ASP.NET— The web application framework

 	
Silverlight— A browser plugin for client-side web application programming

 	
XNA— [3]The game programming system

 3 XNA is a recursive acronym standing for XNA’s Not Acronymed.

 	
Microsoft Robotics Kit— An environment for robot control and simulation

 	
Volta— An experimental recompiler from Intermediate Language bytecode (IL) to JavaScript[4]
 4 Allowing you to write client-side code for web applications in Python and have it recompiled to JavaScript for you.

 	
C# 4.0— The next version of C# and the CLR that will include dynamic features using the Dynamic Language Runtime (DLR)

IronPython is already being used in commercial systems, both to provide a scripting environment for programs written in other
 .NET languages and to create full applications. One great example called Resolver One,[5] a spreadsheet development environment, is how I (Michael) got involved with IronPython. You can see a screenshot of Resolver
 One in figure 1.1. At last count, there were over 40,000 lines of IronPython code in Resolver One, plus around 150,000 more in the test framework
 developed alongside it.

 5 See http://www.resolversystems.com.

 Figure 1.1. Resolver One: A full application written in IronPython

 [image:]

 By the end of IronPython in Action, we hope you’ll have learned everything you need to tackle creating full applications with IronPython, integrating IronPython
 as part of another application, or just using it as another tool in your toolkit. You’ll also have explored some of these alternative programming techniques and used a variety of different aspects of the .NET framework. This
 exploration will enable you to make the best use of the Python language and the wealth of classes made available by .NET.

 Before we can achieve any of this, an introduction is in order. This chapter introduces IronPython and the Python programming
 language. It explains why Python is a good fit for the .NET framework and will give you a tantalizing taste of what is possible
 with IronPython, via the interactive interpreter.

1.1. An introduction to IronPython

 Python is a dynamic language that has been around since 1990 and has a thriving user community. Dynamic languages don’t require
 you to declare the type of your objects, and they allow you greater freedom to create new objects and modify existing ones
 at runtime. On top of this, the Python philosophy places great importance on readability, clarity, and expressiveness. Figure 1.2 is a slide from a presentation[6] by Guido van Rossum, the creator of Python; it explains why readability is so important in Python.

 6 See http://www.python.org/doc/essays/ppt/hp-training/index.htm.

 Figure 1.2. A slide from a presentation, emphasizing a guiding philosophy of Python

 [image:]

 IronPython is an open source implementation of Python for .NET. It has been developed by Microsoft as part of making the CLR
 a better platform for dynamic languages. In the process, they’ve created a fantastic language and programming environment.
 But what exactly is IronPython?

 1.1.1. What is IronPython?

 IronPython primarily consists of the IronPython engine, along with a few other tools to make it convenient to use. The IronPython
 engine compiles Python code into IL, which runs on the CLR. Optionally IronPython can compile to assemblies, which can be
 saved to disk and used to make binary-only distributions of applications.

Assemblies

 Assemblies are .NET libraries or executables. .NET consists of a great deal of these assemblies, in which the framework classes
 live, in the form of dlls.

 Because of the memory management and security features that .NET provides, code in .NET assemblies is called managed code.[7]

 7 .NET does provide ways to access unmanaged code contained in traditional compiled dlls.

 Assemblies contain code compiled from .NET languages into Intermediate Language (IL) bytecode. IL is run with the just-in-time
 (JIT) compiler for fast execution.

 You can see how Python code is compiled and run by the IronPython engine in figure 1.3.

 Figure 1.3. How Python code and the IronPython engine fit into the .NET world

 [image:]

 Figure 1.3 shows the state of IronPython version 1.[8] In April 2007, the IronPython team released an early version of IronPython 2, which introduces a radical new development,
 the Dynamic Language Runtime (DLR). The DLR is a hosting platform and dynamic type system taken out of IronPython 1 and turned
 into a system capable of running many different dynamic languages. You’ll be hearing more about the DLR in a short while.

 8 And as a simplified view, it’s true of IronPython 2 as well, except the IronPython engine is comprised of the Dynamic Language
 Runtime and IronPython-specific assemblies.

 Because Python is a highly dynamic language, the generated assemblies remain dependent on the IronPython dlls. Despite this,
 they’re still only compiled .NET code, so you can use classes from the .NET framework directly within your code without needing
 to do any type conversions yourself.

 Accessing the .NET framework from IronPython code is extremely easy. As well as being a programming language in its own right,
 IronPython can be used for all the typical tasks you might approach with .NET, such as web development with ASP.NET (Active
 Server Pages, the .NET web application framework) or creating smart client applications with Windows Forms or WPF. As an added
 bonus, IronPython also runs on the version of the CLR shipped with Silverlight 2. You can use IronPython for writing client-side
 applications that run in a web browser, something that Python programmers have wanted for years!

 IronPython itself is written in C# and is a full implementation of Python. IronPython 1 is Python version 2.4, whereas IronPython
 2 is Python 2.5. If you’ve used Python before, IronPython is Python with none of the core language features missing or changed.
 Let’s make this clear: IronPython is Python.

 Development cycles are typically fast with Python. With dynamically typed languages, tasks can be achieved with less code,
 making IronPython ideal for prototyping applications or scripting system administration tasks that you can’t afford to spend
 a lot of time on. Because of the readability and testability of well-written Python code, it scales well to writing large
 applications. You are likely to find that your prototypes or scripts can be refactored into full programs much more easily
 than writing from scratch in an alternative language.

 If you’re already developing with .NET, you needn’t do without your favorite tools. Microsoft has incorporated IronPython
 support into Visual Studio 2005 through the Software Development Kit (SDK).[9] You can use Visual Studio to create IronPython projects with full access to the designer and debugger. Figure 1.4 shows Visual Studio being used to create a Windows application with IronPython.

 9 The Visual Studio SDK is a Microsoft extension that includes IronPython support.

 Figure 1.4. Generated IronPython code in Visual Studio

 [image:]

 Visual Studio 2008 integration exists in the form of IronPython Studio,[10] which is implemented through the Visual Studio Shell extensibility framework. IronPython Studio can either be run standalone (without requiring Visual Studio to be installed) or integrated into Visual Studio. It
 includes Windows Forms and WPF designers and is capable of producing binary executables from Python projects. Figure 1.5 shows IronPython Studio running in integrated mode as part of Visual Studio 2008.

 10http://www.codeplex.com/IronPythonStudio

 Figure 1.5. Using the Windows Forms designer with IronPython Studio running in Visual Studio 2008

 [image:]

 An alternative version of .NET called Mono provides a C# compiler, runtime, and a large proportion of the framework for platforms
 other than Windows. IronPython runs fine on Mono, opening up the possibility of creating fully featured cross-platform programs
 using IronPython. Windows Forms is available on Mono, so GUI applications written with IronPython can run on any of the many
 platforms that Mono works on.

 IronPython is a particularly interesting project for Microsoft to have undertaken. Not only have they taken a strong existing
 language and ported it to .NET, but they have chosen to release it with a sensible open source license. You have full access
 to IronPython’s source code, which is a good example of compiler design, and you can create derivative works and release them
 under a commercial license. This open approach is at least partly due to the man who initiated IronPython, Jim Hugunin. Let’s
 explore his role in creating IronPython, along with a brief history lesson.

 1.1.2. A brief history of IronPython

 The standard version of Python is often referred to as CPython, usually in the context of distinguishing it from other implementations;
 the C is because it’s written in C. CPython is overwhelmingly the most-used version of Python, and most Python code is written
 to run on it. CPython isn’t Python, though. Python is a programming language, and CPython is only one implementation (albeit
 an important one).[11]

 11 Python has no formal specification. It’s defined by the language reference documentation and from CPython, which is called
 a reference implementation.

 IronPython isn’t the first version of Python to target an alternative platform to the usual Python runtime. The most famous
 alternative is Jython, Python for the Java Virtual Machine (JVM). The original version of Jython (or JPython, as it was known
 then) was created by a gentleman called Jim Hugunin.

 Over the last few years, dynamic languages have been rising in popularity. Their emphasis on concise code and empowering the
 programmer have attracted a great deal of developer interest. But back in 2003, the CLR was widely regarded as being a bad platform for hosting dynamic languages.[12] Jim decided to write an article examining why .NET was so bad for these languages.

 12 For example, see the InfoWorld article from 2004, “Does .Net have a dynamic-language deficiency?” at http://www.infoworld.com/article/04/02/27/09FEmsnetdynamic_1.html. Ironically, this was written by Jon Udell, who now works for Microsoft.

Python implementations

 The most common Python implementation is called CPython. Other implementations include the following:

 IronPython— For .NET.

 Jython— For the Java VM.

 PyPy— An experimental interpreter compiler toolchain with a multitude of backends (target platforms). It includes an implementation
 of Python in Python.

 Stackless— An alternative to CPython that makes minimal use of the C stack and has support for green threads.

 tinypy— A minimal implementation of Python in 64KB of code. Useful for embedded systems.

 His experience with the JVM proved that it was certainly possible to create language runtimes capable of hosting both static and dynamic languages, and he wondered what Microsoft had gotten
 so wrong. Naturally he explored this by attempting a toy implementation of Python. To his horror, he discovered that, contrary
 to popular opinion, Python worked well on .NET. In fact, his initial attempt ran the basic Python benchmark pystone 1.7 times
 faster than CPython.

 This outcome was unfortunate because a full language implementation is a major undertaking, and Jim now felt honor bound to
 take his experiment further.

 After making his results public, Jim was invited to present them to Microsoft. Microsoft was particularly interested in the
 challenges and difficulties that Jim had encountered because they were keen to make the CLR a better platform for dynamic
 languages.

 The upshot is that Jim joined the CLR team at Microsoft. A group of programmers were brought together to work on IronPython
 and, in the process, help improve the CLR. Importantly, Microsoft agreed to keep IronPython open source, with a straightforward
 license similar to the BSD[13] license.

OEBPS/01fig03.jpg
Python Code

S—
IronPython
Engine
poaes] e
C Calls NET
Python cal ca
IL Bytecode Framework
Lbraries e

Executed Dyl

The NET
Runtime.

OEBPS/01fig04_alt.jpg
“romtor o
inport
P
£com Systen Comonentiodal port
Ston Syaven.Deaving imort

zzem cie sport *

Clase vindoveapplicacions: Mramsspace
Clase Form (Sysean. Vindovs. oens. Torm) ¢

e

Pe——
e raca—

acceptaonsect, boo)
Breturns lone)
et Dispose (se1t, disposion) +
FE disposing and (components 1= Hove) |
componance. Dispose ()

suses (sype seie), sei) Dispose disposing)

Brevucns ions)
et Inicialcecomponent (sei)
seie.Suspenaiapout ()

OEBPS/01fig01_alt.jpg
Be g Ve Famet Do wonmer o
lnauas wo B/ U ENEERS

Fine ©©

" s < o B v

[z Tamtone Tormbor_Tiumber Tomee —Joweaion]
L_zlos _loooc I __sol _islsa __|
Lo _len 1ol _ssiloo |
Lehus __laoos il _isealsw |
N 2 T T -

<
Resolver One - Rapid Application Development with a Familiar Interface

s
ssiessss

5

s [Torsoctons GESULT] G Prces GESULT)

ooR"Tomate 13 = tem(iiee

exkbosk("T:

= Szens] = xewls] for zow 1n

OEBPS/01fig02.jpg
The importance of readability
+Most ime s spent on maintenance
~Think about the human reader

How easily can you read your own code.

-~ next month?
next year?

OEBPS/m.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/xxvfig01.jpg
Mo Edior 0B

He Edt
This i the second page.. ~

OEBPS/infin.jpg

OEBPS/01fig05_alt.jpg
Fle B Ve P Suld Dag Took Tex Window Hap

23 St Fonthenuiasep (proc)
= 3 enbythonstusonp.
& s
& Dsomiey
) Fom e

Bl

OEBPS/cover.jpg
M

