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Foreword
      

      IronPython brings together two of my favorite things: the elegant Python programming language and the powerful .NET platform.

      I’ve been a fan of the Python language for almost 15 years, ever since it was recommended to me by a fellow juggler while
         we passed clubs in a park. From the start I found Python to be a simple and elegant language that made it easy to express
         my ideas in code. I’m amazed by Python’s ability to appeal to a broad range of developers, from hard-core hackers to amateur
         programmers, including scientists, doctors, and animators. I’ve been teaching my ten-year-old son to program, and even he
         tells me that “Python is a great language to learn with.” Beyond teaching my son, I’ve tried to contribute to the Python community
         that gave me this great language and continues to drive it forward. Prior to IronPython, I started the Numeric Python and
         Jython open source projects.
      

      It took a bit longer for me to become a fan of Microsoft’s .NET platform and the Common Language Runtime (CLR) that forms
         its core execution engine. I first learned about the CLR by reading countless reports on the web that said it was a terrible
         platform for dynamic languages in general and for Python in particular. IronPython started life as a series of quick prototypes
         to help me understand how this platform could be so bad. My plan was to prototype for a couple of weeks and then write a pithy
         paper titled, “Why the CLR is a terrible platform for dynamic languages.” This plan was turned upside down when the prototypes
         turned out to run very well—generally quite a bit faster than the standard C-based Python implementation.
      

      After getting over my initial skepticism, I’ve grown to love the CLR and .NET as much as Python. While no platform is perfect,
         this is the closest we’ve ever come to a universal runtime that can cleanly support a variety of different programming languages.
         Even more exciting to me is that the team is committed to the multi-language story and we’ve got great projects like the DLR,
         IronRuby, and F# to keep extending the range of languages that can coexist on this platform. I’ve even grown to like C# as
         the most enjoyable and versatile statically typed programming language I’ve used.
      

      As the architect for IronPython, I like to believe that it’s such a simple and elegant combination of the Python language
         and the .NET platform that it needs no documentation. After all, who could possibly not know that they should use clr.Reference to pass an out parameter to a .NET method? I guess that it’s assumptions like that one that would make me a poor choice for
         writing a book teaching people about IronPython. The best choice for writing a book like this would be a long-term user who’s
         deeply engaged with the community and who has been trying to understand and explain the system to others for years. Now, if
         only we could find such a person...
      

      I first met Michael Foord in July of 2006. I was preparing an IronPython talk for the OSCON conference in Portland, Oregon.
         This was going to be an exciting talk where I’d announce that the final release of IronPython 1.0 was weeks away. This was
         a terrible time to be preparing a talk since my mind and time were occupied with all the details of the actual release. To
         further complicate things, this was the Open Source Convention, and I knew that I needed to show IronPython running on Linux
         in order to have credibility with this audience. Unfortunately, I didn’t have the time to set up a Linux box and get some
         useful demos running. Oddly enough, my coworkers (at Microsoft) didn’t have any spare Linux boxes running in their offices
         that I could borrow for a few screen shots.
      

      I did a desperate internet search for “IronPython Linux” and one of the places that led me to was a blog called voidspace.
         There I found a tutorial on how to use Windows Forms with IronPython. The reason this tutorial showed up was that it included
         screen caps of the samples running under both Windows and Linux. This was just what I was looking for! By stealing these pictures
         for my talk I could show people IronPython running on Linux and also point them to an excellent online tutorial to help them
         learn more about using IronPython than I could cover in a 45-minute talk.
      

      I had a few hesitations about including this reference in my talk. I didn’t know anything about the author except that his
         screen name was Fuzzyman and that he had a personal blog that was subtitled, “the strange and deluded ramblings of a rather
         odd person.” However, I really liked the simple tutorial and I was incredibly happy to have some nice Linux samples to show
         the OSCON crowd. I was most grateful at the time to this person that I’d never met for helping me out of this jam.
      

      Fuzzyman turned out to be Michael Foord and one of the authors of the book you have in your hands now. Since that first online
         tutorial, Michael has been helping people to use IronPython through more online samples, presentations at conferences, and
         through active contributions to the IronPython users mailing list. I couldn’t think of a better way for you to learn how to
         get started and how to get the most out of IronPython than by following along with Michael and Christian in IronPython in Action.
      

      I’ve spent my career building programming languages and libraries targeted at other developers. This means that the software
         I write is used directly by a small number of people and it’s hard for me to explain to non-developers what I do. The only
         reason this kind of stuff has value is because of the useful or fun programs that other developers build using it. This book
         should give you everything you need to get started with IronPython. It will make your development more fun—and more productive.
         Now go out and build something cool!
      

      JIM HUGUNIN

      SOFTWARE ARCHITECT FOR THE .NET FRAMEWORK TEAM AND CREATOR OF IRONPYTHON

      

Preface
      

      
         A programming language is a medium of expression.

         Paul Graham

      

      Neither of us intended to develop with IronPython, least of all write a book on it. It sort of happened by accident. In 2005
         a startup called Resolver Systems[1] set up shop in London. They were creating a spreadsheet platform to tackle the myriad problems caused in business by the
         phenomenal success of spreadsheets. The goal was to bring the proven programming principles of modularity, testability, and
         maintainability to the spreadsheet world—and having an interpreted language embedded in Resolver One was a core part of this.
         As Resolver One was to be a desktop application used by financial organizations, it needed to be built on established and
         accepted technologies, which for the desktop meant .NET.
      

      
         1 See http://www.resolversystems.com/.
         

      

      At the time the choice of interpreted language engines for .NET was limited; even IronPython was only at version 0.7. The
         two developers who comprised Resolver Systems[2] evaluated IronPython and discovered three important facts:
      

      
         2 Giles Thomas, who is CEO and CTO, and William Reade, a hacker with a great mind for complex systems.
         

      

      

      
	Although neither of them was familiar with Python, it was an elegant and expressive language that was easy to learn.

         	The .NET integration of IronPython was superb. In fact it seemed that everything they needed to develop Resolver One was accessible
            from IronPython.
         

         	As a dynamic language, Python was orders of magnitude easier to test than languages they had worked with previously. This
            particularly suited the test-driven approach they were using.
         

      

They decided to prototype Resolver One with IronPython, expecting to have to rewrite at least portions of the application
         in C# at some point in the future. Three years later, Resolver One is in use in financial institutions in London, New York,
         and Paris; and consists of 40,000 lines of IronPython code[3] with a further 150,000 in the test framework. Resolver One has been optimized for performance several times, and this has
         always meant fine tuning our algorithms in Python. It hasn’t (yet) required even parts of Resolver One to be rewritten in
         C#.
      

      
         3 With perhaps as many as three hundred lines of C# in total.
         

      

      We are experienced Python developers but neither of us had used IronPython before. We joined Resolver Systems in 2006 and
         2007, and were both immediately impressed by the combination of the elegance of Python with the power and breadth of the .NET
         framework.
      

      Programming is a creative art. Above all Python strives to empower the programmer. It emphasizes programmer productivity and
         readability, instead of optimizing the language for the compiler. We’re passionate about programming, and about Python. In
         2007 one of us (Michael) set up the IronPython Cookbook[4] to provide concrete examples for the newly converging IronPython community. Shortly afterwards the two of us decided to write
         a book that would help both Python and .NET programmers take advantage of all that IronPython has to offer.
      

      
         4 At http://www.ironpython.info/ and still an excellent resource!
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About this Book
      

      IronPython is a radical project for Microsoft. It is the first project to be released under their Ms-PL (Microsoft Public
         License) open source license. It is also a radically different language from the ones that Microsoft has traditionally promoted
         for the .NET framework. IronPython is an implementation of the popular programming language Python for .NET. Python is an
         open source, object-oriented, dynamically typed language in use by organizations like Google, NASA and Pixar. Python is a
         multi-paradigm language, and brings new possibilities to .NET programmers: not just the added flexibility of dynamic typing,
         but programming styles such as functional programming and metaprogramming. For Python programmers the powerful runtime, with
         its JIT compiler and huge range of .NET libraries, also presents new opportunities.
      

      The goal of IronPython in Action is not just to teach the mechanics of using IronPython, but to demonstrate the power and effectiveness of object-oriented
         programming in the Python language. To this end we cover best practices in API design, testing, and the use of design patterns
         in structured application development. In part this is to dispel the myth that dynamic languages are merely scripting languages;
         but mostly it is to help you make the best of the language and the platform on which it runs.
      

      The addition of Python to the range of languages available as first-class citizens in .NET reflects the changes happening
         in the wider world of programming. No one says it better than Anders Hejlsberg, the architect of C#, when asked by Computer
         World[5] what advice he had for up-and-coming programmers:
      

      
         5 See http://www.computerworld.com.au/index.php/id;1149786074;pp;8.
         

      

      
         Go look at dynamic languages and meta-programming: those are really interesting concepts. Once you get an understanding of
               these different kinds of programming and the philosophies that underlie them, you can get a much more coherent picture of
               what’s going on and the different styles of programming that might be more appropriate for you with what you’re doing right
               now.

         Anyone programming today should check out functional programming and meta-programming as they are very important trends going
               forward.

      

      
Who should read this book?
      

      IronPython in Action is particularly aimed at two types of programmers: Python programmers looking to take advantage of the power of the .NET
         framework or Mono for their applications, and .NET programmers interested in the flexibility of dynamic languages. It assumes
         no experience of either Python or .NET, but does assume some previous programming experience. If you have some programming
         experience, but have never used either of these systems, you should find IronPython in Action an accessible introduction to both Python and .NET.
      

      Just as Python is suited to an enormous range of problem domains, so is IronPython. The book covers a range of different uses
         of IronPython: from web development to application development, one-off scripting to system administration, and embedding
         into .NET applications for extensible architectures or providing user scripting.
      

      
Roadmap
      

      This book contains 15 chapters organized into four parts.

      Part 1 Getting started with IronPython— The first part of the book introduces the fundamental concepts behind developing with IronPython and the .NET framework. Chapter 1 introduces IronPython along with key points of interest for both Python and .NET programmers. It finishes by diving into
         IronPython through the interactive interpreter; a powerful tool for both Python and IronPython. Chapter 2 is a Python tutorial, including areas where IronPython is different from the standard distribution of Python known as CPython.
         Where chapter 2 is particularly valuable to programmers who haven’t used Python before, chapter 3 is an introduction to the .NET framework. As well as covering the basic .NET types (classes, enumerations, delegates, and
         the like), this chapter shows how to use them from IronPython, ending with a more fully featured “Hello World” program than
         created in chapter 1.
      

      Part 2 Core development techniques— The next part extends your knowledge of the Python language and the classes available in the .NET framework. It does this
         by demonstrating a structured approach to Python programming by developing the MultiDoc application using several common design
         patterns. Figure 1 shows MultiDoc as it looks by the end of chapter 6. Along the way we’ll work with Windows Forms, lambdas, properties, decorators, XML, first-class functions, and using C# class
         libraries created in Visual Studio.
      

      This part finishes by covering testing techniques, to which dynamic languages are especially suited, and some more advanced
         Python programming techniques such as metaprogramming. The end of chapter 8 contains valuable information about how IronPython interacts with aspects of the Common Language Runtime, information that
         neither experience with Python nor another .NET framework language alone will furnish you with.
      

      Part 3 IronPython and advanced .NET— The third part takes IronPython into practical and interesting corners of .NET. Each chapter in this part takes an area of
         .NET programming and shows how best to use it from IronPython.
      

      

      
	
Chapter 9— Writing desktop applications using the Windows Presentation Foundation user interface library
         

         	
Chapter 10— System administration, including shell scripting, WMI, and PowerShell
         

         	
Chapter 11— Web development with ASP.NET
         

         	
Chapter 12— Databases and web services
         

         	
Chapter 13— Silverlight
         

      

Part 4 Reaching out with IronPython— The final part of this book takes IronPython out into the wilds of a polyglot programming environment. Chapter 14 shows how to create classes in C# and VB.NET for use from IronPython. Of special importance here is creating APIs that feel
         natural when used from Python, or even giving your objects dynamic behavior. Chapter 15 reverses the situation and embeds IronPython into .NET applications. It tackles the interesting and challenging problem of
         using dynamic objects from statically typed languages like C# and VB.NET. For many .NET programmers, being able to embed IronPython
         into applications, to provide a ready-made scripting solution, is the main use case for IronPython.
      

      Figure 1. The MultiDoc application as it appears in part 2


      [image: ]

      There are also three appendixes. Appendix A covers the basics of C# and explains the core concepts of the language. Appendix B shows how to create your own objects in Python by implementing its protocol methods. Appendix C has a list of online resources with more information about IronPython and dynamic languages on the .NET framework.
      

      
Code conventions and downloads
      

      This book includes copious numbers of examples in Python, C#, and VB.NET. Source code in listings, or in text, is in a fixed-width font to separate it from ordinary text. Additionally, method names in text are also presented using fixed-width font.
      

      C# and VB.NET can be quite verbose, but even Python is not immune to the occasional long line. In many cases, the original
         source code (available online) has been reformatted, adding line breaks to accommodate the available page space in the book.
         In rare cases, even this was not enough, and listings will include line continuation markers. Additionally, comments in the
         source code have been removed from the listings.
      

      Code annotations accompany many of the source code listings, highlighting important concepts. In some cases, numbered bullets
         link to explanations that follow the listing.
      

      IronPython is an open source project, released under the very liberal Ms-PL software license. IronPython is available for
         download, in source or binary form, from the IronPython home page: www.codeplex.com/IronPython.
      

      The source code for all examples in this book is available from Manning’s web site: www.manning.com/foord. It is also available for download from the book’s website: www.ironpythoninaction.com/.
      

      
Author Online
      

      The purchase of IronPython in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
         technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
         your web browser to www.manning.com/ironpythoninaction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
         rules of conduct on the forum.
      

      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
         lest their interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s
         web site as long as the book is in print.
      

      
About the authors
      

      Michael Foord and Christian Muirhead both work full time with IronPython for Resolver Systems, creating a highly programmable
         spreadsheet called Resolver One. They have been using IronPython since before version 1.0 was released.
      

      Michael Foord has been developing with Python since 2002. He blogs and writes about Python and IronPython far more than is
         healthy for one individual and in 2008 was made the first Microsoft MVP for dynamic languages. As the Resolver Systems community
         champion he speaks internationally on Python and IronPython. He maintains the IronPython Cookbook[6] and IronPython-URLs[7] websites, and can also be found online at http://www.voidspace.org.uk/python/weblog/. In the real world he lives in Northampton, UK, with his wife Delia.
      

      
         6 See http://www.ironpython.info/.
         

      

      
         7 See http://ironpython-urls.blogspot.com/.
         

      

      Christian Muirhead began his career in a high-volume database environment, and for the last eight years has been building
         database-driven websites. He has five years of experience working with C#, the .NET framework, and ASP.NET. He has been using
         Python in most of his projects since discovering it in 1999, including building web applications for the BBC using Django.
         Christian is a New Zealander currently exiled in London with his wife Alice.
      

      
About the title
      

      By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
         are things they discover during self-motivated exploration.
      

      Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
         stages of exploration, play, and, interestingly, re-telling of what is being learned. People understand and remember new things,
         which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.
      

      There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
         a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
         it. They need books that aid them in action. The books in this series are designed for such readers.
      

      
About the cover illustration
      

      The caption of the figure on the cover of IronPython in Action reads “An Ironworker.” The illustration is taken from a French book of dress customs, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and illustrated guides
         such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions
         of the world, as well as to the regional costumes and uniforms of French soldiers, civil servants, tradesmen, merchants, and
         peasants.
      

      The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
         when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other,
         and when members of a social class or a trade or a profession could be easily distinguished by what they were wearing.
      

      Dress codes have changed since then and the diversity by region and social status, so rich at the time, has faded away. It
         is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
         traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and
         technical life.
      

      We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
         the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.
      

      
Part 1. Getting started with IronPython
      

      Like all good books, and possibly a few bad ones, this one starts with an introduction. In this section, we cover what IronPython
         is, how it came into being, and why a language like Python is a big deal for .NET. You’ll also get to use the IronPython interactive
         interpreter, which is both a powerful tool and a great way of showing off some of the features of Python. Chapter 2 is a swift tutorial for the Python language. It won’t make you a Python master, but it will prepare you for the examples
         used throughout this book, and serve as a useful reference well beyond. Chapter 3 briefly introduces .NET and then wades into programming with IronPython, taking Windows Forms as the example. While gaining
         an understanding of concepts essential to any real work with IronPython, you’ll be getting your hands dirty with some real
         code. First, though, let’s discuss how IronPython fits in with .NET.
      

      
Chapter 1. A new language for .NET
      

      


	
                  This chapter covers

               
            


	
                  

                  
	An introduction to IronPython

                     	Python and dynamic languages on .NET

                     	The IronPython interactive interpreter

                     	Live object introspection with help and dir

                  


            



The .NET framework was launched in 2000 and has since become a popular platform for object-oriented programming. Its heart
         and soul is the Common Language Runtime (CLR), which is a powerful system including a just-in-time compiler, built-in memory
         management, and security features. Fortunately, you can write .NET programs that take advantage of many of these features
         without having to understand them, or even be aware of them. Along with the runtime comes a vast array of libraries and classes,
         collectively known as the framework classes. Libraries available in the .NET framework include the Windows Forms and Windows
         Presentation Foundation (WPF)[1] graphical user interfaces, as well as libraries for communicating across networks, working with databases, creating web applications, and a great deal more.
      

      
         1 Microsoft’s next generation user interface framework.
         

      

      The traditional languages for writing .NET programs are Visual Basic.NET, C#, and C++.[2] IronPython is a .NET compiler for a programming language called Python, making IronPython a first-class .NET programming
         language. If you’re a .NET developer, you can use Python for tasks from web development to creating simple administration
         scripts, and just about everything in between. If you’re a Python programmer, you can use your favorite language to take advantage
         of the .NET framework.
      

      
         2 In the C++/CLI flavor, which is sometimes still referred to by the name of its predecessor, Managed C++. Use of C# and VB.NET
            is more widespread for .NET programming.
         

      

      IronPython isn’t cast in the same mold as traditional .NET languages, although there are similarities. It’s a dynamically
         typed language, which means a lot of things are done differently and you can do things that are either impossible or more
         difficult with alternative languages. Python is also a multi-paradigm language. It supports such diverse styles of programming
         as procedural and functional programming, object-oriented programming, metaprogramming, and more.
      

      Microsoft has gone to a great deal of trouble to integrate IronPython with the various tools and frameworks that are part
         of the .NET family. They’ve built specific support for IronPython into the following projects:
      

      

      
	
Visual Studio— The integrated development environment
         

         	
ASP.NET— The web application framework
         

         	
Silverlight— A browser plugin for client-side web application programming
         

         	
XNA— [3]The game programming system
            
               3 XNA is a recursive acronym standing for XNA’s Not Acronymed.
               

            

         

         	
Microsoft Robotics Kit— An environment for robot control and simulation
         

         	
Volta— An experimental recompiler from Intermediate Language bytecode (IL) to JavaScript[4]
               4 Allowing you to write client-side code for web applications in Python and have it recompiled to JavaScript for you.
               

            

         

         	
C# 4.0— The next version of C# and the CLR that will include dynamic features using the Dynamic Language Runtime (DLR)
         

      

IronPython is already being used in commercial systems, both to provide a scripting environment for programs written in other
         .NET languages and to create full applications. One great example called Resolver One,[5] a spreadsheet development environment, is how I (Michael) got involved with IronPython. You can see a screenshot of Resolver
         One in figure 1.1. At last count, there were over 40,000 lines of IronPython code in Resolver One, plus around 150,000 more in the test framework
         developed alongside it.
      

      
         5 See http://www.resolversystems.com.
         

      

      Figure 1.1. Resolver One: A full application written in IronPython
      

      [image: ]

      By the end of IronPython in Action, we hope you’ll have learned everything you need to tackle creating full applications with IronPython, integrating IronPython
         as part of another application, or just using it as another tool in your toolkit. You’ll also have explored some of these alternative programming techniques and used a variety of different aspects of the .NET framework. This
         exploration will enable you to make the best use of the Python language and the wealth of classes made available by .NET.
      

      Before we can achieve any of this, an introduction is in order. This chapter introduces IronPython and the Python programming
         language. It explains why Python is a good fit for the .NET framework and will give you a tantalizing taste of what is possible
         with IronPython, via the interactive interpreter.
      

      


      
1.1. An introduction to IronPython
      

      Python is a dynamic language that has been around since 1990 and has a thriving user community. Dynamic languages don’t require
         you to declare the type of your objects, and they allow you greater freedom to create new objects and modify existing ones
         at runtime. On top of this, the Python philosophy places great importance on readability, clarity, and expressiveness. Figure 1.2 is a slide from a presentation[6] by Guido van Rossum, the creator of Python; it explains why readability is so important in Python.
      

      
         6 See http://www.python.org/doc/essays/ppt/hp-training/index.htm.
         

      

      Figure 1.2. A slide from a presentation, emphasizing a guiding philosophy of Python
      

      [image: ]

      IronPython is an open source implementation of Python for .NET. It has been developed by Microsoft as part of making the CLR
         a better platform for dynamic languages. In the process, they’ve created a fantastic language and programming environment.
         But what exactly is IronPython?
      

      1.1.1. What is IronPython?
      

      IronPython primarily consists of the IronPython engine, along with a few other tools to make it convenient to use. The IronPython
         engine compiles Python code into IL, which runs on the CLR. Optionally IronPython can compile to assemblies, which can be
         saved to disk and used to make binary-only distributions of applications.
      

      
         

Assemblies

         Assemblies are .NET libraries or executables. .NET consists of a great deal of these assemblies, in which the framework classes
            live, in the form of dlls.
         

         Because of the memory management and security features that .NET provides, code in .NET assemblies is called managed code.[7]

         
            7 .NET does provide ways to access unmanaged code contained in traditional compiled dlls.
            

         

         Assemblies contain code compiled from .NET languages into Intermediate Language (IL) bytecode. IL is run with the just-in-time
            (JIT) compiler for fast execution.
         

         



      You can see how Python code is compiled and run by the IronPython engine in figure 1.3.
      

      Figure 1.3. How Python code and the IronPython engine fit into the .NET world
      

      [image: ]

      Figure 1.3 shows the state of IronPython version 1.[8] In April 2007, the IronPython team released an early version of IronPython 2, which introduces a radical new development,
         the Dynamic Language Runtime (DLR). The DLR is a hosting platform and dynamic type system taken out of IronPython 1 and turned
         into a system capable of running many different dynamic languages. You’ll be hearing more about the DLR in a short while.
      

      
         8 And as a simplified view, it’s true of IronPython 2 as well, except the IronPython engine is comprised of the Dynamic Language
            Runtime and IronPython-specific assemblies.
         

      

      Because Python is a highly dynamic language, the generated assemblies remain dependent on the IronPython dlls. Despite this,
         they’re still only compiled .NET code, so you can use classes from the .NET framework directly within your code without needing
         to do any type conversions yourself.
      

      Accessing the .NET framework from IronPython code is extremely easy. As well as being a programming language in its own right,
         IronPython can be used for all the typical tasks you might approach with .NET, such as web development with ASP.NET (Active
         Server Pages, the .NET web application framework) or creating smart client applications with Windows Forms or WPF. As an added
         bonus, IronPython also runs on the version of the CLR shipped with Silverlight 2. You can use IronPython for writing client-side
         applications that run in a web browser, something that Python programmers have wanted for years!
      

      IronPython itself is written in C# and is a full implementation of Python. IronPython 1 is Python version 2.4, whereas IronPython
         2 is Python 2.5. If you’ve used Python before, IronPython is Python with none of the core language features missing or changed.
         Let’s make this clear: IronPython is Python.
      

      Development cycles are typically fast with Python. With dynamically typed languages, tasks can be achieved with less code,
         making IronPython ideal for prototyping applications or scripting system administration tasks that you can’t afford to spend
         a lot of time on. Because of the readability and testability of well-written Python code, it scales well to writing large
         applications. You are likely to find that your prototypes or scripts can be refactored into full programs much more easily
         than writing from scratch in an alternative language.
      

      If you’re already developing with .NET, you needn’t do without your favorite tools. Microsoft has incorporated IronPython
         support into Visual Studio 2005 through the Software Development Kit (SDK).[9] You can use Visual Studio to create IronPython projects with full access to the designer and debugger. Figure 1.4 shows Visual Studio being used to create a Windows application with IronPython.
      

      
         9 The Visual Studio SDK is a Microsoft extension that includes IronPython support.
         

      

      Figure 1.4. Generated IronPython code in Visual Studio
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      Visual Studio 2008 integration exists in the form of IronPython Studio,[10] which is implemented through the Visual Studio Shell extensibility framework. IronPython Studio can either be run standalone (without requiring Visual Studio to be installed) or integrated into Visual Studio. It
         includes Windows Forms and WPF designers and is capable of producing binary executables from Python projects. Figure 1.5 shows IronPython Studio running in integrated mode as part of Visual Studio 2008.
      

      
         10http://www.codeplex.com/IronPythonStudio

      

      Figure 1.5. Using the Windows Forms designer with IronPython Studio running in Visual Studio 2008
      

      [image: ]

      An alternative version of .NET called Mono provides a C# compiler, runtime, and a large proportion of the framework for platforms
         other than Windows. IronPython runs fine on Mono, opening up the possibility of creating fully featured cross-platform programs
         using IronPython. Windows Forms is available on Mono, so GUI applications written with IronPython can run on any of the many
         platforms that Mono works on.
      

      IronPython is a particularly interesting project for Microsoft to have undertaken. Not only have they taken a strong existing
         language and ported it to .NET, but they have chosen to release it with a sensible open source license. You have full access
         to IronPython’s source code, which is a good example of compiler design, and you can create derivative works and release them
         under a commercial license. This open approach is at least partly due to the man who initiated IronPython, Jim Hugunin. Let’s
         explore his role in creating IronPython, along with a brief history lesson.
      

      1.1.2. A brief history of IronPython
      

      The standard version of Python is often referred to as CPython, usually in the context of distinguishing it from other implementations;
         the C is because it’s written in C. CPython is overwhelmingly the most-used version of Python, and most Python code is written
         to run on it. CPython isn’t Python, though. Python is a programming language, and CPython is only one implementation (albeit
         an important one).[11]

      
         11 Python has no formal specification. It’s defined by the language reference documentation and from CPython, which is called
            a reference implementation.
         

      

      IronPython isn’t the first version of Python to target an alternative platform to the usual Python runtime. The most famous
         alternative is Jython, Python for the Java Virtual Machine (JVM). The original version of Jython (or JPython, as it was known
         then) was created by a gentleman called Jim Hugunin.
      

      Over the last few years, dynamic languages have been rising in popularity. Their emphasis on concise code and empowering the
         programmer have attracted a great deal of developer interest. But back in 2003, the CLR was widely regarded as being a bad platform for hosting dynamic languages.[12] Jim decided to write an article examining why .NET was so bad for these languages.
      

      
         12 For example, see the InfoWorld article from 2004, “Does .Net have a dynamic-language deficiency?” at http://www.infoworld.com/article/04/02/27/09FEmsnetdynamic_1.html. Ironically, this was written by Jon Udell, who now works for Microsoft.
         

      

      
         

Python implementations

         The most common Python implementation is called CPython. Other implementations include the following:

         IronPython— For .NET.
         

         Jython— For the Java VM.
         

         PyPy— An experimental interpreter compiler toolchain with a multitude of backends (target platforms). It includes an implementation
            of Python in Python.
         

         Stackless— An alternative to CPython that makes minimal use of the C stack and has support for green threads.
         

         tinypy— A minimal implementation of Python in 64KB of code. Useful for embedded systems.
         

         



      His experience with the JVM proved that it was certainly possible to create language runtimes capable of hosting both static and dynamic languages, and he wondered what Microsoft had gotten
         so wrong. Naturally he explored this by attempting a toy implementation of Python. To his horror, he discovered that, contrary
         to popular opinion, Python worked well on .NET. In fact, his initial attempt ran the basic Python benchmark pystone 1.7 times
         faster than CPython.
      

      This outcome was unfortunate because a full language implementation is a major undertaking, and Jim now felt honor bound to
         take his experiment further.
      

      After making his results public, Jim was invited to present them to Microsoft. Microsoft was particularly interested in the
         challenges and difficulties that Jim had encountered because they were keen to make the CLR a better platform for dynamic
         languages.
      

      The upshot is that Jim joined the CLR team at Microsoft. A group of programmers were brought together to work on IronPython
         and, in the process, help improve the CLR. Importantly, Microsoft agreed to keep IronPython open source, with a straightforward
         license similar to the BSD[13] license.
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