

 The Little Elixir & OTP Guidebook

 Benjamin Tan Wei Hao

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 Cover art © 123rf.com

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Karen Miller
Technical development editor: Arthur Zubarev
Technical proofreader: Riza Fahmi
Copy editor: Tiffany Taylor
Proofreader: Melody Dolab
Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 ISBN 9781633430112

 Printed in the United States of America

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Getting started with Elixir and OTP

 Chapter 1. Introduction

 Chapter 2. A whirlwind tour

 Chapter 3. Processes 101

 Chapter 4. Writing server applications with GenServer

 2. Fault tolerance, supervision, and distribution

 Chapter 5. Concurrent error-handling and fault tolerance with links, monitors, and processes

 Chapter 6. Fault tolerance with Supervisors

 Chapter 7. Completing the worker-pool application

 Chapter 8. Distribution and load balancing

 Chapter 9. Distribution and fault tolerance

 Chapter 10. Dialyzer and type specifications

 Chapter 11. Property-based and concurrency testing

 Installing Erlang and Elixir

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. Getting started with Elixir and OTP

 Chapter 1. Introduction

 1.1. Elixir

 1.2. How is Elixir different from Erlang?

 1.2.1. Tooling

 1.2.2. Ecosystem

 1.3. Why Elixir and not X?

 1.4. What is Elixir/OTP good for?

 1.5. The road ahead

 1.5.1. A sneak preview of OTP behaviors

 1.5.2. Distribution for load balancing and fault tolerance

 1.5.3. Dialyzer and type specifications

 1.5.4. Property and concurrency testing

 1.6. Summary

 Chapter 2. A whirlwind tour

 2.1. Setting up your environment

 2.2. First steps

 2.2.1. Running an Elixir program in Interactive Elixir

 2.2.2. Stopping an Elixir program

 2.2.3. Getting help

 2.3. Data types

 2.3.1. Modules, functions, and function clauses

 2.3.2. Numbers

 2.3.3. Strings

 2.3.4. Atoms

 2.3.5. Tuples

 2.3.6. Maps

 2.4. Guards

 2.5. Pattern matching

 2.5.1. Using = for assigning

 2.5.2. Using = for matching

 2.5.3. Destructuring

 2.6. Lists

 2.6.1. Example: flattening a list

 2.6.2. Ordering of function clauses

 2.7. Meet |>, the pipe operator

 2.7.1. Example: filtering files in a directory by filename

 2.8. Erlang interoperability

 2.8.1. Calling Erlang functions from Elixir

 2.8.2. Calling the Erlang HTTP client in Elixir

 2.8.3. One more thing...

 2.9. Exercises

 2.10. Summary

 Chapter 3. Processes 101

 3.1. Actor concurrency model

 3.2. Building a weather application

 3.2.1. The naïve version

 3.3. The worker

 3.3.1. Taking the worker for a spin

 3.4. Creating processes for concurrency

 3.4.1. Receiving messages

 3.4.2. Sending messages

 3.5. Collecting and manipulating results with another actor

 3.5.1. {:ok, result}—the happy path message

 3.5.2. :exit—the poison-pill message

 3.5.3. Other messages

 3.5.4. The bigger picture

 3.6. Exercises

 3.7. Summary

 Chapter 4. Writing server applications with GenServer

 4.1. What is OTP?

 4.2. OTP behaviors

 4.2.1. The different OTP behaviors

 4.3. Hands-on OTP: revisiting Metex

 4.3.1. Creating a new project

 4.3.2. Making the worker GenServer compliant

 4.3.3. Callbacks

 4.3.4. Reflecting on chapter 3’s Metex

 4.4. Exercise

 4.5. Summary

 2. Fault tolerance, supervision, and distribution

 Chapter 5. Concurrent error-handling and fault tolerance with links, monitors, and processes

 5.1. Links: ‘til death do us part

 5.1.1. Linking processes together

 5.1.2. Chain reaction of exit signals

 5.1.3. Setting up the ring

 5.1.4. Trapping exits

 5.1.5. Linking a terminated/nonexistent process

 5.1.6. spawn_link/3: spawning and linking in one atomic step

 5.1.7. Exit messages

 5.1.8. Ring, revisited

 5.2. Monitors

 5.2.1. Monitoring a terminated/nonexistent process

 5.3. Implementing a supervisor

 5.3.1. Supervisor API

 5.3.2. Building your own supervisor

 5.3.3. start_link(child_spec_list)

 5.3.4. Handling crashes

 5.3.5. Full supervisor source

 5.4. A sample run (or, “Does it really work?”)

 5.5. Summary

 Chapter 6. Fault tolerance with Supervisors

 6.1. Implementing Pooly: a worker-pool application

 6.1.1. The plan

 6.1.2. A sample run of Pooly

 6.1.3. Diving into Pooly, version 1: laying the groundwork

 6.2. Implementing the worker Supervisor

 6.2.1. Initializing the Supervisor

 6.2.2. Supervision options

 6.2.3. Restart strategies

 6.2.4. max_restarts and max_seconds

 6.2.5. Defining children

 6.3. Implementing the server: the brains of the operation

 6.3.1. Pool configuration

 6.3.2. Validating the pool configuration

 6.3.3. Starting the worker Supervisor

 6.3.4. Prepopulating the worker Supervisor with workers

 6.3.5. Creating a new worker process

 6.3.6. Checking out a worker

 6.3.7. Checking in a worker

 6.3.8. Getting the pool’s status

 6.4. Implementing the top-level Supervisor

 6.5. Making Pooly an OTP application

 6.6. Taking Pooly for a spin

 6.7. Exercises

 6.8. Summary

 Chapter 7. Completing the worker-pool application

 7.1. Version 3: error handling, multiple pools, and multiple workers

 7.1.1. Case 1: crashes between the server and consumer process

 7.1.2. Case 2: crashes between the server and worker

 7.1.3. Handling multiple pools

 7.1.4. Adding the application behavior to Pooly

 7.1.5. Adding the top-level Supervisor

 7.1.6. Adding the pools Supervisor

 7.1.7. Making Pooly.Server dumber

 7.1.8. Adding the pool Supervisor

 7.1.9. Adding the brains for the pool

 7.1.10. Adding the worker supervisor for the pool

 7.1.11. Taking it for a spin

 7.2. Version 4: implementing overflowing and queuing

 7.2.1. Implementing maximum overflow

 7.2.2. Handling worker check-ins

 7.2.3. Handling worker exits

 7.2.4. Updating status with overflow information

 7.2.5. Queuing worker processes

 7.2.6. Taking it for a spin

 7.3. Exercises

 7.4. Summary

 Chapter 8. Distribution and load balancing

 8.1. Why distributed?

 8.2. Distribution for load balancing

 8.2.1. An overview of Blitzy, the load tester

 8.2.2. Let the mayhem begin!

 8.2.3. Implementing the worker process

 8.2.4. Running the worker

 8.3. Introducing Tasks

 8.4. Onward to distribution!

 8.4.1. Location transparency

 8.4.2. An Elixir node

 8.4.3. Creating a cluster

 8.4.4. Connecting nodes

 8.4.5. Node connections are transitive

 8.5. Remotely executing functions

 8.6. Making Blitzy distributed

 8.6.1. Creating a command-line interface

 8.6.2. Connecting to the nodes

 8.6.3. Supervising Tasks with Tasks.Supervisor

 8.6.4. Using a Task Supervisor

 8.6.5. Creating the binary with mix escript.build

 8.6.6. Running Blitzy!

 8.7. Summary

 Chapter 9. Distribution and fault tolerance

 9.1. Distribution for fault tolerance

 9.1.1. An overview of the Chucky application

 9.2. Building Chucky

 9.2.1. Implementing the server

 9.2.2. Implementing the Application behavior

 9.2.3. Application type arguments

 9.3. An overview of failover and takeover in Chucky

 9.3.1. Step 1: determine the hostname(s) of the machine(s)

 9.3.2. Step 2: create configuration files for each of the nodes

 9.3.3. Step 3: fill the configuration files for each of the nodes

 9.3.4. Step 4: compile Chucky on all the nodes

 9.3.5. Step 5: start the distributed application

 9.4. Failover and takeover in action

 9.5. Connecting nodes in a LAN, cookies, and security

 9.5.1. Determining the IP addresses of both machines

 9.5.2. Connecting the nodes

 9.5.3. Remember the cookie!

 9.6. Summary

 Chapter 10. Dialyzer and type specifications

 10.1. Introducing Dialyzer

 10.2. Success typings

 10.3. Getting started with Dialyzer

 10.3.1. The persistent lookup table

 10.3.2. Dialyxir

 10.3.3. Building a PLT

 10.4. Software discrepancies that Dialyzer can detect

 10.4.1. Catching type errors

 10.4.2. Finding incorrect use of built-in functions

 10.4.3. Locating redundant code

 10.4.4. Finding type errors in guard clauses

 10.4.5. Tripping up Dialyzer with indirection

 10.5. Type specifications

 10.5.1. Writing typespecs

 10.6. Writing your own types

 10.6.1. Multiple return types and bodiless function clauses

 10.6.2. Back to bug #5

 10.7. Exercises

 10.8. Summary

 Chapter 11. Property-based and concurrency testing

 11.1. Introduction to property-based testing and QuickCheck

 11.1.1. Installing QuickCheck

 11.1.2. Using QuickCheck in Elixir

 11.1.3. Patterns for designing properties

 11.1.4. Generators

 11.1.5. Built-in generators

 11.1.6. Creating custom generators

 11.1.7. Recursive generators

 11.1.8. Summary of QuickCheck

 11.2. Concurrency testing with Concuerror

 11.2.1. Installing Concuerror

 11.2.2. Setting up the project

 11.2.3. Types of errors that Concuerror can detect

 11.2.4. Deadlocks

 11.2.5. Reading Concuerror’s output

 11.2.6. Concuerror summary

 11.3. Resources

 11.4. Summary

 Installing Erlang and Elixir

 Getting Erlang

 Installing Elixir, method 1: package manager or prebuilt installer

 Mac OS X via Homebrew and MacPorts

 Linux (Ubuntu and Fedora)

 MS Windows

 Installing Elixir, method 2: compiling from scratch (Linux/Unix only)

 Verifying your Elixir installation

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I came up with this book’s title, I thought it was pretty smart. Having the words Little and Guidebook hinted that the reader could expect a relatively thin volume. This meant I wouldn’t be committed to coming up with a lot of content. That was just as well, because Elixir was a very new language, and there wasn’t much of a community to speak of. It was 2014, Elixir was at version 0.13, and Phoenix was still a web socket library.

 Two years and 300 pages later, much has changed. The language has experienced many updates, and the community has grown. The excitement over Elixir is undoubtable, judging by the number of blog posts and tweets. Companies are also starting to discover and fall in love with Elixir. There’s even renewed interest in Erlang, which is a wonderful phenomenon, if you ask me!

 This book is my humble attempt to spread the word. I learn best by examples, and I assume it’s the same for you. I’ve tried my best to keep the examples interesting, relatable, and, most important, illuminating and useful.

 Having spent more than two years writing this book, I’m thrilled to finally get it into your hands. I hope this book can bring you the same joy I experience when programming in Elixir. What are you waiting for?

Acknowledgments

 I wouldn’t have anything to write about without José Valim and all the hard-working developers who are involved in creating Elixir and building its ecosystem. And without the hard work of Joe Armstrong, Robert Virding, Mike Williams, and all the brilliant people who were part of creating Erlang and OTP, there would be no Elixir.

 I originally intended to self-publish this book, back in 2013. During the writing process, I needed reviewers to keep me honest. I reached out to the (very young) Elixir community and also to other developers via the book mailing list, fully expecting a dismal response. Instead, the response was incredible. So, to Chris Bailey, J. David Eisenberg, Jeff Smith, Johnny Winn, Julien Blanchard, Kristian Rasmussen, Low Kian Seong, Marcello Seri, Markus Mais, Matthew Margolis, Michael Simpson, Norberto Ortigoza, Paulo Alves Pereira, Solomon White, Takayuki Matsubara, and Tallak Tveide, a big “Thank you!” for sharing your time and energy. Thanks, too, to the reviewers for Manning, including Amit Lamba, Anthony Cramp, Bryce Darling, Dane Balia, Jeff Smith, Jim Amrhein, Joel Clermont, Joel Kotarski, Kosmas Chatzimichalis, Matthew Margolis, Nhu Nguyen, Philip White, Roberto Infante, Ryan Pulling, Sergio Arbeo, Thomas O’Rourke, Thomas Peklak, Todd Fine, and Unnikrishnan Kumar.

 Thanks to Michael Stephens and Marjan Bace for giving me the opportunity to write for Manning. Michael probably has no idea how excited I was to receive that first email. This book is much better because of Karen Miller, my tireless editor. She has been with me on this project since day one. The rest of the Manning team has been an absolute pleasure to work with.

 To the wonderful people at Pivotal Labs, whom I have the privilege to work with every day: you all are a constant source of inspiration.

 To the two biggest joys in my life, my long-suffering wife and neglected daughter, thanks for putting up with me.

 To my parents, thank you for everything.

About this Book

 Ohai, welcome! Elixir is a functional programming language built on the Erlang virtual machine. It combines the productivity and expressivity of Ruby with the concurrency and fault-tolerance of Erlang. Elixir makes full use of Erlang’s powerful OTP library, which many developers consider the source of Erlang’s greatness, so you can have mature, professional-quality functionality right out of the gate. Elixir’s support for functional programming makes it a great choice for highly distributed, event-driven applications like internet of things (IoT) systems.

 This book respects your time and is designed to get you up to speed with Elixir and OTP with minimum fuss. But it expects you to put in the required amount of work to grasp all the various concepts. Therefore, this book works best when you can try out the examples and experiment. If you ever get stuck, don’t fret—the Elixir community is very welcoming!

Roadmap

 This book has 3 parts, 11 chapters, and 1 appendix. Part 1 covers the fundamentals of Elixir and OTP:

 	
Chapter 1 introduces Elixir and how it’s different from its parent language, Erlang; compares Elixir with other languages; and presents use cases for Elixir and OTP.

 	
Chapter 2 takes you on a whirlwind tour of Elixir. You’ll write your first Elixir program and get acquainted with language fundamentals.

 	
Chapter 3 presents processes, the Elixir unit of concurrency. You’ll learn about the Actor concurrency model and how to use processes to send and receive messages. You’ll then put together an example program to see concurrent processes in action.

 	
Chapter 4 introduces OTP, one of Elixir’s killer features that’s inherited from Erlang. You’ll learn the philosophy behind OTP and get to know some of the most important parts of OTP that you’ll use as an Elixir programmer. You’ll come to understand how OTP behaviors work, and you’ll build your first Elixir/OTP application—a weather program that talks to a third-party service—using the GenServer behavior.

 Part 2 covers the fault-tolerant and distribution aspects of Elixir and OTP:

 	
Chapter 5 looks at the primitives available to handle errors, especially in a concurrent setting. You’ll learn about the unique approach that the Erlang VM takes with respect to processes crashing. You’ll also build your own supervisor process (that resembles the Supervisor OTP behavior) before you get to use the real thing.

 	
Chapter 6 is all about the Supervisor OTP behavior and fault-tolerance. You’ll learn about Erlang’s “let it crash” philosophy. This chapter introduces a worker-pool application that uses the skills you’ve built up over the previous chapters.

 	
Chapter 7 continues with the worker-pool application: you’ll add more features to make it more full-featured and realistic. In the process, you’ll learn how to build nontrivial Supervisor hierarchies and how to dynamically create Supervisor and worker processes.

 	
Chapter 8 examines distribution and how it helps in load balancing. It walks you through building a distributed load balancer. Along the way, you’ll learn how to build a command-line program in Elixir.

 	
Chapter 9 continues with distribution, but this time, we look at failovers and takeovers. This is absolutely critical in any nontrivial application that has to be resilient to faults. You’ll build a Chuck Norris jokes service that is both fault-tolerant and distributed.

 Part 3 (chapters 10 and 11) covers type specifications, property-based testing and concurrency testing in Elixir. We will look at three tools—Dialyzer, QuickCheck, and Concuerror—and examples in which these tools help you write better and more reliable Elixir code.

 The appendix provides instructions to set up Erlang and Elixir on your machine.

Who should read this book

 You don’t have a lot of time available. You want to see what the fuss is all about regarding Elixir, and you want to get your hands on the good stuff as soon as possible.

 I assume you know your way around a terminal and have some programming experience.

 Although having prior knowledge of Elixir and Erlang would certainly be helpful, it’s by no means mandatory. But this book isn’t meant to serve as an Elixir reference; you should know how to look up documentation on your own.

 I also assume that you’re not averse to change. Elixir moves pretty fast. But then again, you’re reading this book, so I expect this isn’t a problem for you.

How to read this book

 Read this book from front to back. It progresses linearly, and although the earlier chapters are more or less self-contained, later chapters build on the previous ones. Some of the chapters may require rereading, so don’t think you should understand all the concepts on the first reading.

 My favorite kind of programming books are those that encourage you to try out the code; the concepts always seem to sink in better that way. In this book, I do just that. Nothing beats hand-on experience. There are exercises at the end of some of the chapters: do them! This book will be most useful if you have a clear head, an open terminal, and a desire to learn something incredibly fun and worthwhile.

Getting the example code

 This book is full of examples. The latest code for the book is hosted at the publisher’s website, www.manning.com/books/the-little-elixir-and-otp-guidebook; and also in a GitHub repository, https://github.com/benjamintanweihao/the-little-elixir-otp-guidebook-code.

Author Online

 Purchase of The Little Elixir & OTP Guidebook includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/the-little-elixir-and-otp-guidebook. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the author

 Benjamin Tan Wei Hao is a software engineer at Pivotal Labs, Singapore. Deathly afraid of being irrelevant, he is always trying to catch up on his ever-growing reading list. He enjoys going to Ruby conferences and talking about Elixir.

 He is the author of The Ruby Closures Book, soon to be published by the Pragmatic Bookshelf. He also writes for the Ruby column on SitePoint and tries to sneak in an Elixir article now and then. In his copious free time, he blogs at benjamintan.io.

 Part 1. Getting started with Elixir and OTP

 This book begins with the basics of Elixir. In chapter 1, I’ll answer some existential questions about why we need Elixir and what it’s good for. Then, in chapter 2, we’ll dive into a series of examples that demonstrate the various language features.

 Chapter 3 looks at processes, the fundamental unit of concurrency in Elixir. You’ll see how processes in Elixir relate to the Actor concurrency model. If you’ve struggled with concurrency in other languages, Elixir will be like a breath of fresh air.

 I’ll conclude part 1 in chapter 4 with an introduction to OTP. You’ll learn about the GenServer behavior, the most basic but most important of all the behaviors.

 Chapter 1. Introduction

 This chapter covers

 	What Elixir is

 	How Elixir is different from Erlang

 	Why Elixir is a good choice

 	What Elixir/OTP is good for

 	The road ahead

 Just in case you bought this book for medicinal purposes—I’m sorry, wrong book. This book is about Elixir the programming language. No other language (other than Ruby) has made me so excited and happy to work with it. Even after spending more than two years of my life writing about Elixir, I still love programming in it. There’s something special about being involved in a community that’s so young and lively. I don’t think any language has had at least four books written about it, a dedicated screencast series, and a conference—all before v1.0. I think we’re on to something here.

 Before I begin discussing Elixir, I want to talk about Erlang and its legendary virtual machine (VM), because Elixir is built on top of it. Erlang is a programming language that excels in building soft real-time, distributed, and concurrent systems. Its original use case was to program Ericsson’s telephone switches. (Telephone switches are basically machines that connect calls between callers.)

 These switches had to be concurrent, reliable, and scalable. They had to be able to handle multiple calls at the same time, and they also had to be extremely reliable—no one wants their call to be dropped halfway through. Additionally, a dropped call (due to a software or hardware fault) shouldn’t affect the rest of the calls on the switch. The switches had to be massively scalable and work with a distributed network of switches. These production requirements shaped Erlang into what it is today; they’re the exact requirements we have today with multicore and web-scale programming.

 As you’ll discover in later chapters, the Erlang VM’s scheduler automatically distributes workloads across processors. This means you get an increase in speed almost for free if you run your program on a machine with more processors—almost, because you’ll need to change the way you approach writing programs in Erlang and Elixir in order to reap the full benefits. Writing distributed programs—that is, programs that are running on different computers and that can communicate with each other—requires little ceremony.

1.1. Elixir

 It’s time to introduce Elixir. Elixir describes itself as a functional, meta-programming-aware language built on top of the Erlang virtual machine. Let’s take this definition apart piece by piece.

 Elixir is a functional programming language. This means it has all the usual features you expect, such as immutable state, higher-order functions, lazy evaluation, and pattern matching. You’ll meet all of these features and more in later chapters.

 Elixir is also a meta-programmable language. Meta-programming involves code that generates code (black magic, if you will). This is possible because code can be represented as data, and data can be represented as code. These facilities enable the programmer to add to the language new constructs (among other things) that other languages find difficult or even downright impossible.

 This book is also about OTP, a framework to build fault-tolerant, scalable, distributed applications. It’s important to recognize that Elixir essentially gains OTP for free because OTP comes as part of the Erlang distribution. Unlike most frameworks, OTP comes packaged with a lot of good stuff, including three kinds of databases, a set of debugging tools, profilers, a test framework, and much more. Although we only manage to play with a tiny subset, this book will give you a taste of the pure awesomeness of OTP.

 	

 Note

 OTP used to be an acronym for Open Telecom Platform, which hints at Erlang’s telecom heritage. It also demonstrates how naming is difficult in computer science: OTP is a general-purpose framework and has little to do with telecom. Nowadays, OTP is just plain OTP, just as IBM is just IBM.

 	

1.2. How is Elixir different from Erlang?

 Before I talk about how Elixir is different from Erlang, let’s look at their similarities. Both Elixir and Erlang compile down to the same bytecode. This means both Elixir and Erlang programs, when compiled, emit instructions that run on the same VM.

 Another wonderful feature of Elixir is that you can call Erlang code directly from Elixir, and vice versa! If, for example, you find that Elixir lacks a certain functionality that’s present in Erlang, you can call the Erlang library function directly from your Elixir code.

 Elixir follows most of Erlang’s semantics, such as message passing. Most Erlang programmers would feel right at home with Elixir.

 This interoperability also means a wealth of Erlang third-party libraries are at the disposal of the Elixir developer (that’s you!). So why would you want to use Elixir instead of Erlang? There are at least two reasons: the tooling and ecosystem.

 1.2.1. Tooling

 Out of the box, Elixir comes with a few handy tools built in.

Interactive Elixir

 The Interactive Elixir shell (iex) is a read-eval-print loop (REPL) that’s similar to Ruby’s irb. It comes with some pretty nifty features, such as syntax highlighting and a beautiful documentation system, as shown in figure 1.1.

 Figure 1.1. Interactive Elixir has documentation built in.

 [image:]

 There’s more to iex: this tool allows you to connect to nodes, which you can think of as separate Erlang runtimes that can talk to each other. Each runtime can live on the same computer, the same LAN, or the same network.

 iex has another superpower, inspired by the Ruby library Pry. If you’ve used Pry, you know that it’s a debugger that allows you to pry into the state of your program. iex comes with a similarly named function called IEx.pry. You won’t use this feature in the book, but it’s an invaluable tool to be familiar with. Here’s a brief overview of how to use it. Let’s assume you have code like this:

 require IEx

defmodule Greeter do
 def ohai(who, adjective) do
 greeting = "Ohai!, #{adjective} #{who}"
 IEx.pry
 end

end

 The IEx.pry line will cause the interpreter to pause, allowing you to inspect the variables that have been passed in. First you run the function:

 iex(1)> Greeter.ohai "leader", "glorious"
Request to pry #PID<0.62.0> at ohai.ex:6

 def ohai(who, adjective) do
 greeting = "Ohai!, #{adjective} #{who}"
 IEx.pry
 end
 end
Allow? [Yn] Y

 Once you answer Yes, you’re brought into iex, where you can inspect the variables that were passed in:

 Interactive Elixir (1.2.4) - press Ctrl+C to exit (type h() ENTER for help)
pry(1)>who
"leader"
pry(2)> adjective
"glorious"

 There are other nice features, like autocomplete, that you’ll find handy when using iex. Almost every release of Elixir includes useful improvements and additional helper functions in iex, so it’s worth keeping up with the changelog!

Testing with ExUnit

 Testing aficionados will be pleased to know that Elixir has a built-in test framework called ExUnit. ExUnit has some useful features such as being able to run asynchronously and produce beautiful failure messages, as shown in figure 1.2. ExUnit can perform nifty tricks with error reporting mainly due to macros, which I won’t cover in this book. Nonetheless, it’s a fascinating topic that you may want to explore.[1]

 1

 http://elixir-lang.org/getting-started/meta/macros.html.

 Figure 1.2. ExUnit comes with excellent error messages.

 [image:]

mix

 mix is a build tool used for creating, compiling, and testing Elixir projects. It’s also used to manage dependencies, among other things. Think of it like rake in Ruby and lein in Clojure. (Some of the first contributors to mix also wrote lein.) Projects such as the Phoenix web framework have used mix to great effect for things like building generators that reduce the need to write boilerplate.

Standard library

 Elixir ships with an excellent standard library. Data structures such as ranges, strict and lazy enumeration APIs, and a sane way to manipulate strings are just some of the nice items that come packaged in it.

 Although Elixir may not be the best language in which to write scripts, it includes familiar-sounding libraries such as Path and File. The documentation is also a joy to use. Explanations are clear and concise, with examples of how to use the various libraries and functions.

 Elixir has modules that aren’t in the standard Erlang library. My favorite of these is Stream. Streams are basically composable, lazy enumerables. They’re often used to model potentially infinite streams of values.

 Elixir has also added functionality to the OTP framework. For example, it’s added a number of abstractions, such as Agent to handle state and Task to handle one-off asynchronous computation. Agent is built on GenServer (this stands for generic server), which comes with OTP by default.

Metaprogramming

 Elixir has LISP-like macros built into it, minus the parentheses. Macros are used to extend the Elixir language by giving it new constructs expressed in existing ones. The implementation employs the use of macros throughout the language. Library authors also use them extensively to cut down on boilerplate code.

 1.2.2. Ecosystem

 Elixir is a relatively new programming language, and being built on top of a solid, proven language definitely has its advantages.

Thank you, Erlang!

 I think the biggest benefit for Elixir is the years of experience and tooling available from the Erlang community. Almost any Erlang library can be used in Elixir with little effort. Elixir developers don’t have to reinvent the wheel in order to build rock-solid applications. Instead, they can happily rely on OTP and can focus on building additional abstractions based on existing libraries.

Learning resources

 The excitement around Elixir has led to a wellspring of learning resources (not to beat my own drum). There are already multiple sources for screencasts, as well as books and conferences. Once you’ve learned to translate from Elixir to Erlang, you can also benefit from the numerous well-written Erlang books, such as Erlang and OTP in Action by Martin Logan, Eric Merritt, and Richard Carlsson (Manning Publications, 2010); Learn You Some Erlang for Great Good! by Fred Hébert (No Starch Press, 2013); and Designing for Scalability with Erlang/OTP by Francesco Cesarini and Steve Vinoski (O’Reilly Media, 2016).

Phoenix

 Phoenix is a web framework written in Elixir that has gotten a lot of developers excited, and for good reason. For starters, response times in Phoenix can reach microseconds. Phoenix proves that you can have both high performance and a simple framework coupled with built-in support for WebSockets and backed by the awesome power of OTP.

It’s still evolving

 Elixir is constantly evolving and exploring new ideas. One of the most interesting notions I’ve seen arise are the concurrency abstractions that are being worked on. Even better, the Elixir core team is always on the hunt for great ideas from other languages. There’s already (at least!) Ruby, Clojure, and F# DNA in Elixir, if you know where to look.

OEBPS/OEBPS/Images/01fig02.jpg
% elixir foo_test.exs 1.

1) test beautiful failures (FooTest)

match (=) failed
code: [1, 2, 3] = {1, 2, 3}
rhs: {1, 2; 3}
stacktrace:

foo_test.exs:6

Finished in 0.1 seconds (0.09s on load, .01s on tests)
1 tests, 1 failures

Randomized with seed 780311
[bengtan:~/Desktop]
%

OEBPS/OEBPS/Images/common2.jpg

OEBPS/OEBPS/Images/01fig01.jpg
iex(1)> h Enum.map

def map(collection, fun)

Returns a new collection, where each item is the result of
invoking fun on each corresponding item of collection.

For dicts, the function expects a key-value tuple.
Exanples

iex> Enum.map([1, 2, 3], fn(x) -> x * 2 end)
12, 4, 6]

iex> Enum.map(la: 1, b: 2], f({k, v}) -> {k, ~v} end)
fa: -1, b: -2]

iex(2)>]

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/common1.jpg

OEBPS/cover.jpeg
THE LITTLE

@h-aD

GUIDEBOOK

Benjamin Tan Wei Hao

M vanninG

