

 [image: cover]

 Windows Phone 7 in Action

 Timothy Binkley-Jones, Massimo Perga, and Michael Sync

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
 	Development editor:
 	Jeff Bleiel

	
 	20 Baldwin Road
 	Copyeditor:
 	Benjamin Berg

	
 	PO Box 261
 	Technical proofreader:
 	Richard Reukema

	
 	Shelter Island, NY 11964
 	Proofreader:
 	Melody Dolab

	
 	
 	Typesetter:
 	Dennis Dalinnik

	
 	
 	Cover designer:
 	Marija Tudor

ISBN: 9781617290091

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Windows Phone

 Chapter 1. A new phone, a new operating system

 Chapter 2. Creating your first Windows Phone application

 2. Core Windows Phone

 Chapter 3. Fast application switching and scheduled actions

 Chapter 4. Launching tasks and choosers

 Chapter 5. Storing data

 Chapter 6. Working with the camera

 Chapter 7. Integrating with the Pictures and Music + Videos Hubs

 Chapter 8. Using sensors

 Chapter 9. Network communication with push notifications and sockets

 3. Silverlight for Windows Phone

 Chapter 10. ApplicationBar, Panorama, and Pivot controls

 Chapter 11. Building Windows Phone UI with Silverlight controls

 Chapter 12. Manipulating and creating media with MediaElement

 Chapter 13. Using Bing Maps and the browser

 4. Silverlight and the XNA Framework

 Chapter 14. Integrating Silverlight with XNA

 Chapter 15. XNA input handling

 Appendix A. Microsoft Expression Blend for Windows Phone

 Appendix B. Silverlight and the Extensible Application Markup Language

 Appendix C. AppHub and Marketplace

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Windows Phone

 Chapter 1. A new phone, a new operating system

 1.1. Rebooting the Windows Phone platform

 1.2. Windows Phone foundations

 1.2.1. Hardware specs

 1.2.2. A new user interface

 1.2.3. User experience

 1.2.4. Platform APIs and frameworks

 1.2.5. AppHub and the Windows Phone Marketplace

 1.3. Comparing Windows Phone to other mobile platforms

 1.3.1. Windows Mobile

 1.3.2. Apple iOS

 1.3.3. Android

 1.4. The Windows Phone Developer Tools

 1.4.1. Visual Studio for Windows Phone

 1.4.2. Expression Blend for Windows Phone

 1.4.3. XNA Game Studio

 1.4.4. Windows Phone Emulator

 1.4.5. Windows Phone Developer Registration tool

 1.4.6. XAP Deployment tool

 1.4.7. WPConnect

 1.4.8. Isolated Storage Explorer tool

 1.4.9. Marketplace Test Kit

 1.5. Summary

 Chapter 2. Creating your first Windows Phone application

 2.1. Generating the project

 2.1.1. Debugging phone projects

 2.1.2. Application startup

 2.2. Implementing Hello World

 2.2.1. Customizing the startup page

 2.2.2. Adding application content

 2.2.3. Adding the greetings page

 2.3. Interacting with the user

 2.3.1. Touch typing

 2.3.2. Touch gestures

 2.3.3. Adding a toolbar button

 2.4. Page navigation

 2.4.1. Navigating to another page

 2.4.2. Passing parameters between pages

 2.4.3. Changing the Back key behavior

 2.4.4. Navigating with tiles

 2.5. Application artwork

 2.5.1. Customizing the splash screen

 2.5.2. Customizing tile images and application icons

 2.6. Try before you buy

 2.7. Summary

 2. Core Windows Phone

 Chapter 3. Fast application switching and scheduled actions

 3.1. Fast application switching

 3.1.1. Understanding lifetime events

 3.1.2. Creating the Lifetime sample application

 3.2. Launching the application

 3.2.1. Construction

 3.2.2. First-time initialization

 3.3. Switching applications

 3.3.1. Going dormant

 3.3.2. Returning to action

 3.3.3. Tombstoning

 3.4. Out of sight

 3.4.1. Obscuration

 3.4.2. Running behind the lock screen

 3.5. Working on a schedule

 3.5.1. Introducing the Scheduled Action Service

 3.5.2. Scheduling a reminder

 3.5.3. Editing a notification

 3.5.4. Deleting a notification

 3.6. Creating a background agent

 3.6.1. Background agent projects

 3.6.2. Executing work from the background agent

 3.6.3. Scheduling a PeriodicTask

 3.6.4. Scheduled tasks expire after two weeks

 3.6.5. User-disabled tasks

 3.6.6. When things go awry

 3.6.7. Testing background agents

 3.7. Summary

 Chapter 4. Launching tasks and choosers

 4.1. Tasks API

 4.2. Launchers

 4.2.1. Placing a phone call

 4.2.2. Writing an email

 4.2.3. Texting with SMS

 4.2.4. Working with the Marketplace

 4.2.5. Searching with Bing

 4.3. Choosers

 4.3.1. Completed events

 4.3.2. Saving a phone number

 4.3.3. Saving an email address

 4.3.4. Saving a ringtone

 4.3.5. Choosing a phone number

 4.3.6. Choosing an email address

 4.3.7. Choosing a street address

 4.4. UserData APIs

 4.4.1. Searching for contacts

 4.4.2. Reviewing appointments

 4.5. Summary

 Chapter 5. Storing data

 5.1. Creating the High Scores sample application

 5.1.1. Displaying the high score list

 5.1.2. Managing the high score list

 5.1.3. Defining a high score repository

 5.2. Storing data with application settings

 5.3. Serializing data to isolated storage files

 5.3.1. Serializing high scores with the XmlSerializer

 5.3.2. Deleting files and folders

 5.4. Working with a database

 5.4.1. Attributing your domain model

 5.4.2. Defining the data context

 5.4.3. Creating the database

 5.4.4. CRUD operations

 5.4.5. Searching for data

 5.4.6. Compiling queries

 5.4.7. Upgrading

 5.4.8. Adding a read-only database to your project

 5.5. Summary

 Chapter 6. Working with the camera

 6.1. Starting the PhotoEditor project

 6.2. Working with the camera tasks

 6.2.1. Choosing a photo with PhotoChooserTask

 6.2.2. Taking photos with CameraCaptureTask

 6.2.3. Handling picture orientation in CameraCaptureTask

 6.3. Controlling the camera

 6.3.1. Painting with the VideoBrush

 6.3.2. Snapping a photo

 6.3.3. Supporting fast application switching

 6.4. Image editing

 6.4.1. Rendering Silverlight elements

 6.4.2. Saving an image to isolated storage

 6.4.3. Loading an image from isolated storage

 6.5. Summary

 Chapter 7. Integrating with the Pictures and Music + Videos Hubs

 7.1. Working with pictures in the Media Library

 7.1.1. Exposing Pictures

 7.1.2. Saving pictures to the media library

 7.1.3. Retrieving a picture from the media library

 7.2. Editing and sharing from the Pictures Hub

 7.2.1. Extending the Picture Hub

 7.2.2. Extending the Picture Viewer

 7.2.3. Sharing pictures from your Pictures Hub extension

 7.3. Playing and recording with the Music + Videos Hub

 7.3.1. Enabling XNA Framework events

 7.3.2. Building the user interface

 7.3.3. Recording audio

 7.3.4. Playing audio

 7.4. Playing recorded audio in the Music + Videos Hub

 7.4.1. Fulfilling Music + Videos Hub requirements

 7.4.2. Launching from the Music + Videos Hub

 7.5. Playing recorded audio with a background agent

 7.6. Listening to FM radio

 7.7. Summary

 Chapter 8. Using sensors

 8.1. Understanding the sensor APIs

 8.1.1. Data in three dimensions

 8.1.2. Reading data with events

 8.1.3. Polling for data

 8.2. Creating the sample application

 8.2.1. Creating a reusable Bar control

 8.2.2. Designing the main page

 8.2.3. Polling sensor data with a timer

 8.3. Measuring acceleration with the accelerometer

 8.3.1. Hooking up the sensor

 8.3.2. Acceleration in the emulator

 8.3.3. Interpreting the numbers

 8.4. Finding direction with the Compass

 8.4.1. Hooking up the sensor

 8.4.2. Interpreting the numbers

 8.4.3. Calibrating the sensor

 8.5. Pivoting with the Gyroscope

 8.5.1. Hooking up the sensor

 8.6. Wrapping up with the motion sensor

 8.6.1. Building a motion enabled sample application

 8.6.2. Hooking up the sensor

 8.6.3. Interpreting the numbers

 8.7. Summary

 Chapter 9. Network communication with push notifications and sockets

 9.1. Detecting network connectivity

 9.1.1. Reading device settings

 9.1.2. Using the NetworkInterface class

 9.2. Pushing notifications to a phone

 9.2.1. Three types of notifications

 9.2.2. Push notification workflow

 9.2.3. Creating a Push Notification client

 9.2.4. Opening a notification channel

 9.2.5. Looking for navigation parameters

 9.2.6. In-app notifications

 9.2.7. Copying the channel URI

 9.3. Simulating a push notification service

 9.3.1. Issuing HTTP web requests

 9.3.2. Sending toast notifications

 9.3.3. Using notifications to update a tile

 9.4. Tiles without all the pushiness

 9.5. Communicating with sockets

 9.6. Implementing a chat application with TCP sockets

 9.6.1. Building the Chit-chat client

 9.6.2. Connecting to the server

 9.6.3. Receiving messages from the server

 9.6.4. Sending a message

 9.7. Summary

 3. Silverlight for Windows Phone

 Chapter 10. ApplicationBar, Panorama, and Pivot controls

 10.1. Working with the ApplicationBar

 10.1.1. Building an application bar

 10.1.2. Tooling support

 10.1.3. Changing the application bar appearance

 10.1.4. Dynamically updating buttons and menu items

 10.1.5. Designing button icons

 10.2. Improving the scenery with the Panorama control

 10.2.1. Building a panorama application

 10.2.2. Widen up the view

 10.2.3. Remembering where you are

 10.2.4. Adding a background

 10.2.5. Customize the title

 10.3. Pivoting around an application

 10.3.1. Building the sample

 10.3.2. Remembering the current selection

 10.3.3. Generating sample data

 10.3.4. Dynamically loading pages

 10.4. Summary

 Chapter 11. Building Windows Phone UI with Silverlight controls

 11.1. Handling page orientation

 11.1.1. Supported orientations

 11.1.2. Animating orientation transitions

 11.1.3. Changing orientation

 11.2. Building user interfaces

 11.2.1. TextBlock

 11.2.2. Border

 11.2.3. Shapes

 11.2.4. ProgressBar

 11.2.5. Image

 11.3. Receiving Input

 11.3.1. Button

 11.3.2. HyperlinkButton

 11.3.3. CheckBox

 11.3.4. RadioButton

 11.3.5. TextBox

 11.3.6. Slider

 11.4. Silverlight Toolkit for Windows Phone

 11.4.1. ToggleSwitch

 11.4.2. DatePicker and TimePicker

 11.4.3. ContextMenu

 11.4.4. GestureListener

 11.5. Summary

 Chapter 12. Manipulating and creating media with MediaElement

 12.1. Building a media player with MediaElement

 12.1.1. Creating the media player project

 12.1.2. Loading media files

 12.1.3. Media element states

 12.1.4. Controlling volume

 12.2. Manipulating the media stream with MediaStreamSource

 12.2.1. Opening a media source

 12.2.2. Seeking media

 12.2.3. Sampling media

 12.3. Creating custom video

 12.3.1. Initializing the stream source

 12.3.2. Opening the video stream source

 12.3.3. Generating media samples

 12.4. Creating custom audio

 12.4.1. Defining a custom audio stream source

 12.4.2. Opening the audio stream source

 12.4.3. Generating audio samples

 12.5. Streaming media clients

 12.5.1. Using Smooth Streaming

 12.5.2. Streaming limitations

 12.6. Summary

 Chapter 13. Using Bing Maps and the browser

 13.1. Introducing Bing Maps

 13.1.1. Preparing the application

 13.1.2. Launching the Bing Maps application

 13.1.3. Finding directions

 13.2. Location services

 13.2.1. Building the sample application

 13.2.2. Hooking up the service

 13.3. Embedding a Map control

 13.3.1. Mapping the current location with the GeoCoordinateWatcher

 13.3.2. Creating a push pin

 13.4. Using the Bing Maps Services

 13.4.1. Adding the service reference

 13.4.2. Reverse geocoding

 13.5. Building an HTML 5-based application

 13.5.1. Launching Internet Explorer

 13.5.2. Embedding Internet Explorer

 13.5.3. Adding HTML pages to the project

 13.5.4. Matching the Metro style

 13.5.5. Working from Isolated Storage

 13.5.6. Bridging C# and JavaScript

 13.6. Summary

 4. Silverlight and the XNA Framework

 Chapter 14. Integrating Silverlight with XNA

 14.1. Creating a Silverlight with XNA application

 14.1.1. Sharing the graphics device

 14.1.2. The game loop

 14.2. Building the game page

 14.2.1. Understanding models

 14.2.2. Rendering models

 14.2.3. Adding shapes

 14.2.4. Moving around

 14.2.5. Running a demonstration

 14.2.6. Don’t repeat yourself

 14.2.7. Collecting shapes

 14.2.8. It’s the end of the world

 14.3. Implementing a scoreboard with Silverlight

 14.3.1. Adding a scoreboard

 14.3.2. Rendering the texture

 14.4. Summary

 Chapter 15. XNA input handling

 15.1. Implementing pause and resume

 15.1.1. Pausing game play

 15.1.2. Adding the resume button

 15.2. Adding input services

 15.2.1. Choosing an input type

 15.2.2. Creating a thumbstick

 15.2.3. Creating a button pad

 15.2.4. Gaming with gestures

 15.2.5. Moving with the motion sensor

 15.3. Summary

 Appendix A. Microsoft Expression Blend for Windows Phone

 A.1. Expression Blend’s tools and designers

 A.2. Creating an application

 A.3. Adding a shape to the page

 A.4. Animating the ellipse

 A.5. Triggering an animation

 A.6. Summary

 Appendix B. Silverlight and the Extensible Application Markup Language

 B.1. Layout controls

 B.2. Interacting with Silverlight controls

 B.3. Styles and resources

 B.4. Binding controls to model objects

 B.5. Property change notifications

 B.6. Element-to-element binding

 B.7. Converting data during data binding

 B.8. Using templates to build data model UI

 B.9. Summary

 Appendix C. AppHub and Marketplace

 C.1. Registering

 C.2. Submission

 C.2.1. Using the Marketplace Test Kit

 C.2.2. Submission checklist

 C.2.3. Beta testing

 C.2.4. Support for enterprise IT applications

 C.3. Certification

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 We’ve come from different backgrounds and locations to write this book—Michael is a Silverlight MVP who lives in Singapore;
 Massimo lives in Europe and worked at Microsoft on the Windows Phone team; and Timothy lives in the United States and was
 the technical proofreader for other Manning books on WPF and Silverlight. Against all this diversity, our shared passion for
 Silverlight and mobile applications brought us together to produce this book.

 In 2011, nearly half a billion smart phones were sold worldwide. The world is quickly moving to a fully connected society,
 and smart phones like the Windows Phone are positioned to play a major role in how we access data, connect with our family
 and friends, and generally interact with the world around us. Smartphones are almost always with us, know where they are located,
 and are connected to the internet.

 Our job as application developers is to create applications that can interact with our environment, sift through the data,
 and present a simplified view of the world to users overwhelmed with the complexities of the fast-paced, high-tech, digital
 world. We hope our book gives you the knowledge you need to determine location, process sensor input, capture audio and video,
 and scrutinize data to build killer Windows Phone applications that integrate nicely with the operating system and native
 applications.

Acknowledgments

 We would like to thank our family, friends, and coworkers for their support and advice, for being there when we needed someone
 to listen to half-formed ideas, and for understanding when we said “I’d love to, but I have to work on the book.” The chapters
 covering the XNA Framework would have been impossible to write without advice and debugging from Trystan Binkley-Jones.

 Of course none of this would have been possible without Microsoft and the support they provide to the development community.
 In particular, we would like to thank Cliff Simpkins for providing hub screenshots and a developer phone complete with a pre-release
 version of Windows Phone 7.5.

 We would like to thank the following reviewers, who read the manuscript at various stages during development and provided
 invaluable feedback: ‘Anil’ Radhakrishna, Berndt Hamboeck, Dave Campbell, Francesco Goggi, Jedidja Bourgeois, Lester Lobo,
 Loïc Simon, Mark Monster, Nishant Sivakumar, Scott Turner, Steve Grey-Wilson, and Vipul Patel. Special thanks to Richard Reukema
 for his careful technical proofread of the manuscript shortly before it went into production.

 Finally, our thanks to everyone at Manning, especially Marjan Bace, Michael Stephens, and our development editor Jeff Bleiel,
 as well as our production team of Benjamin Berg, Melody Dolab, Dennis Dalinnik, Janet Vail, and Mary Piergies. Your guidance
 and support during the writing and production process were much appreciated.

About this Book

 This book is a hands-on guide to building mobile applications for Windows Phone 7.5 using Silverlight, C#, XNA, or HTML5.
 The Windows Phone 7 operating system is Microsoft’s latest entry into the fiercely competitive mobile market. Windows Phone
 7 is not an upgrade of previous mobile operating systems, Windows Mobile and Windows Phone 6.5. Microsoft has reimagined what
 a mobile operating system should be and completely changed the rules on how to build mobile applications.

 To power the phone, Microsoft started with familiar foundations in Windows CE the .NET Compact Framework, and the Zune user
 interface, adapted the Silverlight and XNA libraries, and then added entirely new APIs for interacting with mobile hardware,
 sensors, and software. In this book we show you how to build user interfaces that adhere to the new Metro design, and how
 to use the new APIs to access the sensors and integrate with the built-in application.

Who should read this book

 This book is written for C# and .NET developers who are familiar with XAML, Silverlight or WPF development. This book does
 not teach you the subtleties of C# or Silverlight/XAML development. That being said, the book avoids many of the more powerful
 features of Silverlight and the Model-View-ViewModel pattern used by many Silverlight developers. Instead we kept the focus
 on the features and APIs that are unique to the phone and endeavored to make the content accessible to those readers who are
 not very familiar with Microsoft technologies.

Roadmap

 This book has four parts, fifteen chapters, and three appendices. We divided the book into sections that introduce Windows
 Phone 7, cover the core concepts of the phone, and discuss enhancements to Silverlight. The final section of the book shows
 you how Silverlight applications can use the powerful graphics API found in the XNA Framework.

 Part 1 is an introduction to Windows Phone, the developments, and the SDK. This part walks you through creating your first application.

 In chapter 1, you’ll discover why Microsoft scrapped the Windows Mobile operating system in favor of a completely new smartphone platform.
 We compare Windows Phone 7 to Android and iOS development and introduce you to Visual Studio and the SDK tools you’ll use
 when building applications.

 In chapter 2 you’ll build your first Windows Phone 7 project which is a traditional Hello World application. We use the Hello World application
 to introduce you to touch events, application tiles, the application bar, and the Windows Phone navigation model.

 Part 2 examines the core Windows Phone platform and what makes developing for the phone different from developing for the desktop
 or the browser. We’ll introduce concepts that are brand new to Windows Phone, as well as concepts that have been adapted to
 operate within the phone’s limitations.

 In chapter 3 you’ll learn about Fast Application Switching, Microsoft’s name for the battery-saving technology that allows a dormant application
 to be quickly restored when a user switches from a foreground application to a background application. You’ll also learn how
 to create background agents that run periodically.

 In chapter 4 you’ll read about how to use Launchers and Choosers to interact with built-in applications such as the phone dialer, email,
 and the People Hub.

 In chapter 5 you’ll store application data using isolated storage and a SQL database.

 In chapter 6 you’ll build an application that captures images from the phone camera and allows a user to make simple modifications to
 the photographs.

 In chapter 7 you’ll integrate an application with the built-in Pictures and Music + Video Hubs.

 In chapter 8 you’ll learn how to obtain data from the phone’s hardware including the accelerometer, compass, gyroscope, and motion sensor.

 In chapter 9 we cover networking topics such as using TCP sockets and Push Notifications. Push Notifications provide the ability for an
 external application or web service to send messages and updates to a particular Windows Phone device.

 Part 3 presents new Silverlight features and controls used to build applications that match the look and feel of Windows Phone.

 In chapter 10 you’ll take a deep dive into the Application Bar, Panorama, and Pivot controls that are unique to the Windows Phone.

 In chapter 11 you’ll learn how to build applications that automatically adjust themselves to match the Metro design, and how to control
 the software keyboard. You will also be introduced to the Silverlight Toolkit for Windows Phone, a Codeplex project from Microsoft.

 In chapter 12 you’ll work with the MediaElement to play audio and video and will learn how to create a Windows Phone 7 Smooth Streaming
 client application.

 In chapter 13 you’ll build a location-aware application using location services and the Bing Maps API. You’ll also build an HTML5-based
 application.

 Part 4 of this book demonstrates how Silverlight and the XNA Framework can be used together to build exciting games and applications.
 The XNA Framework includes a rich library for three-dimensional modeling and rendering.

 In chapter 14 you’ll use the Windows Phone Silverlight and XNA Application template to create a Hello World game, and learn the techniques
 used to render Silverlight user interface elements with the XNA graphics framework. We give you a crash course in XNA concepts
 such as 3D animation techniques, collision detection, and the game loop.

 In chapter 15 you’ll continue working with the sample game and learn how to use sprites for 2D graphics and animation. You’ll use raw touches,
 gestures, the motion sensor, and the Mouse API to let a game player wander around the game world.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are used in the text to provide additional information about the code. We’ve tried to format the code so
 that it fits within the available page space in the book by adding line breaks and using indentation carefully. Sometimes,
 however, very long lines include line continuation markers.

 The source code presented in the book can be downloaded from the publisher’s web site at www.manning.com/WindowsPhone7inAction.

 The source code is organized into folders for each chapter, with sub-folders for each project. The source code contains the
 completed sample projects for each chapter. Many of the sample projects link to image files shipped as part of the SDK. We
 chose not to redistribute the image files and instead used Visual Studio’s linked file features when adding the images to
 the projects.

Software or hardware requirements

 The Windows Phone Developer Tools, which Microsoft provides as a free download, are required to compile and execute the sample
 projects presented in this book. The Windows Phone Developer Tools install an express edition of Visual Studio 2010 configured
 with the phone development tools. If you already have a retail edition of Visual Studio 2010 installed on your computer, the
 phone development tools will be installed as a plug-in to the IDE. Windows Phone projects can be written in both C# and Visual
 Basic.

 We’ll use the express edition throughout the book for the screen shots and sample code. Code and user interface design features
 will work the same in the retail editions of Visual Studio 2010. You can download the Windows Phone Developer Tools from http://create.msdn.com.

 A physical Windows Phone is not required. The Windows Phone Developer Tools include the Windows Phone 7 Emulator. With a few
 exceptions, the samples in this book will run in the emulator exactly as they would on a physical phone. The samples that
 integrate with the Music + Videos Hub and the samples that make use of the compass and gyroscope will require a physical device.
 If you want to use a physical device, a $99 yearly membership to the App Hub is required to unlock your phone.

 The Windows Phone 7 Emulator should work on most recent computers. The emulator performs better if your computer has a CPU
 with virtualization extensions like most of the recent AMD and Intel CPUs. The emulator works best with a DirectX 10 or later
 graphics card with a WDDM 1.1 driver. The system requirements for the Windows Phone tools are

	Supported operating systems: Windows Vista (x86 and x64) with Service Pack 2—all editions except Starter Edition; Windows
 7 (x86 and x64)—all editions except Starter Edition.

 	Installation requires 4 GB of free disk space on the system drive.

 	3 GB RAM.

 	Windows Phone Emulator requires a DirectX 10 or above capable graphics card with a WDDM 1.1 driver.

Author Online

 Purchase of Windows Phone 7 in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/WindowsPhone7inAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Windows Phone 7 in Action is captioned “A soldier.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume compendium
 of regional dress customs and uniforms published in France. Each illustration is finely drawn and colored by hand. The rich
 variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years
 ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was
 easy to identify where they lived and what their trade, station in life, or rank in the army was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Introducing Windows Phone

 Welcome to Windows Phone 7 in Action, where you’ll learn all about building applications for Microsoft’s newest mobile operating system. This book is divided
 into four parts; part 1 introduces you to the Windows Phone and the software development kit, and walks you through creating your first application.

 In chapter 1 you’ll discover why Microsoft scrapped the Windows Mobile operating system in favor of a completely new smartphone platform.
 We compare Windows Phone 7 to Android and iOS development and introduce you to Visual Studio and the SDK tools you’ll use
 when building applications.

 In chapter 2 you’ll build your first Windows Phone 7 project, which is a traditional Hello World application. We use the Hello World application
 to introduce you to touch events, application tiles, the application bar, and the Windows Phone navigation model.

Chapter 1. A new phone, a new operating system

	

 This chapter covers

	
Introducing Windows Phone 7

 	Understanding the hardware

 	Porting applications from other platforms

 	Developing for Windows Phone

	

Windows Phone 7 is more than a new operating system. Windows Phone 7 is an operating system, a powerful hardware platform,
 and several web services, all combined to provide a great experience for the busy Life Maximizer. Life Maximizer is the term used by Microsoft to represent the target consumers of the new phone. Life Maximizers demand the most from their
 phones as they balance work and life, and use their phones to manage their busy lifestyles. Windows Phone 7 was designed to
 let users get tasks done faster and allow them to get back to the important aspects of their life.

 The Windows Phone 7 operating system is Microsoft’s latest entry into the fiercely competitive mobile market. Windows Phone
 7 is not an upgrade of previous mobile operating systems, such as Windows Mobile and Windows Phone 6.5. Microsoft has reimagined
 what a mobile operating system should be and completely changed the rules on how to build mobile applications. To power the
 phone, Microsoft started with familiar foundations in Windows CE, the .NET Compact Framework and the Zune user interface,
 adapted the Silverlight and XNA libraries, and added entirely new APIs for interacting with mobile hardware, sensors, and
 software. To enable developers, Microsoft created a toolbox composed of Visual Studio, Expression Blend, and XNA Game Studio.

 The first version of the Windows Phone 7 operating system was released in October 2010. Microsoft followed the release with
 an update in the early months of 2011, adding copy/paste support and performance improvements. At the Mix 2011 conference,
 Microsoft unveiled details about the Windows Phone 7.5 operating system and the corresponding Windows Phone SDK 7.1. The Windows
 Phone 7.1 SDK includes several new features, such as fast application switching, background agents, access to the camera hardware,
 and a built-in SQL CE database engine. Windows Phone 7.5 also exposes new compass, gyroscope, and motion sensors.

	

Note

 We find it a bit confusing that the new operating system is versioned with 7.5 while the corresponding SDK is versioned 7.1.
 Throughout this book we’ll refer to both operating system releases as Windows Phone 7 or just Windows Phone. We’ll provide notes and tips when discussing features that are only available in the Windows 7.1 SDK.

	

In this chapter we present the motivation behind this revolution in the Microsoft OS for mobile devices. We detail how Windows
 Phone 7 differs from previous mobile operating systems so that you can assess the capabilities of the new platform and understand
 how existing designs and code can be ported. We describe the minimum hardware specifications common to the different Windows
 Phone 7 devices so that developers can confidently target equipment that will always be available. Finally, we introduce the
 developers tools that you’ll use throughout the book to build applications and games targeted at the Windows Phone.

1.1. Rebooting the Windows Phone platform

 Microsoft has been building operating systems for mobile devices and phones for more than a decade. One of the earliest versions
 was Pocket PC 2000, running on palm-sized devices like the Hewlett-Packard Jornada and the Compaq iPAQ. These early devices
 were not smartphones, but were portable computers or PDAs targeted for business users and didn’t initially include phone hardware
 or network connectivity. Users interacted with these devices using a stylus on a single-point touch screen and an awkward
 hardware-input panel. Pocket PC 2000 was initially built on Windows CE 3.0, and later added the first version of the .NET
 Compact Framework. Device manufacturers often created custom builds of the operating system tightly coupled to the specific
 hardware on a single device—making operating system upgrades impossible for most users.

 Until Windows Phone 7, the most recent versions of Microsoft’s operating system for mobile devices have been Windows Mobile
 6 and Windows Phone 6.5. Windows Mobile 6 is built on Windows CE 5 and includes the .NET Compact Framework 2.0 SP1. Windows Mobile 6 comes in three editions—Standard,
 Professional, and Classic.

	

Note

 For the remainder of the book, when the term Windows Phone is used without a version number, we are referring to Windows Phone 7.5. We’ll use Windows Mobile or Windows Phone 6.5 to refer to older versions of the phone operating system.

	

Mobile phones have evolved rapidly and incredibly in the past several years. Once intended solely for business users, mobile
 phones are now predominately consumer devices, and in many cases have replaced land-line services as a user’s only phone.
 Smartphones now include radios, music players, cameras, global positioning systems, compasses, and accelerometers. Single-point
 touch screens that required a stylus have been replaced with multi-point touch screens that work with your fingertips. Awkward
 hardware input panels have been replaced with software input panels and optional hardware keypads.

 Apple led the smartphone revolution with the release of the iPhone in June of 2007, and the introduction of the App Store
 in July of 2008. Google followed with the introduction of the Android OS and Market in October of 2008. Since then, Microsoft
 has seen declines in Windows Mobile’s market share as consumers and device manufacturers turn to smartphones running new mobile
 operating systems.

 But phone hardware and mobile operating systems aren’t all that have changed in the last decade. It’s now an online world
 where users are in nearly constant contact with friends, co-workers, family, that high school buddy they haven’t seen in 20
 years, and random followers they’ve never met. Applications that once worked only with local copies of documents and data
 are now interacting with services running in the cloud. And with all this online presence and exposure, security is extremely
 important. It’s no longer acceptable to give software full access to hardware, or to data stored in the file system.

 Application development platforms and paradigms have changed as well. With the rise of web applications, a whole new style
 of application development came into power. Rich interactive applications are the norm, complete with animations, dynamic
 transitions, and cool graphics. User interfaces are no longer built by developers, but are created by designers who use a
 whole different set of tools.

 Microsoft set out to build a new Windows Phone operating system designed to meet the demands of the altered smartphone market.
 Microsoft realized they would need a new operating system, backed by a reliable hardware platform, to compete with Apple and
 Android.

1.2. Windows Phone foundations

 Every application developer must understand the hardware and software platforms where their code will run. This is true if
 you’re building desktop applications, web services, or mobile applications. When building Windows Phone applications, you
 should understand the hardware specifications and know how much memory you can expect to be installed, as well as the supported screen
 resolutions. Windows Phone provides a unique look and feel that developers should respect when designing user interfaces.
 You should also know how to leverage or extend the features of built-in applications and services. In this section we talk
 about the Windows Phone hardware specifications, user interface look and feel, native applications, and the platform APIs
 you will use to build your own applications.

 1.2.1. Hardware specs

 With the redesign of the operating system, Microsoft has taken the opportunity to define clear hardware specifications for
 Windows Phone 7 devices. All devices must meet the minimum hardware requirements.

 On Windows Phone 7, all devices have the same screen resolution of 800 x 480 pixels. The physical screen dimensions will also
 be similar across all devices. A common screen size and resolution allows the same user interface to be reused across different
 Windows Phone devices.

 All Windows Phone devices will provide the user a full four-point multi-touch experience. The operating system provides a
 software-based input panel (SIP) to enable text input for devices without a physical keyboard. Of course, phone manufacturers can add additional user input
 mechanisms, such as a landscape or portrait physical keyboard, but extra hardware won’t be allowed to add extra features to
 the standard typing. The touch screen is capacitive to give the best experience possible on a mobile device.

 Windows Phone 7 devices come with an accelerometer, a compass, and an optional gyroscope. Developers access the raw data from
 each sensor or use the motion sensor APIs, which wrap up all three sensors into a simple-to-use library. The operating system
 detects when a device has been rotated from portrait to landscape orientation. The sensors can also be used as an input mechanism
 for controlling an application or game. The sensors are covered in more detail in chapters 8, 13, and 15.

 An FM radio is a mandatory requirement for Windows Phone 7 devices. A user can access the radio from the Zune application
 in the Music + Videos Hub, but developers can also create a customizable FM radio player using the FMRadio class in the Microsoft.Devices.Radio namespace. Programming the FM radio is demonstrated in chapter 7.

 The minimum hardware specifications also require the following:

	An Assisted GPS receiver to enable location-aware applications

 	A camera having a minimal resolution of 5 Megapixels

 	A GPU supporting DirectX 9 acceleration

 	Either an 800 MHz or a 1 GHz ARMv7 CPU

 	A minimum of 256 MB of RAM and 8 GB of Flash storage

The Windows Phone hardware specification requires certain hardware buttons to be present. Many of these keys are not exposed
 to developers, and applications cannot detect when they are pressed. The physical buttons which will be mandatory for all Windows Phone devices are

	Volume Up

 	Volume Down

 	Back

 	Start

 	Search

 	Camera

 	Power On/Off

A minimum hardware specification has simplified the task of developing a Windows Phone application. These common hardware
 specifications have allowed Microsoft to create an emulator that will cover most of the possible user interactions with the
 device, so that you can test most experiences in your emulator.

 Microsoft defined a clear hardware specification to ensure users and developers have the same experience on every device.
 Microsoft also designed a new user interface to provide a clean look and feel.

 1.2.2. A new user interface

 Windows Phone has completely redesigned the user interface moving from an icon-centric style to the new graphical interface
 previously developed for the Zune HD media player. Microsoft designers spent some time looking for a proper way to present
 content and realized an intuitive style already existed. Signage and typography in railway or metro stations, shown in figure 1.1, are concise ways to present information to people coming from different cultures. Why not port this concept to Windows Phone?

 Figure 1.1. Common signs in railways and airports. On the left are icons integrated with text, while on the right only icons are used.

 [image:]

 The second pillar of the user interface is full-touch support. The success of devices implementing a full-touch user interface
 is due to the immediacy provided by a natural way of interacting with applications. Concise indications and full-touch come
 to play an important role in developing applications as you must align to these concepts when you design your user interface.

 One well-known defect of the applications written for Windows Mobile was the lack of a common user experience. We’ve seen
 applications very aligned to the template generated by Visual Studio but implemented with a user interface that was built
 to match the iPhone user experience. This is confusing to the user, and you should make every effort to match your creations to the Metro design language adopted by the native Windows Phone applications.

 Last but not least, when developing your application, you want to target as many users or customers as possible. Globalizing
 an application doesn’t mean just making it right in terms of functionality, but also in terms of contents. We strongly recommend
 avoiding expressions or icons that don’t have a global meaning. Also remember that your application will be inspected by Microsoft
 prior to publishing it to the Marketplace. There are Marketplace guidelines about what content can and cannot be presented
 through a Windows Phone application.

 1.2.3. User experience

 Understanding the user experience of the Windows Phone is important to building an application that feels like it belongs
 on the phone. The built-in applications, called hubs, establish the look and feel of the device and provide integration and extensibility points for third-party applications.

	

Note

 Only the start experience and the application list are accessible on the emulator.

	

The hubs are built with two new UI controls named Panorama and Pivot. You can read more about using the Silverlight versions of Panorama and Pivot in chapter 10.

Start Experience

 The Start Experience is the home screen for Windows Phone. It’s the screen displayed when the phone is started. When the user presses the Windows
 button, they are brought back to the start screen. A user can pin their favorite applications, games, and contacts to the
 start screen so that they can launch them quickly.

 The images displayed on the start screen are named tiles. Tiles can be dynamic, displaying information relevant to an application. The tile for the Weather Channel application updates
 with the latest weather conditions. Other tiles are badged when notifications are ready to be viewed. The tiles for email
 display a count of new mail messages. The image and title that appear in the start screen are provided by the developer.

 Applications can pin multiple tiles to the start screen, each launching to a different spot within the application. Tiles
 can be updated from code running on the phone, or remotely using the Microsoft Push Notification Service. See chapters 2 and 9 for more details on tiles.

Application List

 The Application List is where all native and third-party applications appear. It doesn’t matter whether the application is built using Silverlight
 or XNA, or is a native application built by Microsoft, the device vendor, or the mobile carrier. The developer determines
 the application title and icon that are shown the application list. Games aren’t listed in the application list.

Games Hub

 If your project is declared to be a game, it’ll be listed in the Games Hub instead of the Application List. The Games Hub is divided into several areas:

	The Collection view lists the games installed on the device.

 	The Spotlight view displays news from Xbox Live.

 	The Xbox Live view provides access to the user’s Xbox Live gamer profile.

 	The Requests view lists Xbox Live invitations, messages and notifications.

The game title and icons displayed in the collection are declared by the game developer.

Music + Video Hub

 The Music + Video Hub is the central place where you can find all music, video, and podcast activity on the device. The Music
 + Videos hub is divided into four areas:

	Zune is the central point for playing music, videos, podcasts, and radio, as well as the Zune Marketplace.

 	History contains the list of music, videos, playlists, artists, podcasts, and FM radio stations that you recently played.
 This includes media played by third party applications that integrate with the hub.

 	New contains the list of new music, videos, or podcasts that you synced to the phone or downloaded from Zune Marketplace.
 Third-party applications can add items to the New view.

 	Apps contains the list of Music + Videos hub applications that are installed on the device. Third-party media applications
 are listed here.

The Music + Video Hub provides a few integration points to third-party applications. You can read more about the Music + Video
 Hub in chapter seven.

Pictures Hub

 The Pictures Hub is the place where you can see all of your photos from different sources. All photos that you took with your
 mobile phone, synced from the computer, downloaded from the internet, or opened in email will be included in the Pictures
 Hub. The Pictures Hub is integrated with Windows Live and Facebook, and all photos that you uploaded to those websites will
 be displayed in the Pictures Hub as well. It also shows the latest photos of your friends in Facebook.

 The Pictures Hub can be extended by third-party applications that implement phone editing or sharing features. Extending the
 Pictures Hub is described in chapter 7.

People Hub

 The People Hub is the contacts application for Windows Phone. Here’s where you find the list of contacts, along with their
 phone numbers and addresses. The People Hub also displays the latest status and activity obtained from Windows Live and Face-book.
 Third-party applications can read data directly from the contacts database, and can read and write contacts data with launchers and choosers, which are introduced in the next section.

 Unlike the other hubs, the People Hub is not extensible by Windows Phone applications. The People Hub can be extended by registering
 new activity streams with the user’s Windows Live account. Activity streams, a format for syndicating data from social networking applications, are beyond the scope of this book. You can read more
 about activity streams by visiting http://activitystrea.ms.

 Understanding Windows Phones hubs and how they can be extended is key for building applications that enhance user productivity
 and are integrated with the operating system. Third-party integrated applications and extensions build on top of the features
 exposed in the platform APIs and frameworks.

 1.2.4. Platform APIs and frameworks

 Applications run in a sandbox and can’t use native APIs, communicate with other processes, or read from the file system. These
 security measures limit the ability to integrate with native applications and databases. To ease these limitations, native
 applications also expose various integration points. These integration points come in the form of launchers, choosers, and extensions. The platform also provides access to network APIs so that applications can use web services external to the device. Finally,
 facilities such as location and notification services are available to third-party developers.

Launchers

 Launchers allow your code to activate a native or built-in application. Data can be passed to the launched application. When
 the native application is launched, your application is deactivated. Launchers are provided to activate the phone dialer,
 media player, web browser, and other native applications. Launchers are the only way to initiate a phone call or send an SMS.
 Launchers are covered in depth in chapter 4.

Choosers

 Choosers return data to an application. Choosers are provided to retrieve email addresses, phone numbers, physical addresses,
 and photographs. Choosers also launch a native application, resulting in the deactivation and/or termination of your application.
 Choosers are also covered in chapter 4.

Extensions

 Extensions allow an application to integrate their features seamlessly into a native application. For example, the Pictures
 Hub allows photo editing applications to be launched from its Apps list and from the share and apps menus. The Music + Video
 Hub allows applications to appear in its Apps list.

Networking

 Windows Phone provides HTTP and sockets network communication. HTTP communication is implemented in the WebClient, HttpWebRequest, and HttpWebResponse classes found in the System.Net namespace. TCP and UDP communications are implemented with the Socket class in the System.Net.Sockets namespace. Networking is covered in depth in chapter 9.

Notifications

 The Microsoft Push Notification Service provides an API where a phone user can subscribe to a set of custom events. The notification
 events are defined by third-party applications and must be sent from a dedicated web service implemented by the application
 developer. Notifications are displayed to the phone user either on the application’s tile in the start experience, at the
 top of the screen as a toast notification, or within the running application. We show you how to build a notification application
 in chapter 9.

Location

 The Location service uses data from the wireless and cellular networks and GPS to allow you to create location-aware applications.
 Calls to the location cloud service are abstracted behind the GeoCoordinateWatcher class in the System.Device.Location namespace. In chapter 13 we show you how to use GeoCoordinateWatcher.

Custom Web Services

 Beyond providing access to business application data or social networks, custom web services can be used to overcome some
 of the limitations of phones. If you have a suite of applications that share data, you can use a web service to share the
 data between them.

 1.2.5. AppHub and the Windows Phone Marketplace

 AppHub is the portal where Windows Phone and Xbox Live Indie Game developers can find the tools and resources for building
 and selling applications and games. The AppHub is where you can download the developer tools. You can also find sample code,
 tutorials, and documentation. If you need advice on a tricky problem, you can submit a question to the developer forums on
 the AppHub. The AppHub is located at http://create.msdn.com.

 Before you can deploy and debug your application on a real phone, or publish your application to the Windows Phone Marketplace,
 you must purchase a yearly subscription to the AppHub. Depending on what you’re building, you might consider waiting to purchase
 an AppHub subscription until your application is nearly complete, using the emulator to build and test your application.

	

Tip

 College students receive free AppHub subscriptions through the Dream-Spark program. DreamSpark is a Microsoft program providing students with free copies of retail development tools and servers. You
 can learn more about DreamSpark at http://dreamspark.com.

	

Once the application has been developed, it must go through an approval process run by Microsoft before being published to
 the Windows Phone Marketplace. This will ensure that the application conforms to Microsoft requirements for a Windows Phone
 7 application. Microsoft’s requirements are detailed in the document Application Certification Requirements for Windows Phone available from the AppHub and MSDN. More details about marketplace registration are provided in the appendix.

1.3. Comparing Windows Phone to other mobile platforms

 This book is written primarily for developers who have some experience working with C# and Silverlight. We focus on the features
 and APIs that have been introduced specifically for the phone, or have been modified to fit the phone’s unique characteristics.

 If you already use Silverlight to develop applications, you know it has matured rapidly over the last few years. Silverlight’s
 success as a lightweight application framework makes it ideal to use as the application framework on the mobile device. The
 Silver-light Framework is rich in features and has been proven with browser and desktop applications. You’ll find many of
 the familiar features and tools. The Windows Phone version of Silverlight is version 4.

	

Note

 The initial version of Windows Phone 7 used Silverlight 3. Silverlight 4 shipped with Windows Phone 7.5.

	

If you’ve used XNA Game Studio, than you know that XNA is built to run on the Xbox, Windows, and the Zune—Windows Phone is
 just one more platform. Existing developers can easily build and port games for the new devices. Windows Phone introduces
 a new game development model by integrating Silverlight with XNA, which we introduce in the final section of the book.

 If you’re not already a Silverlight developer, don’t despair. The appendix includes a quick primer for Silverlight and Manning
 has published several books on C# and Silverlight, which you can find at http://mng.bz/44nv.

 But what if you’re coming to Windows Phone from some other background? How does the Windows Phone differ from Windows Forms
 on Windows Mobile? Where do you begin when porting your iOS or Android application? In this section we get you started with
 Windows Phone development by identifying the similarities and differences with other application platforms.

 1.3.1. Windows Mobile

 If you’re a third-party Windows Mobile developer, then you should know that Windows Phone 7 is not Windows Mobile. You can’t
 use C++ or the Win32 API. If you were hoping that Windows Phone 7 would be backward-compatible with Windows Mobile, then you’re
 out of luck. You may have heard that there is a native SDK, but for now, only device manufacturers, mobile operators, and
 other special partners get to use it.

 Windows Mobile has been a popular operating system because of its extreme customization. Windows Phone is a new operating
 system and not an upgrade, and applications written for Windows Mobile and Windows Phone 6.5 aren’t compatible with Windows
 Phone 7. Windows Mobile development environments and tools are also incompatible. In this section we illustrate the major
 changes which will impact every developer with previous experience in Windows Mobile development, starting with the user interface.

Building Your Interface

 Windows Mobile applications are built with C/C++ and low-level API calls. Neither of these options is available to the Windows
 Phone developer, who must now use Silver-light and Extensible Application Markup Language (XAML). XAML is a user interface design language first introduced with the Windows Presentation Foundation (WPF) and is a core component
 of Silverlight. XAML enables separation between the user interface and the code that implements application logic.

Drawing on the Screen

 Windows Mobile provided two native APIs for drawing text and graphics to the screen:

	Graphics Device Interface (GDI)

 	DirectX

Both the APIs are low-level and have a steep learning curve for the standard developer. Being native libraries, neither GDI
 nor DirectX can be called from managed code running on Windows Phone. The XNA Framework is the managed alternative to DirectX,
 implementing many of the features available in the DirectX libraries. Silverlight makes use of DirectX and your application
 will be hardware-accelerated behind the scenes.

Changes in the User Experience

 The Today Screen has been the traditional Windows Mobile shell or system UI. Windows Mobile allows the system shell to be
 replaced by custom user interfaces built by device manufacturers and third-party developers. Windows Phone provides a new
 simplified user interface that can’t be replaced or modified. The simplified user interface has removed some traditional controls,
 while introducing new ones designed for touch interaction and to simplify creating user interfaces.

Soft Keys Support

 One change you need to keep in mind if you’re porting a Windows Mobile application to Windows Phone is the full lack of soft
 keys, including the hardware buttons associated with them. Another change in the user interface is the menus: they’re now
 basic and most of them are no more than a list.

Changes in the API

 The biggest strength of Windows Mobile was probably its broad compatibility in terms of the programming paradigm and APIs
 with Windows desktop. This meant that every Windows desktop developer was a potential Windows Mobile developer. On the other
 hand, Windows Mobile compatibility with the Win32 API brought an additional complexity to the application.

Memory Management

 A major problem with Windows Mobile applications was the possibility of memory leaks. Because C/C++ requires code to manage
 its own memory, if the developer allocates memory but forgets to release it during the execution, memory is lost until the
 process is terminated. Managed applications written in C# or Visual Basic use the .NET Compact Framework’s garbage collector, which is an invisible helper taking care of memory management.

Access to the File System

 Windows Mobile applications have almost full access to all the files available on the file system. This capability is useful
 when developing document centric applications such as a text editor, so that the user will be able to open a file on the file
 system regardless of its location. On the other hand, a malicious application could corrupt the file system and prevent other
 applications from being executed, or sniff out sensitive data.

 For this reason, each Windows Phone application is locked into a sandbox and can only access files in a reserved portion of
 persistent memory named isolated storage. There’s no way for a Windows Phone application to access data contained in isolated
 storage belonging to a different application. Isolated storage is covered in chapter 5. Applications requiring access to the whole file system cannot be developed under Windows Phone 7.

Multitasking

 The Inter-Process Communication (IPC) API of Windows Mobile allows different processes to synchronize with each other using
 the operating system primitives. Sometimes this was useful as Windows Mobile is a multitasking operating system.

 Windows Phone doesn’t support true multitasking, at least for applications developed in XNA or Silverlight. Fast application
 switching allows multiple applications to be resident in memory, but only the foreground application is running, with the
 background applications remaining in a dormant state. Applications can use background agents to perform limited types of work
 when an application isn’t in the foreground. Fast application switching and background agents are described in chapter 3.

 One new possibility for mobile developers, previously available only to desktop developers, is the thread pool. As the creation
 of a thread is an expensive process and most of the threads are usually blocked on some event, a set of threads is provided
 by the operating system which will be automatically re-used during the execution. All this is provided for free by the system;
 in addition to being easy to use, it’s a good practice when designing for new systems that could embed multi-core processors.
 A thread pool automatically scales to multi-core processors without need of code rework.

 As you can see, Windows Phone 7 is a completely different platform from Windows Mobile 6. The work required to port existing
 Windows Mobile applications is no different from that required to port iOS or Android applications.

 1.3.2. Apple iOS

 At first glance, you might think there’s little in common between developing applications for an iOS device and the Windows
 Phone. On one platform you use Objective-C to write native applications; on the other you use C# to write managed applications.
 It’s our opinion that programming languages and frameworks are just tools in a developer’s tool belt, and good developers
 make use of several languages and frameworks. If you look beyond the languages and development environments, many of the fundamental concepts exist on both platforms.

 Apple and Microsoft both provide free development tools complete with device simulators. Each platform has a set of style
 guides that applications should adhere to, and also requires a fee-based subscription in order to deploy an application to
 an actual device. Each platform has a certification process and application store.

Building Your Interface

 One thing to keep in mind when porting an iOS application is the differences in the user interface guidelines. You shouldn’t
 build an application with an iOS look and feel for the Windows Phone. An iOS application ported to Windows Phone will have
 a different look and feel, user interaction model, and workflow. Don’t use chrome and icons from iOS.

 Is your application built with controls from UIKit or does it use OpenGL ES? The Silverlight Framework offers many of the
 controls and widgets provided by UIKit. On the other hand, OpenGL developers will use the XNA Framework to build applications.
 You can also mix application style widgets from Silverlight with XNA type graphics.

 You’ll build your Silverlight applications using Visual Studio and Expression Blend. Your views will be built using XAML,
 an XML-based markup language. XAML can be coded by hand in Visual Studio’s text editor, or with the visual editors in Visual
 Studio and Expression Blend. The core Silverlight Framework, along with the Silver-light Toolkit, provides most of the controls
 you’ll need when building an application.

 If your iOS application uses Core Animation, you’ll use the animation and storyboard classes from the System.Windows.Media.Animation namespace. Learn to use Expression Blend’s storyboard editor if you’re doing anything beyond very simple animations.

 Silverlight applications are navigation-style applications, driven by the Navigation-Service. The NavigationService is similar to the UINavigationController provided by the iOS framework, and is used to move between different pages or views. The difference is that all Silverlight
 applications use the NavigationService, even the simplest one-page application.

Interacting with the Native Applications

 Like the iOS SDK, Windows Phone provides limited access to the phone dialer, SMS text application, and email. On iOS, the
 phone dialer is accessed via the tel URL; on Windows Phone you use the PhoneCallTask. MFMessageComposeViewController and MFMail-ComposeViewController are replaced by SmsComposeTask and EmailComposeTask.

 The iOS SDK provides access to the address book with several classes in the Address Book and Address Book UI frameworks. On
 Windows Phone, read-only access to the address book is exposed via classes in the Microsoft.Phone.UserData namespace. Developers can also interact with the contacts database via a few launchers and choosers. You can prompt the user
 to choose a phone number, email address, or physical address with PhoneNumberChooserTask, EmailAddressChooserTask, and Address-ChooserTask. You can prompt the user to save a phone number or email address with SavePhoneNumberTask and SaveEmailAddressTask. You can read more about launchers and choosers in chapter 4.

Using the Sensors

 Like the iPhone, the Windows Phone has an accelerometer, a compass, and a camera. Some Windows Phones will also have a gyroscope.
 The initial release of Windows Phone didn’t provide an API to access the compass, and access to the camera was limited. The
 Windows Phone SDK 7.1 introduced new APIs providing access to the compass, gyroscope, and the camera. Using the CameraCaptureTask, you can launch the camera UI and manipulate a photo taken by the user. You can take direct control of the camera by using
 either the PhotoCamera or the WebCamera APIs. Working with the camera is covered in chapter 6.

 The Windows Phone complement to UIAccelerometer is the Microsoft.Devices.Accelerometer class. The Compass class is the Windows Phone equivalent to CLHeading. Motion detection features available by the Core Motion framework are provided by the Gyroscope and Motion classes. We show you how to use the accelerometer, compass, and gyroscope in chapter 8.

Storing Data

 An iOS application can store its data in user defaults, on the file system, or in a database. The iOS SDK makes use of SQLite
 for local database management.

 Windows Phone does provide limited access to the file system. An application can only write files to isolated storage, and
 it doesn’t have access to any other part of the file system. Isolated storage is similar to an iOS application’s Documents
 folder.

 Another way to store data is with the IsolatedStorageSettings class. This class is similar to the NSUserDefaults class in the iOS framework. It’s intended to be used to store lightweight data objects and is ideal for storing user preferences.
 One difference between NSUserDefaults and IsolatedStorageSettings is that IsolatedStorage-Settings isn’t global, and settings can’t be shared between different applications.

 Applications can store data in a Microsoft SQL Server Compact (SQL CE) database using the LINQ to SQL framework. SQL CE is
 a lightweight database engine designed to run on mobile devices. The database files are written to a special folder in isolated
 storage, and can’t be shared with other applications. Chapter 5 demonstrates how to use each of the data storage options in your applications.

Media

 The iPhone uses the iPod software to play audio and video files. The iOS SDK’s Media Player framework allows developers to
 access the library of music and videos, and to play them inside their applications. The Windows Phone uses Zune for its media
 library, shown to users in the Music + Videos Hub. Applications can play audio and video files with the MediaPlayerLauncher class. Developers can also access the Zune library using the classes in the Microsoft.Xna.Framework.Media namespace. The MediaPlayer class can be used to play songs, whereas the videos are played with the VideoPlayer class.

 Silverlight applications can use the XNA Media framework, but Silverlight also has its own media controls in the System.Windows.Media namespace. The MediaElement control supports audio and video playback. The MediaStreamSource class can be used to manipulate audio and video playback or implement custom media containers.

 The Windows Phone equivalent to the iOS’s AVAudioRecorder class is the Microsoft.Xna.Framework.Audio.Microphone class.

 Your application can integrate into the Music + Video Hub on the phone. Your application can be listed in the hub’s Apps list,
 and media played by your application can be shown in the Hub’s History page.

 You can read about working with media, the microphone, and the Music + Videos Hub in chapters 7 and 12.

Networking

 The iOS SDK offers several classes to enable network programming. A developer can choose to program using raw sockets, or
 higher-level protocols such as HTTP and FTP. Windows Phone offers sockets and HTTP support. You perform HTTP communication
 using the HttpWebRequest, HttpWebResponse, and WebClient classes in the System .Net namespace. Sockets programming is performed using classes in the System.Net.Sockets namespace.

 Microsoft has also built a notification service to allow web services to push notifications to a phone. Developers host their
 own web service or other application. The application service sends notifications to Microsoft’s Push Notification web service,
 which forwards notification to a user’s phone. Interaction with the notification service is covered in chapter 9.

 As you can see, there are many differences between the iOS and the Windows Phone. There are also a number of similarities
 and developers should be able to port most applications to the Windows Phone.

 1.3.3. Android

 Android is another new mobile operating system that’s capturing the hearts and minds of consumers and developers. Like the
 iPhone, there are many differences and many similarities between Android and Windows Phone. Like Windows Phone, Android runs
 on a number of different devices, from a number of different manufacturers. Unlike Microsoft, Google hasn’t dictated the hardware
 specifications to the manufacturers and developers must design and test on several hardware configurations.

 Android and Microsoft both provide free development tools complete with device emulators. But Microsoft requires a fee-based
 subscription in order to deploy an application to an actual device and certifies each application before making the application
 available in the application store.

Runtime Environment

 Windows Phone applications run in the .NET Compact Framework Common Language Runtime (CLR). The CLR is a virtual machine much
 like the Dalvik virtual machine that runs on Android. Applications are packaged in .xap files, which is a zip archive of the assemblies and resources
 in the application bundle.

 Windows Phone places restrictions on the types of applications that can run on the phone. Android allows for background services
 and UI-less broadcast receivers to run on the phone. Though Windows Phone offers limited support for background operations
 with background agents, there’s no counterpart to broadcast receivers. Windows Phone doesn’t have system alarms or triggers
 that can directly start an idle application. Windows Phone applications can be started when the user responds to alarms, reminders,
 or notifications.

 The Android runtime does limit access to certain features with manifest permissions. Windows Phone uses a similar security
 model by requiring capabilities to be declared in the application manifest.

Building Your Interface

 Android activities are loosely related to pages in a Silverlight application. Each page of an application has a unique address,
 and the operating system will use a page’s URL to navigate to the page when restarting an application. Developers can use
 a page’s URL when creating tiles. Android programmers declare user interfaces with layout XML files. Silverlight user interfaces
 are declared using XAML, which are also XML files. If your application makes use of the Android MapView, you’ll want to read about using the Bing Maps control in chapter 13.

Interactions with Other Applications

 Android applications interact with built-in and third-party applications by dispatching intents. Windows Phone applications interact with native applications via launchers and choosers. Windows Phone doesn’t allow third-party
 applications to interact with other third party applications, and developers can’t create new launchers or choosers.

 Android applications can replace, enhance, or just eavesdrop on another application by handling the same Intents. Windows
 Phone doesn’t allow third-party applications to replace any launchers or choosers. You can enhance the Pictures Hub and the
 Music + Videos Hub by implementing the required extensibility points.

 Android applications share data by exposing and using content providers. On Windows Phone, there’s no way to expose your data
 to other applications, and other applications can’t use your data.

 You can read about the available launchers and choosers in chapter 4.

Storing Data

 An Android application can store its data in shared preferences, on the file system, or in a database. Android uses SQLite
 for local database management.

 Windows Phone does provide limited access to the file system. An application can only write files to isolated storage, and
 doesn’t have access to any other part of the file system. You can’t read another application’s files, and other applications
 can’t read your application’s files.

 Another way to store data is with the IsolatedStorageSettings class. This class is similar to SharedPreferences in the Android framework. It’s intended to be used to store lightweight data objects and is ideal for storing user preferences. One difference between SharedPreferences and IsolatedStorageSettings is that IsolatedStorage-Settings is not global, and settings can’t be shared between different applications.

 Window Phone applications can store data in a Microsoft SQL Server Compact (SQL CE) database using the LINQ to SQL framework.
 SQL CE is a lightweight database engine designed to run on mobile devices. The database files are written to a special folder
 in isolated storage, and can’t be shared with other applications. Chapter 5 demonstrates how to use each of the data storage options in your applications.

Media

 Android uses the OpenCORE library to play and record audio files and to play video files. OpenCORE’s MediaPlayer class is used to play audio, whereas the VideoView widget is used to play video. Windows Phone applications use the MediaPlayer-Launcher class to play audio and video files. Developers can also access the Zune library using the classes in the Microsoft.Xna.Framework.Media namespace. The MediaPlayer class can be used to play songs, whereas the videos are played with the VideoPlayer class.

 Silverlight applications can use the XNA Media framework, but Silverlight also has its own media controls in the System.Windows.Media namespace. The MediaElement control supports audio and video playback. The MediaStreamSource class can be used to manipulate audio and video playback or implement custom media containers.

 The Windows Phone equivalent to the Android’s MediaRecorder class is the Microsoft.Xna.Framework.Audio.Microphone class. You can read about working with media, the microphone, and the Music + Videos Hub in chapters 7 and 12.

Networking

 Android provides a variety of networking options starting with raw sockets and extending through HTTP. Windows Phone offers
 sockets and HTTP support. You perform HTTP communication using the HttpWebRequest, HttpWebResponse, and WebClient classes in the System.Net namespace. Sockets programming is performed using classes in the System.Net.Sockets namespace.

 Android networking applications can use the ConnectivityManager class to determine the status of the device’s network connection. To check the network status of a Windows Phone, you use
 the NetworkInterface class in the Microsoft.Net.Network-Information namespace.

 In many ways, the Android platform is more like the Windows Mobile platform. Applications have fewer restrictions and can
 replace core features of the operating system. Manufacturers can change the look and feel of the operating system. Developers
 must build for a wider range of hardware configurations. There are going to be a certain set of applications that can’t be
 ported to Windows Phone because of the limitations enforced by the operating system.

1.4. The Windows Phone Developer Tools

 In order to build great applications, you need great development tools. Microsoft’s Visual Studio and Expression Blend fit
 the description. Visual Studio 2010 Express for Windows Phone joins the list of no-cost express developer tools provided by
 Microsoft. XNA Game Studio has been updated to build Windows Phone games. And a no-cost version of Expression Blend 4 has
 been made available. All of these tools have been packaged together and are distributed as the Windows Phone Developer Tools which can be freely downloaded from the AppHub at http://create.msdn.com.

 1.4.1. Visual Studio for Windows Phone

 The Windows Phone Developer Tools installs an express edition of Visual Studio 2010 configured with the phone development
 tools. If you already have a retail edition of Visual Studio 2010 installed on your computer, the phone development tools
 will be installed as a plug-in to the IDE. Windows Phone projects can be written in both C# and Visual Basic.

