

 inside front cover

 Core concepts for time series forecasting

 	

 Core concept

 	

 Chapter

 	

 Section

 	

 Defining time series

 	

 1

 	

 1.1

 	

 Time series decomposition

 	

 1

 	

 1.1

 	

 Forecasting project lifecycle

 	

 1

 	

 1.2

 	

 Baseline models

 	

 2

 	

 2.1

 	

 Random walk model

 	

 3

 	

 3.1

 	

 Stationarity

 	

 3

 	

 3.2.1

 	

 Differencing

 	

 3

 	

 3.2.1

 	

 Autocorrelation function (ACF)

 	

 3

 	

 3.2.3

 	

 Forecasting a random walk

 	

 3

 	

 3.3

 	

 Moving average model: MA(q)

 	

 4

 	

 4.1

 	

 Reading the ACF plot

 	

 4

 	

 4.1.1

 	

 Forecasting with MA(q)

 	

 4

 	

 4.2

 	

 Autoregressive model: AR(p)

 	

 5

 	

 5.2

 	

 Partial autocorrelation function (PACF)

 	

 5

 	

 5.3.1

 	

 Forecasting with AR(p)

 	

 5

 	

 5.4

 	

 ARMA(p,q) model

 	

 6

 	

 6.2

 	

 General modeling procedure

 	

 6

 	

 6.4

 	

 Akaike Information Criterion (AIC)

 	

 6

 	

 6.4.1

 	

 Q-Q plot

 	

 6

 	

 6.4.3

 	

 Ljung-Box test

 	

 6

 	

 6.4.3

 	

 Residual analysis

 	

 6

 	

 6.4.4

 	

 Forecasting with ARMA(p,q)

 	

 6

 	

 6.6

 	

 ARIMA(p,d,q) model

 	

 7

 	

 7.1

 	

 Forecasting with ARIMA

 	

 7

 	

 7.3

 Continues on inside back cover

 [image:]

 Time Series Forecasting in Python

 Marco Peixeiro

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Bobbie Jennings

 	

 Technical development editor:

 	

 Al Krinker

 	

 Review editor:

 	

 Adriana Sabo

 	

 Production editor:

 	

 Andy Marinkovich

 	

 Copy editor:

 	

 Andy Carroll

 	

 Proofreader:

 	

 Katie Tennant

 	

 Technical proofreader:

 	

 Karsten Strøbaek

 	

 Typesetter:

 	

 Dennis Dalinnik

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617299889

 dedication

 To my wife, my parents, and my sister, even though you will probably never read it.

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Time waits for no one

 1 Understanding time series forecasting

 1.1 Introducing time series

 Components of a time series

 1.2 Bird’s-eye view of time series forecasting

 Setting a goal

 Determining what must be forecast to achieve your goal

 Setting the horizon of the forecast

 Gathering the data

 Developing a forecasting model

 Deploying to production

 Monitoring

 Collecting new data

 1.3 How time series forecasting is different from other regression tasks

 Time series have an order

 Time series sometimes do not have features

 1.4 Next steps

 2 A naive prediction of the future

 2.1 Defining a baseline model

 2.2 Forecasting the historical mean

 Setup for baseline implementations

 Implementing the historical mean baseline

 2.3 Forecasting last year’s mean

 2.4 Predicting using the last known value

 2.5 Implementing the naive seasonal forecast

 2.6 Next steps

 3 Going on a random walk

 3.1 The random walk process

 Simulating a random walk process

 3.2 Identifying a random walk

 Stationarity

 Testing for stationarity

 The autocorrelation function

 Putting it all together

 Is GOOGL a random walk?

 3.3 Forecasting a random walk

 Forecasting on a long horizon

 Forecasting the next timestep

 3.4 Next steps

 3.5 Exercises

 Simulate and forecast a random walk

 Forecast the daily closing price of GOOGL

 Forecast the daily closing price of a stock of your choice

 Part 2. Forecasting with statistical models

 4 Modeling a moving average process

 4.1 Defining a moving average process

 Identifying the order of a moving average process

 4.2 Forecasting a moving average process

 4.3 Next steps

 4.4 Exercises

 Simulate an MA(2) process and make forecasts

 Simulate an MA(q) process and make forecasts

 5 Modeling an autoregressive process

 5.1 Predicting the average weekly foot traffic in a retail store

 5.2 Defining the autoregressive process

 5.3 Finding the order of a stationary autoregressive process

 The partial autocorrelation function (PACF)

 5.4 Forecasting an autoregressive process

 5.5 Next steps

 5.6 Exercises

 Simulate an AR(2) process and make forecasts

 Simulate an AR(p) process and make forecasts

 6 Modeling complex time series

 6.1 Forecasting bandwidth usage for data centers

 6.2 Examining the autoregressive moving average process

 6.3 Identifying a stationary ARMA process

 6.4 Devising a general modeling procedure

 Understanding the Akaike information criterion (AIC)

 Selecting a model using the AIC

 Understanding residual analysis

 Performing residual analysis

 6.5 Applying the general modeling procedure

 6.6 Forecasting bandwidth usage

 6.7 Next steps

 6.8 Exercises

 Make predictions on the simulated ARMA(1,1) process

 Simulate an ARMA(2,2) process and make forecasts

 7 Forecasting non-stationary time series

 7.1 Defining the autoregressive integrated moving average model

 7.2 Modifying the general modeling procedure to account for non-stationary series

 7.3 Forecasting a non-stationary times series

 7.4 Next steps

 7.5 Exercises

 Apply the ARIMA(p,d,q) model on the datasets from chapters 4, 5, and 6

 8 Accounting for seasonality

 8.1 Examining the SARIMA(p,d,q)(P,D,Q)m model

 8.2 Identifying seasonal patterns in a time series

 8.3 Forecasting the number of monthly air passengers

 Forecasting with an ARIMA(p,d,q) model

 Forecasting with a SARIMA(p,d,q)(P,D,Q)m model

 Comparing the performance of each forecasting method

 8.4 Next steps

 8.5 Exercises

 Apply the SARIMA(p,d,q)(P,D,Q)m model on the Johnson & Johnson dataset

 9 Adding external variables to our model

 9.1 Examining the SARIMAX model

 Exploring the exogenous variables of the US macroeconomics dataset

 Caveat for using SARIMAX

 9.2 Forecasting the real GDP using the SARIMAX model

 9.3 Next steps

 9.4 Exercises

 Use all exogenous variables in a SARIMAX model to predict the real GDP

 10 Forecasting multiple time series

 10.1 Examining the VAR model

 10.2 Designing a modeling procedure for the VAR(p) model

 Exploring the Granger causality test

 10.3 Forecasting real disposable income and real consumption

 10.4 Next steps

 10.5 Exercises

 Use a VARMA model to predict realdpi and realcons

 Use a VARMAX model to predict realdpi and realcons

 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia

 11.1 Importing the required libraries and loading the data

 11.2 Visualizing the series and its components

 11.3 Modeling the data

 Performing model selection

 Conducting residual analysis

 11.4 Forecasting and evaluating the model’s performance

 11.5 Next steps

 Part 3. Large-scale forecasting with deep learning

 12 Introducing deep learning for time series forecasting

 12.1 When to use deep learning for time series forecasting

 12.2 Exploring the different types of deep learning models

 12.3 Getting ready to apply deep learning for forecasting

 Performing data exploration

 Feature engineering and data splitting

 12.4 Next steps

 12.5 Exercise

 13 Data windowing and creating baselines for deep learning

 13.1 Creating windows of data

 Exploring how deep learning models are trained for time series forecasting

 Implementing the DataWindow class

 13.2 Applying baseline models

 Single-step baseline model

 Multi-step baseline models

 Multi-output baseline model

 13.3 Next steps

 13.4 Exercises

 14 Baby steps with deep learning

 14.1 Implementing a linear model

 Implementing a single-step linear model

 Implementing a multi-step linear model

 Implementing a multi-output linear model

 14.2 Implementing a deep neural network

 Implementing a deep neural network as a single-step model

 Implementing a deep neural network as a multi-step model

 Implementing a deep neural network as a multi-output model

 14.3 Next steps

 14.4 Exercises

 15 Remembering the past with LSTM

 15.1 Exploring the recurrent neural network (RNN)

 15.2 Examining the LSTM architecture

 The forget gate

 The input gate

 The output gate

 15.3 Implementing the LSTM architecture

 Implementing an LSTM as a single-step model

 Implementing an LSTM as a multi-step model

 Implementing an LSTM as a multi-output model

 15.4 Next steps

 15.5 Exercises

 16 Filtering a time series with CNN

 16.1 Examining the convolutional neural network (CNN)

 16.2 Implementing a CNN

 Implementing a CNN as a single-step model

 Implementing a CNN as a multi-step model

 Implementing a CNN as a multi-output model

 16.3 Next steps

 16.4 Exercises

 17 Using predictions to make more predictions

 17.1 Examining the ARLSTM architecture

 17.2 Building an autoregressive LSTM model

 17.3 Next steps

 17.4 Exercises

 18 Capstone: Forecasting the electric power consumption of a household

 18.1 Understanding the capstone project

 Objective of this capstone project

 18.2 Data wrangling and preprocessing

 Dealing with missing data

 Data conversion

 Data resampling

 18.3 Feature engineering

 Removing unnecessary columns

 Identifying the seasonal period

 Splitting and scaling the data

 18.4 Preparing for modeling with deep learning

 Initial setup

 Defining the DataWindow class

 Utility function to train our models

 18.5 Modeling with deep learning

 Baseline models

 Linear model

 Deep neural network

 Long short-term memory (LSTM) model

 Convolutional neural network (CNN)

 Combining a CNN with an LSTM

 The autoregressive LSTM model

 Selecting the best model

 18.6 Next steps

 Part 4. Automating forecasting at scale

 19 Automating time series forecasting with Prophet

 19.1 Overview of the automated forecasting libraries

 19.2 Exploring Prophet

 19.3 Basic forecasting with Prophet

 19.4 Exploring Prophet’s advanced functionality

 Visualization capabilities

 Cross-validation and performance metrics

 Hyperparameter tuning

 19.5 Implementing a robust forecasting process with Prophet

 Forecasting project: Predicting the popularity of “chocolate” searches on Google

 Experiment: Can SARIMA do better?

 19.6 Next steps

 19.7 Exercises

 Forecast the number of air passengers

 Forecast the volume of antidiabetic drug prescriptions

 Forecast the popularity of a keyword on Google Trends

 20 Capstone: Forecasting the monthly average retail price of steak in Canada

 20.1 Understanding the capstone project

 Objective of the capstone project

 20.2 Data preprocessing and visualization

 20.3 Modeling with Prophet

 20.4 Optional: Develop a SARIMA model

 20.5 Next steps

 21 Going above and beyond

 21.1 Summarizing what you’ve learned

 Statistical methods for forecasting

 Deep learning methods for forecasting

 Automating the forecasting process

 21.2 What if forecasting does not work?

 21.3 Other applications of time series data

 21.5 Keep practicing

 Appendix. Installation instructions

 index

 front matter

preface

 Working at a bank, I quickly realized how time is an important factor. Interest rates vary over time, people’s spending varies over time, asset prices vary over time. Yet I found most people, including me, were uncomfortable with time series. So I decided to learn time series forecasting.

 It turned out to be harder than expected because every resource I found was in R. I am comfortable with Python, and Python is undoubtedly the most popular language for data science in the industry. While R constrains you to statistical computing, Python allows you to code websites, perform machine learning, deploy models, build servers, and more. Therefore, I had to translate a lot of R code into Python to learn time series forecasting. That’s when I recognized the gap, and I was lucky enough to be given the opportunity to write a book about it.

 With this book, I hope to create a one-stop reference for time series forecasting with Python. It covers both statistical and machine learning models, and it also discusses automated forecasting libraries, as they are widely used in the industry and often act as baseline models. This book greatly emphasizes a hands-on, practical approach, with various real-life scenarios. In real life, data is messy, dirty, and sometimes missing, and I wanted to give readers a safe space to experiment with those difficulties, learn from them, and easily transpose those skills into their own projects.

 This book focuses on time series forecasting. Of course, with time series data, we can also perform classification or anomaly detection, but this book addresses only forecasting to keep the scope manageable.

 In each chapter, you will find exercises you can use to practice and hone your skills. Each exercise comes with a full solution on GitHub. I strongly suggest that you take the time to complete them, as you will gain important practical skills. They offer a great way to test your knowledge, see what you need to revisit in a given chapter, and apply modeling techniques in new scenarios.

 After reading the chapters and completing the exercises, you will have all the necessary tools to tackle any forecasting project with confidence and great results. Hopefully, you will also gain the curiosity and motivation to go beyond this book and become a time series expert.

acknowledgments

 First, I would like to thank my wife, Lina. Thank you for listening when I struggled, for your feedback on large parts of the book, and for correcting my grammar. You supported me from the very beginning and ultimately made this possible.

 Next, I want to acknowledge my editor, Bobbie Jennings. You made the entire process of writing my first book so easy, it makes me want to write a second one! You taught me a lot about writing and keeping my audience in mind, and you weren’t scared to challenge parts of the book, which greatly improved it.

 To all the reviewers—Amaresh Rajasekharan, Ariel Andres, Biswanath Chowdhury, Claudiu Schiller, Dan Sheikh, David Paccoud, David R King, Dinesh Ghanta, Dirk Gomez, Gary Bake, Gustavo Patino, Helder C. R. Oliveira, Howard Bandy, Igor Vieira, Kathrin Björkelund, Lokesh Kumar, Mary Anne Thygesen, Mikael Dautrey, Naftali Cohen, Oliver Korten, Paul Silisteanu, Raymond Cheung, Richard Meinsen, Richard Vaughan, Rohit Goswami, Sadhana Ganapathiraju, Shabie Iqbal, Shankar Swamy, Shreesha Jagadeesh, Simone Sguazza, Sriram Macharla, Thomas Joseph Heiman, Vincent Vandenborne, and Walter Alexander Mata López—thank you. You all helped make this a better book.

 Finally, a special thank you goes to Brian Sawyer. I guess you saw something in me. You gave me this incredible opportunity to write a book, and you trusted me the entire time. Writing a book is a dream come true for me, and it’s happened because you started this entire process. I am very grateful for that.

about this book

 This book was written to help data scientists master time series forecasting and help professionals transition from R to Python for time series analysis. It starts off by defining time series data and highlighting the uniqueness of working with that type of data (for example, you cannot shuffle the data). It then walks through developing baseline models and explores when forecasting does not make sense.

 Subsequent chapters dive deep into forecasting techniques and gradually increase the complexity of the models, from statistical models to deep learning models. Finally, the book covers automated forecasting libraries, which can greatly speed up the forecasting process. This will give you a sense of what is being done in the industry.

Who should read this book?

 This book is for data scientists who know how to perform traditional regression and classification tasks but find themselves stuck when it comes to time series. If you have been dropping the date column up until now, this book is definitely for you!

 The book is also for professionals proficient in R looking to transition to Python. R is a great language for time series forecasting, and many methods have been implemented in R. However, Python is the most popular language for data science, and it has the advantage of being applied to deep learning models, which is something R can’t do.

How this book is organized: A roadmap

 The book has 4 parts and 21 chapters.

 Part 1 is an introduction to time series forecasting. We’ll formalize the concept of time series data, develop baseline models, and see when forecasting is not a reasonable avenue:

 	

 Chapter 1 defines time series data and explores the lifecycle of a forecasting project.

 	

 In chapter 2 we’ll develop baseline models, as a model can only be evaluated in relation to another model. It is therefore important to first have a simple forecasting model before moving on to more complex techniques.

 	

 In chapter 3 we’ll study the random walk model, which is a special scenario where forecasting cannot reasonably be performed with advanced models, and we must resort to simple baseline models.

 Part 2 focuses on forecasting with statistical models:

 	

 In chapter 4 we’ll develop the moving average model, MA(q), one of the building blocks of more complex forecasting techniques.

 	

 In chapter 5 we’ll develop the autoregressive model, AR(p), the other foundational model for more complicated scenarios.

 	

 In chapter 6 we’ll combine the AR(p) and MA(q) models to form the ARMA(p,q) model and design a new forecasting procedure.

 	

 In chapter 7 we’ll build on the previous chapter to model non-stationary time series with the ARIMA(p,d,q) model.

 	

 In chapter 8 we’ll add yet another layer of complexity and model seasonal time series with the SARIMA(p,d,q) (P,D,Q)m model.

 	

 In chapter 9 we’ll add the last layer of complexity and reach the SARIMAX model, allowing us to use external variables to forecast our data.

 	

 In chapter 10 we’ll explore vector autoregression, VAR(p), models, which allow us to forecast many time series simultaneously.

 	

 Chapter 11 concludes part 2 with a capstone project, giving us the chance to apply what we learned since chapter 4.

 Part 3 covers forecasting with deep learning. When your dataset becomes very large, with nonlinear relationships and high dimensionality, deep learning is the most appropriate tool for forecasting:

 	

 Chapter 12 introduces deep learning and the types of models we can build.

 	

 Chapter 13 explores the data windowing step, which is crucial to ensuring the success of forecasting using deep learning models.

 	

 In chapter 14 we’ll develop our first simple deep learning models.

 	

 In chapter 15 we’ll use the LSTM architecture for forecasting. This architecture is specifically built to process sequential data, just like time series.

 	

 In chapter 16 we’ll explore the CNN architecture, which can effectively filter the noise in a time series with the convolution operation. We’ll also combine the CNN with the LSTM architecture.

 	

 In chapter 17 we’ll develop an autoregressive deep learning model, which is an architecture that is proven to generate state-of-the-art results, as the model’s output is fed back in as an input to produce the next forecast.

 	

 In chapter 18 we’ll conclude part 3 with a capstone project.

 Part 4 explores the use of automated forecasting libraries, especially Prophet, as it is one of the most widely used libraries in the industry:

 	

 Chapter 19 explores the ecosystem of automated forecasting libraries, and we’ll work through a project using Prophet. We’ll also use a SARIMAX model to compare the performance of both methods.

 	

 Chapter 20 is a capstone project where you are invited to use Prophet and a SARIMAX model and see which performs best in that situation.

 	

 Chapter 21 concludes the book and aims to inspire you to go above and beyond and explore what else can be done with time series data.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/time-series-forecasting-in-python-book/. The entire source code for this book is available on GitHub at https://github.com/marcopeix/TimeSeriesForecastingInPython. You can also find the solutions to all the exercises there, and the code for the figures is also included. Creating visualizations is sometimes an overlooked skill, but I believe it is an important one.

 All the code was run on Windows using Jupyter Notebooks in Anaconda. I used Python 3.7, but any later release should work as well.

liveBook discussion forum

 Purchase of Time Series Forecasting in Python includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/time-series-forecasting-in-python-book/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Author online

 You can follow me on Medium for more articles on data science (https://medium.com/@marcopeixeiro). My approach to blogging is similar to how I approached this book: theory first and a hands-on project second. You can also reach out to me on LinkedIn (https://www.linkedin.com/in/marco-peixeiro/).

about the author

 [image:]

 Marco Peixeiro is a senior data scientist at one of Canada’s largest banks. Being self-taught, he is especially aware of what one needs to know to land a job and work in the industry. Marco is a big proponent of hands-on approaches to learning, which is the approach taken in his Medium blog, his freeCodeCamp crash course on data science, and in his Udemy course.

about the cover illustration

 The figure on the cover of Time Series Forecasting in Python is captioned “Homme de Kamtschatka,” or “Kamchatka man,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. Time waits for no one

 Very few phenomena are unaffected by time, which in itself is enough to justify the importance of understanding what time series are. In this first part of the book, we’ll define time series and explore the particularities of working with them. We’ll also develop our very first forecasting models using naive methods. These will serve as baseline models, and we’ll reuse these techniques throughout the book. Finally, we’ll study a situation where forecasting is not possible, so that we identify and avoid falling into that trap.

1 Understanding time series forecasting

 This chapter covers

 	
Introducing time series

 	
Understanding the three main components of a time series

 	
The steps necessary for a successful forecasting project

 	
How forecasting time series is different from other regression tasks

 Time series exist in a variety of fields from meteorology to finance, econometrics, and marketing. By recording data and analyzing it, we can study time series to analyze industrial processes or track business metrics, such as sales or engagement. Also, with large amounts of data available, data scientists can apply their expertise to techniques for time series forecasting.

 You might have come across other courses, books, or articles on time series that implement their solutions in R, a programming language specifically made for statistical computing. Many forecasting techniques make use of statistical models, as you will learn in chapter 3 and onwards. Thus, a lot of work was done to develop packages to make time series analysis and forecasting seamless using R. However, most data scientists are required to be proficient with Python, as it is the most widespread language in the field of machine learning. In recent years, the community and large companies have developed powerful libraries that leverage Python to perform statistical computing and machine learning tasks, develop websites, and much more. While Python is far from being a perfect programming language, its versatility is a strong benefit to its users, as we can develop models, perform statistical tests, and possibly serve our models through an API or develop a web interface, all while using the same programming language. This book will show you how to implement both statistical learning techniques and machine learning techniques for time series forecasting using only Python.

 This book will focus entirely on time series forecasting. You will first learn how to make simple forecasts that will serve as benchmarks for more complex models. Then we will use two statistical learning techniques, the moving average model and the autoregressive model, to make forecasts. These will serve as the foundation for the more complex modeling techniques we will cover that will allow us to account for non-stationarity, seasonality effects, and the impact of exogenous variables. Afterwards, we’ll switch from statistical learning techniques to deep learning methods, in order to forecast very large time series with a high dimensionality, a scenario in which statistical learning often does not perform as well as its deep learning counterpart.

 For now, this chapter will examine the basic concepts of time series forecasting. I’ll start by defining time series so that you can recognize one. Then, we will move on and discuss the purpose of time series forecasting. Finally, you will learn why forecasting a time series is different from other regression problems, and thus why the subject deserves its own book.

1.1 Introducing time series

 The first step in understanding and performing time series forecasting is learning what a time series is. In short, a time series is simply a set of data points ordered in time. Furthermore, the data is often equally spaced in time, meaning that equal intervals separate each data point. In simpler terms, the data can be recorded at every hour or every minute, or it could be averaged over every month or year. Some typical examples of time series include the closing value of a particular stock, a household’s electricity consumption, or the temperature outside.

 Time series

 A time series is a set of data points ordered in time.

 The data is equally spaced in time, meaning that it was recorded at every hour, minute, month, or quarter. Typical examples of time series include the closing value of a stock, a household’s electricity consumption, or the temperature outside.

 Let’s consider a dataset representing the quarterly earnings per share in US dollars of Johnson & Johnson stock from 1960 to 1980, shown in figure 1.1. We will use this dataset often throughout this book, as it has many interesting properties that will help you learn advanced techniques for more complex forecasting problems.

 As you can see, figure 1.1 clearly represents a time series. The data is indexed by time, as marked on the horizontal axis. Also, the data is equally spaced in time, since it was recorded at the end of every quarter of each year. We can see that the data has a trend, since the values are increasing over time. We also see the earnings going up and down over the course of each year, and the pattern repeats every year.

 [image:]

 Figure 1.1 Quarterly earnings of Johnson & Johnson in USD from 1960 to 1980 showing a positive trend and a cyclical behavior

1.1.1 Components of a time series

 We can further our understanding of time series by looking at their three components: a trend, a seasonal component, and residuals. In fact, all time series can be decomposed into these three elements.

 Visualizing the components of a time series is known as decomposition. Decomposition is defined as a statistical task that separates a time series into its different components. We can visualize each individual component, which will help us identify the trend and seasonal pattern in the data, which is not always straightforward just by looking at a dataset.

 Let’s take a closer look at the decomposition of Johnson & Johnson quarterly earnings per share, shown in figure 1.2. You can see how the Observed data was split into Trend, Seasonal, and Residuals. Let’s study each piece of the graph in more detail.

 [image:]

 Figure 1.2 Decomposition of quarterly earnings of Johnson & Johnson from 1960 to 1980

 First, the top graph, labeled as Observed, simply shows the time series as it was recorded (figure 1.3). The y-axis displays the value of the quarterly earnings per share for Johnson & Johnson in US dollars, while the x-axis represents time. It is basically a recreation of figure 1.1, and it shows the result of combining the Trend, Seasonal, and Residuals graphs from figure 1.2.

 [image:]

 Figure 1.3 Focusing on the Observed plot

 Then we have the trend component, as shown in figure 1.4. Again, keep in mind that the y-axis represents the value, while the x-axis still refers to time. The trend is defined as the slow-moving changes in a time series. We can see that it starts out flat and then steeply goes up, meaning that we have an increasing, or positive, trend in our data. The trend component is sometimes referred to as the level. We can think of the trend component as trying to draw a line through most of the data points to show the general direction of a time series.

 [image:]

 Figure 1.4 Focusing on the trend component. We have a trend in our series, since the component is not flat. It indicates that we have increasing values over time.

 Next we see the seasonal component in figure 1.5. The seasonal component captures the seasonal variation, which is a cycle that occurs over a fixed period of time. We can see that over the course of a year, or four quarters, the earnings per share start low, increase, and decrease again at the end of the year.

 [image:]

 Figure 1.5 Focusing on the seasonal component. Here we have periodic fluctuations in our time series, which indicates that earnings go up and down every year.

 Notice how the y-axis shows negative values. Does this mean that the earnings per share are negative? Clearly, that cannot be, since our dataset strictly has positive values. Therefore, we can say that the seasonal component shows how we deviate from the trend. Sometimes we have a positive deviation, and we get a peak in the Observed graph. Other times, we have a negative deviation, and we see a trough in Observed.

 Finally, the last graph in figure 1.2 shows the residuals, which is what cannot be explained by either the trend or the seasonal components. We can think of the residuals as adding the Trend and Seasonal graphs together and comparing the value at each point in time to the Observed graph. For certain points, we might get the exact same value as in Observed, in which case the residual will be zero. In other cases, the value is different from the one in Observed, so the Residuals graph shows what value must be added to Trend and Seasonal in order to adjust the result and get the same value as in Observed. Residuals usually correspond to random errors, also termed white noise, as we will discuss in chapter 3. They represent information that we cannot model or predict, since it is completely random, as shown in figure 1.6.

 [image:]

 Figure 1.6 Focusing on the residuals. The residuals are what cannot be explained by the trend and seasonal components.

 Time series decomposition

 Time series decomposition is a process by which we separate a time series into its components: trend, seasonality, and residuals.

 The trend represents the slow-moving changes in a time series. It is responsible for making the series gradually increase or decrease over time.

 The seasonality component represents the seasonal pattern in the series. The cycles occur repeatedly over a fixed period of time.

 The residuals represent the behavior that cannot be explained by the trend and seasonality components. They correspond to random errors, also termed white noise.

 Already we can intuitively see how each component affects our work when forecasting. If a time series exposes a certain trend, then we’ll expect it to continue in the future. Similarly, if we observe a strong seasonality effect, this is likely going to continue, and our forecasts must reflect that. Later in the book, you’ll see how to account for these components and include them in your models to forecast more complex time series.

1.2 Bird’s-eye view of time series forecasting

 Forecasting is predicting the future using historical data and knowledge of future events that might affect our forecasts. This definition is full of promises and, as data scientists, we are often very eager to start forecasting by using our scientific knowledge to showcase an incredible model with a near-perfect forecast accuracy. However, there are important steps that must be covered before reaching the point of forecasting.

 Figure 1.7 is a simplified diagram of what a complete forecasting project might look like in a professional setting. Note that these steps are not universal, and they may or may not be followed, depending on the organization and its maturity. These steps are nonetheless essential to ensure good cohesion between the data team and the business team, hence providing business value and avoiding friction and frustration between the teams.

 [image:]

 Figure 1.7 Forecasting project roadmap. The first step is naturally to set a goal that justifies the need for forecasting. Then you must determine what needs to be forecast in order to achieve that goal. Then you set the horizon of the forecast. Once that’s done, you can gather the data and develop a forecasting model. Then the model is deployed to production, its performance is monitored, and new data is collected in order to retrain the forecasting model and make sure it is still relevant.

 Let’s dive into a scenario that covers each step of a forecasting project roadmap in detail. Imagine you are planning a one-week camping trip one month from now, and you want to know which sleeping bag to bring with you so you can sleep comfortably at night.

1.2.1 Setting a goal

 The very first step in any project roadmap is to set a goal. Here it is explicit in the scenario: you want to know which sleeping bag to bring to sleep comfortably at night. If the nights will be cold, a warm sleeping bag is the best choice. Of course, if nights are expected to be warm, then a light sleeping bag would be the better option.

1.2.2 Determining what must be forecast to achieve your goal

 Then you move to determining what must be forecast in order for you to decide which sleeping bag to bring. In this case, you need to predict the temperature at night. To simplify things, let’s consider that predicting the minimum temperature is sufficient to make a decision, and that the minimum temperature occurs at night.

1.2.3 Setting the horizon of the forecast

 Now you can set the horizon of your forecast. In this case, your camping trip is one month from now, and it will last for one week. Therefore, you have a horizon of one week, since you are only interested in predicting the minimum temperature during the camping trip.

1.2.4 Gathering the data

 You can now start gathering your data. For example, you could collect historical daily minimum temperature data. You could also gather data on possible factors that can influence temperature, such as humidity and wind speed.

 This is when the question of how much data is enough data arises. Ideally, you would collect more than 1 year of data. That way, you could determine if there is a yearly seasonal pattern or a trend. In the case of temperature, you can of course expect some seasonal pattern over the year, since different seasons bring different minimum temperatures.

 However, 1 year of data is not the ultimate answer to how much data is sufficient. It highly depends on the frequency of the forecasts. In this case, you will be creating daily forecasts, so 1 year of data should be enough.

 If you wanted to create hourly forecasts, a few months of training data would be enough, as it would contain a lot of data points. If you were creating monthly or yearly forecasts, you would need a much larger historical period to have enough data points to train with.

 In the end, there is no clear answer regarding the quantity of data required to train a model. Determining this is part of the experimentation process of building a model, assessing its performance, and testing whether more data improves the model’s performance.

1.2.5 Developing a forecasting model

 With your historical data in hand, you are ready to develop a forecasting model. This part of the project roadmap is the focus of this entire book. This is when you get to study the data and determine whether there is a trend or a seasonal pattern.

 If you observe seasonality, then a SARIMA model would be relevant, because this model uses seasonal effects to produce forecasts. If you have information on wind speed and humidity, you could take that into account using the SARIMAX model, because you can feed it with information from exogenous variables, such as wind speed and humidity. We will explore these models in detail in chapters 8 and 9.

 If you managed to collect a large amount of data, such as the daily minimum temperature of the last 20 years, you could use neural networks to leverage this very large amount of training data. Unlike statistical learning methods, deep learning tends to produce better models, as more data is used for training.

 Whichever model you develop, you will use part of the training data as a test set to evaluate your model’s performance. The test set will always be the most recent data points, and it must be representative of the forecasting horizon.

 In this case, since your horizon is one week, you can remove the last seven data points from your training set to place them in a test set. Then, when each model is trained, you can produce one-week forecasts and compare the results to the test set. The model’s performance can be assessed by computing an error metric, such as the mean squared error (MSE). This is a way to evaluate how far your predictions are from the real values. The model with the lowest MSE will be your best-performing model, and it is the one that will move on to the next step.

1.2.6 Deploying to production

 Once you have your champion model, you must deploy it to production. This means that your model can take in data and return a prediction for the minimum daily temperature for the next 7 days. There are many ways to deploy a model to production, and this could be the subject of an entire book. Your model could be served as an API or integrated in a web application, or you could define your own Excel function to run your model. Ultimately, your model is considered deployed when you can feed in data and have forecasts returned without any manual manipulation of the data. At this point, your model can be monitored.

1.2.7 Monitoring

 Since the camping trip is 1 month from now, you can see how well your model performs. Every day, you can compare your model’s forecast to the actual minimum temperature recorded for the day. This allows you to determine the quality of the model’s forecasts.

 You can also look for unexpected events. For example, a heat wave can arise, degrading the quality of your model’s forecasts. Closely monitoring your model and current events allows you to determine if the unexpected event results from a temporary situation, or if it will last for the next 2 months, in which case it could impact your decision for the camping trip.

1.2.8 Collecting new data

 By monitoring your model, you necessarily collect new data as you compare the model’s forecasts to the observed minimum temperature for the day. This new, more recent, data can then be used in retraining your model. That way, you have up-to-date data you can use to forecast the minimum temperature for the next 7 days.

 This cycle is repeated over the next month until you reach the day of the camping trip, as shown in figure 1.8. By that point, you will have made many forecasts, assessed their quality against newly observed data, and retrained your model with new daily minimum temperatures as you recorded them. That way, you make sure that your model is still performant and uses relevant data to forecast the temperature for your camping trip.

 [image:]

 Figure 1.8 Visualizing the production loop. Once the model is in production, you enter a cycle where you monitor it, collect new data, and use that data to adjust the forecasting model before deploying it again.

 Finally, based on your model’s predictions, you can decide which sleeping bag to bring with you.

1.3 How time series forecasting is different from other regression tasks

 You probably have encountered regression tasks where you must predict some continuous target given a certain set of features. At first glance, time series forecasting seems like a typical regression problem: we have some historical data, and we wish to build a mathematical expression that will express future values as a function of past values. However, there are some key differences between time series forecasting and regression for time-independent scenarios that deserve to be addressed before we look at our very first forecasting technique.

1.3.1 Time series have an order

 The first concept to keep in mind is that time series have an order, and we cannot change that order when modeling. In time series forecasting, we express future values as a function of past values. Therefore, we must keep the data in order, so as to not violate this relationship.

 Also, it makes sense to keep the data in order because your model can only use information from the past up until the present—it will not know what will be observed in the future. Recall your camping trip. If you want to predict the temperature for Tuesday, you cannot possibly use the information from Wednesday, since it is in the future from the model’s point of view. You would only be able to use the data from Monday and before. That is why the order of the data must remain the same throughout the modeling process.

 Other regression tasks in machine learning often do not have an order. For example, if you are tasked to predict revenue based on ad spend, it does not matter when a certain amount was spent on ads. Instead, you simply want to relate the amount of ad spend to the revenue. In fact, you might even randomly shuffle the data to make your model more robust. Here the regression task is to simply derive a function such that given an amount on ad spend, an estimate of revenue is returned.

 On the other hand, time series are indexed by time, and that order must be kept. Otherwise, you would be training your model with future information that it would not have at prediction time. This is called look-ahead bias in more formal terms. The resulting model would therefore not be reliable and would most probably perform poorly when you make future forecasts.

1.3.2 Time series sometimes do not have features

 It is possible to forecast time series without the use of features other than the time series itself.

 As data scientists, we are used to having datasets with many columns, each representing a potential predictor for our target. For example, consider the task of predicting revenue based on ad spend, where the revenue is the target variable. As features, we could have the amount spent on Google ads, Facebook ads, and television ads. Using these three features, we would build a regression model to estimate revenue.

 However, with time series, it is quite common to be given a simple dataset with a time column and a value at that point in time. Without any other features, we must learn ways of using past values of the time series to forecast future values. This is when the moving average model (chapter 4) or autoregressive model (chapter 5) come into play, as they are ways to express future values as a function of past values. These models are foundational to the more complex models that then allow you to consider seasonal patterns and trends in time series. Starting in chapter 6, we will gradually build on those basic models to forecast more complex time series.

1.4 Next steps

 This book will cover different forecasting techniques in detail. We’ll start with some very basic methods, such as the moving average model and autoregressive model, and we will gradually account for more factors in order to forecast time series with trends and seasonal patterns using the ARIMA, SARIMA, and SARIMAX models. We will also work with time series with high dimensionality, which will require us to use deep learning techniques for sequential data. Therefore, we will have to build neural networks using CNN (convolutional neural network) and LSTM (long short-term memory). Finally, you will learn how to automate the work of forecasting time series. As mentioned, all implementations throughout the book will be done in Python.

 Now that you have learned what a time series is and how forecasting will be different than any traditional regression tasks you might have seen before, we are ready to move on and start forecasting. However, our first attempt at forecasting will focus on naive methods that will serve as baseline models.

Summary

 	

 A time series is a set of data points ordered in time.

 	

 Examples of time series are the closing price of a stock or the temperature outside.

 	

 Time series can be decomposed into three components: a trend, a seasonal component, and residuals.

 	

 It is important to have a goal when forecasting and to monitor the model once it’s deployed. This will ensure the success and longevity of the project.

 	

 Never change the order of a time series when modeling. Shuffling the data is not allowed.

2 A naive prediction of the future

 This chapter covers

 	
Defining a baseline model

 	
Setting a baseline using the mean

 	
Building a baseline using the mean of the previous window of time

 	
Creating a baseline using the previous timestep

 	
Implementing the naive seasonal forecast

 In chapter 1 we covered what time series are and how forecasting a time series is different from a traditional regression task. You also learned the necessary steps in building a successful forecasting project, from defining a goal to building a model, deploying it, and updating it as new data is collected. Now you are ready to start forecasting a time series.

 You will first learn how to make a naive prediction of the future, which will serve as a baseline. The baseline model is a trivial solution that uses heuristics, or simple statistics, to compute a forecast. Developing a baseline model is not always an exact science. It will often require some intuition that we’ll gain by visualizing the data and detecting patterns that can be used to make predictions. In any modeling project, it is important to have a baseline, as you can use it to compare the performance of the more complex models you’ll build down the road. The only way to know that a model is good, or performant, is to compare it to a baseline.

 In this chapter, let’s imagine that we wish to predict the quarterly earnings per share (EPS) of Johnson & Johnson. We can look at the dataset in figure 2.1, which is identical to what you saw in chapter 1. Specifically, we will use the data from 1960 to the end of 1979 in order to predict the EPS for the four quarters of 1980. The forecasting period is illustrated by the gray zone in figure 2.1.

 [image:]

 Figure 2.1 Quarterly earnings per share of Johnson & Johnson in US dollars (USD) between 1960 and 1980. We will use the data from 1960 to the last quarter of 1979 to build a baseline model that will forecast the earnings per share for the quarters of 1980 (as illustrated by the gray area).

 You can see in figure 2.1 that our data has a trend, since it is increasing over time. Also, we have a seasonal pattern, since over the course of a year, or four quarters, we can observe peaks and troughs repeatedly. This means that we have seasonality.

 Recall that we identified each of these components when we decomposed our time series in chapter 1. The components are shown in figure 2.2. We will study some of these components in detail later in the chapter, as they will help us gain some intuition about the behavior of the data, which in turn will help us develop a good baseline model.

 [image:]

 Figure 2.2 Decomposition of quarterly earnings of Johnson & Johnson from 1960 to 1980

 We will first define what a baseline model is, and then we will develop four different baselines to forecast the quarterly EPS of Johnson & Johnson. This is the time when we’ll finally get our hands dirty with Python and time series forecasting.

2.1 Defining a baseline model

 A baseline model is a trivial solution to our problem. It often uses heuristics, or simple statistics, to generate predictions. The baseline model is the simplest solution you can think of—it should not require any training, and the cost of implementation should be very low.

 Can you think of a baseline for our project?

 Knowing that we want to forecast the EPS for Johnson & Johnson, what is the most basic, most naive, forecast you can make?

 In the context of time series, one simple statistic we can use to build a baseline is the arithmetic mean. We can simply compute the mean of the values over a certain period and assume that future values will be equal to that mean. In the context of predicting the EPS for Johnson & Johnson, this is like saying

 The average EPS between 1960 and 1979 was $4.31. Therefore, I expect the EPS over the next four quarters of 1980 to be equal to $4.31 per quarter.

 Another possible baseline is to naively forecast the last recorded data point. In our context, this would be like saying

 If the EPS is $0.71 for this quarter, then the EPS will also be $0.71 for next quarter.

 Or, if we see a cyclical pattern in our data, we can simply repeat that pattern into the future. Staying in the context of Johnson & Johnson, this is like saying

 If the EPS is $14.04 for the first quarter of 1979, then the EPS for the first quarter of 1980 will also be $14.04.

 You can see these three possible baselines rely on simple statistics, heuristics, and patterns observed in our dataset.

 Baseline model

 A baseline model is a trivial solution to your forecasting problem. It relies on heuristics or simple statistics and is usually the simplest solution. It does not require model fitting, and it is easy to implement.

 You might wonder if those baseline models are any good. How well can those simple methods forecast the future? We can answer this question by forecasting for the year of 1980 and testing our forecasts against the observed data in 1980. This is called out-of-sample forecasting because we are making predictions for a period that was not taken into account when the model was developed. That way we can measure the performance of our models and see how they would perform when we forecast beyond the data we have, which in this case is 1981 and later.

 In the next sections, you will learn how to develop the different baselines mentioned here to predict the quarterly EPS of Johnson & Johnson.

2.2 Forecasting the historical mean

 As mentioned at the beginning of the chapter, we are going to work with the quarterly EPS in US dollars (USD) of Johnson & Johnson from 1960 to 1980. Our goal is to use the data from 1960 to the end of 1979 to predict the four quarters of 1980. The first baseline we’ll discuss uses the historical mean, which is the arithmetic mean of past values. Its implementation is straightforward: calculate the mean of the training set, and it will be our prediction for the four quarters of 1980. First, though, we need to do some preliminary work that we’ll use in all of our baseline implementations.

2.2.1 Setup for baseline implementations

 Our first step is to load the dataset. To do so, we will use the pandas library and load the dataset into a DataFrame using the read_csv method. You can either download the file on your local machine and pass the file’s path to the read_csv method, or simply type in the URL where the CSV file is hosted on GitHub. In this case, we will work with the file:

 import pandas as pd

df = pd.read_csv('../data/jj.csv')

 Note The entire code for this chapter is available on GitHub: https://github.com/marcopeix/TimeSeriesForecastingInPython/tree/master/CH02.

 A DataFrame is the most-used data structure in pandas. It is a 2-dimensional labeled data structure with columns that can hold different types of data, such as strings, integers, floats, or dates.

 Our second step is to split the data into a train set for training and a test set for testing. Given that our horizon is 1 year, our train set will start in 1960 and go all the way to the end of 1979. We will save the data collected in 1980 for our test set. You can think of a DataFrame as a table or a spreadsheet with column names and row indices.

 With our dataset in a DataFrame, we can display the first five entries by running

 df.head()

 This will give us the output shown in figure 2.3.

 [image:]

 Figure 2.3 The first five entries of quarterly earnings per share for the Johnson & Johnson dataset. Notice how our DataFrame has two columns: date and data. It also has row indices starting at 0.

 Figure 2.3 will help you better understand what type of data our DataFrame is holding. We have the date column, which specifies the end of each quarter, when the EPS is calculated. The data column holds the value of the EPS in US dollars (USD).

 We can optionally display the last five entries of our dataset and obtain the output in figure 2.4:

 df.tail()

 [image:]

 Figure 2.4 The last five entries of our dataset. Here we can see the four quarters of 1980 that we will try to predict using different baseline models. We will compare our forecasts to the observed data in 1980 to evaluate the performance of each baseline.

 In figure 2.4 we see the four quarters of 1980, which is what we will be trying to forecast using our baseline models. We will evaluate the performance of our baselines by comparing our forecasts to the values in the data column for the four quarters of 1980. The closer our forecasts are to the observed values, the better.

 The final step before developing our baseline models is to split the dataset into the train and test sets. As mentioned earlier, the train set will consist of the data from 1960 to the end of 1979, and the test set will consist of the four quarters of 1980. The train set will be the only information we use to develop our models. Once a model is built, we will forecast the next four timesteps, which will correspond to the four quarters of 1980 in our test set. That way, we can compare our forecasts to the observed data and evaluate the performance of our baselines.

 To make the split, we’ll specify that our train set will contain all the data held in df except the last four entries. The test set will be composed of only the last four entries. This is what the next code block does:

 train = df[:-4]

test = df[-4:]

2.2.2 Implementing the historical mean baseline

 Now we are ready to implement our baseline. We will first use the arithmetic mean of the entire train set. To compute the mean, we’ll use the numpy library, as it is a very fast package for scientific computing in Python that plays really well with DataFrames:

 import numpy as np

historical_mean = np.mean(train['data']) ❶

print(historical_mean)

 ❶ Compute the arithmetic mean of the data column in the train set.

 In the preceding code block, we first import the numpy library and then compute the average of the EPS over the entire train set and print it out on the screen. This gives a value of 4.31 USD. This means that from 1960 to the end of 1979, the quarterly EPS of Johnson & Johnson is on average 4.31 USD.

 Now we will naively forecast this value for each quarter of 1980. To do so, we’ll simply create a new column, pred_mean, that holds the historical mean of the training set as a forecast:

 test.loc[:, 'pred_mean'] = historical_mean ❶

 ❶ Set the historical mean as a forecast.

 Next, we need to define and calculate an error metric in order to evaluate the performance of our forecasts on the test set. In this case, we will use the mean absolute percentage error (MAPE). It is a measure of prediction accuracy for forecasting methods that is easy to interpret and independent of the scale of our data. This means that whether we are working with two-digit values or six-digit values, the MAPE will always be expressed as a percentage. Thus, the MAPE returns the percentage of how much the forecast values deviate from the observed or actual values on average, whether the prediction was higher or lower than the observed values. The MAPE is defined in equation 2.1.

 [image:]

 Equation 2.1

 In equation 2.1, Ai is the actual value at point i in time, and Fi is the forecast value at point i in time; n is simply the number of forecasts. In our case, because we are forecasting the four quarters of 1980, n = 4. Inside the summation, the forecast value is subtracted from the actual value, and that result is divided by the actual value, which gives us the percentage error. Then we take the absolute value of the percentage error. This operation is repeated for each of the n points in time, and the results are added together. Finally, we divide the sum by n, the number of points in time, which effectively gives us the mean absolute percentage error.

 Let’s implement this function in Python. We’ll define a mape function that takes in two vectors: y_true for the actual values observed in the test set and y_pred for the forecast values. In this case, because numpy allows us to work with arrays, we will not need a loop to sum all the values. We can simply subtract the y_pred array from the y_true array and divide by y_true to get the percentage error. Then we can take the absolute value. After that, we take the mean of the result, which will take care of summing up each value in the vector and dividing by the number of predictions. Finally, we’ll multiply the result by 100 so the output is expressed as a percentage instead of a decimal number:

 def mape(y_true, y_pred):

 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

 Now we can calculate the MAPE of our baseline. Our actual values are in the data column of test, so it will be the first parameter passed to the mape function. Our forecasts are in the pred_mean column of test, so it will be our second parameter for the function:

 mape_hist_mean = mape(test['data'], test['pred_mean'])

print(mape_hist_mean)

 Running the function gives a MAPE of 70.00%. This means that our baseline deviates by 70% on average from the observed quarterly EPS of Johnson & Johnson in 1980.

 Let’s visualize our forecasts to better understand our MAPE of 70%.

 Listing 2.1 Visualizing our forecasts

 import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.plot(train['date'], train['data'], 'g-.', label='Train')

ax.plot(test['date'], test['data'], 'b-', label='Test')

ax.plot(test['date'], test['pred_mean'], 'r--', label='Predicted')

ax.set_xlabel('Date')

ax.set_ylabel('Earnings per share (USD)')

ax.axvspan(80, 83, color='#808080', alpha=0.2)

ax.legend(loc=2)

plt.xticks(np.arange(0, 85, 8), [1960, 1962, 1964, 1966, 1968, 1970, 1972, 1974, 1976, 1978, 1980])

fig.autofmt_xdate()

plt.tight_layout()

 In listing 2.1, we use the matplotlib library, which is the most popular library for generating visualizations in Python, to generate a graph showing the training data, the forecast horizon, the observed values of the test set, and the predictions for each quarter of 1980.

 First, we initialize a figure and an ax object. A figure can contain many ax objects, which allows us to create a figure with two, three, or more plots. In this case, we are creating a figure with a single plot, so we only need one ax.

 Second, we plot our data on the ax object. We plot the train data using a green dashed and dotted line and give this curve a label of “Train.” The label will later be useful for generating a legend for the graph. We then plot the test data and use a blue continuous line with a label of “Test.” Finally, we plot our predictions using a red dashed line with a label of “Predicted.”

 Third, we label our x-axis and y-axis and draw a rectangular area to illustrate the forecast horizon. Since our forecast horizon is the four quarters of 1980, the area should start at index 80 and end at index 83, spanning the entire year of 1980. Remember that we obtained the indices of the last quarter of 1980 by running df.tail(), which resulted in figure 2.5.

 [image:]

 Figure 2.5 The last five entries of our dataset

 We give this area a gray color and specify the opacity using the alpha parameter. When alpha is 1, the shape is completely opaque; when alpha is 0, it is completely transparent. In our case, we’ll use an opacity of 20%, or 0.2.

 Then we specify the labels for the ticks on the x-axis. By default, the labels would show the data for each quarter of the dataset, which would create a crowded x-axis with unreadable labels. Instead, we’ll display the year every 2 years. To do so, we’ll generate an array specifying the index at which the label must appear. That’s what np.arange(0, 81, 8) does: it generates an array starting at 0, finishing at 80, because the end index (81) is not included, with steps of 8, because there are 8 quarters in 2 years. This will effectively generate the following array: [0,8,16,...72,80]. Then we specify an array containing the labels at each index, so it must start with 1960 and end with 1980, just like our dataset.

 Finally, we use fig.automft_xdate() to automatically format the tick labels on the x-axis. It will slightly rotate them and make sure that they are legible. The final touch-up is using plt.tight_layout() to remove any excess white space around the figure.

 The end result is figure 2.6. Clearly, this baseline did not yield accurate predictions, since the Predicted line is very far from the Test line. Now we know that our forecasts are, on average, 70% below the actual EPS for each quarter in 1980. Whereas the EPS in 1980 was consistently above $10, we predicted only $4.31 for each quarter.

 [image:]

 Figure 2.6 Predicting the historical mean as a baseline. You can see that the prediction is far from the actual values in the test set. This baseline gives a MAPE of 70%.

 Still, what can we learn from it? Looking at our training set, we can see a positive trend, as the EPS is increasing over time. This is further supported by the trend component coming from the decomposition of our dataset, shown in figure 2.7.

 [image:]

 Figure 2.7 Trend component of our time series. You can see that we have a positive trend in our data, as it increases over time.

 As you we can see, not only do we have a trend, but the trend is not constant between 1960 and 1980—it is getting steeper. Therefore, it might be that the EPS observed in 1960 is not predictive of the EPS in 1980, because we have a positive trend, and EPS values are increasing with time and are doing so at a faster rate.

 Can you improve our baseline?

 Before moving on to the next section, can you think of a way to improve our baseline while still using the mean? Do you think that taking the mean of a shorter and more recent period of time would help (from 1970 to 1979, for example)?

2.3 Forecasting last year’s mean

 The lesson learned from the previous baseline is that earlier values do not seem to be predictive of future values in the long term because of the positive trend component in our dataset. Earlier values seem to be too small to be representative of the new level the EPS reaches toward the end of 1979 and onwards into 1980.

 What if we use the mean of the last year in our training set to forecast the following year? This means that we would compute the average EPS in 1979 and forecast it for each quarter of 1980—the more recent values that have increased over time should potentially be closer to what will be observed in 1980. For now, this is simply a hypothesis, so let’s implement this baseline and test it to see how it performs.

 Our data is already split into test and train sets (done in section 2.2.1), so we can go ahead and calculate the mean of the last year in the train set, which corresponds to the last four data points in 1979:

 last_year_mean = np.mean(train.data[-4:]) ❶

print(last_year_mean)

 ❶ Compute the average EPS for the four quarters of 1979, which are the last four data points of the train set.

 This gives us an average EPS of $12.96. Therefore, we will predict that Johnson & Johnson will have an EPS of $12.96 for the four quarters of 1980. Using the same procedure that we used for the previous baseline, we’ll create a new pred_last_yr_mean column to hold the mean of last year as our predictions:

 test.loc[:, 'pred__last_yr_mean'] = last_year_mean

 Then, using the mape function that we defined earlier, we can evaluate the performance of our new baseline. Remember that the first parameter is the observed values, which are held in the test set. Then we pass in the predicted values, which are in the pred_last_yr_mean column:

 mape_last_year_mean = mape(test['data'], test['pred__last_yr_mean'])

print(mape_last_year_mean)

 This gives us a MAPE of 15.60%. We can visualize our forecasts in figure 2.8.

 [image:]

 Figure 2.8 Predicting the mean of the last year in the training set (1979) as a baseline model. You can see that the prediction is closer to the actual values of the test set when compared to the previous baseline that we built in figure 2.6.

 Can you recreate figure 2.8?

 As an exercise, try to recreate figure 2.8 to visualize the forecasts using the mean of the quarters of 1979. The code should be identical to listing 2.1, only this time the predictions are in a different column.

OEBPS/Images/01-02.png
Seasonal

Residuals

10

Observed

10

Trend

o

0.0
-2.5

0.5
0.0
-0.5

RSN LNS

A9

o

«9@ x‘ﬂq @11

o

49

46

«915 @“Q

OEBPS/Images/02-02.png
Seasonal

Residuals

10

Observed

10

Trend

0.0
=25

0.5
0.0
-0.5

RSN

R3S

(o0 o g1°

K

N

o

49

A6

49

=3

RS

OEBPS/Images/02-01.png
Earnings per share (USD)

16

14

12

10

2

0

ORI I I I IR MARCERC IR A

Date

OEBPS/Images/01-07.png
Seta goal

Determine what must be

forecast to achieve our
goal

Set the horizon of the
forecast

Gather the data

Develop a forecasting Collect new data
‘model

Deploy to production Monitor

OEBPS/Images/02-07.png
10

Trend

0

o
R
x‘*’m
x‘*’b
K
x‘%‘“
Kild
Kl
x‘*"(’
K1
K

OEBPS/Images/cover.jpeg
Marco Peixeiro

M MANNING

OEBPS/Images/01-01.png
Earnings per share (USD)

16

14

12

10

2

0

RO

o

o
Date

A

Gl

CAIRCIRC

OEBPS/Images/01-06.png
Resi
sidual
s

0.5
0.0
-0.51

gy

o

RS
oo
@66
o
o°
i
o
x‘>16
o
o

OEBPS/Images/02-06.png
Earnings per share (USD)

16 —-- Train
— Test

149 -~ Ppredicted

12

10

8

6

4

2 SN
PERNRN L

[

RO PRI LI L LR AR

Date

OEBPS/Images/02-04.png
date
1979-10-01
1980-01-01
1980-04-01
1980-07-02
1980-10-01

data
9.99
16.20
14.67
16.02
11.61

OEBPS/Images/02-04_Equation-2-1.png

OEBPS/Images/Manning_M_small.png

OEBPS/Images/01-05.png
Seasonal

0.0
=5

O o@b o o o
R R LIRS R R I L LI L

OEBPS/Images/02-05.png
80
81

83

date
1979-10-01
1980-01-01
1980-04-01
1980-07-02
1980-10-01

data
9.99
16.20
14.67
16.02
11.61

OEBPS/Images/01-03.png
Ol
bserved

10

0

o°
o8

A9

o>

x‘?bﬁ
R

49

0

o

49

Ab

«,916
0
Ao

OEBPS/Images/02-03.png
EEETIN

1960-01-01
1960-04-01
1960-07-02
1960-10-01
1961-01-01

data
0.71
0.63
0.85
0.44
0.61

OEBPS/Images/Manning_copyright.png

OEBPS/Images/01-04.png
10

Trend

0

o
R
oo
x‘*’%
o
o°
Kl
Kl
@"6
K1
K

OEBPS/Images/01-08.png
Develop a forecasting Collect new data
model

Deploy to production Monitor

OEBPS/Images/02-08.png
Earnings per share (USD)

12

10

16 —-- Train
— Test
149 -~ Ppredicted
8
6
4
oV
2 NNV
PERNRN L
0

RO P LR RCIIC U LU
Date

OEBPS/Images/Peixeiro_author.photo.png

