

 [image: cover]

 ASP.NET 4.0 in Practice

 Daniele Bochicchio, Stefano Mostarda & Marco De Sanctis

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
 	Development editor:
 	Cynthia Kane

	20 Baldwin Road
 	Copyeditor:
 	Joan Celmer

	PO Box 261
 	Typesetter:
 	Gordan Salinovic

	Shelter Island, NY 11964
 	Cover designer:
 	Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. ASP.NET Fundamentals

 Chapter 1. Getting acquainted with ASP.NET 4.0

 Chapter 2. Data access reloaded: Entity Framework

 Chapter 3. Integrating Entity Framework and ASP.NET

 2. ASP.NET Web Forms

 Chapter 4. Building the user interface with ASP.NET Web Forms

 Chapter 5. Data binding in ASP.NET Web Forms

 Chapter 6. Custom controls

 Chapter 7. Taking control of markup

 3. ASP.NET MVC

 Chapter 8. Introducing ASP.NET MVC

 Chapter 9. Customizing and extending ASP.NET MVC

 4. Security

 Chapter 10. ASP.NET security

 Chapter 11. ASP.NET authentication and authorization

 5. Advanced topics

 Chapter 12. Ajax and RIAs with ASP.NET 4.0

 Chapter 13. State

 Chapter 14. Caching in ASP.NET

 Chapter 15. Extreme ASP.NET 4.0

 Chapter 16. Performance and optimizations

 Appendix A. ASP.NET and IIS 7.x

 Appendix B. Data access fundamentals

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. ASP.NET Fundamentals

 Chapter 1. Getting acquainted with ASP.NET 4.0

 1.1. Meet ASP.NET

 1.1.1. Installing ASP.NET

 1.1.2. How ASP.NET works

 1.1.3. Getting started

 1.2. Typical architecture in ASP.NET applications

 1.2.1. ASP.NET meets OOP

 1.2.2. ASP.NET components

 1.2.3. Global.asax and web.config

 1.2.4. The ASP.NET pipeline

 1.3. Your first ASP.NET Web Form

 1.3.1. Server controls

 1.3.2. Page events

 1.3.3. Using server controls

 1.4. What’s new in ASP.NET 4.0

 1.4.1. .NET Framework 4.0

 1.4.2. A panoramic overview of ASP.NET 4.0 features

 1.5. ASP.NET Web Forms in practice

 Technique 1: Handling PostBack

 Technique 2: Form validation

 Technique 3: Page header, styling, and CSS

 1.6. Summary

 Chapter 2. Data access reloaded: Entity Framework

 2.1. Designing an application

 2.1.1. What’s an object model?

 2.1.2. The evolution of the object model: the domain model

 2.2. Using an ORM to build a data layer

 2.2.1. The granularity mismatch

 2.2.2. The relationship mismatch

 2.2.3. The inheritance mismatch

 2.3. Introducing Entity Framework

 Technique 4: Creating a model using Entity Framework

 Technique 5: Generating POCO code

 Technique 6: Reading data using Entity Framework

 Technique 7: Writing data using Entity Framework

 2.4. Summary

 Chapter 3. Integrating Entity Framework and ASP.NET

 3.1. Understanding context lifetime

 Technique 8: First approach: one context per method

 Technique 9: A better approach: one context per ASP.NET request

 Technique 10: Instantiating the context using modules

 3.2. Using the context the right way

 Technique 11: Persisting entity modifications

 Technique 12: Persisting only selected properties

 Technique 13: Persisting an entity using ViewState

 Technique 14: Keep concurrency in mind

 3.3. Optimizing performance in an ASP.NET environment

 Technique 15: Optimizing fetching

 Technique 16: Avoiding multiple query execution

 Technique 17: Optimizing queries that retrieve a single element

 Technique 18: Disabling change tracking

 3.4. Summary

 2. ASP.NET Web Forms

 Chapter 4. Building the user interface with ASP.NET Web Forms

 4.1. The UI and Web Forms

 4.1.1. New features in Web Forms 4.0

 Technique 19: Better markup generation in ASP.NET 4.0

 Technique 20: Controlling ClientID generation

 4.2. Defining a common UI: using master pages

 Technique 21: Using nested master pages

 Technique 22: Setting a master page programmatically

 4.3. URL rewriting and routing with ASP.NET

 4.3.1. URL rewriting versus URL routing

 Technique 23: URL routing with Web Forms

 Technique 24: Advanced URL routing scenarios

 Technique 25: Rewriting in practice: UrlRewriting.NET

 4.4. Summary

 Chapter 5. Data binding in ASP.NET Web Forms

 5.1. Displaying data

 Technique 26: How to display data using Repeater

 Technique 27: ListView in ASP.NET 4.0

 5.2. Modifying data

 Technique 28: Using data source controls

 Technique 29: EntityDataSource and Entity Framework

 Technique 30: What’s new in GridView, FormView, and ListView

 5.3. Filtering and sorting data

 Technique 31: The QueryExtender control

 5.4. Working with Dynamic Data controls

 Technique 32: The first application

 Technique 33: Working with metadata and templates

 Technique 34: Extending Dynamic Data

 5.5. Summary

 Chapter 6. Custom controls

 6.1. The basics of custom controls

 Technique 35: Simple controls

 Technique 36: Composite controls

 Technique 37: Handling PostBack

 6.2. Complex controls

 Technique 38: Container controls

 Technique 39: Templated controls

 Technique 40: Data binding in custom controls

 6.3. Advanced controls

 Technique 41: Control builders

 6.4. Summary

 Chapter 7. Taking control of markup

 7.1. ASP.NET adaptive rendering

 Technique 42: Add OptionGroups to DropDownList

 Technique 43: Build a table-less control adapter for the DataList

 7.1.1. Mobile controls and the Control Adapter Toolkit

 7.2. ASP.NET 4.0 browser capabilities

 Technique 44: Building a custom browser capabilities provider

 Technique 45: Validating ASP.NET pages with the W3C validator

 7.3. Summary

 3. ASP.NET MVC

 Chapter 8. Introducing ASP.NET MVC

 8.1. A new way to build web applications

 8.1.1. The Model-View-Controller pattern

 8.2. Your first experience with ASP.NET MVC

 Technique 46: The model

 Technique 47: The controller

 Technique 48: The view

 8.3. Routing in ASP.NET MVC

 8.3.1. Basic routing concepts in ASP.NET MVC

 Technique 49: Partitioning using Areas

 8.4. Accepting user input

 Technique 50: Handling user input at the controller level

 Technique 51: Validating posted data

 8.5. Summary

 Chapter 9. Customizing and extending ASP.NET MVC

 9.1. Building reusable elements in ASP.NET MVC

 9.1.1. Using templates to represent data

 Technique 52: Building customized data templates

 Technique 53: Componentized markup through HTML helpers

 Technique 54: Inject logic using action filters

 9.2. User input handling made smart

 Technique 55: Custom model binders for domain entities

 Technique 56: Building a new model binder from scratch

 9.3. Improving ASP.NET MVC routing

 Technique 57: Routes with consistent URL termination

 9.4. Summary

 4. Security

 Chapter 10. ASP.NET security

 10.1. What is security in ASP.NET applications?

 Security is a Feature, Not an Add-On

 Follow the Principal of Least Privilege

 Do Not Trust the Input

 Do Not Disclose Details

 Do Not Think that Your Code is Better

 Use Your Head

 10.2. Filtering and blocking incoming requests

 Technique 58: Handling improper parameter values

 Technique 59: Monitoring and blocking bad requests

 10.3. Protecting applications from SQL injection

 Technique 60: Handling SQL queries using parameters

 Technique 61: Dynamic queries with multiple values

 10.4. Dealing with XSS (cross-site scripting)

 Technique 62: Handling and displaying user input

 Technique 63: Using Microsoft’s Anti-XSS Library

 10.5. Controlling path composition: path canonicalization vulnerabilities

 Technique 64: Dynamically building a path

 10.6. Summary

 Chapter 11. ASP.NET authentication and authorization

 11.1. Authentication and authorization basics

 Technique 65: Using FormsAuthentication and UrlAuthorization

 11.2. Handling user authentication: introducing the Membership API

 Technique 66: Implementing a user login using the Membership API

 11.3. Adding support to roles using the Roles API

 Technique 67: Implementing a role-enabled login using Roles API

 11.4. Custom providers for the Membership and Roles APIs

 Technique 68: Other providers

 Technique 69: Building custom Membership and Role providers

 Technique 70: Integrating Windows Live ID with your application

 11.5. Summary

 5. Advanced topics

 Chapter 12. Ajax and RIAs with ASP.NET 4.0

 12.1. Understanding Ajax

 12.1.1. How Ajax improves usability

 12.1.2. How Ajax works

 12.2. Working with ASP.NET Ajax

 Technique 71: Creating a classic page

 Technique 72: Ajaxize a page using the update panel

 Technique 73: Optimizing UpdatePanel using triggers

 Technique 74: Optimizing a page with multiple UpdatePanels

 Technique 75: Intercepting client-side pipeline

 12.3. Focusing on the client: jQuery

 12.3.1. jQuery Basics

 Technique 76: Invoking REST web services with jQuery

 Technique 77: Invoking page methods with jQuery

 Technique 78: Invoking MVC actions with jQuery

 Technique 79: Enriching the interface via jQueryUI

 12.4. Summary

 Chapter 13. State

 13.1. Handling state

 13.1.1. What is state?

 Technique 80: Per-request state

 Technique 81: Per-session state

 13.2. Advanced user state

 Technique 82: Using the Profile API

 Technique 83: A custom provider for the Profile API

 13.3. Summary

 Chapter 14. Caching in ASP.NET

 14.1. Per-application state: Cache

 14.2. Using OutputCache

 Technique 84: Leveraging OutputCache to speed up your pages

 14.3. OutputCache in ASP.NET MVC

 Technique 85: Deterministically removing items from OutputCache

 Technique 86: OutputCache and partial views

 14.4. Data caching techniques

 Technique 87: Implementing data caching in ASP.NET

 14.4.1. Cache tips and tricks

 14.5. Building custom cache providers

 14.5.1. Do I need a provider?

 14.5.2. Windows Server AppFabric caching

 Technique 88: Custom cache provider

 Technique 89: Custom OutputCache provider

 14.6. Summary

 Chapter 15. Extreme ASP.NET 4.0

 15.1. Using HttpModules

 Technique 90: Modifying the response flow with HttpModules

 Technique 91: Intercepting and handling mobile device requests

 15.2. Logging and handling errors

 15.2.1. Error logging with Enterprise Library and log4net

 Technique 92: Intercepting, and handling errors with a custom module

 15.3. Extending ASP.NET HttpRuntime

 Technique 93: Running your site from the database

 15.4. Summary

 Chapter 16. Performance and optimizations

 16.1. Increasing download performance by minifying

 Technique 94: Building a request filter to minify HTML

 Technique 95: Building an HTTPHandler to minify CSS

 Technique 96: Building an HTTPHandler to minify JavaScript

 16.2. Reducing computing time with multithreading

 Technique 97: Increasing performance with multithreading

 Technique 98: Using ParallelFX

 16.3. Optimize your web.config

 Technique 99: Tips for your web.config

 16.4. Summary

 Appendix A. ASP.NET and IIS 7.x

 A.1. What’s new in IIS 7.5

 A.2. Building extensions

 Technique 100: Modifying IIS behavior with managed modules

 Technique 101: Configuring application warm-up in IIS 7.5

 A.3. Summary

 Appendix B. Data access fundamentals

 B.1. Using ADO.NET to access data

 Technique 102: Querying the database using ADO.NET

 Technique 103: Using stored procedures to query the database

 Technique 104: Persisting data into the database

 B.2. Reading and writing XML

 Technique 106: Writing XML

 Technique 106: Generating XML from a data source

 Technique 107: Reading XML

 B.3. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 This has been a very long journey. We found that writing this book was a challenging task, a much harder one than we had anticipated,
 but there were also moments of joy and discovery along the way! The idea for the book first came to us 18 months ago, and
 many days and nights have come and gone between the first sentence we wrote and the final book you hold today.

 This is not our first book—it is the ninth book for Daniele, the seventh for Stefano, and the fourth for Marco—but it is the
 most complex one we’ve attempted because of the Techniques format we implement in the book. In addition, we were coauthoring
 another book for Manning Publications, Entity Framework 4 in Action, at roughly the same time.

 Our aim in writing this book was not to create a typical reference book: there are plenty of those around. We felt that because
 ASP.NET has now reached a high level of maturity, the time was ripe for a book of best practices, and that is what we set
 out to do. Instead of focusing on how a class is implemented or what members offer, this book shows you how to get tasks done,
 the right way.

 If your days (and nights) are spent on implementing web applications, you know that the best way to learn is from experience.
 This book contains all the tips we have learned in more than 10 years of working with ASP.NET. Everything in this book comes
 from our own day-by-day experience working as consultants as well from ASP.NET community members. We learned a lot from other
 people’s problems, and we are happy to now share the solutions and best practices with you.

 In this book you will find everything you need to build your web applications using a Problem/Solution/Discussion approach.
 Each scenario is motivated, then resolved, and finally discussed and explained.

 This is a book that we felt was missing from the market. We hope we have filled that need successfully and we invite you to
 send us your feedback and let us know if we have been successful in attaining our goal.

 We hope that our efforts will help you in your daily work. Enjoy the read, get your hands dirty, and have some fun!

Acknowledgments

 We can’t mention by name all the individuals who made contributions to this book, adding to its value in ways both large and
 small. All of them deserve our sincere thanks, but here we will mention only a few whose help was invaluable to us during
 the writing process.

 Cynthia Kane—Cynthia is our development editor at Manning. She was there for us from the the beginning, providing support
 and guidance, and has proved a master at transforming a bunch of words and images into an appealing book. Thank you.

 Scott Guthrie—Scott, also known as ScottGu, is the man behind a number of products in the Microsoft Developer Division, including
 ASP.NET. Scott was always willing to let us solve some of the problems that we encountered with a beta. Thank you.

 The Developer Division at Microsoft—thanks to everyone for their help and for building such a great product.

 All the folks at ASPItalia.com, our “mother ship”—if we managed to collect enough scenarios for your problem-solving enjoyment,
 part of the credit has to go to the members of our community.

 Many individuals at Manning worked hard on this book to bring it to our readers. A big thank-you to Michael Stephens and Marjan
 Bace for believing in us, and to the production team of Mary Piergies, Joan Celmer, Susan Harkins, Gordan Salinovic, and Janet
 Vail for their efforts.

 Our peer reviewers deserve special mention. Their suggestions and feedback were invaluable and made this a much better book.
 We thank Alex Thissen, Dave Corun, Anil Radhakrishna, Philippe Vialatte, Nikander Bruggeman, Margriet Bruggeman, Jason Jung,
 David Barkol, Perga Massimo, Braj Panda, Alessandro Gallo, Gary Bushey, Eric Swanson, Amos Bannister, and Andrew Siemer. We
 would also like to thank the technical proofreader, Matteo Casati, for his outstanding job of reviewing the final manuscript
 during production.

 Last but not least, thank you, dear reader, for your trust in this book. Our hope is that it will help you in your day-to-day
 work and make you more productive with ASP.NET!

 In addition to the people mentioned above, there are others who are important in Daniele’s, Stefano’s, and Marco’s private
 lives. Even if they didn’t directly work on the book, they contributed in other important ways to keep the authors on track.

 Daniele would like to thank his wife Noemi for her support and patience and for giving him his beautiful sons, Alessio and Matteo.
 A big thank-you to my parents for letting me play with computers when I was a kid, and to my family in general for supporting
 me. A special thank-you to my coauthors for helping me on this journey: you guys rock! And thanks to Alessio, Marco, Cristian,
 Matteo, and Riccardo at ASPItalia.com for all their help and support.

 Stefano wants to thank his wife Sara for being supportive and extremely patient, and his family (yes, the book is finally finished!).
 Special thanks to my closest friends (in alphabetical order), Federico, Gabriele, Gianni, and Riccardo. Of course, I can’t
 help mentioning Filippo, who already bought a copy of the book. Finally, a big thank-you to William and Annalisa for their
 friendship and their support. My last words are for Marco and Daniele: thanks guys!

 Marco thanks Stefano and Daniele because it’s always a privilege when you have the chance to work with such smart and funny guys.
 I would also like to thank the whole ASPItalia.com team: I’m so proud to be a part of it. Special thanks to my family, and
 to Barbara, for their support and for the patience they’ve shown me. You have all my love.

About this Book

 ASP.NET is a Microsoft technology for building web applications that leverages all the fantastic technologies you can find
 in .NET Framework.

 The book will move you from apprentice to master of ASP.NET by giving you specific techniques to solve problems you are likely
 to encounter. Each technique has a problem, solution, and discussion section. You might think of this book as a guided tour
 through ASP.NET best practices; we’ll introduce each scenario, solve the problem, and then discuss the results. Once you’ve
 read this book, you’ll have a better understanding of the most important aspects of designing, building, and maintaining ASP.NET-based
 applications.

 You’re going to find many devices in this book that will help you in the learning process:

	Figures—Pictures that show a workflow or summarize concepts

 	Listings and snippets—Pieces of code that show the solution to a problem

 	Tables—Visuals that summarize a list of features or options

We hope these devices will help make concepts clearer and the learning process faster.

Who should read this book?

 This book targets developers who are working on everything from the smallest home application to the largest enterprise application.
 ASP.NET can be useful in simple scenarios, where you can apply most of the RAD features provided by Visual Studio 2010, as
 well as in enterprise applications, where its roots in .NET Framework offer a wider range of possibilities.

Roadmap

 This book is designed for you to improve your ASP.NET expertise and is organized into sixteen chapters divided into five parts
 and two appendixes.

Part 1: ASP.NET fundamentals

 In part 1, we introduce ASP.NET fundamentals. For those of you who are already somewhat familiar with ASP.NET, this part serves as
 a refresher before moving forward.

 Chapter 1 provides an introduction to ASP.NET, with a focus on the Web Form’s model.

 Chapters 2 and 3 cover data access strategies in web applications. You’ll learn the best practices for data access and how to leverage them
 in your application.

Part 2: ASP.NET Web Forms

 Part 2 covers how to use ASP.NET Web Forms, the original model provided in ASP.NET to build the user interface.

 Chapter 4 takes a tour into ASP.NET Web Forms, covering the most common scenarios. You’ll also learn about the new features offered
 by version 4.0, how to use master pages to their fullest extent, and how to leverage URL routing.

 Chapter 5 deals with one of the most common activities for a developer: using data binding and how to fully integrate this feature
 into your applications.

 Chapter 6 covers an important extensibility point in ASP.NET Web Forms and shows how to build custom controls. You’ll start with the
 basics and analyze complex scenarios.

 Finally, chapter 7 explains how to control the markup generated by ASP.NET. You’ll learn how to produce better markup and how adaptive rendering
 works.

Part 3: ASP.NET MVC

 In part 3, we investigate the option to build your UI with ASP.NET MVC; after all, Web Forms aren’t the only model you can use to do
 that.

 ASP.NET MVC is a new option added in ASP.NET 3.5 SP1 and directly integrated into ASP.NET 4.0 as ASP.NET MVC 2.0. It’s not
 the new Web Forms, but rather a different approach to solve the same problem. ASP.NET MVC lets you use the Model-View-Controller
 (MVC) pattern, and is built with testability and great markup control in mind.

 Chapter 8 contains an introduction to ASP.NET MVC and shows the potential that this new toolkit offers when you’re building the UI.
 You’ll learn how to perform the basic actions that you’re already acquainted with in ASP.NET Web Forms.

 Chapter 9 covers how to customize and extend ASP.NET MVC in order to unlock the full potential that it offers.

Part 4: Security

 In part 4, we take a look at one of the most important concerns of every web application: how to protect and make your code secure.

 In chapter 10, we analyze the most common issues when dealing with security. You’ll learn how to build stronger applications, how to avoid
 common errors, and how to preserve your application’s integrity. You’ll find plenty of helpful suggestions throughout the
 chapter.

 Chapter 11 covers authentication and authorization in ASP.NET. It will show you how to build a secure area, how to leverage ASP.NET’s
 infrastructure, and how to build a custom provider to extend the existing features provided by ASP.NET’s Membership and Roles
 APIs.

Part 5: Advanced topics

 Finally, part 5 is dedicated to more advanced scenarios and combines many of the topics previously addressed in this book. These chapters
 cover both ASP.NET Web Forms and MVC.

 Chapter 12 covers how to integrate an ASP.NET application into an Ajax-enabled application and RIAs (Rich Internet Applications). We’ll
 also take a look at how to leverage jQuery and ASP.NET Ajax.

 In chapter 13, you’ll learn how to handle state in ASP.NET—from cookies, to ViewState, to new features introduced in version 4, like the
 ability to compress the SessionState.

 Chapter 14 is dedicated to caching. You’ll find plenty of tips on how to achieve better scalability by implementing a good caching strategy.
 You’ll also learn how to build custom cache providers and how Microsoft AppFabric caching works.

 Chapter 15 contains miscellaneous topics related to fully extending ASP.NET, from HttpRuntime, to logging, to building a virtual path provider.

 Last, chapter 16 offers some tips on how to build applications that perform better, with topics like content minifying, multithreading, and
 ParallelFX.

Code conventions and downloads

 All the code used in this book is in a monospace font like this. The .NET code is in both C# and Visual Basic so that you’re comfortable with the code, regardless of the language you are
 using. The language is indicated immediately above the relevant code. For longer lines of code, a wrapping character might
 be used so the code is technically correct while conforming to the limitations of a printed page. Code annotations accompany
 many of the listings, highlighting important concepts. In some cases, numbered bullets link to explanations that follow the
 listing.

 Source code for all working examples in this book is available for download from the publisher’s website at www.manning.com/ASP.NET4.0inPractice.

Author Online

 The purchase of ASP.NET 4.0 in Practice includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/ASP.NET4.0inPractice. This page provides information on how to get on the forum after you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray! The Author Online forum and the archives of previous discussions will be accessible
 from the publisher’s website as long as the book is in print.

 In addition to the Author Online forum available on Manning’s website, you can also contact us regarding this book, or anything
 else, through one of the following avenues:

	Book website—http://www.aspnetinpractice.com/

 	Daniele’s blog—http://blogs.5dlabs.it/daniele/

 	Stefano’s blog—http://blogs.5dlabs.it/stefano/

 	Marco’s blog—http://blogs.5dlabs.it/marcodes/

All comments sent to these blogs are moderated. We post nearly all comments; but if you include your email address or phone
 number, we won’t post the comment out of respect for your privacy.

About the Authors

 DANIELE BOCHICCHIO is the cofounder of 5DLabs.it, a consulting agency specializing in ASP.NET, Silverlight, Windows Phone 7, and .NET Framework.
 He has worked on a lot of cool projects with many different technologies. Daniele is a well-known speaker and author, and
 you can find him at the main developer-focused events worldwide. He has also written several books, in both Italian and English.
 He’s the coauthor of Manning’s Entity Framework 4 in Action. Daniele is the network manager of ASPItalia.com, the largest Italian .NET Framework community. He currently lives in southern Italy with his family. You can reach him via
 his personal website at www.bochicchio.com/. Daniele shares his thoughts in 140 characters or less at http://twitter.com/dbochicchio/.

 STEFANO MOSTARDA is a Microsoft MVP in the Data Platform category. He’s a software architect focused on web applications and the cofounder
 of 5DLabs.it, a consulting agency specialized in ASP.NET, Silverlight, Windows Phone 7, and .NET Framework. Stefano is a professional
 speaker at many important Italian conferences and a well-known author. He has written many books for the Italian market and
 is the lead author of Manning’s Entity Framework 4 in Action. He’s also one of the leaders of the ASPItalia.com Network and a content manager of the LINQItalia.com website dedicated to LINQ and Entity Framework. In addition to visiting his blog, you can read his technical deliriums at
 http://twitter.com/sm15455/.

 MARCO DE SANCTIS is a Microsoft MVP who has been designing and developing enterprise applications in distributed scenarios for the last seven
 years. He started developing with ASP.NET when it was first released; since then, he’s improved his skills to become an application
 architect. Over the years, he has specialized in building distributed services and has widened his knowledge to encompass
 technologies like Workflow Foundation, Windows Communication Foundation, LINQ, and ADO.NET Entity Framework. Today Marco is
 one of the members of 5DLabs.it and works as a senior software engineer for one of the biggest Italian companies in the IT
 market. In his spare time, he’s a content manager at ASPItalia.com. He shares his tweets at http://twitter.com/crad77.

About the Cover Illustration

 The figure on the cover of ASP.NET 4.0 in Practice is captioned “Young woman from Montenegro.” The illustration is taken from a collection of hand-colored drawings of Dalmatian
 regional dress costumes from the nineteenth century titled Dalmacja. The historical region of Dalmatia was much larger than it is today, stretching from the Istrian Peninsula to Albania along
 the Adriatic coast. Today, the region is divided between Croatia and Montenergo, the latter administering a small southernmost
 section. The long, rugged Dalmatian coast, backed by high mountains with hundreds of offshore islands, is fast becoming one
 of Europe’s most popular vacation spots.

 The young woman on the cover is wearing a costume typical for the villages and small towns found in this region. Rich embroidery,
 handmade linens, and colorful woolen scarves and skirts are the traditional elements of a Dalmatian costume, with small, not
 easily discernible decorative details indicating the locality of origin.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. ASP.NET Fundamentals

 Welcome to ASP.NET 4.0 In Practice, dear reader!

 ASP.NET was first introduced in the early 2000s as an effort from Microsoft to bring the easy development typical of Windows
 applications to the web. From this first attempt, the web has changed a lot and so has ASP.NET. Now ASP.NET is a mature framework
 that lets you create powerful applications.

 This book is divided into four parts. Part 1 is going to give you a jump start into the fundamentals of ASP.NET. If you’re an average developer who wants to put things
 in context, consider this part a quick refresher course. If you’re new to ASP.NET, you’ll get all the basics you need.

 Chapter 1 is a general introduction to ASP.NET, specifically to the Web Form’s model.

 Chapters 2 and 3 cover data access strategies in web applications. You’ll learn best practices for data access and how to leverage them in
 your applications.

Chapter 1. Getting acquainted with ASP.NET 4.0

	

 This chapter covers

	
An introduction to ASP.NET

 	Understanding ASP.NET Web Forms

 	What’s new in ASP.NET 4.0

	

ASP.NET is used to build web applications, and it’s the preferred choice when using Microsoft technologies. It was built by
 Microsoft in the early 2000s as part of the .NET Framework initiative, which offered a unified environment in which to build
 and run applications for Windows developers. If you think of .NET Framework as a house, then ASP.NET is the rooms.

 As ASP.NET approaches its fifth version (counting minor and major releases), the community of developers around ASP.NET is
 much more mature than it was ten years ago. In the beginning, ASP.NET developers came from backgrounds in Active Server Pages
 (ASP) or Visual Basic (VB) 6, so topics like design, architecture, and patterns were often ignored. But this isn’t the case
 today. We’ve found ways to build better web applications and how to overcome challenges we face daily when we’re working in
 ASP.NET. This book will explore how to solve common problems in ASP.NET, but before we get to the prize, everyone needs to
 be on the same footing.

 You picked up this book because you want to get to know ASP.NET, specifically ASP.NET 4.0. Well, ASP.NET 4.0 isn’t a revolutionary
 release, but an evolutionary one. In this book, we’ll focus on the new features you’ll find in version 4.0, but we’ll also
 cover material from the previous releases that’s still used in the 4.0 version. In the beginning of this book, you’ll see
 content that’s valuable in ASP.NET 3.5 or 2.0, but as we move further along, version 4.0 will be the main focus.

 In this chapter, we’ll introduce you to what ASP.NET is, how it works, and how to get started. We’ll look at the typical architecture
 of an ASP.NET application and then move into the new features you’ll find in the 4.0 release. When that’s all said and done,
 we’ll introduce a problem-solution-discussion scenario that should make the technology your friend rather than just an acquaintance.

1.1. Meet ASP.NET

 You use ASP.NET to build web applications. Because it’s part of .NET Framework, you’ll use the same tools and similar code
 as when you write Windows desktop applications or service-oriented ones. Isn’t that great? So what’s new about ASP.NET 4.0
 that you can’t get in previous versions? Before we get into the specifics, let’s install ASP.NET and then take a quick look
 at ASP.NET fundamentals.

 1.1.1. Installing ASP.NET

 ASP.NET 4.0 can run on top of Internet Information Services (IIS) 6.0 (Windows Server 2003), IIS 7.0 (Windows Server 2008
 and Windows Vista), or IIS 7.5 (Windows Server 2008 R2 and Windows 7). ASP.NET uses Visual Studio as the integrated development
 environment (IDE) that it uses to create applications. To start building applications based on ASP.NET, you first need to
 install its runtime and a developer tool:

 1. If you have Visual Studio 2010, install it on your machine. If you need the free version of Visual Studio, you can download
 Visual Web Developer Express at http://www.asp.net/.

 2. If you want to test your applications on a server, download and install the software development kit (SDK) from http://www.asp.net/.

 3. Optionally, download and install SQL Server 2008 Express (or a Developer Edition, if you prefer). SQL Server is useful
 if you want to use a database engine for development purposes.

 More information on these downloads is available at http://www.asp.net/.

	

 Visual Web Developer Express and Visual Studio Express
 Visual Web Developer Express is a subset of Visual Studio, the IDE used to build ASP.NET applications. It’s free, even for
 commercial use, but it’s limited in functionality. If you’re a professional developer, you’ll want to buy a license for Visual
 Studio. Discussing Visual Studio isn’t within the scope of this book, so we encourage you to take a look at http://msdn.microsoft.com/vstudio/.

	

In reality, you need only the .NET Framework SDK and a text editor to build ASP.NET applications. But if you want professional
 results, Visual Studio is the preferred choice for professional software development because it offers a lot of built-in features.

 This book doesn’t cover much about Visual Studio, but rather focuses on the nuts and bolts of using it to build applications
 in ASP.NET. We assume that you already have an understanding of Visual Studio and ASP.NET. If you don’t, take some time to
 get familiar with them.

 1.1.2. How ASP.NET works

 ASP.NET is part of .NET Framework, so it takes full advantage of the object-oriented programming (OOP) capabilities offered
 by the framework itself. OOP lets you think in terms of objects and program their interactions. Because we as humans think
 in terms of objects in real life, OOP is one of the easiest programming paradigms to understand. When you create a web page
 using ASP.NET, you’re creating an object with behaviors (the page’s events), commands (methods), and state (objects instantiated).

 The original and most common approach used to develop with ASP.NET uses Web Forms, which is similar to what VB gave Windows
 developers years ago. Every single object on a page is programmable and has events. Figure 1.1 shows the Web Form model.

 Figure 1.1. The Web Form model. Every interaction on the form causes a new request to go from the web browser to the server.

 [image:]

 Let’s imagine a common item that occurs on a page: a button that can handle the user’s click and provide feedback. Using the
 ASP.NET Web Form model, all you need to do is add a Button object and intercept the Click event. This approach is about as clear as it gets. You place objects on a design surface and program them, using a method
 that’s similar to classic desktop application development.

 Unfortunately, things tend to be a little bit complicated in real-world applications, so some specific scenarios might force
 you to take more control of the output. In such cases, using this approach to define the page might result in low flexibility.
 That’s why, starting with version 4.0, you can choose a new alternative to define your pages, using ASP.NET MVC.

 We’ll go into Web Forms in more detail in chapters 6 through 9, and we’ll explain ASP.NET MVC in chapters 10 and 11. Although most of the concepts we’ll talk about from this point on are necessary to leverage the ASP.NET Web Form model,
 you might also find them useful when you’re using ASP.NET MVC. Okay, now you’ve seen how ASP.NET works, let’s try it out.

	

 ASP.NET MVC versus Web Forms
 There’s a lot of debate in the ASP.NET community regarding MVC versus Web Forms. Each has different ambitions and serves different
 kinds of applications, so there’s not a good choice and a bad choice. ASP.NET MVC implements the Model-View-Controller (MVC)
 pattern and was built to support testability. It gives you markup control, whereas Web Forms can increase your productivity.
 Keep both of them in mind and you’ll be set.

 MVC gives you flexibility, but you need to implement a lot of things that Web Forms give you out of the box. The rule here
 is not new: choose with your mind, not your heart!

	

1.1.3. Getting started

 To start experiencing ASP.NET, all you have to do is open Visual Studio and create a new web project. In this first part,
 we’re going to use Web Forms as our model.

 Web Form really means “web page”; the term itself is a marketing name. The reason behind this name is that ASP.NET can have
 only one Web Form at a time on a single page. ASP.NET pages contain server controls, namely objects. A server control is a server-side programmable piece of a page. You typically add server controls in the
 markup part of the page, but you can add them via code too. A server control is a specific tag in the markup.

 A Web Form is usually composed of two files, one with markup and one with code. The code file is commonly referred to as code behind or code beside, depending on your project type.

 To run an ASP.NET application, you need a web browser for rendering (all you’re doing is generating HTML) and a web server
 to run it. Figure 1.2 shows the typical flow associated with getting a request and producing a response.

 Figure 1.2. ASP.NET page compilation is performed on demand. The files are monitored for changes, and if modifications are made, the current
 compiled version is discarded.

 [image:]

	

Note

 Code behind is used when your project type is Web Project, and code beside (often referred to code file) is used for Web Site.
 The difference is in how ASP.NET and versus handle compilation and how you deploy the application. Web Site is commonly used
 for simple projects, whereas Web Project is more useful in complex ones.

 It’s possible to have both markup and code in the same page. A third option, called code inline, mixes markup and code in the same file. Even then, it’s difficult to end up with spaghetti code because the blocks are separated.

	

ASP.NET provides a transparent mechanism to handle page compilation. The first time a user requests a page, if it’s not yet compiled, both the page and its code are grouped and compiled to
 disk. What happens next is similar to what happens for other requests: the page is instantiated, rendered, and served in the
 browser as HTML. This process is completely transparent to the developer. ASP.NET continuously watches the file and, in case
 of modifications, automatically discards the old version. The new version is compiled instead, using the previously exposed
 flow.

 Now you know what ASP.NET is in general, how to start it, and how it works. Now it’s time to look at the typical architecture.

1.2. Typical architecture in ASP.NET applications

 Inexperienced developers often think of a web site as a collage of code, so cut-and-paste is used as a pattern wherever possible.
 Using this method generates a lot of duplicate code, as well as inconsistency throughout the web site. Eventually, you might
 reach the point where maintenance is a nightmare because if you need to modify a functionality that’s replicated in several
 places, you’ll probably need to repeat the same work in different areas. This problem is particularly severe when the modification
 relates to a security bug. When that happens, the iteration necessary to accomplish a basic task will become extremely time
 consuming. Fortunately, you can avoid such complications by making use of ASP.NET’s OOP support.

 1.2.1. ASP.NET meets OOP

 Having OOP support helps you build reusable components and avoid code redundancy. Architecture is important in your application
 and you should ensure that you provide a good one. To start using ASP.NET, you need to shape the big picture and understand
 how ASP.NET uses OOP concepts and architectural patterns in practice.

 ASP.NET is organized into small components called pages. A page is typically the visual entry point for a given functionality,
 which is often an action.

Three-Layer Architecture

 Let’s imagine that we want to build an application to manage a book library. One action associated with this application is
 “list the books”, another is “give me details about a particular book”, and so on. To display the results for these actions,
 we need a specific web page that extracts data from our storage system. The storage system is probably a database synchronized
 with our backend.

 In this typical scenario, we need to design our application in layers so that we can better separate one from the others.

 Let’s try to write a simple list of components involved in creating the solution:

	A class to handle data retrieval

 	A class to contain data in an object-oriented fashion

 	A web page to display the objects loaded with data from the database

This list results in an architecture model called three-layer, where each layer is separated from the other, as show in figure 1.3.

 Figure 1.3. Typical schema for a three-layered application. Each component is separated from those above it, and each has no understanding
 of the inner capabilities of the others. Isolation provides the ability to change a layer implementation without affecting
 the other layers.

 [image:]

	

 Architectural considerations
 Although it seems to be ubiquitous, three-layer architecture isn’t the only available option, but it’s certainly the most
 diffuse and well known. You can find more patterns at http://martinfowler.com/eaaCatalog/.

 For example, to simplify data access, the Repository pattern is currently in vogue. It adds more abstraction and helps in using Object-Relational Mapping (ORM) (we’ll talk about ORM
 in the next chapter). You can find more information about this pattern at http://martinfowler.com/eaaCatalog/repository.html.

	

The first layer is called the Data Access Layer, and the second layer is the Business Logic Layer. From our point of view,
 it’s the last layer, the Presentation layer, that’s the most interesting of the three. The other two layers remain the same,
 even if we decide to build our application with a different user interface (UI), like a Windows Forms application. Before we get to the Presentation
 Layer though, we need to talk a bit about the first two layers.

Data Access and Business Logic Layers

 The Data Access Layer is responsible for data strategies. The Business Logic Layer, as its name suggests, contains the rules to be enforced with respect to the application business needs. This architecture
 isn’t mandatory, but it’s the most common one. Simplifications of this architecture exist in which a two-layer version is
 preferred, and more complex ones use an n-layer version. Keep in mind that you need different solutions to different problems,
 so the three-layer approach might not always work for you.

 In a typical multilayer application, you need to exchange objects between different layers, so using objects that can contain
 data and be layer neutral is the best way to go. If you decide to go with a pure .NET Framework 4.0 solution, the best choice
 is the Entity Framework, which we’ll discuss in detail in the following chapters.

 At this point, we need to emphasize that you need to use different classes to handle different scenarios, and an object model to contain and present data in your application.

 1.2.2. ASP.NET components

 Let’s go back to our library web page and assume that the rest of the code is already in place. When someone requests this
 page using a web browser, some magic happens under the hood; let’s talk about that magic in detail.

 ASP.NET is based on a class named HttpRuntime, which handles all the actions required to make the ASP.NET runtime communicate with the web server. HttpRuntime works with another important class, HttpApplication, which is responsible for processing the current request. This class is instantiated the first time you request a page and
 handles many future requests. You can have multiple instances of HttpApplication, but it can process only one request at a time. You can use this instance to store per-request data.

	

 HttpApplication maximum number of instances
 As of version 2.0, HttpApplication is automatically configured. You can change its default values by modifying machine.config in the .NET Framework Config directory.

 Pool size indicates the maximum number of instances of HttpApplication for a given web application. The default value is 100 maximum instances per central processing unit (CPU). This doesn’t mean
 that you’ll have 100 instances available, but that ASP.NET regulates those instances using current demand from IIS. In many
 scenarios, you won’t even get near this limit. HttpApplication instances are recycled and reused across different requests because it’s difficult to have a lot of concurrent requests in
 common web applications.

	

This model gives you maximum flexibility; you could, in fact, intercept one of the events provided by this class and modify
 ASP.NET behavior at a particular point in the whole pipeline.

 In addition to HttpRuntime and HttpApplication, there are a few other contributors to the magic. Let’s look at those now.

HttpHandlers

 When a request hits HttpApplication, a couple of events are generated and consumed by the pipeline. One of these events is BeginRequest, which is used to handle the beginning of the request. This event is fired for every kind of resource that ASP.NET owns.

 These events are useful when you need to extend ASP.NET features, for example, when you want to provide a different mechanism
 for authentication or to display errors. We’re going to explain these scenarios in the next few chapters; for now, remember
 that ASP.NET is built for extensibility and that you can control most of its inner aspects.

 When you request a resource, you typically want a web page with a fixed extension, commonly .aspx. Extensions in ASP.NET are
 handled by HttpHandlers, a set of classes that handle different kinds of request in different ways. If you’re scratching your head, trying to understand
 this concept, imagine that HttpHandlers are the equivalent of what happens in Windows when you double click a file and the corresponding application opens.

 HttpHandlers are in fact responsible for generating the output. You can map a complex pattern like /content/*.aspx, as well as a simple
 one like .aspx.

The Web Form

 The default HttpHandler associated with a Web Form is System.Web.UI.Page-HandlerFactory. This HttpHandler is a simple bridge between the page content and the ASP.NET Page Parser, an interesting piece of ASP.NET architecture in itself.

 Page Parser is responsible for validating markup validation and converting code into classes. ASP.NET is part of .NET Framework,
 which runs on top of the Common Language Runtime (CLR). The CLR understands only objects, so some conversion has to occur
 to transform a Web Form into an object.

	

“Page” in ASP.NET

 ASP.NET MVC uses a different concept of page from what you might be used to. You have a more restricted link to the actions
 performed under the hood, and a page (meaning what you see when you’re browsing a site) is in fact called a view. We’re going
 to discuss this topic in more detail in chapter 7.

	

The conversion from markup to code is transparent to the developer. In fact, it’s much easier to write markup code for the
 Presentation Layer than for C# or VB code, so don’t worry about having to learn a lot of new techniques. Page Parser will
 do the magic and convert the markup to code for you, as shown in figure 1.4.

 Figure 1.4. The simplified route for a page request. After the client request, a special HttpHandler called PageHandlerFactory gets the request and dynamically executes the given page.

 [image:]

 We’ve simplified the picture in figure 1.4 for brevity’s sake; in reality, between Http-Application and the designated HttpHandler are special objects, called HttpModules.

 HttpModules are responsible for the majority of the features in ASP.NET and provide great flexibility when you have to add functionalities
 to an application. They work as filters for both the request and the response, and they register themselves for Http-Application events. Using HttpModules, ASP.NET offers mechanisms like authentication, authorization, session state, cache, and many others. You can write your
 own modules to modify the default behaviors and give yourself the flexibility you need.

 1.2.3. Global.asax and web.config

 If you’re familiar with Classic ASP, you might remember a file named global.asa. ASP.NET has a similar file, named global.asax.
 This file functions similarly to an Http-Module, the difference being that it doesn’t require registration. HttpModules are separate from the application, so you can reuse them in different projects; global.asax is pure code that you add to
 a specific web application.

	

Note

 Global.asax and HttpModules are similar. The difference is that when you use HttpModules with IIS 7.x and Integrated Pipeline mode, they’re called for every kind of request, but global.asax events fire only for
 pure ASP.NET requests.

	

Both HttpHandlers and HttpModules need to be registered to be used by your applications. ASP.NET provides a centralized mechanism for you to store configuration,
 based on delegation. The central configuration, for all applications, is in a special file called machine.config, in the .NET Framework Config
 directory (typically C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config). This file includes configuration shared by every
 .NET Framework application, including ASP.NET applications.

 An ASP.NET application might contain a file called web.config in every directory of the web site. When it’s placed in the
 root, web.config has the ability to overwrite some special configuration options, such as HttpHandler and HttpModules, authentication, SessionState, and so on. If you place web.config in subdirectories, you can overwrite only selected features, like HttpHandlers and authorization.

 If you specify a value for a given property in web.config, this value will be used by all the pages in that particular path.
 This feature helps delegation and enhances customization.

 web.config is an XML file, composed of a special set of nodes. Don’t worry—you don’t have to learn them. You can use Visual
 Studio’s Intellisense to explore different options, or just explore Microsoft Developer Network (MSDN) documentation.

 The following snippet is an example of simple web.config content:

 <configuration>
 <system.web>
 <pages enableViewState="false" />
 <customErrors mode="Off" />
 </system.web>
</configuration>

 You access web.config nodes by using classes under the System.Configuration namespace, located in an assembly with the same name.

 Now you know all the components of the ASP.NET pipeline architecture. Let’s put it all together and see what it looks like.

 1.2.4. The ASP.NET pipeline

 Figure 1.5 shows the basic architecture of the ASP.NET pipeline, with the different steps involved in sending a request and generating
 a response.

 Figure 1.5. The ASP.NET pipeline for request and response (principal events only). HttpModules and HttpHandlers are used by the developer to make the pipeline extensible.

 [image:]

 The architecture shown in figure 1.5 is interesting because both HttpHandlers and HttpModules can be developed to increase application flexibility. Given this architecture, you can adapt ASP.NET to different scenarios.

 Now that you have a clear understanding of what happens under the hood, let’s move on to cover the basics behind the single
 most used object in ASP.NET development: the ASP.NET page, also known as a Web Form.

1.3. Your first ASP.NET Web Form

 In this section, you’ll discover the basics of how to build ASP.NET pages using a Web Form. The Web Form is the preferred
 paradigm for implementing an ASP.NET web page and is specially tailored for beginners. A Web Form is based on a simple concept:
 It’s your design surface; all you need to do is insert your objects and program them.

 Sticking to this vision leads to productivity and ease of use, but some developers who use other technologies look down on
 it. So, is it a good way to develop your view, or a not-so-good way? The truth, as always, is somewhere in the middle. It’s
 a great boost for productivity, but you have to use it with caution.

 At this point in the chapter, you’re ready to implement your first Web Form and see how you can use ASP.NET to build rich
 pages. To that end, let’s start looking at some common scenarios in building web applications, such as handling PostBack,
 validating form input, and styling. These tasks are the most typical that you, as a developer, will perform in your day-to-day
 work. Mastering them will let you spend less time on repetitive tasks, as you leverage the ASP.NET infrastructure.

 We’ve analyzed the pipeline; the next step is to understand how a single Web Form works. Because Web Forms contain your UI
 logic, and you’ll spend most of your development time working with them, understanding them is of utmost importance. The first
 step toward that understanding is knowing about server controls.

 1.3.1. Server controls

 A single page is composed of different objects that are all called controls. They’re also called server controls because these objects run server side.

 You’ve already met the ASP.NET Page Parser. The Page Parser transforms server controls in C# or VB code for you.

 Let’s take a look at some simple ASP.NET Web Form markup:

 <html>
...
 <form runat="server">
 <asp:button runat="server" Text="Click Me" ID="ClickButton" />
 </form>
</html>

 You’ll notice a couple of XML/HTML tags with a strange attribute named runat. The value for this attribute is always set to server. This setting is what makes the server control usable in the server code.

	

From Server Controls to Markup

 Every server control is transformed to an instance of an object, but normal markup is rendered using a special control, the
 Literal. In some cases, such as in Ajax scenarios, an HTML tag is preferable. You’ll get true flexibility and have greater control
 over what you can do.

	

To programmatically access server controls, you can specify the optional ID attribute. For example, you could use an ID value to access a button’s Text property for a Button. If you’re absolutely sure that your ASP.NET page won’t perform any PostBacks and your controls don’t need to be hosted by
 the Web Form, simply remove the <form /> tag. This tag generates the infrastructure markup to enable PostBacks, but if your controls don’t need it, then you don’t
 need to include it. Removing this tag also removes ViewState rendering, so remember this tip to avoid generating markup code
 that no one’s going to use.

 Two different kinds of server controls provide different functionalities: HTML controls and web controls. Let’s look at each
 one.

HTML Controls

 If you add the runat attribute to an arbitrary HTML tag, then you’ve created an HTML control. HTML controls are inside the namespace System.Web.UI.HtmlControls and are used for compatibility reasons.

 The object model for an HTML control is similar to the corresponding HTML tag object model. These controls aren’t special;
 you use them to avoid complexity and to better adapt existing HTML markup to ASP.NET.

Web Controls

 XML tags that use a prefix followed by semicolon and a suffix (for example, <asp:Button ... />) are called web controls and are grouped in the System.Web.UI.WebControls namespace. These controls produce HTML by generating the markup using a set of conditions, such as browser type and version.
 Generating markup this way is called adaptive rendering. We’ll talk about adaptive rendering in chapter 10.

 Now that you know how to interact with the page, let’s return to the Web Form.

 1.3.2. Page events

 The page itself has events. When you need to program an object, you’ll typically use one of the Web Form events. To program
 an event, you’ll most likely use OnLoad. To simplify this task, ASP.NET defines special event handlers, where the Page_ prefix is used. These methods are effectively called automatically.

 To programmatically set the Text property of the Button we showed you in the previous snippet, you would use one of the following code examples:

 C#:

 void Page_Load()
{
 ClickButton.Text = "Please click me!";
}

 VB:

 Sub Page_Load()
{
 ClickButton.Text = "Please click me!"
}

 This snippet is quite simple and lets you appreciate the Web Form approach: You have objects, you have events, and all you
 have to do is program them.

 A Web Form has a lot of events, but you’ll probably stick to the ones listed in table 1.1, presented in order of invocation.

 Table 1.1. Main events exposed by the Page class through special event handlers

	
 Event

 	
 Description

	Page_Init
 	Called when the class associated with the page is loaded. This event is used to initialize values, not to modify controls’
 state (because the state isn’t loaded).

	Page_Load
 	Raised when the Page and its controls are ready to be used. This event is often used to modify control properties.

	Page_LoadComplete
 	As the name suggests, this event occurs every time a Page_Load event is completed.

	Page_PreRender
 	This event is the last event that you can use to modify the Page state before ASP.NET renders the content.

Your last chance to modify page controls is the Page_PreRender event. After this event, the Web Form content is rendered.

Page Rendering

 The ASP.NET Web Form is a special kind of control—the root one. Just like any other control, its output is generated using
 the Render method. This method is shared by every control and is called recursively, so every piece of content on the page is rendered.
 You have time to program controls prior to using Render; after you use that call, you can’t modify their state any more.

 The Web Form is based on this rendering mechanism. You need to keep this in mind as you develop your web pages. If you’re
 new to this model, you’ll need a different mindset to effectively organize your page using server controls. But don’t worry.
 Most of the examples in this book will show you how to leverage this approach.

	

Note

 A Web Form is the right model to use for common web page tasks. That said, keep in mind that it wasn’t designed with testability
 and complete control over markup in mind, but for productivity. If you prefer to adopt a different approach, ASP.NET MVC implements
 the Model-View-Controller pattern in ASP.NET. We’re going to talk more about that in chapter 8.

	

1.3.3. Using server controls

 We introduced server controls in section 1.3.1. Now we’re going to try to complicate the previous scenario. When you need to include user interaction in a page, things
 tend to be more complicated than in the example we presented in that section.

 The following snippet contains a more common use of server controls.

 <html>
...
 <form runat="server">
 <asp:literal id="ResponseText" runat="server" />
 Enter your name:
 <asp:textbox runat="server" ID="Name" />

 <asp:button runat="server" Text="Click Me" ID="ClickButton"
 OnClick="HandleSubmit" />
 </form>
...
</html>

 In this snippet, we’ve added two new controls, a Literal and a TextBox. The Literal doesn’t correspond to an HTML tag (it’s literal content), but the TextBox corresponds to the tag <input type="text" />. Remember that this is true with the most common scenarios, but adaptive rendering might produce different output.

 One other difference is the presence of a new Click event handler for our button. This event handler will be invoked when the user submits the form; it’s also used to add a code to handle
 the response.

Postback and Viewstate

 Our task for this example is to get the name in the form and display it on the page. Using ASP.NET, this task is pretty easy,
 as you can see if you analyze the following snippet:

 C#:

 void HandleSubmit(object sender, EventArgs e)
{
 ResponseText.Text = "Your name is: " + Name.Text;
}

 VB:

 Sub HandleSubmit(sender as Object, e as EventArgs)
 ResponseText.Text = "Your name is: " & Name.Text
End Sub

 This code will intercept the Click event for the Button and modify the Text property on our Literal to show the corresponding value. The results are shown in figure 1.6.

 Figure 1.6. The code snippet results in a Web Form that shows the TextBox and Literal control after the button is clicked. The code used to render this page takes advantages of OOP techniques to program objects
 during their lifecycle.

 [image:]

 ASP.NET handles the state for you, using a mechanism called ViewState. Both the page and the controls are able to persist
 their state during the iteration between client and server (called PostBack). A PostBack is a post of the form back to the
 server.

	

Note

 Complex pages might have a very large ViewState associated with it. A large ViewState can severely affect performance and
 give the user the impression that your application is slow.

 Starting with version 4.0, you can tweak ViewState behavior. We’ll discuss these new features in chapter 12.

	

To give you these functionalities at no cost, ASP.NET uses ViewState to preserve the state of the controls and PostBack to
 leverage event-based development.

 ViewState, by default, is saved in a hidden field in the Web Form. This field is sent back and forth between the client and
 server, so that ASP.NET can load the control states prior to the last PostBack, apply the necessary modifications to the controls
 associated with the code, and display the modification to the user.

 Now that you’ve got a taste for what ASP.NET is, let’s go back and look at the new features that make ASP.NET 4.0 the wonderful
 thing that it is.

1.4. What’s new in ASP.NET 4.0

 Let’s assume this is your first time with .NET Framework version 4.0. As in the previous releases, .NET Framework 4.0 includes
 not only a new version of ASP.NET, but new technologies inside the framework itself. Even though the framework includes these
 technologies, you don’t always have to use them in your ASP.NET applications.

 Upgrading an existing application to this new version is painless. Version 4.0 includes all the features of the earlier versions.
 If you’re planning to migrate an application from version 2.0 or 3.5, rest easy; you won’t need to modify your code.

 You can take full advantage of the new CLR, compilers, fixed bugs, and increased performance with no effort at all beyond
 a simple conversion. Visual Studio 2010 can handle projects for .NET Framework 2.0, 3.0, 3.5, and 4.0, but you can’t convert
 the project file to a previous version. Upgrading your project is a one-way-only step.

 When you build your ASP.NET applications, an intermediate language (IL), is produced at compilation time. This code will run
 inside a virtual machine that’s created by the CLR and benefits from .NET Framework services, such as memory management, security,
 and garbage collection.

 As we’ve previously noted, the runtime contains all the technologies inside the framework. You’ll get out-of-the-box support
 not only for ASP.NET, but also for Windows Communication Foundation (WCF), which is the technology used to implement service-oriented
 scenarios, the Entity Framework (an Object-Relational Mapping [ORM] specifically built for .NET Framework), and so on.

 1.4.1. .NET Framework 4.0

 Using ASP.NET might help you leverage the other technologies inside the framework because they share a common background.
 Sharing a similar environment is a key aspect for you to consider when you’re choosing a framework. .NET Framework offers
 consistency across the kinds of applications you might need to build, from web applications to services, from Windows applications
 to mobile ones.

 Different technologies use different classes for the UI, but both the framework and the IDE remain the same, as shown in figure 1.7.

 Figure 1.7. The main components of .NET Framework 4.0. Every piece is a separate technology available in the framework. You can combine
 any of them or use them separately.

 [image:]

 .NET Framework and its Base Class Library (BCL) are wide in scope, so it’s virtually impossible to master every single aspect
 of them. You’ll find that you learn what you need to know as you work.

 ASP.NET is a subset of the framework. As you’ll notice in figure 1.7, a lot of components are shared by different kinds of applications. You can leverage Language Integrated Query (LINQ) from
 both ASP.NET applications and Windows Presentation Foundation (WPF) desktop applications. The underlying compilers, runtime,
 and class library also share the components.

Programing Languages

 An interesting aspect of .NET Framework 4.0 is that it includes new versions of programming languages; you can choose between
 C# 4.0 and VB 10. In this book, you’ll find examples in both languages.

 Both C# 4.0 and VB 10 are evolutions of preceding versions. VB 10 is more similar to C# in terms of functionalities, whereas
 C# has support for something similar to VB late binding, called dynamic types.

 .NET Framework 4.0 includes a Dynamic Language Runtime (DLR) that calls dynamic languages (such as Ruby or IronPython) from
 managed code. C# 4.0 fully supports executing code at runtime, just like dynamic code does. On the other hand, VB has introduced
 support for multiline statements, as do languages like C# or Java, without using a special character (like the underscore).

 No matter which language you program in, you’ll have access to all the features of .NET Framework. You’ve decided on a specific
 style of programming; you haven’t jeopardized performance.

 Now you know about .NET Framework. Let’s talk about all the new features that ASP.NET 4.0 has in store for you.

 1.4.2. A panoramic overview of ASP.NET 4.0 features

 ASP.NET 4.0 has significantly changed the controls rendering behavior. All the controls generate markup that’s compliant with
 XHTML 1.1. If you have some specific client-side code that isn’t compliant with XHTML 1.1, you should check that everything
 runs fine. Producing such markup isn’t the default behavior, which makes migrations easier. (We’re going to discuss this topic
 in more depth in chapter 6.) Controls impacted by this change are ListView, FormView, Login, CheckboxList, and pretty much all the controls that previously generated HTML tables.

 Both Visual Studio 2010 and ASP.NET 4.0 Web Controls are now compliant with Cascading Style Sheets (CSS) 2.1 specifications
 to ensure web standards compatibility. Additional libraries used as CSS control adapters are no longer required.

Web.Config Minification

 ASP.NET 4.0 has a new web.config setting that minifies its content. You can include just the minimum required settings to
 load the application, using a specified .NET Framework version.

 Speaking of new functionalities, ASP.NET 4.0 introduces a new set of features for both ViewState and ClientID generation.

The Flexible Viewstate

 You can now activate ViewState on a per-control basis. This feature gives you both flexibility and some control over the ViewState
 size. In previous versions of ASP.NET, you could specify this behavior only for parent controls. If you had a child control
 inside a parent whose ViewState was off, the child controls inherited this behavior. In version 4.0, you can tweak this property
 and disable ViewState for the parent and enable it for a particular child control. You can do the same thing to Page, too, because it’s a special control (the root one). You’ll learn more about this topic in chapter 11.

Control ClientID Generation

 When you set the ID property of a server control, ASP.NET generates a corresponding ID attribute for the HTML tag at rendering
 time. This value is called ClientID and is generated automatically by ASP.NET. Automatic generation ensures that the ID is unique for each page. The problem
 is that automatic generation also results in a complex ID when a control is inside other controls. It’s difficult to handle
 this kind of ID with JavaScript because you need to access the control ClientID property every time.

 To mitigate this problem, ASP.NET 4.0 gives you the option to control ClientID generation. We’re going to talk about this in detail in chapter 5, when we’ll discuss all Web Forms 4.0 features.

Data Binding and Dynamic Data Controls

 In version 4.0, you also get better data binding support. Data binding is the action that displays data from the data source on the page. It’s important to master because ASP.NET pages are dynamically
 generated and they quite often display data from a database.

 You’ll also find a new version of Dynamic Data controls, a technology introduced with ASP.NET 3.5 Service Pack 1. Dynamic Data controls help you build a rich data entry interface
 with less work. The new version has better template handling, more features, and supports .NET RIA Services. It uses the Entity
 Framework and LINQ to SQL to generate data models. A new search architecture that simplifies filtering and searching is also
 available.

IIS 7.5 Integration

 Improvements have been made to URL routing and session state, and there’s a new warm-up feature. You can specify that an ASP.NET
 application needs a specific warm-up through IIS 7.5, a feature introduced with Windows Server 2008 R2 and Windows 7 and detailed
 later in appendix A.

 Using a special class, you can add tasks to the warm-up event, such as informing a load balancer that the current node is
 ready or performing data-intensive loads to be used in the whole application. ASP.NET accepts HTTP requests for the application
 after this method has completed.

ASP.NET Ajax 4.0

 ASP.NET Ajax 4.0 has a new set of features and improves performance. Client-side templates enhance support for rich data-binding
 scenarios in Ajax applications, and the new DataView control adds support for binding JavaScript objects.

 Last but not least, ASP.NET Ajax 4.0 gives you the ability to use only certain features by selecting which JavaScript file
 you want to include. This feature can help to increase performance because you can select which functionality you want to
 use and let ASP.NET generate only the file you need.

 We’re going to discuss every one of these features, and more, in its own chapter. In this section, we’ve just introduced you
 to the main features introduced in version 4.0. But now we’re going to talk about Web Forms.

1.5. ASP.NET Web Forms in practice

 This section uses the in-practice approach that we’ll use in the rest of the book. We’ll analyze every aspect of a topic using
 a problem-solution-discussion style. The first topic we’ll discuss in this way is how to handle PostBack in a Web Form. Because
 the foundation of ASP.NET is the same for all versions, we’ve designed this scenario to help you understand a common challenge
 that you can solve using any version of ASP.NET.

Technique 1: Handling PostBack

 HTML forms consist of a series of input tags used to capture values when they’re submitted. ASP.NET uses PostBack to implement
 a mechanism that lets the developer handle this behavior easily. Mastering PostBack is important because the ASP.NET model
 is based on this concept.

Problem

 As a user, you want to interact with the page in the easiest way possible. If you need to correct a value, it’s easier to
 find it than to do some rewriting.

Solution

 The first time you request a page, ASP.NET renders its content and generates the correct markup. Let’s suppose we have a page
 with a Button; this Button will be the control that causes a PostBack when it’s clicked. A second request for the page is caused by the PostBack and
 is executed differently by ASP.NET. Every control on the page has its state restored; as the developer, you don’t need to
 explicitly set the properties for every control.

 Let’s imagine you have a basic form with two TextBox controls that capture first name and last name and a DropDownList in which the user selects his country from a limited set of values. The code for this form is shown in the following listing.

 Listing 1.1. Handling PostBack with the Web Form model

 <html>
...
 <form runat="server">
 Your first name:
 <asp:textbox runat="server" ID="FirstName" />

 Your last name:
 <asp:textbox runat="server" ID="LastName" />

 Your country:
 <asp:DropDownList runat="server" id="Country">
 <asp:ListItem value="IT">Italy</asp:ListItem>
 <asp:ListItem value="UK">UK</asp:ListItem>
 <asp:ListItem value="USA">USA</asp:ListItem>
 </asp:DropDownList>

 <asp:button runat="server" Text="Next" ID="ClickButton"
 OnClick="HandleSubmit" />
 </form>
</html>

OEBPS/01fig04.jpg
PageHandler
Factory

Page.aspx

OEBPS/01fig05.jpg
ASPNET pipeline.

ASPNET HttpModules

HttpHandler Page

BeginRequest()

AuthenticateRequest()
AuthorizeRequest()
GetHandler()

ProcessRequest()
—— Web Form

HandlerFactory

execution
—

EndRequest()

OEBPS/01fig02.jpg
Compilation

User

OEBPS/01fig03.jpg
[n)

S
e
Bizworkfiows | [Biz. entities][components

Data Access Logic
components

v 1

&)

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/icon.jpg

OEBPS/01fig06.jpg
& Eample

Your name is: Danicle
‘Enter your name: Daniele

OEBPS/01fig07.jpg
.NET FRAMEWORK 4.0

ASP.NET I Entity FX ADO.NET
WCF I WPF LINQ
ordon JIIL Pesitex JR oose e

Languages (C#4.0 - VB 10)

Base Class Library (BCL)

Common Language Runtime (CLR)

OEBPS/cover.jpg
ASP.NET 4.0

IN PRACTICE

Daniele Bochicchio
Stefano Mostarda
Marco De Sanctis

Includes 106 practcl techiques

W wannine

