

 [image:]

 JUnit in Action

 Third Edition

 Cătălin Tudose

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Katie Sposato Johnson

 	
 Technical development editor:

 	
 John Guthrie

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 David Cabrero

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617297045

 dedication

 This book is dedicated to all those people who made it possible:

 family, friends, colleagues, professors, students.

 Cătălin Tudose

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. JUnit

 1 JUnit jump-start

 Proving that a program works

 Starting from scratch

 Understanding unit testing frameworks

 Adding unit tests

 Setting up JUnit

 Testing with JUnit

 2 Exploring core JUnit

 Core annotations

 The @DisplayName annotation

 The @Disabled annotation

 Nested tests

 Tagged tests

 Assertions

 Assumptions

 Dependency injection in JUnit 5

 TestInfoParameterResolver

 TestReporterParameterResolver

 RepetitionInfoParameterResolver

 Repeated tests

 Parameterized tests

 Dynamic tests

 Using Hamcrest matchers

 3 JUnit architecture

 The concept and importance of software architecture

 Story 1: The telephone directories

 Story 2: The sneakers manufacturer

 The JUnit 4 architecture

 JUnit 4 modularity

 JUnit 4 runners

 JUnit 4 rules

 Shortcomings of the JUnit 4 architecture

 The JUnit 5 architecture

 JUnit 5 modularity

 JUnit Platform

 JUnit Jupiter

 JUnit Vintage

 The big picture of the JUnit 5 architecture

 4 Migrating from JUnit 4 to JUnit 5

 Migration steps between JUnit 4 and JUnit 5

 Needed dependencies

 Annotations, classes, and methods

 Equivalent annotations, classes, and methods

 Categories vs. tags

 Migrating Hamcrest matcher functionality

 Rules vs. the extension model

 Custom rules

 5 Software testing principles

 The need for unit tests

 Allowing greater test coverage

 Increasing team productivity

 Detecting regressions and limiting debugging

 Refactoring with confidence

 Improving implementation

 Documenting expected behavior

 Enabling code coverage and other metrics

 Test types

 Unit testing

 Integration software testing

 System software testing

 Acceptance software testing

 Black-box vs. white-box testing

 Black-box testing

 White-box testing

 Pros and cons

 Part 2. Different testing strategies

 6 Test quality

 Measuring test coverage

 Introduction to test coverage

 Tools for measuring code coverage

 Writing testable code

 Understanding that public APIs are contracts

 Reducing dependencies

 Creating simple constructors

 Following the Law of Demeter (Principle of Least Knowledge)

 Avoiding hidden dependencies and global state

 Favoring generic methods

 Favoring composition over inheritance

 Favoring polymorphism over conditionals

 Test-driven development

 Adapting the development cycle

 Doing the TDD two-step

 Behavior-driven development

 Mutation testing

 Testing in the development cycle

 7 Coarse-grained testing with stubs

 Introducing stubs

 Stubbing an HTTP connection

 Choosing a stubbing solution

 Using Jetty as an embedded server

 Stubbing the web server resources

 Setting up the first stub test

 Reviewing the first stub test

 Stubbing the connection

 Producing a custom URL protocol handler

 Creating a JDK HttpURLConnection stub

 Running the test

 8 Testing with mock objects

 Introducing mock objects

 Unit testing with mock objects

 Refactoring with mock objects

 Refactoring example

 Refactoring considerations

 Mocking an HTTP connection

 Defining the mock objects

 Testing a sample method

 Try #1: Easy refactoring technique

 Try #2: Refactoring by using a class factory

 Using mocks as Trojan horses

 Introducing mock frameworks

 Using EasyMock

 Using JMock

 Using Mockito

 9 In-container testing

 Limitations of standard unit testing

 The mock-objects solution

 The step to in-container testing

 Implementation strategies

 In-container testing frameworks

 Comparing stubs, mock objects, and in-container testing

 Stubs evaluation

 Mock-objects evaluation

 In-container testing evaluation

 Testing with Arquillian

 Part 3. Working with JUnit 5 and other tools

 10 Running JUnit tests from Maven 3

 Setting up a Maven project

 Using the Maven plugins

 Maven compiler plugin

 Maven Surefire plugin

 Generating HTML JUnit reports with Maven

 Putting it all together

 Maven challenges

 11 Running JUnit tests from Gradle 6

 Introducing Gradle

 Setting up a Gradle project

 Using Gradle plugins

 Creating a Gradle project from scratch and testing it with JUnit 5

 Comparing Gradle and Maven

 12 JUnit 5 IDE support

 Using JUnit 5 with IntelliJ IDEA

 Using JUnit 5 with Eclipse

 Using JUnit 5 with NetBeans

 Comparing JUnit 5 usage in IntelliJ, Eclipse, and NetBeans

 13 Continuous integration with JUnit 5

 Continuous integration testing

 Introducing Jenkins

 Practicing CI on a team

 Configuring Jenkins

 Working on tasks in a CI environment

 Part 4. Working with modern frameworks and JUnit 5

 14 JUnit 5 extension model

 Introducing the JUnit 5 extension model

 Creating a JUnit 5 extension

 Writing JUnit 5 tests using the available extension points

 Persisting passengers to a database

 Checking the uniqueness of passengers

 15 Presentation-layer testing

 Choosing a testing framework

 Introducing HtmlUnit

 A live example

 Writing HtmlUnit tests

 HTML assertions

 Testing for a specific web browser

 Testing more than one web browser

 Creating standalone tests

 Testing forms

 Testing JavaScript

 Introducing Selenium

 Writing Selenium tests

 Testing for a specific web browser

 Testing navigation using a web browser

 Testing more than one web browser

 Testing Google search and navigation using different web browsers

 Testing website authentication

 HtmlUnit vs. Selenium

 16 Testing Spring applications

 Introducing the Spring Framework

 Introducing dependency injection

 Using and testing a Spring application

 Creating the Spring context programmatically

 Using the Spring TestContext framework

 Using SpringExtension for JUnit Jupiter

 Adding a new feature and testing it with JUnit 5

 17 Testing Spring Boot applications

 Introducing Spring Boot

 Creating a project with Spring Initializr

 Moving the Spring application to Spring Boot

 Implementing a test-specific configuration for Spring Boot

 Adding and testing a new feature in the Spring Boot application

 18 Testing a REST API

 Introducing REST applications

 Creating a RESTful API to manage one entity

 Creating a RESTful API to manage two related entities

 Testing the RESTful API

 19 Testing database applications

 The database unit testing impedance mismatch

 Unit tests must exercise code in isolation

 Unit tests must be easy to write and run

 Unit tests must be fast to run

 Testing a JDBC application

 Testing a Spring JDBC application

 Testing a Hibernate application

 Testing a Spring Hibernate application

 Comparing the approaches for testing database applications

 Part 5. Developing applications with JUnit 5

 20 Test-driven development with JUnit 5

 TDD main concepts

 The flight-management application

 Preparing the flight-management application for TDD

 Refactoring the flight-management application

 Introducing new features using TDD

 Adding a premium flight

 Adding a passenger only once

 21 Behavior-driven development with JUnit 5

 Introducing behavior-driven development

 Introducing a new feature

 From requirements analysis to acceptance criteria

 BDD benefits and challenges

 Working BDD style with Cucumber and JUnit 5

 Introducing Cucumber

 Moving a TDD feature to Cucumber

 Adding a new feature with the help of Cucumber

 Working BDD style with JBehave and JUnit 5

 Introducing JBehave

 Moving a TDD feature to JBehave

 Adding a new feature with the help of JBehave

 Comparing Cucumber and JBehave

 22 Implementing a test pyramid strategy with JUnit 5

 Software testing levels

 Unit testing: Basic components working in isolation

 Integration testing: Units combined into a group

 System testing: Looking at the complete software

 Testing with a mock external dependency

 Testing with a partially implemented external dependency

 Testing with the fully implemented external dependency

 Acceptance testing: Compliance with business requirements

 appendixes:

 A Maven

 B Gradle

 C IDEs

 D Jenkins

 index

 front matter

preface

 I am fortunate to have been in the IT industry for almost 25 years. I started programming in C++ and Delphi, and that is how I spent my student years and the first years of my career. I made the step from my mathematics background as a teenager to computer science and always kept both studies in mind. In 2000, my attention turned for the first time to the Java programming language, which was very young, but many people were predicting a great future for it. I was part of a team developing online games, using a particular technology: applets, which were extremely fashionable during those years. Our team spent some time developing and some more time testing, which was mainly done manually: we played together in the network and tried to discover the corner cases by ourselves. We hadn’t heard about JUnit or test-driven development, which were in the pioneering stages.

 After 2004, Java dominated about 90% of my work life. It was the dawn of a new era for me, and things like code refactoring, unit testing, and test-driven development became part of my normal professional life. Nowadays, I cannot imagine a project (even if it is a smaller one) without automated testing, and neither can Luxoft, the company I work for. My fellow developers talk about how they do automated testing in their current work, what the client expectations are, how they measure and increase code coverage, and how they analyze the quality of tests. Not only are unit testing and test-driven development at the heart of the conversation, but so also is behavior-driven development. We now cannot imagine shipping a product to fulfill market expectations without solid tests: an actual pyramid of unit tests, integration tests, system tests, and acceptance tests.

 I was also fortunate to get in contact with Manning after having already developed three courses about automated testing for Pluralsight. I didn't have to start this book from scratch: the second edition was already a best seller. But it was written for 2010 and JUnit 4, and 10 years look like centuries in the IT field! I made the big step to JUnit 5 and present-day hot technologies and working methodologies. Unit testing and JUnit have come a long way since their early days when I began working with them. The concept is simple, but careful consideration and planning are required when migrating from JUnit 4 to 5. The book effectively provides that information, with many practical examples. I hope that this approach will help you decide what to do when you face new situations in your current work.

acknowledgments

 The Manning team helped to create a high-level book, and I am looking forward to more opportunities of this kind.

 I would like to thank my professors and colleagues for all their support during the years and to the many participants in my face-to-face or online courses - they represented a stimulus for me in achieving top quality work and always looking for improvement. Thanks to the co-authors of the book, Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory, for strong first editions that represented a good foundation. I hope to meet all of you in person some day. Best thoughts for my colleague and friend Vladimir Sonkin, with whom I share the steps in investigating new technologies.

 I would also like to thank the staff at Manning: acquisition editor Mike Stephens, project editor Deirdre Hiam, development editor Katie Sposato Johnson, review editor Mihaela Batinic, technical development editor John Guthrie, technical proofer David Cabrero, senior technical development editor Al Scherer, copyeditor Tiffany Taylor, and proofreader Katie Tennant.

 To all the reviewers: Andy Keffalas, Becky Huett, Burk Hufnagel, Conor Redmond, David Cabrero Souto, Ernesto Arroyo, Ferdinando Santacroce, Gaurav Tuli, Greg Wright, Gualtiero Testa, Gustavo Filipe Ramos Gomes, Hilde Van Gysel, Ivo Alexandre Costa Alves Angélico, Jean-François Morin, Joseph Tingsanchali, Junilu Lacar, Karthikeyarajan Rajendran, Kelum Prabath Senanayake, Kent R. Spillner, Kevin Orr, Paulo Cesar, Dias Lima, Robert Trausmuth, Robert Wenner, Sau Fai Fong, Shawn Ritchie, Sidharth Masaldaan, Simeon Leyzerzon, Srihari Sridharan, Thorsten P. Weber, Vittorio Marino, Vladimír Oraný, and Zorodzayi Mukuya. Your suggestions helped make this a better book.

about this book

 JUnit in Action is a book about creating safe applications and how to greatly increase your development speed and remove much of the debugging nightmare--all with the help of JUnit 5 with its new features, and other tools and techniques that work in conjunction with JUnit 5.

 The book focuses first on understanding the who, what, why, and how of JUnit. The first few chapters should convince you of the capabilities and power of JUnit 5. Following that, I take a deep dive into working effectively with JUnit 5: migrating from JUnit 4 to JUnit 5, testing strategies, working with JUnit 5 and different tools, working with modern frameworks, and developing applications with JUnit 5 according to present-day methodologies.

Who should read this book

 This book is for application developers who are already proficient in writing Java Core code and are interested in learning how to develop safe and flexible applications. You should be familiar with object-oriented programming and have at least a working knowledge of Java. You will also need a working knowledge of Maven and be able to build a Maven project and open a Java program in IntelliJ IDEA, edit it, and launch it in execution. Some of the chapters require basic knowledge about technologies like Spring, Hibernate, REST, and Jakarta EE.

How this book is organized: A roadmap

 This book has 22 chapters in five sections. Part 1 presents the JUnit 5 essentials:

 	
 Chapter 1 gives you a quick introduction to the concepts of testing--knowledge you need to get started. You will get straight to the code, seeing how to write and execute a very simple test and see its results.

 	
 Chapter 2 discusses JUnit in detail; you will see JUnit 5’s capabilities and walk through the code that puts them in practice.

 	
 Chapter 3 looks at the JUnit architecture.

 	
 Chapter 4 discusses how to move from JUnit 4 to JUnit 5 and how to migrate projects between these versions of the framework.

 	
 Chapter 5 is dedicated to tests as a whole. The chapter describes different kinds of tests and the scenarios to which they apply. It also discusses different levels of testing and the best scenarios in which to execute those tests.

 Part 2 presents different testing strategies:

 	
 Chapter 6 is dedicated to analyzing test quality. It introduces concepts such as code coverage, test-driven development, behavior-driven development, and mutating testing.

 	
 Chapter 7 is dedicated to stubs, taking a look at a solution to isolate the environment and make tests seamless.

 	
 Chapter 8 explains mock objects, providing an overview of how to construct and use them.

 	
 Chapter 9 describes a different technique: executing tests in a container.

 Part 3 shows how JUnit 5 works with other tools:

 	
 Chapter 10 provides a very quick introduction to Maven and its terminology.

 	
 Chapter 11 guides you through the same concepts, this time using another popular tool called Gradle.

 	
 Chapter 12 investigates the way you can work with JUnit 5 by using the most popular IDEs today: IntelliJ IDEA, Eclipse, and NetBeans.

 	
 Chapter 13 is devoted to continuous integration tools. This practice, which is highly recommended by extreme programmers, helps you maintain a code repository and automate the build on it.

 Part 4 shows how JUnit 5 works with modern frameworks:

 	
 Chapter 15 introduces HtmlUnit and Selenium. You will see how to test the presentation layer with these tools.

 	
 Chapters 16 and 17 are dedicated to testing one of the most useful frameworks today: Spring. Spring is an open source application framework and inversion of control container for the Java platform. It includes several separate frameworks, including the Spring Boot convention-over-configuration solution for creating applications that you can run directly.

 	
 Chapter 18 examines testing REST applications. Representational State Transfer is an application program interface that uses HTTP requests to GET, PUT, PATCH, POST, and DELETE data.

 	
 Chapter 19 discusses alternatives for testing database applications, including JDBC, Spring, and Hibernate.

 Part 5 shows how JUnit 5 works with modern software development methodologies:

 	
 Chapter 20 discusses project development using one of today’s popular development techniques: test-driven development.

 	
 Chapter 21 discusses developing projects using behavior-driven development. It shows how to create applications that address business needs: applications that not only do things right but also do the right thing.

 	
 Chapter 22 shows how to build a test pyramid strategy with the help of JUnit 5. It demonstrates testing from the ground level (unit testing) to the upper levels (integration testing, system testing, and acceptance testing).

 In general, you can read this book from one chapter to the next. But, as long as you master the essentials presented in part 1, you can jump directly to any chapter that addresses your current needs.

About the code

 This book contains (mostly) large blocks of code, rather than short snippets. Therefore, all the code listings are annotated and explained. In some chapters, annotations in listings and their explanations in text are marked with a number and the prime character to indicate comparisons with lines in similar listings. You can find the full source code for all these examples by downloading it from GitHub at https://github .com/ctudose/junit-in-action-third-edition.

liveBook discussion forum

 Purchase of JUnit in Action, Third Edition, includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/junit-in-action-third-edition/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Cătălin Tudose is born in Piteşti, Argeş, Romania.

 He graduated with a degree in computer science in 1997, in Bucharest, and also completed a PhD in this field in 2006. He has more than 15 years of experience in the Java area. He took part in projects in telecommunications and finance, working as a senior software developer or technical team leader. He is currently acting as a Java and Web Technologies expert at Luxoft Romania.

 He taught more than 2000 hours of courses and applications as a professor at the Faculty of Automation and Computers in Bucharest. He taught more than 4000 hours of Java courses at Luxoft, including the Corporate Junior Program, which has prepared about 50 new Java programmers in Poland. He also developed corporate courses on Java topics inside the company.

 He taught online courses at UMGC (University of Maryland Global Campus): Computer Graphics with Java (CMSC 405), Intermediate Programming in Java (CMIS 242), Advanced Programming in Java (CMIS 440), Software Verification and Validation (SWEN 647), Database Concepts (IFSM 410), SQL (IFSM 411), Advanced Database Concepts (IFSM 420).

 He has developed 5 courses for Pluralsight: TDD with JUnit 5; Java: BDD Fundamentals; Implementing A Test Pyramid Strategy in Java; Spring Framework: Aspect Oriented Programming with Spring AOP; and Migrating from the JUnit 4 to the JUnit 5 Testing Platform.

 Besides the professional IT domain, he is interested in mathematics, world culture, and soccer. He is a lifelong supporter of his hometown team, FC Argeş Piteşti.

about the cover illustration

 The figure on the cover of JUnit in Action, Third Edition is captioned “Dame Walaque,” or Walaque lady. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. JUnit

 Welcome to JUnit in Action, which covers the JUnit framework, started by Kent Beck and Erich Gamma in late 1995. Ever since then, the popularity of the framework has been growing; now JUnit is the de facto standard for unit testing Java applications.

 This book is the third edition. The first edition was a best seller, written by Vincent Massol and Ted Husted in 2003 and dedicated to version 3.x of JUnit. The second edition was also a best seller, written by Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory in 2010, and dedicated to version 4.x of JUnit.

 In this edition, I cover version 5.x of JUnit--the newest version--and talk about lots of features included in it. At the same time, I focus on interesting details and techniques for testing your code: the architecture of the framework, test quality, mock objects, interaction with other tools, and JUnit extensions, as well as testing layers of your application, applying the test-driven development and behavior-driven development techniques, and so forth.

 This part of the book explores JUnit itself. Chapter 1 gives you a quick introduction to the concepts of testing--knowledge you need to get started. I get straight to the code, showing you how to write and execute a very simple test and see its results. Chapter 2 introduces JUnit in detail. I show JUnit 5’s capabilities and walk through the code that puts them in practice. Chapter 3 looks at JUnit architectures, and chapter 4 discusses how to make the step from JUnit 4 to JUnit 5 and how to migrate projects between these versions of the framework. Chapter 5 is dedicated to tests as a whole. The chapter describes different kinds of tests and the scenarios to which they apply. I discuss different levels of testing and the best scenarios in which to execute those tests.

1 JUnit jump-start

 This chapter covers

 	
Understanding JUnit

 	
Installing JUnit

 	
Writing your first tests

 	
Running tests

 Never in the field of software development was so much owed by so many to so few lines of code.

 --Martin Fowler

 All code needs to be tested. During development, the first thing we do is run our own programmer’s acceptance test. We code, compile, and run. When we run, we test. The test may just consist of clicking a button to see whether it brings up the expected menu or looking at a result to compare it with the expected value. Nevertheless, every day, we code, we compile, we run, and we test.

 When we test, we often find issues, especially during early runs. So we code, compile, run, and test again.

 Most of us quickly develop a pattern for our informal tests: add a record, view a record, edit a record, and delete a record. Running a little test suite like this by hand is easy enough to do, so we do it--over and over again.

 Some programmers like doing this type of repetitive testing. It can be a pleasant break from deep thought and hardcoding. When our little click-through tests finally succeed, we have a real feeling of accomplishment (“Eureka! I found it!”).

 Other programmers dislike this type of repetitive work. Rather than run the tests by hand, they prefer to create a small program that runs the tests automatically. Play-testing code is one thing; running automated tests is another.

 If you’re a “play-test” developer, this book is for you. It shows you that creating automated tests can be easy, effective, and even fun.

 If you’re already test-infected,1 this book is also for you. We cover the basics in part 1 and move on to tough, real-life problems in parts 2-5.

1.1 Proving that a program works

 Some developers feel that automated tests are essential parts of the development process: you cannot prove that a component works until it passes a comprehensive series of tests. In fact, two developers felt that this type of unit testing was so important that it deserved its own framework. In 1997, Erich Gamma and Kent Beck created a simple but effective unit testing framework for Java called JUnit: they were on a long plane trip, and it gave them something interesting to do. Erich wanted Kent to learn Java, and Erich was interested in knowing more about the SUnit testing framework that Kent created earlier for Smalltalk, and the flight gave them time to do both.

 DEFINITION Framework--A semicomplete application that provides a reusable common structure to share among applications.2 Developers incorporate the framework into their own applications and extend it to meet their specific needs. Frameworks differ from toolkits by providing a coherent structure rather than a simple set of utility classes. A framework defines a skeleton, and the application defines its own features to fill out the skeleton. The developer code is called appropriately by the framework. Developers can worry less about whether a design is good and focus more on implementing domain-specific functions.

 If you recognize the names Erich Gamma and Kent Beck, that’s for a good reason. Gamma is one of the Gang of Four who gave us the now-classic Design Patterns book.3 Beck is equally well known for his groundbreaking work in the software discipline known as Extreme Programming (www.extremeprogramming.org).

 JUnit quickly became the de facto standard framework for developing unit tests in Java. Today, JUnit (https://junit.org) is open source software hosted on GitHub, with an Eclipse Public License. And the underlying testing model, known as xUnit, is on its way to becoming the standard framework for any language. xUnit frameworks are available for ASP, C++, C#, Eiffel, Delphi, Perl, PHP, Python, Rebol, Smalltalk, and Visual Basic--to name just a few.

 The JUnit team didn’t invent software testing or even unit tests, of course. Originally, the term unit test described a test that examined the behavior of a single unit of work: a class or a method. Over time, the use of the term unit test broadened. The Institute of Electrical and Electronics Engineers (IEEE), for example, has defined unit testing as “testing of individual hardware or software units or groups of related units” (emphasis added).4

 In this book, we use the term unit test in the narrower sense to mean a test that examines a single unit in isolation from other units. We focus on the type of small, incremental test that programmers apply to their own code. Sometimes, these tests are called programmer tests to differentiate them from quality-assurance or customer tests (http://c2.com/cgi/wiki?ProgrammerTest).

 Here is a generic description of a typical unit test from the perspective of this book: “Confirms that the method accepts the expected range of input and that the method returns the expected value for each input.” This description asks us to test the behavior of a method through its interface. If we give it value x, will it return value y? If we give it value z instead, will it throw the proper exception?

 DEFINITION Unit test--A test that examines the behavior of a distinct unit of work. A unit of work is a task that is not directly dependent on the completion of any other task. Within a Java application, the distinct unit of work is often, but not always, a single method. In contrast, integration tests and acceptance tests examine how various components interact.

 Unit tests often focus on testing whether a method is following the terms of its API contract. Like a written contract between people who agree to exchange certain goods or services under specific conditions, an API contract is a formal agreement made by the signature of a method. A method requires its callers to provide specific object references or primitive values and returns an object reference or primitive value. If the method cannot fulfill the contract, the test should throw an exception, and we say that the method has broken its contract.

 DEFINITION API contract--A view of an application programming interface (API) as a formal agreement between the caller and the callee. Often, unit tests help define the API contract by demonstrating the expected behavior. The notion of an API contract arises from the practice of Design by Contract, popularized by the Eiffel programming language (http://archive.eiffel.com/doc/manuals/technology/contract).

 In this chapter, we walk through creating a unit test from scratch for a simple class. We start by writing a test and its minimal runtime framework so you can see how things used to be done. Then we roll out JUnit to show you how the right tools can make life much simpler.

1.2 Starting from scratch

 For our first example, we will create a very simple Calculator class that adds two numbers. Our calculator, shown in the following listing, provides an API to clients and does not contain a user interface. To test its functionality, we’ll first create our own pure Java tests and later move to JUnit 5.

 Listing 1.1 The Calculator class to be tested

 public class Calculator {
 public double add(double number1, double number2) {
 return number1 + number2;
 }
}

 Although the documentation isn’t shown, the intended purpose of Calculator’s add(double, double) method is to take two doubles and return the sum as a double. The compiler can tell you that the code compiles, but you should also make sure it works at runtime. A core principle of unit testing is, “Any program feature without an automated test simply doesn’t exist.”5 The add method represents a core feature of the calculator. You have some code that allegedly implements the feature. What is missing is an automated test that proves the implementation works.

 Isn’t the add method too simple to break?

 The current implementation of the add method is too simple to break with usual, everyday calculations. If add were a minor utility method, you might not test it directly. In that case, if add did fail, tests of the methods that used add would fail. The add method would be tested indirectly, but tested nonetheless. In the context of the calculator program, add is not just a method, but also a program feature. To have confidence in the program, most developers would expect there to be an automated test for the add feature, no matter how simple the implementation appears to be. In some cases, you can prove program features through automatic functional tests or automatic acceptance tests. For more about software tests in general, see chapter 5.

 Yet testing anything at this point seems to be problematic. You do not even have a user interface with which to enter a pair of doubles. You could write a small command-line program that waited for you to type two double values and then displayed the result. Then, of course, you would also be testing your own ability to type a number and add the result yourself, which is much more than you want to do. You just want to know whether this unit of work actually adds two doubles and returns the correct sum. You do not want to test whether programmers can type numbers!

 Meanwhile, if you are going to go to the effort of testing your work, you should also try to preserve that effort. It is good to know that the add(double, double) method worked when you wrote it. What you really want to know, however, is whether the method works when you ship the rest of the application or whenever you make a subsequent modification. If we put these requirements together, we come up with the idea of writing a simple test program for the add method.

 The test program can pass known values to the method and see whether the result matches expectations. You can also run the program again later to be sure the method continues to work as the application grows. So what is the simplest possible test program you could write? What about this CalculatorTest program?

 Listing 1.2 A simple test calculator program

 public class CalculatorTest {
 public static void main(String[] args) {
 Calculator calculator = new Calculator();
 double result = calculator.add(10, 50);
 if (result != 60) {
 System.out.println("Bad result: " + result);
 }
 }
}

 CalculatorTest is simple indeed: it creates an instance of Calculator, passes two numbers to it, and checks the result. If the result does not meet your expectations, you print a message on standard output.

 If you compile and run this program now, the test quietly passes, and all seems to be well. But what happens if you change the code so that it fails? You have to watch the screen carefully for the error message. You may not have to supply the input, but you are still testing your own ability to monitor the program’s output. You want to test the code, not yourself!

 The conventional way to signal error conditions in Java is to throw an exception. Let’s throw an exception to indicate a test failure.

 Meanwhile, you may also want to run tests for other Calculator methods that you have not written yet, such as subtract or multiply. Moving to a modular design will make catching and handling exceptions easier; it will also be easier to extend the test program later. The next listing shows a slightly better CalculatorTest program.

 Listing 1.3 A (slightly) better test calculator program

 public class CalculatorTest {

 private int nbErrors = 0;

 public void testAdd() { ①
 Calculator calculator = new Calculator(); ①
 double result = calculator.add(10, 50); ①
 if (result != 60) { ①
 throw new IllegalStateException("Bad result: " + result); ①
 } ①
 } ①

 public static void main(String[] args) {
 CalculatorTest test = new CalculatorTest();
 try { ②
 test.testAdd(); ②
 } ②
 catch (Throwable e) { ②
 test.nbErrors++; ②
 e.printStackTrace(); ②
 } ②
 if (test.nbErrors > 0) { ②
 throw new IllegalStateException("There were " + test.nbErrors
 + " error(s)");
 }
 }
}

 At ①, you move the test into its own testAdd method. Now it’s easier to focus on what the test does. You can also add more methods with more unit tests later without making the main method harder to maintain. At ②, you change the main method to print a stack trace when an error occurs; then, if there are any errors, you end by throwing a summary exception.

 Now that you have looked at a simple application and its tests, you can see that even this small class and its tests can benefit from the little bit of skeleton code you created to run and manage test results. But as an application gets more complicated and the tests become more involved, continuing to build and maintain a custom testing framework becomes a burden.

 Next, we take a step back and look at the general case for a unit testing framework.

1.2.1 Understanding unit testing frameworks

 Unit testing has several best practices that frameworks should follow. The seemingly minor improvements in the CalculatorTest program in listing 1.3 highlight three rules that (in my experience) all unit testing frameworks should follow:

 	
 Each unit test should run independently of all other unit tests.

 	
 The framework should detect and report errors test by test.

 	
 It should be easy to define which unit tests will run.

 The “slightly better” test program comes close to following these rules but still falls short. For each unit test to be truly independent, for example, each should run in a different class instance.

1.2.2 Adding unit tests

 You can add new unit tests by adding a new method and then adding a corresponding try/catch block to main. This is a step up but still short of what you would want in a real unit test suite. Experience tells us that large try-catch blocks cause maintenance problems. You could easily leave out a unit test and never know it!

 It would be nice if you could just add new test methods and continue working, but if you did, how would the program know which methods to run? Well, you could have a simple registration procedure. A registration method would at least inventory which tests are running.

 Another approach would be to use Java’s reflection capabilities. A program could look at itself and decide to run whatever methods follow a certain naming convention, such as those that begin with test.

 Making it easy to add tests (the third rule in the earlier list) sounds like another good rule for a unit testing framework. The support code that realizes this rule (via registration or reflection) would not be trivial, but it would be worthwhile. You’d have to do a lot of work up front, but that effort would pay off each time you add a new test.

 Fortunately, the JUnit team has saved you the trouble. The JUnit framework already supports discovering methods. It also supports using a different class instance and class loader instance for each test and reports all errors on a test-by-test basis. The team has defined three discrete goals for the framework:

 	
 The framework must help us write useful tests.

 	
 The framework must help us create tests that retain their value over time.

 	
 The framework must help us lower the cost of writing tests by reusing code.

 We’ll discuss these goals further in chapter 2.

 Next, let’s see how to set up JUnit.

1.3 Setting up JUnit

 To use JUnit to write your application tests, you need to know about its dependencies. You’ll work with JUnit 5, the latest version of the framework when this book was written. Version 5 of the testing framework is a modular one; you can no longer simply add a jar file to your project compilation classpath and your execution classpath. In fact, starting with version 5, the architecture is no longer monolithic (as discussed in chapter 3). Also, with the introduction of annotations in Java 5, JUnit has also moved to using them. JUnit 5 is heavily based on annotations--a contrast with the idea of extending a base class for all testing classes and using naming conventions for all testing methods to match the textXYZ pattern, as done in previous versions.

 NOTE If you are familiar with JUnit 4, you may wonder what’s new in this version, as well as why and how to move toward it. JUnit 5 represents the next generation of JUnit. You’ll use the programming capabilities introduced starting with Java 8; you’ll be able to build tests modularly and hierarchically; and the tests will be easier to understand, maintain, and extend. Chapter 4 discusses the transition from JUnit 4 to JUnit 5 and shows that the projects you are working on may benefit from the great features of JUnit 5. As you’ll see, you can make this transition smoothly, in small steps.

 To manage JUnit 5’s dependencies efficiently, it’s logical to work with the help of a build tool. In this book, we’ll use Maven, a very popular build tool. Chapter 10 is dedicated to the topic of running JUnit tests from Maven. What you need to know now are the basic ideas behind Maven: configuring your project through the pom.xml file, executing the mvn clean install command, and understanding the command’s effects.

 NOTE You can download Maven from https://maven.apache.org. When this book was being written, the latest version was 3.6.3.

 The dependencies that are always needed in the pom.xml file are shown in the following listing. In the beginning, you need only junit-jupiter-api and junit-jupiter-engine.

 Listing 1.4 pom.xml JUnit 5 dependencies

 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-api</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-engine</artifactId>
 <version>5.6.0</version>
 <scope>test</scope>
</dependency>

 To be able to run tests from the command prompt, make sure your pom.xml configuration file includes a JUnit provider dependency for the Maven Surefire plugin. Here’s what this dependency looks like.

 Listing 1.5 Maven Surefire plugin configuration in pom.xml

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.22.2</version>
 </plugin>
 </plugins>
</build>

 As Windows is the most commonly used operating system (OS), our example configuration details use Windows 10, the latest version. Concepts such as the path, environment variables, and the command prompt also exist in other OSs; follow your documentation guidelines if you will be running the examples on an OS other than Windows.

 To run the tests, the bin folder from the Maven directory must be on the OS path (figure 1.1). You also need to configure the JAVA_HOME environment variable on your OS to point to the Java installation folder (figure 1.2). In addition, your JDK version must be at least 8, as required by JUnit 5.

 [image:]

 Figure 1.1 The configuration of the OS path must include the Apache Maven bin folder.

 [image:]

 Figure 1.2 The configuration of the JAVA_HOME environment variable

 You will need the source files from the chapter to get the results shown in figure 1.3. Open a command prompt into the project folder (the one containing the pom.xml file), and run this command:

 mvn clean install

 This command will take the Java source code, compile it, test it, and convert it into a runnable Java program (a jar file, in our case). Figure 1.3 shows the result of the test.

 [image:]

 Figure 1.3 Execution of the JUnit tests using Maven and the command prompt

 Part 3 of the book provides more details about running tests with the Maven and Gradle build tools.

1.4 Testing with JUnit

 JUnit has many features that make writing and running tests easy. You’ll see these features at work throughout this book:

 	
 Separate test class instances and class loaders for each unit test to prevent side effects

 	
 JUnit annotations to provide resource initialization and cleanup methods: @BeforeEach, @BeforeAll, @AfterEach, and @AfterAll (starting from version 5); and @Before, @BeforeClass, @After, and @AfterClass (up to version 4)

 	
 A variety of assert methods that make it easy to check the results of your tests

 	
 Integration with popular tools such as Maven and Gradle, as well as popular integrated development environments (IDEs) such as Eclipse, NetBeans, and IntelliJ

 Without further ado, the next listing shows what the simple Calculator test looks like when written with JUnit.

 Listing 1.6 JUnit CalculatorTest program

 import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;

public class CalculatorTest { ①

 @Test ②
 public void testAdd() {
 Calculator calculator = new Calculator(); ③
 double result = calculator.add(10, 50); ④
 assertEquals(60, result, 0); ⑤
 }
}

 Running such a test with the help of Maven results in behavior similar to that shown in figure 1.3. The test is very simple. At ①, you define a test class. It’s common practice to end the class name with Test. JUnit 3 required extending the TestCase class, but this requirement was removed with JUnit 4. Also, up to JUnit 4, the class had to be public; starting with version 5, the top-level test class can be public or package-private, and you can name it whatever you want.

 At ②, you mark the method as a unit test method by adding the @Test annotation. In the past, the usual practice was to name test methods following the testXYZ pattern, as was required up to JUnit 3. Now that doing so is no longer required, some programmers drop the prefix and use a descriptive phrase as the method name. You can name your methods as you like; as long as they have the @Test annotation, JUnit will execute them. The JUnit 5 @Test annotation belongs to a new package, org.junit.jupiter.api, and the JUnit 4 @Test annotation belongs to the org.junit package. This book uses JUnit 5’s capabilities except in some clearly emphasized cases (such as to demonstrate migration from JUnit 4).

 At ③, you start the test by creating an instance of the Calculator class (the object under test). And at ④, as before, you execute the test by calling the method to test, passing it two known values.

 At ⑤, the JUnit framework begins to shine! To check the result of the test, you call an assertEquals method, which you imported with a static import on the first line of the class. The Javadoc for the assertEquals method is

 /**
 * Assert that expected and actual are equal within the non-negative delta.
 * Equality imposed by this method is consistent with Double.equals(Object)
 * and Double.compare(double, double). */
public static void assertEquals(
 double expected, double actual, double delta)

 In listing 1.6, you pass these parameters to assertEquals:

 expected = 60
actual = result
delta = 0

 Because you pass the calculator the values 10 and 50, you tell assertEquals to expect the sum to be 60. (You pass 0 as delta because you are expecting no floating-point errors when adding 10 and 50, as the decimal part of these numbers is 0.) When you call the calculator object, you save the return value in a local double named result. Therefore, you pass that variable to assertEquals to compare with the expected value (60). If the actual value is not equal to the expected value, JUnit throws an unchecked exception, which causes the test to fail.

 Most often, the delta parameter can be 0, and you can safely ignore it. This parameter comes into play with calculations that are not always precise, including many floating-point calculations. delta provides a range factor: if the actual value is within the range expected - delta and expected + delta, the test will pass. You may find this useful when you’re performing mathematical computations with rounding or truncating errors or when you’re asserting a condition about the modification date of a file, because the precision of these dates depends on the OS.

 The remarkable thing about the JUnit CalculatorTest class in listing 1.6 is that the code is easier to write than the first CalculatorTest program in listings 1.2 or 1.3. In addition, you can run the test automatically through the JUnit framework.

 When you run the test from the command line (figure 1.3), you see the amount of time it takes and the number of tests that passed. There are many other ways to run tests, from IDEs and from different build tools. This simple example gives you a taste of the power of JUnit and unit testing.

 You may modify the Calculator class so that it has a bug--for example, instead of adding the numbers, it subtracts them. Then you can run the test and watch what the result looks like when a test fails.

 In chapter 2, we will take a closer look at the JUnit framework classes (annotations and assertion mechanisms) and capabilities (nested and tagged tests, as well as repeated, parameterized, and dynamic tests). We’ll show how they work together to make unit testing efficient and effective. You will learn how to use the JUnit 5 features in practice and differences between the old-style JUnit 4 and JUnit 5.

Summary

 This chapter has covered the following:

 	
 Why every developer should perform some type of test to see if code actually works. Developers who use automatic unit tests can repeat these tests on demand to ensure that new code works and does not break existing tests.

 	
 Writing simple unit tests, which are not difficult to create without JUnit.

 	
 As tests are added and become more complex, writing and maintaining tests becomes more difficult.

 	
 Introduction to JUnit as a unit testing framework that makes it easier to create, run, and revise unit tests.

 	
 Stepping through a simple JUnit test.

 1.Test-infected is a term coined by Erich Gamma and Kent Beck in “Test-Infected: Programmers Love Writing Tests,” Java Report 3 (7), 37-50, 1998.

 2.Ralph Johnson and Brian Foote, “Designing Reusable Classes,” Journal of Object-Oriented Programming 1 (2): 22-35, 1988; www.laputan.org/drc/drc.html.

 3.Erich Gamma et al., Design Patterns (Reading, MA: Addison-Wesley, 1995).

 4.IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries (New York: IEEE, 1990).

 5.Kent Beck, Extreme Programming Explained: Embrace Change (Reading, MA: Addison-Wesley, 1999).

2 Exploring core JUnit

 This chapter covers

 	
Understanding the JUnit life cycle

 	
Working with the core JUnit classes, methods, and annotations

 	
Demonstrating the JUnit mechanisms

 Mistakes are the portals of discovery.

 --James Joyce

 In chapter 1, we decided that we need a reliable, repeatable way to test programs. Our solution is to write or reuse a framework to drive the test code that exercises our program API. As our program grows, with new classes and new methods added to the existing classes, we need to grow our test code as well. Experience has taught us that classes sometimes interact in unexpected ways, so we need to make sure we can run all of our tests at any time, no matter what code changes have taken place. But how do we run multiple test classes? How do we find out which tests passed and which ones failed?

 In this chapter, we look at how JUnit provides the functionality to answer those questions. The chapter begins with an overview of the core JUnit concepts: the test class, methods, and annotations. Then we take a detailed look at the many testing mechanisms of JUnit 5 and the JUnit life cycle.

 This chapter is written in the practical spirit of the Manning “in Action” series, looking mainly at the usage of the new core features. For comprehensive documentation of each class, method, and annotation, please visit the JUnit 5 user guide (https://junit.org/junit5/docs/current/user-guide) or the JUnit 5 Javadoc (https://junit.org/junit5/docs/current/api).

 The chapter introduces Tested Data Systems Inc., an example company that uses the testing mechanisms. Tested Data Systems is an outsourcing company that runs several Java projects for a few customers. These projects use different frameworks and different build tools, but they have something in common: they need to be tested to ensure the high quality of the code. Some older projects are running their tests with JUnit 4; newer ones have already started using JUnit 5. The engineers have decided to acquire in-depth knowledge of JUnit 5 and to transmit it to the projects that need to move from JUnit 4 to JUnit 5.

2.1 Core annotations

 The CalculatorTest program from chapter 1, shown in the following listing, defines a test class with a single test method, testAdd.

 Listing 2.1 CalculatorTest test case

 import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;

public class CalculatorTest {

 @Test public void testAdd() {
 Calculator calculator = new Calculator();
 double result = calculator.add(10, 50);
 assertEquals(60, result, 0);
 }
}

 These are the most important concepts:

 	
 A test class may be a top-level class, a static member class, or an inner class annotated as @Nested that contains one or more test methods. Test classes cannot be abstract and must have a single constructor. The constructor must have no arguments, or arguments that can be dynamically resolved at runtime through dependency injection. (We discuss the details of dependency injection in section 2.6.) A test class is allowed to be package-private as a minimum requirement for visibility. It is no longer required that test classes be public, as was the case up to JUnit 4.x. The Java compiler will supply a no-args constructor for CalculatorTest because we do not define any constructors for the class.

 	
 A test method is an instance method that is annotated with @Test, @RepeatedTest, @ParameterizedTest, @TestFactory, or @TestTemplate.

 	
 A life cycle method is a method that is annotated with @BeforeAll, @AfterAll, @BeforeEach, or @AfterEach.

 Test methods must not be abstract and must not return a value (the return type should be void).

 The source files accompanying this book contain the code for all the examples. To use the imported classes, methods, and annotations needed for the test in listing 2.1, you’ll need to declare their dependencies. Most projects use a build tool to manage them. (We have chosen to use Maven, as discussed in chapter 1. Chapter 10 covers running JUnit tests from Maven.)

 You need to carry out only basic tasks in Maven: configure your project through the pom.xml file, execute the mvn clean install command, and understand the command’s effects. The next listing shows the minimal JUnit 5 dependencies to be used in the pom.xml Maven configuration file.

 Listing 2.2 pom.xml JUnit 5 dependencies

 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-api</artifactId> ①
 <version>5.6.0</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-engine</artifactId> ②
 <version>5.6.0</version>
 <scope>test</scope>
</dependency>

 This shows that the minimal needed dependencies are junit-jupiter-api ① and junit-jupiter-engine ②.

 JUnit creates a new instance of the test class before invoking each @Test method to ensure the independence of test methods and prevent unintentional side effects in the test code. Also, it is a universally accepted fact that the tests must produce the same result independent of the order of their execution. Because each test method runs on a new test class instance, you cannot reuse instance variable values across test methods. One test instance is created for the execution of each test method, which is the default behavior in JUnit 5 and all previous versions.

 If you annotate your test class with @TestInstance(Lifecycle.PER_CLASS), JUnit 5 will execute all test methods on the same test instance. A new test instance will be created for each test class when using this annotation.

 Listing 2.3 shows the use of the JUnit 5 life cycle methods in the lifecycle.SUTTest class. One of the projects at Tested Data Systems is testing a system that will start up, receive regular and additional work, and close itself. The life cycle methods ensure that the system is initializing and then shutting down before and after each effective test. The test methods check whether the system receives regular and additional work.

 Listing 2.3 Using JUnit 5 life cycle methods

 class SUTTest {
 private static ResourceForAllTests resourceForAllTests;
 private SUT systemUnderTest;

 @BeforeAll ①
 static void setUpClass() {
 resourceForAllTests =
 new ResourceForAllTests("Our resource for all tests");
 }

 @AfterAll ②
 static void tearDownClass() {
 resourceForAllTests.close();
 }

 @BeforeEach ③
 void setUp() {
 systemUnderTest
 = new SUT("Our system under test");
 }

 @AfterEach ④
 void tearDown() {
 systemUnderTest.close();
 }

 @Test ⑤
 void testRegularWork() {
 boolean canReceiveRegularWork =
 systemUnderTest.canReceiveRegularWork();

 assertTrue(canReceiveRegularWork);
 }

 @Test ⑤
 void testAdditionalWork() {
 boolean canReceiveAdditionalWork =
 systemUnderTest.canReceiveAdditionalWork();

 assertFalse(canReceiveAdditionalWork);
 }
}

 Following the life cycle of the test execution, you see that

 	
 The method annotated with @BeforeAll ① is executed once: before all tests. This method needs to be static unless the entire test class is annotated with @TestInstance(Lifecycle.PER_CLASS).

 	
 The method annotated with @BeforeEach ③ is executed before each test. In our case, it will be executed twice.

 	
 The two methods annotated with @Test ⑤ are executed independently.

 	
 The method annotated with @AfterEach ④ is executed after each test. In our case, it will be executed twice.

 	
 The method annotated with @AfterAll ② is executed once: after all tests. This method needs to be static unless the entire test class is annotated with @TestInstance(Lifecycle.PER_CLASS).

 	
 To run this test class, you can execute the following from the command line: mvn -Dtest=SUTTest.java clean install.

2.1.1 The @DisplayName annotation

 The @DisplayName annotation can be used over classes and test methods. It helps the engineers at Tested Data Systems declare their own display name for an annotated test class or test method. Typically, this annotation is used for test reporting in IDEs and build tools. The string argument of the @DisplayName annotation may contain spaces, special characters, and even emojis.

 The following listing demonstrates the use of the @DisplayName annotation through the class displayname.DisplayNameTest. The name that’s displayed is usually a full phrase that provides significant information about the purpose of the test.

 Listing 2.4 @DisplayName annotation

@DisplayName("Test class showing the @DisplayName annotation.") ①
class DisplayNameTest {
 private SUT systemUnderTest = new SUT();

 @Test
 @DisplayName("Our system under test says hello.") ②
 void testHello() {
 assertEquals("Hello", systemUnderTest.hello());
 }

 @Test
 @DisplayName("😱") ③
 void testTalking() {
 assertEquals("How are you?", systemUnderTest.talk());
 }

 @Test
 void testBye() {
 assertEquals("Bye", systemUnderTest.bye());
 }
}

 This example does the following:

 	
 Shows the display name applied to the entire class ①

 	
 Applies a normal text display name ②

 	
 Uses a display name that includes an emoji ③

 A test that does not have an associated display name simply shows the method name. From IntelliJ, you can run a test by right-clicking on it and then executing the run command. The results of these tests in the IntelliJ IDE are shown in figure 2.1.

 [image:]

 Figure 2.1 Running DisplayNameTest in IntelliJ

2.1.2 The @Disabled annotation

 The @Disabled annotation can be used over classes and test methods. It signals that the annotated test class or test method is disabled and should not be executed. The programmers at Tested Data Systems use it to give their reasons for disabling a test so the rest of the team knows exactly why that was done. If this annotation is applied to a class, it disables all the methods of the test. Also, the disabled tests and the reasons for their being disabled are displayed differently on each programmer’s console when the programmer runs them from the IDE.

 The use of the annotation is demonstrated by the classes disabled.DisabledClassTest and disabled.DisabledMethodsTest. Listings 2.5 and 2.6 show the code for these classes.

 Listing 2.5 @Disabled annotation used on a test class

 @Disabled("Feature is still under construction.") ①
class DisabledClassTest {
 private SUT systemUnderTest= new SUT("Our system under test");

 @Test
 void testRegularWork() {
 boolean canReceiveRegularWork = systemUnderTest.
 canReceiveRegularWork();

 assertTrue(canReceiveRegularWork);
 }

 @Test
 void testAdditionalWork() {
 boolean canReceiveAdditionalWork =
 systemUnderTest.canReceiveAdditionalWork();

 assertFalse(canReceiveAdditionalWork);
 }

 The entire testing class is disabled, and the reason is provided ①. This technique is recommended so that your colleagues (or even you) immediately understand why the test is not enabled.

 Listing 2.6 @Disabled annotation used on methods

 class DisabledMethodsTest {
 private SUT systemUnderTest= new SUT("Our system under test");

 @Test
 @Disabled ①
 void testRegularWork() {
 boolean canReceiveRegularWork =
 systemUnderTest.canReceiveRegularWork ();

 assertTrue(canReceiveRegularWork);
 }

 @Test
 @Disabled("Feature still under construction.") ②
 void testAdditionalWork() {
 boolean canReceiveAdditionalWork =
 systemUnderTest.canReceiveAdditionalWork ();

 assertFalse(canReceiveAdditionalWork);
 }
}

 You see that

 	
 The code provides two tests, both disabled.

 	
 One of the tests is disabled without a reason given ①.

 	
 The other test is disabled with a reason that other programmers will understand ②--the recommended approach.

2.2 Nested tests

 An inner class is a class that is a member of another class. It can access any private instance variable of the outer class, as it is effectively part of that outer class. The typical use case is when two classes are tightly coupled, and it’s logical to provide direct access from the inner class to all instance variables of the outer class. For example, we may test a flight that has two types of passengers trying to board. The behavior of the flight will be described in the outer test class, while the behavior of each type of passenger will be described in its own nested class. Each passenger is able to interact with the flight. The nested tests will follow the business logic and lead to writing clearer code, as you will be able to follow the testing process more easily.

 Following this tight-coupling idea, nested tests give the test writer more capabilities to express the relationships among several groups of tests. Inner classes may be package-private.

 The Tested Data Systems company works with customers. Each customer has a gender, a first name, a last name, sometimes a middle name, and the date when they became a customer (if known). Some parameters may not be present, so the engineers are using the builder pattern to create and test a customer.

 The following listing demonstrates the use of the @Nested annotation on the class NestedTestsTest. The customer being tested is John Michael Smith, and the date when he became a customer is known.

 Listing 2.7 Nested tests

 public class NestedTestsTest { ①
 private static final String FIRST_NAME = "John"; ②

 private static final String LAST_NAME = "Smith"; ②

 @Nested ③
 class BuilderTest { ③
 private String MIDDLE_NAME = "Michael";

 @Test ④
 void customerBuilder() throws ParseException { ④
 SimpleDateFormat simpleDateFormat =
 new SimpleDateFormat("MM-dd-yyyy");
 Date customerDate = simpleDateFormat.parse("04-21-2019");

 Customer customer = new Customer.Builder(⑤
 Gender.MALE, FIRST_NAME, LAST_NAME) ⑤
 .withMiddleName(MIDDLE_NAME) ⑤
 .withBecomeCustomer(customerDate) ⑤
 .build(); ⑤

 assertAll(() -> { ⑥
 assertEquals(Gender.MALE, customer.getGender()); ⑥
 assertEquals(FIRST_NAME, customer.getFirstName()); ⑥
 assertEquals(LAST_NAME, customer.getLastName()); ⑥
 assertEquals(MIDDLE_NAME, customer.getMiddleName()); ⑥
 assertEquals(customerDate, ⑥
 customer.getBecomeCustomer()); ⑥
 }); ⑥
 }
 }
}

 The main test is NestedTestsTest ①, and it makes sense here that it is tightly coupled with the nested test BuilderTest ③. First, NestedTestsTest defines the first name and last name of a customer that will be used for all nested tests ②. The nested test, BuilderTest, verifies the construction of a Customer object ④ with the help of the builder pattern ⑤. The equality of the fields is verified at the end of the customerBuilder test ⑥.

 The source code file has another nested class, CustomerHashCodeTest, containing two more tests. You can follow along with it.

2.3 Tagged tests

 If you are familiar with JUnit 4, tagged tests are replacements for JUnit 4 categories. You can use the @Tag annotation over classes and test methods. Later, you can use tags to filter test discovery and execution.

 Listing 2.8 presents the CustomerTest tagged class, which tests the correct creation of Tested Data Systems customers. Listing 2.9 presents the CustomersRepositoryTest tagged class, which tests the existence and nonexistence of customers inside a repository. One use case may be to group your tests into a few categories based on the business logic and the things you are effectively testing. (Each test category has its own tag.) Then you may decide to run only some tests or alternate among categories, depending on your current needs.

 Listing 2.8 CustomerTest tagged class

 @Tag("individual") ①
public class CustomerTest {
 private String CUSTOMER_NAME = "John Smith";

 @Test
 void testCustomer() {
 Customer customer = new Customer(CUSTOMER_NAME);

 assertEquals("John Smith", customer.getName());
 }
}

 The @Tag annotation is added to the entire CustomerTest class ①.

 Listing 2.9 CustomersRepositoryTest tagged class

 @Tag("repository") ①
public class CustomersRepositoryTest {
 private String CUSTOMER_NAME = "John Smith";
 private CustomersRepository repository = new CustomersRepository();

 @Test
 void testNonExistence() {
 boolean exists = repository.contains("John Smith");

 assertFalse(exists);
 }

 @Test
 void testCustomerPersistence() {
 repository.persist(new Customer(CUSTOMER_NAME));

 assertTrue(repository.contains("John Smith"));
 }
}

 Similarly, the @Tag annotation is added to the entire CustomersRepositoryTest class ①. Here is the Maven configuration file for these tests.

 Listing 2.10 pom.xml configuration file

 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.22.2</version>
 <!-- ①
 <configuration> ①
 <groups>individual</groups> ①
 <excludedGroups>repository</excludedGroups> ①
 </configuration> ①
 --> ①
</plugin>

 To activate the tags, you have a few alternatives. One is to work at the level of the pom.xml configuration file. In this example, it’s enough to uncomment the configuration node of the Surefire plugin ① and run mvn clean install.

 Another alternative in the IntelliJ IDEA is to activate the tags by creating a configuration by choosing Run > Run > Edit Configurations > Tags (JUnit 5) as the test kind (figure 2.2). This is fine when you would like to quickly make some changes about which tests to run locally. However, it is strongly recommended that you make the changes at the level of the pom.xml file--otherwise, any automated build of the project will fail.

 [image:]

 Figure 2.2 Configuring the tagged tests from the IntelliJ IDEA

2.4 Assertions

 To perform test validation, you use the assert methods provided by the JUnit Assertions class. As you can see from the previous examples, we have statically imported these methods in our test class. Alternatively, you can import the JUnit Assertions class itself, depending on your taste for static imports. Table 2.1 lists some of the most popular assert methods.

 Table 2.1 Sample JUnit 5 assert methods

 	
 assert method

 	
 What it is used for

 	
 assertAll

 	
 Overloaded method. It asserts that none of the supplied executables throw exceptions. An executable is an object of type org.junit.jupiter.api.function.Executable.

 	
 assertArrayEquals

 	
 Overloaded method. It asserts that the expected array and the actual array are equal.

 	
 assertEquals

 	
 Overloaded method. It asserts that the expected values and the actual values are equal.

 	
 assertX(..., String message)

 	
 Assertion that delivers the supplied message to the test framework if the assertion fails.

 	
 assertX(..., Supplier<String> messageSupplier)

 	
 Assertion that delivers the supplied message to the test framework if the assertion fails. The failure message is retrieved lazily from the supplied messageSupplier.

 JUnit 5 provides a lot of overloaded assertion methods. It includes many assertion methods from JUnit 4 and adds a few that can use Java 8 lambdas. All JUnit Jupiter assertions belong to the org.junit.jupiter.api.Assertions class and are static methods. The assertThat() method that works with Hamcrest matchers has been removed. The recommended approach in such a case is to use the Hamcrest MatcherAssert.assertThat() overloaded methods, which are more flexible and in the spirit of the Java 8 capabilities.

 DEFINITION Hamcrest is a framework that assists with the writing of software tests in JUnit. It supports the creation of customized assertion matchers (Hamcrest is an anagram of matchers), letting us define match rules declaratively. Later in this chapter, we discuss the capabilities of Hamcrest.

 As stated previously, one of the projects at our previously introduced Tested Data Systems company is testing a system that starts up, receives regular and additional work, and closes itself. After we run some operations, we need to verify more than a single condition. In this case, we’ll also use the lambda expressions introduced in Java 8. Lambda expressions treat functionality as a method argument and code as data. We can pass around a lambda expression as if it were an object and execute it on demand.

 This section presents a few examples provided by the assertions package. Listing 2.11 shows some of the overloaded assertAll methods. The heading parameter allows us to recognize the group of assertions within the assertAll() methods. The failure message of the assertAll() method can provide detailed information about every particular assertion within a group. Also, we’re using the @DisplayName annotation to provide easy-to-understand information about what the test is looking for. Our purpose is the verification of the same system under test (SUT) class that we introduced earlier.

 After the heading parameter from the assertAll method, we provide the rest of the arguments as a collection of executables--a shorter, more convenient way to assert that supplied executables do not throw exceptions.

 Listing 2.11 assertAll method

 class AssertAllTest {
 @Test
 @DisplayName(
 "SUT should default to not being under current verification")
 void testSystemNotVerified() {
 SUT systemUnderTest = new SUT("Our system under test");

 assertAll("By default, ①
 SUT is not under current verification", ①
 () -> assertEquals("Our system under test", ②
 systemUnderTest.getSystemName()), ②
 () -> assertFalse(systemUnderTest.isVerified()) ③
);
 }

 @Test
 @DisplayName("SUT should be under current verification")
 void testSystemUnderVerification() {
 SUT systemUnderTest = new SUT("Our system under test");

 systemUnderTest.verify();

 assertAll("SUT under current verification", ④
 () -> assertEquals("Our system under test", ⑤
 systemUnderTest.getSystemName()), ⑤
 () -> assertTrue(systemUnderTest.isVerified()) ⑥
);
 }
}

 The assertAll method will always check all the assertions that are provided to it, even if some of them fail--if any of the executables fail, the remaining ones will still be run. That is not true for the JUnit 4 approach: if you have a few assert methods, one under the other, and one of them fails, that failure will stop the execution of the others.

 In the first test, the assertAll method receives as a parameter the message to be displayed if one of the supplied executables throws an exception ①. Then the method receives one executable to be verified with assertEquals ② and one to be verified with assertFalse ③. The assertion conditions are brief so that they can be read at a glance.

 In the second test, the assertAll method receives as a parameter the message to be displayed if one of the supplied executables throws an exception ④. Then it receives one executable to be verified with assertEquals ⑤ and one to be verified with assertTrue ⑥. Just like in the first test, the assertion conditions are easy to read.

 The next listing shows the use of some assertion methods with messages. Thanks to Supplier<String>, the instructions required to create a complex message aren’t provided in the case of success. We can use lambda or method references to verify our SUT; they improve performance.

 Listing 2.12 Some assertion methods with messages

 ...
@Test
@DisplayName("SUT should be under current verification")
void testSystemUnderVerification() {
 systemUnderTest.verify();
 assertTrue(systemUnderTest.isVerified(), ①
 () -> "System should be under verification"); ②
}

@Test
@DisplayName("SUT should not be under current verification")
void testSystemNotUnderVerification() {
 assertFalse(systemUnderTest.isVerified(), ③
 () -> "System should not be under verification."); ④
}

@Test
@DisplayName("SUT should have no current job")
void testNoJob() {
 assertNull(systemUnderTest.getCurrentJob(), ⑤
 () -> "There should be no current job"); ⑥
}
...

 In this example:

 	
 A condition is verified with the help of the assertTrue method ①. In case of failure, a message is lazily created ②.

 	
 A condition is verified with the help of the assertFalse method ③. In case of failure, a message is lazily created ④.

 	
 The existence of an object is verified with the help of the assertNull method ⑤. In case of failure, a message is lazily created ⑥.

 The advantage of using lambda expressions as arguments for assertion methods is that all of them are lazily created, resulting in improved performance. If the condition at ① is fulfilled, meaning the test succeeded, the invocation of the lambda expression at ② does not take place, which would be impossible if the test were written in the old style.

 There may be situations in which you expect a test to be executed within a given interval. In our example, it is natural for the user to expect that the system under test will run the given jobs quickly. JUnit 5 offers an elegant solution for this kind of use case.

 The following listing shows the use of some assertTimeout and assertTimeoutPreemptively methods, which replace the JUnit 4 Timeout rule. The methods need to check whether the SUT is performant enough, meaning it is executing its jobs within a given timeout.

 Listing 2.13 Some assertTimeout methods

 class AssertTimeoutTest {
 private SUT systemUnderTest = new SUT("Our system under test");

 @Test
 @DisplayName("A job is executed within a timeout")
 void testTimeout() throws InterruptedException {
 systemUnderTest.addJob(new Job("Job 1"));
 assertTimeout(ofMillis(500), () -> systemUnderTest.run(200)); ①
 }

 @Test
 @DisplayName("A job is executed preemptively within a timeout")
 void testTimeoutPreemptively() throws InterruptedException {
 systemUnderTest.addJob(new Job("Job 1"));
 assertTimeoutPreemptively(ofMillis(500), ②
 () -> systemUnderTest.run(200)); ②
 }

}

 assertTimeout waits until the executable finishes ①. The failure message looks something like this: execution exceeded timeout of 500 ms by 193 ms.

 assertTimeoutPreemptively stops the executable when the time has expired ②. The failure message looks like this: execution timed out after 500 ms.

 In some situations, you expect a test to be executed and to throw an exception, so you may force the rest to run under inappropriate conditions or to receive inappropriate input. In our example, it is natural that the SUT that tries to run without a job assigned to it will throw an exception. Again, JUnit 5 offers an elegant solution.

 Listing 2.14 shows the use of some assertThrows methods, which replace the JUnit 4 ExpectedException rule and the expected attribute of the @Test annotation. All assertions can be made against the returned instance of Throwable. This makes the tests more readable, as we are verifying that the SUT is throwing exceptions: a current job is expected but not found.

 Listing 2.14 Some assertThrows methods

 class AssertThrowsTest {
 private SUT systemUnderTest = new SUT("Our system under test");

 @Test
 @DisplayName("An exception is expected")
 void testExpectedException() {
 assertThrows(NoJobException.class, systemUnderTest::run); ①
 }

 @Test
 @DisplayName("An exception is caught")
 void testCatchException() {
 Throwable throwable = assertThrows(NoJobException.class,
 () -> systemUnderTest.run(1000)); ②
 assertEquals("No jobs on the execution list!",
 throwable.getMessage()); ③
 }
}

 In this example:

 	
 We verify that the systemUnderTest object’s call of the run method throws a NoJobException ①.

 	
 We verify that a call to systemUnderTest.run(1000) throws a NoJobException, and we keep a reference to the thrown exception in the throwable variable ②.

 	
 We check the message kept in the throwable exception variable ③.

2.5 Assumptions

 Sometimes tests fail due to an external environment configuration or a date or time zone issue that we cannot control. We can prevent our tests from being executed under inappropriate conditions.

 Assumptions verify the fulfillment of preconditions that are essential for running the tests. You can use assumptions when it does not make sense to continue the execution of a given test method. In the test report, these tests are marked as aborted.

 JUnit 5 comes with a set of assumption methods suitable for use with Java 8 lambdas. The JUnit 5 assumptions are static methods belonging to the org.junit .jupiter.api.Assumptions class. The message parameter is in the last position.

 JUnit 4 users should be aware that not all previously existing assumptions are provided in JUnit 5. There is no assumeThat() method, which we may regard as confirmation that matchers are no longer part of JUnit. The new assumingThat() method executes an assertion only if the assumption is fulfilled.

 Suppose we have a test that needs to run only in the Windows OS and in the Java 8 version. These preconditions are turned into JUnit 5 assumptions. A test is executed only if the assumptions are true. The following listing shows the use of some assumption methods and verifies our SUT only under the environmental conditions we imposed: the OS needs to be Windows, and the Java version needs to be 8. If these conditions (assumptions) are not fulfilled, the check is not made.

 Listing 2.15 Some assumption methods

 class AssumptionsTest {
 private static String EXPECTED_JAVA_VERSION = "1.8";
 private TestsEnvironment environment = new TestsEnvironment(
 new JavaSpecification(
 System.getProperty("java.vm.specification.version")),
 new OperationSystem(
 System.getProperty("os.name"),
 System.getProperty("os.arch"))
);

 private SUT systemUnderTest = new SUT();

 @BeforeEach ①
 void setUp() {
 assumeTrue(environment.isWindows()); ①
 }

 @Test
 void testNoJobToRun() {
 assumingThat(
 () -> environment.getJavaVersion()
 .equals(EXPECTED_JAVA_VERSION), ②
 () -> assertFalse(systemUnderTest.hasJobToRun())); ③
 }

 @Test
 void testJobToRun() {
 assumeTrue(environment.isAmd64Architecture()); ④
 systemUnderTest.run(new Job()); ⑤
 assertTrue(systemUnderTest.hasJobToRun()); ⑥
 }
}

 In this example:

 	
 The @BeforeEach annotated method is executed before each test. The test will not run unless the assumption that the current environment is Windows is true ①.

 	
 The first test checks that the current Java version is the expected one ②. Only if this assumption is true does it verify that no job is currently being run by the SUT ③.

 	
 The second test checks the current environment architecture ④. Only if this architecture is the expected one does it run a new job on the SUT ⑤ and verify that the system has a job to run ⑥.

2.6 Dependency injection in JUnit 5

 The previous JUnit versions did not permit test constructors or methods to have parameters. JUnit 5 allows test constructors and methods to have parameters, but they need to be resolved through dependency injection.

 The ParameterResolver interface dynamically resolves parameters at runtime. A parameter of a constructor or method must be resolved at runtime by a registered ParameterResolver. You can inject as many parameters as you want, in any order.

 JUnit 5 now has three built-in resolvers. You must explicitly enable other parameter resolvers by registering appropriate extensions via @ExtendWith. The parameter resolvers that are automatically registered are discussed in the following sections.

2.6.1 TestInfoParameterResolver

 If a constructor or method parameter is of type TestInfo, TestInfoParameterResolver supplies an instance of this type. TestInfo is a class whose objects are used to inject information about the currently executed test or container into the @Test, @BeforeEach, @AfterEach, @BeforeAll, and @AfterAll methods. Then TestInfo gets information about the current test: the display name, test class or method, and associated tags. The display name can be the name of the test class or test method or a custom name provided with the help of @DisplayName. Here’s how to use a TestInfo parameter as an argument of a constructor and annotated methods.

 Listing 2.16 TestInfo parameters

 class TestInfoTest {
 TestInfoTest(TestInfo testInfo) {
 assertEquals("TestInfoTest", testInfo.getDisplayName()); ①
 }

 @BeforeEach
 void setUp(TestInfo testInfo) {
 String displayName = testInfo.getDisplayName();
 assertTrue(displayName.equals("display name of the method") || ②
 displayName.equals(②
 "testGetNameOfTheMethod(TestInfo)")); ②
 }

 @Test
 void testGetNameOfTheMethod(TestInfo testInfo) {
 assertEquals("testGetNameOfTheMethod(TestInfo)",
 testInfo.getDisplayName()); ③
 }

 @Test
 @DisplayName("display name of the method")
 void testGetNameOfTheMethodWithDisplayNameAnnotation(TestInfo testInfo) {
 assertEquals("display name of the method",
 testInfo.getDisplayName()); ④
 }
}

 In this example:

 	
 A TestInfo parameter is injected into the constructor and into three methods. The constructor verifies that the display name is TestInfoTest: its own name ①. This is the default behavior, which we can vary using @DisplayName annotations.

 	
 The @BeforeEach annotated method is executed before each test. It has an injected TestInfo parameter, and it verifies that the displayed name is the expected one: the name of the method or the name specified by the @DisplayName annotation ②.

 	
 Both tests have an injected TestInfo parameter. Each parameter verifies that the displayed name is the expected one: the name of the method in the first test ③ or the name specified by the @DisplayName annotation in the second test ④.

 	
 The built-in TestInfoParameterResolver supplies an instance of TestInfo that corresponds to the current container or test as the value of the expected parameters of the constructor and of the methods.

2.6.2 TestReporterParameterResolver

 If a constructor or method parameter is of type TestReporter, TestReporterParameterResolver supplies an instance of this type. TestReporter is a functional interface and therefore can be used as the assignment target for a lambda expression or method reference. TestReporter has a single publishEntry abstract method and several overloaded publishEntry default methods. Parameters of type TestReporter can be injected into methods of test classes annotated with @BeforeEach, @AfterEach, and @Test. TestReporter can also be used to provide additional information about the test that is run. Here’s how to use a TestReporter parameter as an argument of @Test annotated methods.

 Listing 2.17 TestReporter parameters

 class TestReporterTest {

 @Test
 void testReportSingleValue(TestReporter testReporter) {
 testReporter.publishEntry("Single value"); ①
 }

 @Test
 void testReportKeyValuePair(TestReporter testReporter) {
 testReporter.publishEntry("Key", "Value"); ②
 }

 @Test
 void testReportMultipleKeyValuePairs(TestReporter testReporter) {
 Map<String, String> values = new HashMap<>(); ③
 values.put("user", "John"); ④
 values.put("password", "secret"); ④

 testReporter.publishEntry(values); ⑤
 }

}

 In this example, a TestReporter parameter is injected into three methods:

 	
 In the first method, it is used to publish a single value entry ①.

 	
 In the second method, it is used to publish a key-value pair ②.

 	
 In the third method, we construct a map ③, populate it with two key-value pairs ④, and then use it to publish the constructed map ⑤.

 	
 The built-in TestReporterParameterResolver supplies the instance of TestReporter needed to publish the entries.

 The result of the execution of this test is shown in figure 2.3.

 [image:]

 Figure 2.3 The result of executing TestReporterTest

2.6.3 RepetitionInfoParameterResolver

 If a parameter in a method annotated with @RepeatedTest, @BeforeEach, or @AfterEach is of type RepetitionInfo, RepetitionInfoParameterResolver supplies an instance of this type. Then RepetitionInfo gets information about the current repetition and the total number of repetitions for a test annotated with @RepeatedTest. Repeated tests and examples are discussed in the following section.

2.7 Repeated tests

 JUnit 5 allows us to repeat a test a specified number of times using the @RepeatedTest annotation, which has as a parameter the required number of repetitions. This feature can be particularly useful when conditions may change from one execution of a test to another. For example, some data that affects success may have changed between two executions of the same test, and an unexpected change in this data would be a bug that needs to be fixed.

 A custom display name can be configured for each repetition using the name attribute of the @RepeatedTest annotation. The following placeholders are now supported:

 	
 {displayName}--Display name of the method annotated with @RepeatedTest

 	
 {currentRepetition}--Current repetition number

 	
 {totalRepetitions}--Total number of repetitions

 Listing 2.18 shows the use of repeated tests, display name placeholders, and RepetitionInfo parameters. The first repeated test verifies that the execution of the add method from the Calculator class is stable and always provides the same result. The second repeated test verifies that collections follow the appropriate behavior: a list receives a new element at each iteration, and a set does not get duplicate elements even if we try to insert such an element multiple times.

 Listing 2.18 Repeated tests

 public class RepeatedTestsTest {

 private static Set<Integer> integerSet = new HashSet<>();
 private static List<Integer> integerList = new ArrayList<>();

 @RepeatedTest(value = 5, name = ①
"{displayName} - repetition {currentRepetition}/{totalRepetitions}") ①
 @DisplayName("Test add operation")
 void addNumber() {
 Calculator calculator = new Calculator();
 assertEquals(2, calculator.add(1, 1),
 "1 + 1 should equal 2");
 }

 @RepeatedTest(value = 5, name = "the list contains ②
{currentRepetition} elements(s), the set contains 1 element") ②
 void testAddingToCollections(TestReporter testReporter,
 RepetitionInfo repetitionInfo) {
 integerSet.add(1);
 integerList.add(repetitionInfo.getCurrentRepetition());

 testReporter.publishEntry("Repetition number", ③
 String.valueOf(repetitionInfo.getCurrentRepetition())); ③
 assertEquals(1, integerSet.size());
 assertEquals(repetitionInfo.getCurrentRepetition(),
 integerList.size());
 }
}

 In this example:

 	
 The first test is repeated five times. Each repetition shows the display name, the current repetition number, and the total number of repetitions ①.

 	
 The second test is repeated five times. Each repetition shows the number of elements in the list (the current repetition number) and checks whether the set always has only one element ②.

 	
 Each time the second test is repeated, the repetition number is displayed as it is injected into the RepetitionInfo parameter ③.

 The results of executing these tests are shown in figures 2.4 and 2.5. Each invocation of a repeated test behaves like the execution of a regular @Test method with full support for life cycle callbacks and extensions. That is why the list and the set in the example are declared as static.

 [image:]

 Figure 2.4 The names of the repeated tests at the time of execution

 [image:]

 Figure 2.5 The messages shown on the console by the second repeated test

2.8 Parameterized tests

 Parameterized tests allow a test to run multiple times with different arguments. The great benefit is that we can write a single test to be performed using arguments that check various input data. The methods are annotated with @ParameterizedTest. We must declare at least one source providing the arguments for each invocation. The arguments are then passed to the test method.

 @ValueSource lets us specify a single array of literal values. At execution, this array provides a single argument for each invocation of the parameterized test. The following test checks the number of words in some phrases that are provided as parameters.

 Listing 2.19 @ValueSource annotation

 class ParameterizedWithValueSourceTest {
 private WordCounter wordCounter = new WordCounter();

 @ParameterizedTest ①
 @ValueSource(strings = {"Check three parameters", ②
 "JUnit in Action"}) ②
 void testWordsInSentence(String sentence) {
 assertEquals(3, wordCounter.countWords(sentence));
 }
}

 In this example:

 	
 We mark the test as being parameterized by using the corresponding annotation ①.

 	
 We specify the values to be passed as an argument of the testing method ②. The testing method is executed twice: once for each argument provided by the @ValueSource annotation.

 @EnumSource enables us to use enum instances. The annotation provides an optional names parameter that lets us specify which instances must be used or excluded. By default, all instances of an enum are used.

 The following listing shows the use of the @EnumSource annotation to check the number of words in some phrases that are provided as enum instances.

 Listing 2.20 @EnumSource annotation

 class ParameterizedWithEnumSourceTest {
 private WordCounter wordCounter = new WordCounter();

 @ParameterizedTest ①
 @EnumSource(Sentences.class) ①
 void testWordsInSentence(Sentences sentence) {
 assertEquals(3, wordCounter.countWords(sentence.value()));
 }

 @ParameterizedTest ②
 @EnumSource(value=Sentences.class, ②
 names = { "JUNIT_IN_ACTION", "THREE_PARAMETERS" }) ②
 void testSelectedWordsInSentence(Sentences sentence) {
 assertEquals(3, wordCounter.countWords(sentence.value()));
 }

 @ParameterizedTest #3
 @EnumSource(value=Sentences.class, mode = EXCLUDE, names = ③
 { "THREE_PARAMETERS" }) ③
 void testExcludedWordsInSentence(Sentences sentence) {
 assertEquals(3, wordCounter.countWords(sentence.value()));
 }

 enum Sentences {
 JUNIT_IN_ACTION("JUnit in Action"),
 SOME_PARAMETERS("Check some parameters"),
 THREE_PARAMETERS("Check three parameters");

 private final String sentence;

 Sentences(String sentence) {
 this.sentence = sentence;
 }

 public String value() {
 return sentence;
 }
 }
}

 This example has three tests, which work as follows:

 	
 The first test is annotated as being parameterized. Then we specify the enum source as the entire Sentences.class ①. So this test is executed three times, once for each instance of the Sentences enum: JUNIT_IN_ACTION, SOME_PARAMETERS, and THREE_PARAMETERS.

 	
 The second test is annotated as being parameterized. Then we specify the enum source as Sentences.class, but we restrict the instances to be passed to the test to JUNIT_IN_ACTION and THREE_PARAMETERS ②. So, this test will be executed twice.

 	
 The third test is annotated as being parameterized. Then we specify the enum source as Sentences.class, but we exclude the THREE_PARAMETERS instance ③. So, this test is executed twice: for JUNIT_IN_ACTION and SOME_PARAMETERS.

 We can use @CsvSource to express argument lists as comma-separated values (CSV), such as String literals. The following test uses the @CsvSource annotation to check the number of words in some phrases that are provided as parameters--this time, in CSV format.

 Listing 2.21 @CsvSource annotation

 class ParameterizedWithCsvSourceTest {
 private WordCounter wordCounter = new WordCounter();

 @ParameterizedTest ①
 @CsvSource({"2, Unit testing", "3, JUnit in Action", ②
 "4, Write solid Java code"}) ②
 void testWordsInSentence(int expected, String sentence) {
 assertEquals(expected, wordCounter.countWords(sentence));
 }
}

 This example has one parameterized test, which functions as follows:

 	
 The test is parameterized, as indicated by the appropriate annotation ①.

 	
 The parameters passed to the test are from the parsed CSV strings listed in the @CsvSource annotation ②. So, this test is executed three times: once for each CSV line.

 	
 Each CSV line is parsed. The first value is assigned to the expected parameter, and the second value is assigned to the sentence parameter.

 @CsvFileSource allows us to use CSV files from the classpath. The parameterized test is executed once for each line of a CSV file. Listing 2.22 shows the use of the @CsvFileSource annotation, and listing 2.23 displays the contents of the word_counter.csv file on the classpath. The Maven build tool automatically adds the src/test/resources folder to the classpath. The test checks the number of words in some phrases that are provided as parameters--this time, in CSV format with a CSV file as resource input.

 Listing 2.22 @CsvFileSource annotation

 class ParameterizedWithCsvFileSourceTest {
 private WordCounter wordCounter = new WordCounter();

 @ParameterizedTest ①
 @CsvFileSource(resources = "/word_counter.csv") ①
 void testWordsInSentence(int expected, String sentence) {
 assertEquals(expected, wordCounter.countWords(sentence));
 }
}

 Listing 2.23 Contents of the word_counter.csv file

 2, Unit testing
3, JUnit in Action
4, Write solid Java code

 This example has one parameterized test that receives as parameters the lines indicated in the @CsvFileSource annotation ①. So, this test is executed three times: once for each CSV file line. The CSV file line is parsed, the first value is assigned to the expected parameter, and then the second value is assigned to the sentence parameter.

2.9 Dynamic tests

 JUnit 5 introduces a dynamic new programming model that can generate tests at runtime. We write a factory method, and at runtime, it creates a series of tests to be executed. Such a factory method must be annotated with @TestFactory.

 A @TestFactory method is not a regular test but a factory that generates tests. A method annotated as @TestFactory must return one of the following:

 	
 A DynamicNode (an abstract class; DynamicContainer and DynamicTest are the instantiable concrete classes)

 	
 An array of DynamicNode objects

 	
 A Stream of DynamicNode objects

 	
 A Collection of DynamicNode objects

 	
 An Iterable of DynamicNode objects

 	
 An Iterator of DynamicNode objects

 As with the requirements for @Test-annotated methods, @TestFactory-annotated methods are allowed to be package-private as a minimum requirement for visibility, but they cannot be private or static. They may also declare parameters to be resolved by a ParameterResolver.

 A DynamicTest is a test case generated at runtime, composed of a display name and an Executable. Because the Executable is a Java 8 functional interface, the implementation of a dynamic test can be provided as a lambda expression or as a method reference.

 A dynamic test has a different life cycle than a standard test annotated with @Test. The methods annotated with @BeforeEach and @AfterEach are executed for the @TestFactory method but not for each dynamic test; other than these methods, there are no life cycle callbacks for individual dynamic tests. The behavior of @BeforeAll and @AfterAll remains the same; they are executed before all tests and at the end of all tests.

 Listing 2.24 demonstrates dynamic tests. We want to check a predicate against a numerical value. To do so, we use a single factory to generate three tests to be created at runtime: one for a negative value, one for zero, and one for a positive value. We write one method but get three tests dynamically.

 Listing 2.24 Dynamic tests

 class DynamicTestsTest {

 private PositiveNumberPredicate predicate = new PositiveNumberPredicate();

 @BeforeAll ①
 static void setUpClass() { ①
 System.out.println("@BeforeAll method");
 }

 @AfterAll ②
 static void tearDownClass() { ②
 System.out.println("@AfterAll method");
 }

 @BeforeEach ③
 void setUp() { ③
 System.out.println("@BeforeEach method");
 }

 @AfterEach ④
 void tearDown() { ④
 System.out.println("@AfterEach method");
 }

 @TestFactory ⑤
 Iterator<DynamicTest> positiveNumberPredicateTestCases() { ⑤
 return asList(
 dynamicTest("negative number", ⑥
 () -> assertFalse(predicate.check(-1))), ⑥
 dynamicTest("zero", ⑦
 () -> assertFalse(predicate.check(0))), ⑦
 dynamicTest("positive number", ⑧
 () -> assertTrue(predicate.check(1))) ⑧
).iterator();
 }
}

OEBPS/Images/CH02_F03_Tudose.png

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH01_F02_Tudose.png

OEBPS/Images/CH02_F01_Tudose.png

OEBPS/Images/CH02_F05_Tudose.png

OEBPS/Images/cover.jpeg

OEBPS/Images/Manning_copyright.png

OEBPS/Images/CH01_F01_Tudose.png

OEBPS/Images/CH01_F03_Tudose.png

OEBPS/Images/CH02_F02_Tudose.png

OEBPS/Images/CH02_F04_Tudose.png

