

 [image: cover]

Spring Boot in Action

 Craig Walls

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Technical development editor: Robert Casazza
Copyeditor: Andy Carroll
Proofreader: Corbin Collins
Technical proofreader: John Guthrie
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617292545

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 About this Book

 Acknowledgments

 Chapter 1. Bootstarting Spring

 Chapter 2. Developing your first Spring Boot application

 Chapter 3. Customizing configuration

 Chapter 4. Testing with Spring Boot

 Chapter 5. Getting Groovy with the Spring Boot CLI

 Chapter 6. Applying Grails in Spring Boot

 Chapter 7. Taking a peek inside with the Actuator

 Chapter 8. Deploying Spring Boot applications

 Appendix A. Spring Boot Developer Tools

 Appendix B. Spring Boot starters

 Appendix C. Configuration properties

 Appendix D. Spring Boot dependencies

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 About this Book

 Acknowledgments

 Chapter 1. Bootstarting Spring

 1.1. Spring rebooted

 1.1.1. Taking a fresh look at Spring

 1.1.2. Examining Spring Boot essentials

 1.1.3. What Spring Boot isn’t

 1.2. Getting started with Spring Boot

 1.2.1. Installing the Spring Boot CLI

 1.2.2. Initializing a Spring Boot project with Spring Initializr

 1.3. Summary

 Chapter 2. Developing your first Spring Boot application

 2.1. Putting Spring Boot to work

 2.1.1. Examining a newly initialized Spring Boot project

 2.1.2. Dissecting a Spring Boot project build

 2.2. Using starter dependencies

 2.2.1. Specifying facet-based dependencies

 2.2.2. Overriding starter transitive dependencies

 2.3. Using automatic configuration

 2.3.1. Focusing on application functionality

 2.3.2. Running the application

 2.3.3. What just happened?

 2.4. Summary

 Chapter 3. Customizing configuration

 3.1. Overriding Spring Boot auto-configuration

 3.1.1. Securing the application

 3.1.2. Creating a custom security configuration

 3.1.3. Taking another peek under the covers of auto-configuration

 3.2. Externalizing configuration with properties

 3.2.1. Fine-tuning auto-configuration

 3.2.2. Externally configuring application beans

 3.2.3. Configuring with profiles

 3.3. Customizing application error pages

 3.4. Summary

 Chapter 4. Testing with Spring Boot

 4.1. Integration testing auto-configuration

 4.2. Testing web applications

 4.2.1. Mocking Spring MVC

 4.2.2. Testing web security

 4.3. Testing a running application

 4.3.1. Starting the server on a random port

 4.3.2. Testing HTML pages with Selenium

 4.4. Summary

 Chapter 5. Getting Groovy with the Spring Boot CLI

 5.1. Developing a Spring Boot CLI application

 5.1.1. Setting up the CLI project

 5.1.2. Eliminating code noise with Groovy

 5.1.3. What just happened?

 5.2. Grabbing dependencies

 5.2.1. Overriding default dependency versions

 5.2.2. Adding dependency repositories

 5.3. Running tests with the CLI

 5.4. Creating a deployable artifact

 5.5. Summary

 Chapter 6. Applying Grails in Spring Boot

 6.1. Using GORM for data persistence

 6.2. Defining views with Groovy Server Pages

 6.3. Mixing Spring Boot with Grails 3

 6.3.1. Creating a new Grails project

 6.3.2. Defining the domain

 6.3.3. Writing a Grails controller

 6.3.4. Creating the view

 6.4. Summary

 Chapter 7. Taking a peek inside with the Actuator

 7.1. Exploring the Actuator’s endpoints

 7.1.1. Viewing configuration details

 7.1.2. Tapping runtime metrics

 7.1.3. Shutting down the application

 7.1.4. Fetching application information

 7.2. Connecting to the Actuator remote shell

 7.2.1. Viewing the autoconfig report

 7.2.2. Listing application beans

 7.2.3. Watching application metrics

 7.2.4. Invoking Actuator endpoints

 7.3. Monitoring your application with JMX

 7.4. Customizing the Actuator

 7.4.1. Changing endpoint IDs

 7.4.2. Enabling and disabling endpoints

 7.4.3. Adding custom metrics and gauges

 7.4.4. Creating a custom trace repository

 7.4.5. Plugging in custom health indicators

 7.5. Securing Actuator endpoints

 7.6. Summary

 Chapter 8. Deploying Spring Boot applications

 8.1. Weighing deployment options

 8.2. Deploying to an application server

 8.2.1. Building a WAR file

 8.2.2. Creating a production profile

 8.2.3. Enabling database migration

 8.3. Pushing to the cloud

 8.3.1. Deploying to Cloud Foundry

 8.3.2. Deploying to Heroku

 8.4. Summary

 Appendix A. Spring Boot Developer Tools

 Automatic restart

 LiveReload

 Remote development

 Development property defaults

 Globally configuring developer tools

 Appendix B. Spring Boot starters

 Appendix C. Configuration properties

 Appendix D. Spring Boot dependencies

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 In the spring of 2014, the Delivery Engineering team at Netflix set out to achieve a lofty goal: enable end-to-end global
 continuous delivery via a software platform that facilitates both extensibility and resiliency. My team had previously built
 two different applications attempting to address Netflix’s delivery and deployment needs, but both were beginning to show
 the telltale signs of monolith-ness and neither met the goals of flexibility and resiliency. What’s more, the most stymieing
 effect of these monolithic applications was ultimately that we were unable to keep pace with our partner’s innovation. Users
 had begun to move around our tools rather than with them.

 It became apparent that if we wanted to provide real value to the company and rapidly innovate, we needed to break up the
 monoliths into small, independent services that could be released at will. Embracing a microservice architecture gave us hope
 that we could also address the twin goals of flexibility and resiliency. But we needed to do it on a credible foundation where
 we could count on real concurrency, legitimate monitoring, reliable and easy service discovery, and great runtime performance.

 With the JVM as our bedrock, we looked for a framework that would give us rapid velocity and steadfast operationalization
 out of the box. We zeroed in on Spring Boot.

 Spring Boot makes it effortless to create Spring-powered, production-ready services without a lot of code! Indeed, the fact
 that a simple Spring Boot Hello World application can fit into a tweet is a radical departure from what the same functionality
 required on the JVM only a few short years ago. Out-of-the-box nonfunctional features like security, metrics, health-checks,
 embedded servers, and externalized configuration made Boot an easy choice for us.

 Yet, when we embarked on our Spring Boot journey, solid documentation was hard to come by. Relying on source code isn’t the
 most joyful manner of figuring out how to properly leverage a framework’s features.

 It’s not surprising to see the author of Manning’s venerable Spring in Action take on the challenge of concisely distilling the core aspects of working with Spring Boot into another cogent book. Nor
 is it surprising that Craig and the Manning crew have done another tremendously wonderful job! Spring Boot in Action is an easily readable book, as we’ve now come to expect from Craig and Manning.

 From chapter 1’s attention-getting introduction to Boot and the now legendary 90ish-character tweetable Boot application to an in-depth
 analysis of Boot’s Actuator in chapter 7, which enables a host of auto-magical operational features required for any production application, Spring Boot in Action leaves no stone unturned. Indeed, for me, chapter 7’s deep dive into the Actuator answered some of the lingering questions I’ve had in the back of my head since picking up Boot
 well over a year ago. Chapter 8’s thorough examination of deployment options opened my eyes to the simplicity of Cloud Foundry for cloud deployments. One
 of my favorite chapters is chapter 4, where Craig explores the many powerful options for easily testing a Boot application. From the get-go, I was pleasantly
 surprised with some of Spring’s testing features, and Boot takes advantage of them nicely.

 As I’ve publicly stated before, Spring Boot is just the kind of framework the Java community has been seeking for over a decade.
 Its easy-to-use development features and out-of-the-box operationalization make Java development fun again. I’m pleased to
 report that Spring and Spring Boot are the foundation of Netflix’s new continuous delivery platform. What’s more, other teams
 at Netflix are following the same path because they too see the myriad benefits of Boot.

 It’s with equal parts excitement and passion that I absolutely endorse Craig’s book as the easy-to-digest and fun-to-read
 Spring Boot documentation the Java community has been waiting for since Boot took the community by storm. Craig’s accessible
 writing style and sweeping analysis of Boot’s core features and functionality will surely leave readers with a solid grasp
 of Boot (along with a joyful sense of awe for it).

 Keep up the great work Craig, Manning Publications, and all the brilliant developers who have made Spring Boot what it is
 today! Each one of you has ensured a bright future for the JVM.

 ANDREW GLOVER

 MANAGER, DELIVERY ENGINEERING AT NETFLIX

Preface

 At the 1964 New York World’s Fair, Walt Disney introduced three groundbreaking attractions: “it’s a small world,” “Great Moments
 with Mr. Lincoln,” and the “Carousel of Progress.” All three of these attractions have since moved into Disneyland and Walt
 Disney World, and you can still see them today.

 My favorite of these is the Carousel of Progress. Supposedly, it was one of Walt Disney’s favorites too. It’s part ride and
 part stage show where the seating area rotates around a center area featuring four stages. Each stage tells the story of a
 family at different time periods of the 20th century—the early 1900s, the 1920s, the 1940s, and recent times—highlighting
 the technology advances in that time period. The story of innovation is told from a hand-cranked washing machine, to electric
 lighting and radio, to automatic dishwashers and television, to computers and voice-activated appliances.

 In every act, the father (who is also the narrator of the show) talks about the latest inventions and says “It can’t get any
 better,” only to discover that, in fact, it does get better in the next act as technology progresses.

 Although Spring doesn’t have quite as long a history as that displayed in the Carousel of Progress, I feel the same way about
 Spring as “Progress Dad” felt about the 20th century. Each and every Spring application seems to make the lives of developers
 so much better. Just looking at how Spring components are declared and wired together, we can see the following progression
 over the history of Spring:

 	When Spring 1.0 hit the scene, it completely changed how we develop enterprise Java applications. Spring dependency injection
 and declarative transactions meant no more tight coupling of components and no more heavyweight EJBs. It couldn’t get any
 better.

 	With Spring 2.0 we could use custom XML namespaces for configuration, making Spring itself even easier to use with smaller
 and easier to understand configuration files. It couldn’t get any better.

 	Spring 2.5 gave us a much more elegant annotation-oriented dependency-injection model with the @Component and @Autowired annotations, as well as an annotation-oriented Spring MVC programming model. No more explicit declaration of application
 components, and no more subclassing one of several base controller classes. It couldn’t get any better.

 	Then with Spring 3.0 we were given a new Java-based configuration alternative to XML that was improved further in Spring 3.1
 with a variety of @Enable-prefixed annotations. For the first time, it become realistic to write a complete Spring application with no XML configuration
 whatsoever. It couldn’t get any better.

 	Spring 4.0 unleashed support for conditional configuration, where runtime decisions would determine which configuration would
 be used and which would be ignored based on the application’s classpath, environment, and other factors. We no longer needed
 to write scripts to make those decisions at build time and pick which configuration should be included in the deployment.
 How could it possibly get any better?

 And then came Spring Boot. Even though with each release of Spring we thought it couldn’t possibly get any better, Spring
 Boot proved that there’s still a lot of magic left in Spring. In fact, I believe Spring Boot is the most significant and exciting
 thing to happen in Java development in a long time.

 Building upon previous advances in the Spring Framework, Spring Boot enables automatic configuration, making it possible for
 Spring to intelligently detect what kind of application you’re building and automatically configure the components necessary
 to support the application’s needs. There’s no need to write explicit configuration for common configuration scenarios; Spring
 will take care of it for you.

 Spring Boot starter dependencies make it even easier to select which build-time and runtime libraries to include in your application
 builds by aggregating commonly needed dependencies. Spring Boot starters not only keep the dependencies section of your build
 specifications shorter, they keep you from having to think too hard about the specific libraries and versions you need.

 Spring Boot’s command-line interface offers a compelling option for developing Spring applications in Groovy with minimal
 noise or ceremony common in Java applications. With the Spring Boot CLI, there’s no need for accessor methods, access modifiers
 such as public or private, semicolons, or the return keyword. In many cases, you can even eliminate import statements. And because you run the application as scripts from the command line, you don’t need a build specification.

 Spring Boot’s Actuator gives you insight into the inner workings of a running application. You can see exactly what beans
 are in the Spring application context, how Spring MVC controllers are mapped to paths, the configuration properties available
 to your application, and much more.

 With all of these wonderful features enabled by Spring Boot, it certainly can’t get any better!

 In this book, you’ll see how Spring Boot has indeed made Spring even better than it was before. We’ll look at auto-configuration,
 Spring Boot starters, the Spring Boot CLI, and the Actuator. And we’ll tinker with the latest version of Grails, which is
 based on Spring Boot. By the time we’re done, you’ll probably be thinking that Spring couldn’t get any better.

 If we’ve learned anything from Walt Disney’s Carousel of Progress, it’s that when we think things can’t get any better, they
 inevitably do get better. Already, the advances offered by Spring Boot are being leveraged to enable even greater advances.
 It’s hard to imagine Spring getting any better than it is now, but it certainly will. With Spring, there’s always a great
 big beautiful tomorrow.

About this Book

 Spring Boot aims to simplify Spring development. As such, Spring Boot’s reach stretches to touch everything that Spring touches.
 It’d be impossible to write a book that covers every single way that Spring Boot can be used, as doing so would involve covering
 every single technology that Spring itself supports. Instead, Spring Boot in Action aims to distill Spring Boot into four main topics: auto-configuration, starter dependencies, the command-line interface,
 and the Actuator. Along the way, we’ll touch on a few Spring features as necessary, but the focus will be primarily on Spring
 Boot.

 Spring Boot in Action is for all Java developers. Although some background in Spring could be considered a prerequisite, Spring Boot has a way
 of making Spring more approachable even to those new to Spring. Nevertheless, because this book will be focused on Spring
 Boot and will not dive deeply into Spring itself, you may find it helpful to pair it with other Spring materials such as Spring in Action, Fourth Edition (Manning, 2014).

Roadmap

 Spring Boot in Action is divided into seven chapters:

 	In chapter 1 you’ll be given an overview of Spring Boot, including the essentials of automatic configuration, starter dependencies, the
 command-line interface, and the Actuator.

 	
Chapter 2 takes a deeper dive into Spring Boot, focusing on automatic configuration and starter dependencies. In this chapter, you’ll
 build a complete Spring application using very little explicit configuration.

 	
Chapter 3 picks up where chapter 2 leaves off, showing how you can influence automatic configuration by setting application properties or completely overriding
 automatic configuration when it doesn’t meet your needs.

 	In chapter 4 we’ll look at how to write automated integration tests for Spring Boot applications.

 	In chapter 5 you’ll see how the Spring Boot CLI offers a compelling alternative to conventional Java development by enabling you to write
 complete applications as a set of Groovy scripts that are run from the command line.

 	While we’re on the subject of Groovy, chapter 6 takes a look at Grails 3, the latest version of the Grails framework, which is now based on Spring Boot.

 	In chapter 7 you’ll see how to leverage Spring Boot’s Actuator to dig inside of a running application and see what makes it tick. You’ll
 see how to use Actuator web endpoints as well as a remote shell and JMX MBeans to peek at the internals of an application.

 	
Chapter 8 wraps things up by discussing various options for deploying your Spring Boot application, including traditional application
 server deployment and cloud deployment.

Code conventions and downloads

 There are many code examples throughout this book. These examples will always appear in a fixed-width code font like this. Any class name, method name, or XML fragment within the normal text of the book will appear in code font as well. Many of Spring’s classes and packages have exceptionally long (but expressive) names. Because of this, line-continuation
 markers ([image:]) may be included when necessary. Not all code examples in this book will be complete. Often I only show a method or two from
 a class to focus on a particular topic.

 Complete source code for the applications found in the book can be downloaded from the publisher’s website at www.manning.com/books/spring-boot-in-action.

Author Online

 The purchase of Spring Boot in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/books/spring-boot-in-action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The figure on the cover of Spring Boot in Action is captioned “Habit of a Tartar in Kasan,” which is the capital city of the Republic of Tatarstan in Russia. The illustration
 is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
 dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late eighteenth century, and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual
 and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jeffreys’ pictures.

Acknowledgments

 This book will show how Spring Boot can automatically deal with the behind-the-scenes stuff that goes into an application,
 freeing you to focus on the tasks that make your application unique. In many ways, this is analogous to what went into making
 this book happen. There were so many other people taking care of making things happen that I was free to focus on writing
 the content of the book. For taking care of the behind-the-scenes work at Manning, I’d like to thank Cynthia Kane, Robert
 Casazza, Andy Carroll, Corbin Collins, Kevin Sullivan, Mary Piergies, Janet Vail, Ozren Harlovic, and Candace Gillhoolley.

 Writing tests help you know if your software is meeting its goals. Similarly, those who reviewed Spring Boot in Action while it was still being written gave me the feedback I needed to make sure that the book stayed on target. For this, my
 gratitude goes out to Aykut Acikel, Bachir Chihani, Eric Kramer, Francesco Persico, Furkan Kamaci, Gregor Zurowski, Mario
 Arias, Michael A. Angelo, Mykel Alvis, Norbert Kuchenmeister, Phil Whiles, Raphael Villela, Sam Kreter, Travis Nelson, Wilfredo
 R. Ronsini Jr., and William Fly. Special thanks to John Guthrie for a final technical review shortly before the manuscript
 went into production. And extra special thanks to Andrew Glover for contributing the foreword to my book.

 Of course, this book wouldn’t be possible or even necessary without the incredible work done by the talented members of the
 Spring team. It’s amazing what you do, and I’m so excited to be part of a team that’s changing how software is developed.

 Many thanks to all of those involved in the No Fluff/Just Stuff tour, whether it be my fellow presenters or those who show
 up to hear us talk. The conversations we’ve had have in some small way contributed to how this book was formed.

 A book like this would not be possible without an alphabet to compose into words. So, just as in my previous book, I’d like
 to take this opportunity to thank the Phoenicians for the invention of the first alphabet.

 Last, but certainly not least...my love, devotion, and thanks go to my beautiful wife Raymie and my awesome girls, Maisy and
 Madi. Once again, you’ve tolerated another writing project. Now that it’s done, we should go to Disney World. Whatdya say?

Chapter 1. Bootstarting Spring

 This chapter covers

 	How Spring Boot simplifies Spring application development

 	The essential features of Spring Boot

 	Setting up a Spring Boot workspace

 The Spring Framework has been around for over a decade and has found a place as the de facto standard framework for developing
 Java applications. With such a long and storied history, some might think that Spring has settled, resting on its laurels,
 and is not doing anything new or exciting. Some might even say that Spring is legacy and that it’s time to look elsewhere
 for innovation.

 Some would be wrong.

 There are many exciting new things taking place in the Spring ecosystem, including work in the areas of cloud computing, big
 data, schema-less data persistence, reactive programming, and client-side application development.

 Perhaps the most exciting, most head-turning, most game-changing new thing to come to Spring in the past year or so is Spring
 Boot. Spring Boot offers a new paradigm for developing Spring applications with minimal friction. With Spring Boot, you’ll
 be able to develop Spring applications with more agility and be able to focus on addressing your application’s functionality needs with minimal (or possibly no) thought of configuring Spring itself.
 In fact, one of the main things that Spring Boot does is to get Spring out of your way so you can get stuff done.

 Throughout the chapters in this book, we’ll explore various facets of Spring Boot development. But first, let’s take a high-level
 look at what Spring Boot has to offer.

1.1. Spring rebooted

 Spring started as a lightweight alternative to Java Enterprise Edition (JEE, or J2EE as it was known at the time). Rather
 than develop components as heavyweight Enterprise JavaBeans (EJBs), Spring offered a simpler approach to enterprise Java development,
 utilizing dependency injection and aspect-oriented programming to achieve the capabilities of EJB with plain old Java objects
 (POJOs).

 But while Spring was lightweight in terms of component code, it was heavyweight in terms of configuration. Initially, Spring
 was configured with XML (and lots of it). Spring 2.5 introduced annotation-based component-scanning, which eliminated a great
 deal of explicit XML configuration for an application’s own components. And Spring 3.0 introduced a Java-based configuration
 as a type-safe and refactorable option to XML.

 Even so, there was no escape from configuration. Enabling certain Spring features such as transaction management and Spring
 MVC required explicit configuration, either in XML or Java. Enabling third-party library features such as Thymeleaf-based
 web views required explicit configuration. Configuring servlets and filters (such as Spring’s DispatcherServlet) required explicit configuration in web.xml or in a servlet initializer. Component-scanning reduced configuration and Java
 configuration made it less awkward, but Spring still required a lot of configuration.

 All of that configuration represents development friction. Any time spent writing configuration is time spent not writing
 application logic. The mental shift required to think about configuring a Spring feature distracts from solving the business
 problem. Like any framework, Spring does a lot for you, but it demands that you do a lot for it in return.

 Moreover, project dependency management is a thankless task. Deciding what libraries need to be part of the project build
 is tricky enough. But it’s even more challenging to know which versions of those libraries will play well with others.

 As important as it is, dependency management is another form of friction. When you’re adding dependencies to your build, you’re
 not writing application code. Any incompatibilities that come from selecting the wrong versions of those dependencies can
 be a real productivity killer.

 Spring Boot has changed all of that.

 1.1.1. Taking a fresh look at Spring

 Suppose you’re given the task of developing a very simple Hello World web application with Spring. What would you need to
 do? I can think of a handful of things you’d need at a bare minimum:

 	
A project structure, complete with a Maven or Gradle build file including required dependencies. At the very least, you’ll
 need Spring MVC and the Servlet API expressed as dependencies.

 	A web.xml file (or a WebApplicationInitializer implementation) that declares Spring’s DispatcherServlet.

 	A Spring configuration that enables Spring MVC.

 	A controller class that will respond to HTTP requests with “Hello World”.

 	A web application server, such as Tomcat, to deploy the application to.

 What’s most striking about this list is that only one item is specific to developing the Hello World functionality: the controller.
 The rest of it is generic boilerplate that you’d need for any web application developed with Spring. But if all Spring web
 applications need it, why should you have to provide it?

 Suppose for a moment that the controller is all you need. As it turns out, the Groovy-based controller class shown in listing 1.1 is a complete (even if simple) Spring application.

 Listing 1.1. A complete Groovy-based Spring application

 @RestController
class HelloController {

 @RequestMapping("/")
 def hello() {
 return "Hello World"
 }

}

 There’s no configuration. No web.xml. No build specification. Not even an application server. This is the entire application.
 Spring Boot will handle the logistics of executing the application. You only need to bring the application code.

 Assuming that you have Spring Boot’s command-line interface (CLI) installed, you can run HelloController at the command line like this:

 $ spring run HelloController.groovy

 You may have also noticed that it wasn’t even necessary to compile the code. The Spring Boot CLI was able to run it from its
 uncompiled form.

 I chose to write this example controller in Groovy because the simplicity of the Groovy language presents well alongside the
 simplicity of Spring Boot. But Spring Boot doesn’t require that you use Groovy. In fact, much of the code we’ll write in this
 book will be in Java. But there’ll be some Groovy here and there, where appropriate.

 Feel free to look ahead to section 1.21 to see how to install the Spring Boot CLI, so that you can try out this little web
 application. But for now, we’ll look at the key pieces of Spring Boot to see how it changes Spring application development.

 1.1.2. Examining Spring Boot essentials

 Spring Boot brings a great deal of magic to Spring application development. But there are four core tricks that it performs:

 	
Automatic configuration— Spring Boot can automatically provide configuration for application functionality common to many Spring applications.

 	
Starter dependencies— You tell Spring Boot what kind of functionality you need, and it will ensure that the libraries needed are added to the build.

 	
The command-line interface— This optional feature of Spring Boot lets you write complete applications with just application code, but no need for a traditional
 project build.

 	
The Actuator— Gives you insight into what’s going on inside of a running Spring Boot application.

 Each of these features serves to simplify Spring application development in its own way. We’ll look at how to employ them
 to their fullest throughout this book. But for now, let’s take a quick look at what each offers.

Auto-configuration

 In any given Spring application’s source code, you’ll find either Java configuration or XML configuration (or both) that enables
 certain supporting features and functionality for the application. For example, if you’ve ever written an application that
 accesses a relational database with JDBC, you’ve probably configured Spring’s JdbcTemplate as a bean in the Spring application context. I’ll bet the configuration looked a lot like this:

 @Bean
public JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
}

 This very simple bean declaration creates an instance of JdbcTemplate, injecting it with its one dependency, a DataSource. Of course, that means that you’ll also need to configure a DataSource bean so that the dependency will be met. To complete this configuration scenario, suppose that you were to configure an embedded
 H2 database as the DataSource bean:

 @Bean
public DataSource dataSource() {
 return new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.H2)
 .addScripts('schema.sql', 'data.sql')
 .build();
}

 This bean configuration method creates an embedded database, specifying two SQL scripts to execute on the embedded database.
 The build() method returns a DataSource that references the embedded database.

 Neither of these two bean configuration methods is terribly complex or lengthy. But they represent just a fraction of the
 configuration in a typical Spring application. Moreover, there are countless Spring applications that will have these exact
 same methods. Any application that needs an embedded database and a JdbcTemplate will need those methods. In short, it’s boilerplate configuration.

 If it’s so common, then why should you have to write it?

 Spring Boot can automatically configure these common configuration scenarios. If Spring Boot detects that you have the H2
 database library in your application’s classpath, it will automatically configure an embedded H2 database. If JdbcTemplate is in the classpath, then it will also configure a JdbcTemplate bean for you. There’s no need for you to worry about configuring those beans. They’ll be configured for you, ready to inject
 into any of the beans you write.

 There’s a lot more to Spring Boot auto-configuration than embedded databases and JdbcTemplate. There are several dozen ways that Spring Boot can take the burden of configuration off your hands, including auto-configuration
 for the Java Persistence API (JPA), Thymeleaf templates, security, and Spring MVC. We’ll dive into auto-configuration starting
 in chapter 2.

Starter dependencies

 It can be challenging to add dependencies to a project’s build. What library do you need? What are its group and artifact?
 Which version do you need? Will that version play well with other dependencies in the same project?

 Spring Boot offers help with project dependency management by way of starter dependencies. Starter dependencies are really
 just special Maven (and Gradle) dependencies that take advantage of transitive dependency resolution to aggregate commonly
 used libraries under a handful of feature-defined dependencies.

 For example, suppose that you’re going to build a REST API with Spring MVC that works with JSON resource representations.
 Additionally, you want to apply declarative validation per the JSR-303 specification and serve the application using an embedded
 Tomcat server. To accomplish all of this, you’ll need (at minimum) the following eight dependencies in your Maven or Gradle
 build:

 	
org.springframework:spring-core

 	
org.springframework:spring-web

 	
org.springframework:spring-webmvc

 	
com.fasterxml.jackson.core:jackson-databind

 	
org.hibernate:hibernate-validator

 	
org.apache.tomcat.embed:tomcat-embed-core

 	
org.apache.tomcat.embed:tomcat-embed-el

 	
org.apache.tomcat.embed:tomcat-embed-logging-juli

 On the other hand, if you were to take advantage of Spring Boot starter dependencies, you could simply add the Spring Boot
 “web” starter (org.springframework.boot:spring-boot-starter-web) as a build dependency. This single dependency will transitively pull in all of those other dependencies so you don’t have to ask for them all.

 But there’s something more subtle about starter dependencies than simply reducing build dependency count. Notice that by adding
 the “web” starter to your build, you’re specifying a type of functionality that your application needs. Your app is a web
 application, so you add the “web” starter. Likewise, if your application will use JPA persistence, then you can add the “jpa”
 starter. If it needs security, you can add the “security” starter. In short, you no longer need to think about what libraries
 you’ll need to support certain functionality; you simply ask for that functionality by way of the pertinent starter dependency.

 Also note that Spring Boot’s starter dependencies free you from worrying about which versions of these libraries you need.
 The versions of the libraries that the starters pull in have been tested together so that you can be confident that there
 will be no incompatibilities between them.

 Along with auto-configuration, we’ll begin using starter dependencies right away, starting in chapter 2.

The command-line interface (CLI)

 In addition to auto-configuration and starter dependencies, Spring Boot also offers an intriguing new way to quickly write
 Spring applications. As you saw earlier in section 1.1, the Spring Boot CLI makes it possible to write applications by doing more than writing the application code.

 Spring Boot’s CLI leverages starter dependencies and auto-configuration to let you focus on writing code. Not only that, did
 you notice that there are no import lines in listing 1.1? How did the CLI know what packages RequestMapping and RestController come from? For that matter, how did those classes end up in the classpath?

 The short answer is that the CLI detected that those types are being used, and it knows which starter dependencies to add
 to the classpath to make it work. Once those dependencies are in the classpath, a series of auto-configuration kicks in and
 ensures that DispatcherServlet and Spring MVC are enabled so that the controller can respond to HTTP requests.

 Spring Boot’s CLI is an optional piece of Spring Boot’s power. Although it provides tremendous power and simplicity for Spring
 development, it also introduces a rather unconventional development model. If this development model is too extreme for your
 taste, then no problem. You can still take advantage of everything else that Spring Boot has to offer even if you don’t use
 the CLI. But if you like what the CLI provides, you’ll definitely want to look at chapter 5 where we’ll dig deeper into Spring Boot’s CLI.

The Actuator

 The final piece of the Spring Boot puzzle is the Actuator. Where the other parts of Spring Boot simplify Spring development,
 the Actuator instead offers the ability to inspect the internals of your application at runtime. With the Actuator installed,
 you can inspect the inner workings of your application, including details such as

 	
What beans have been configured in the Spring application context

 	What decisions were made by Spring Boot’s auto-configuration

 	What environment variables, system properties, configuration properties, and command-line arguments are available to your
 application

 	The current state of the threads in and supporting your application

 	A trace of recent HTTP requests handled by your application

 	Various metrics pertaining to memory usage, garbage collection, web requests, and data source usage

 The Actuator exposes this information in two ways: via web endpoints or via a shell interface. In the latter case, you can
 actually open a secure shell (SSH) into your application and issue commands to inspect your application as it runs.

 We’ll explore the Actuator’s capabilities in detail when we get to chapter 7.

 1.1.3. What Spring Boot isn’t

 Because of the amazing things Spring Boot does, there has been a lot of talk about Spring Boot in the past year or so. Depending
 on what you’ve heard or read about Spring Boot before reading this book, you may have a few misconceptions about Spring Boot
 that should be cleared up before continuing.

 First, Spring Boot is not an application server. This misconception stems from the fact that it’s possible to create web applications
 as self-executable JAR files that can be run at the command line without deploying applications to a conventional Java application
 server. Spring Boot accomplishes this by embedding a servlet container (Tomcat, Jetty, or Undertow) within the application.
 But it’s the embedded servlet container that provides application server functionality, not Spring Boot itself.

 Similarly, Spring Boot doesn’t implement any enterprise Java specifications such as JPA or JMS. It does support several enterprise
 Java specifications, but it does so by automatically configuring beans in Spring that support those features. For instance,
 Spring Boot doesn’t implement JPA, but it does support JPA by auto-configuring the appropriate beans for a JPA implementation
 (such as Hibernate).

 Finally, Spring Boot doesn’t employ any form of code generation to accomplish its magic. Instead, it leverages conditional
 configuration features from Spring 4, along with transitive dependency resolution offered by Maven and Gradle, to automatically
 configure beans in the Spring application context.

 In short, at its heart, Spring Boot is just Spring. Inside, Spring Boot is doing the same kind of bean configuration in Spring
 that you might do on your own if Spring Boot didn’t exist. Thankfully, because Spring Boot does exist, you’re freed from dealing
 with explicit boilerplate configuration and are able to focus on the logic that makes your application unique.

 By now you should have a general idea of what Spring Boot brings to the table. It’s just about time for you to build your
 first application with Spring Boot. First things first, though. Let’s see how you can take your first steps with Spring Boot.

1.2. Getting started with Spring Boot

 Ultimately, a Spring Boot project is just a regular Spring project that happens to leverage Spring Boot starters and auto-configuration.
 Therefore, any technique or tool you may already be familiar with for creating a Spring project from scratch will apply to
 a Spring Boot project. There are, however, a few convenient options available for kick-starting your project with Spring Boot.

 The quickest way to get started with Spring Boot is to install the Spring Boot CLI so that you can start writing code, such
 as that in listing 1.1, that runs via the CLI.

 1.2.1. Installing the Spring Boot CLI

 As we discussed earlier, the Spring Boot CLI offers an interesting, albeit unconventional, approach to developing Spring applications.
 We’ll dive into the specifics of what the CLI offers in chapter 5. But for now let’s look at how to install the Spring Boot CLI so that you can run the code we looked at in listing 1.1.

 There are several ways to install the Spring Boot CLI:

 	From a downloaded distribution

 	Using the Groovy Environment Manager

 	With OS X Homebrew

 	As a port using MacPorts

 We’ll look at each installation option. In addition, we’ll also see how to install support for Spring Boot CLI command completion,
 which comes in handy if you’re using the CLI on BASH or zsh shells (sorry, Windows users). Let’s first look at how you can
 install the Spring Boot CLI manually from a distribution.

Manually installing the Spring Boot CLI

 Perhaps the most straightforward way to install the Spring Boot CLI is to download it, unzip it, and add its bin directory
 to your path. You can download the distribution archive from either of these locations:

 	
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.0.RELEASE/spring-boot-cli-1.3.0.RELEASE-bin.zip

 	
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.0.RELEASE/spring-boot-cli-1.3.0.RELEASE-bin.tar.gz

 Once you’ve downloaded the distribution, unpack it somewhere in your filesystem. Inside of the unpacked archive, you’ll find
 a bin directory that contains a spring.bat script (for Windows) and a spring script for Unix. Add this bin directory to your
 system path and you’re ready to use the Spring Boot CLI.

 	

 Symbolically linking to Spring Boot

 If you’re using the Spring Boot CLI on a Unix machine, it may be helpful to create a symbolic link to the unpacked archive
 and add the symbolic link to your path instead of the actual directory. This will make it easy to upgrade to a newer version
 of Spring Boot later (or even to flip between versions) by simply reassigning the symbolic link to the directory of the new
 version.

 	

 You can kick the tires a little on the installation by verifying the version of the CLI that was installed:

 $ spring --version

 If everything is working, you’ll be shown the version of the Spring Boot CLI that was installed.

 Even though this is the manual installation, it’s an easy option that doesn’t require you to have anything additional installed.
 If you’re a Windows user, it’s also the only choice available to you. But if you’re on a Unix machine and are looking for
 something a little more automated, then maybe the Software Development Kit Manager can help.

Installing with the Software Development Kit Manager

 The Software Development Kit Manager (SDKMAN; formerly known as GVM) can be used to install and manage multiple versions of
 Spring Boot CLI installations. In order to use SDKMAN, you’ll need to get and install the SDKMAN tool from http://sdkman.io. The easiest way to install SDKMAN is at the command line:

 $ curl -s get.sdkman.io | bash

 Follow the instructions given in the output to complete the SDKMAN installation. For my machine, I had to perform the following
 command at the command line:

 $ source "/Users/habuma/.sdkman/bin/sdkman-init.sh"

 Note that this command will be different for different users. In my case, my home directory is at /Users/habuma, so that’s the root of the shell script’s path. You’ll want to adjust accordingly to fit your situation.

 Once SDKMAN is installed, you can install Spring Boot’s CLI like this:

 $ sdk install springboot
$ spring --version

 Assuming all goes well, you’ll be shown the current version of Spring Boot.

 If you want to upgrade to a newer version of Spring Boot CLI, you just need to install it and start using it. To find out
 which versions of Spring Boot CLI are available, use SDKMAN’s list command:

 $ sdk list springboot

 The list command shows all available versions, including which versions are installed and which is currently in use. From this list
 you can choose to install a version and then use it. For example, to install Spring Boot CLI version 1.3.0.RELEASE, you’d
 use the install command, specifying the version:

 $ sdk install springboot 1.3.0.RELEASE

 This will install the new version and ask if you’d like to make it the default version. If you choose not to make it the default
 version or if you wish to switch to a different version, you can use the use command:

 $ sdk use springboot 1.3.0.RELEASE

 If you’d like that version to be the default for all shells, use the default command:

 $ sdk default springboot 1.3.0.RELEASE

 The nice thing about using SDKMAN to manage your Spring Boot CLI installation is that it allows you to easily switch between
 different versions of Spring Boot. This will enable you to try out snapshot, milestone, and release candidate builds before
 they’re formally released, but still switch back to a stable release for other work.

Installing with Homebrew

 If you’ll be developing on an OS X machine, you have the option of using Homebrew to install the Spring Boot CLI. Homebrew
 is a package manager for OS X that is used to install many different applications and tools. The easiest way to install Homebrew
 is by running the installation Ruby script:

 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

 You can read more about Homebrew (and find other installation options) at http://brew.sh.

 In order to install the Spring Boot CLI using Homebrew, you’ll need to “tap” Pivotal’s tap:[1]

 1

Tapping is a way to add additional repositories to those that Homebrew works from. Pivotal, the company behind Spring and
 Spring Boot, has made the Spring Boot CLI available through its tap.

 $ brew tap pivotal/tap

 Now that Homebrew is tapping Pivotal’s tap, you can install the Spring Boot CLI like this:

 $ brew install springboot

 Homebrew will install the Spring Boot CLI to /usr/local/bin, and it’s ready to go. You can verify the installation by checking
 the version that was installed:

 $ spring --version

 It should respond by showing you the version of Spring Boot that was installed. You can also try running the code in listing 1.1.

Installing with MacPorts

 Another Spring Boot CLI installation option for OS X users is to use MacPorts, another popular installer for Mac OS X. In
 order to use MacPorts to install the Spring Boot CLI, you must first install MacPorts, which itself requires that you have Xcode installed. Furthermore, the steps for installing
 MacPorts vary depending on which version of OS X you’re using. Therefore, I refer you to https://www.macports.org/install.php for instructions on installing MacPorts.

 Once you have MacPorts installed, you can install the Spring Boot CLI at the command line like this:

 $ sudo port install spring-boot-cli

 MacPorts will install the Spring Boot CLI to /opt/local/share/java/spring-boot-cli and put a symbolic link to the binary in
 /opt/local/bin, which should already be in your system path from installing MacPorts. You can verify the installation by checking
 the version that was installed:

 $ spring --version

 It should respond by showing you the version of Spring Boot that was installed. You can also try running the code in listing 1.1.

Enabling command-line completion

 Spring Boot’s CLI offers a handful of commands for running, packaging, and testing your CLI-based application. Moreover, each
 of those commands has several options. It can be difficult to remember all that the CLI offers. Command-line completion can
 help you recall how to use the Spring Boot CLI.

 If you’ve installed the Spring Boot CLI with Homebrew, you already have command-line completion installed. But if you installed
 Spring Boot manually or with SDKMAN, you’ll need to source the scripts or install the completion scripts manually. (Command-line
 completion isn’t an option if you’ve installed the Spring Boot CLI via MacPorts.)

 The completion scripts are found in the Spring Boot CLI installation directory under the shell-completion subdirectory. There
 are two different scripts, one for BASH and one for zsh. To source the completion script for BASH, you can enter the following
 at the command line (assuming a SDKMAN installation):

 $. ~/.sdkman/springboot/current/shell-completion/bash/spring

 This will give you Spring Boot CLI completion for the current shell, but you’ll have to source this script again each time
 you start a new shell to keep that feature. Optionally, you can copy the script to your personal or system script directory.
 The location of the script directory varies for different Unix installations, so consult your system documentation (or Google)
 for details.

 With command completion enabled, you should be able to type spring at the command line and then hit the Tab key to be offered options for what to type next. Once you’ve chosen a command, type
 -- (double-hyphen) and then hit Tab again to be shown a list of options for that command.

 If you’re developing on Windows or aren’t using BASH or zsh, you can’t use these command-line completion scripts. Even so,
 you can get command completion if you run the Spring Boot CLI shell:

 $ spring shell

 Unlike the command-completion scripts for BASH and zsh (which operate within the BASH/zsh shell), the Spring Boot CLI shell
 opens a new Spring Boot–specific shell. From this shell, you can execute any of the CLI’s commands and get command completion
 with the Tab key.

 The Spring Boot CLI offers an easy way to get started with Spring Boot and to prototype simple applications. As we’ll discuss
 later in chapter 8, it can also be used for production-ready applications, given the right production runtime environment.

 Even so, Spring Boot CLI’s process is rather unconventional in contrast to how most Java projects are developed. Typically,
 Java projects use tools like Gradle or Maven to build WAR files that are deployed to an application server. If the CLI model
 feels a little uncomfortable, you can still take advantage of most of the features of Spring Boot in the context of a traditionally
 built Java project.[2] And the Spring Initializr can help you get started.

 2

You’ll only be giving up features that require the flexibility of the Groovy language, such as automatic dependency and import
 resolution.

 1.2.2. Initializing a Spring Boot project with Spring Initializr

 Sometimes the hardest part of a project is getting started. You need to set up a directory structure for various project artifacts,
 create a build file, and populate the build file with dependencies. The Spring Boot CLI removes much of this setup work, but
 if you favor a more traditional Java project structure, you’ll want to look at the Spring Initializr.

 The Spring Initializr is ultimately a web application that can generate a Spring Boot project structure for you. It doesn’t
 generate any application code, but it will give you a basic project structure and either a Maven or a Gradle build specification
 to build your code with. All you need to do is write the application code.

 Spring Initializr can be used in several ways:

 	Through a web-based interface

 	Via Spring Tool Suite

 	Via IntelliJ IDEA

 	Using the Spring Boot CLI

 We’ll look at how to use each of these interfaces to the Initializr, starting with the web-based interface.

Using Spring Initializr’s web interface

 The most straightforward way to use the Spring Initializr is to point your web browser to http://start.spring.io. You should see a form similar to the one in figure 1.1.

 Figure 1.1. Spring Initializr is a web application that generates empty Spring projects as starting points for development.

 [image:]

 The first two things that the form asks is whether you want to build your project with Maven or Gradle and which version of
 Spring Boot to use. It defaults to a Maven project using the latest release (non-milestone, non-snapshot) version of Spring
 Boot, but you’re welcome to choose a different one.

 On the left side of the form, you’re asked to specify some project metadata. At minimum, you must provide the project’s group
 and artifact. But if you click the “Switch to the full version” link, you can specify additional metadata such as version
 and base package name. This metadata is used to populate the generated Maven pom.xml file (or Gradle build.gradle file).

 On the right side of the form, you’re asked to specify project dependencies. The easiest way to do that is to type the name
 of a dependency in the text box. As you type, a list of matching dependencies will appear. Select the one(s) you want and
 it will be added to the project. If you don’t see what you’re looking for, click the “Switch to the full version” link to
 get a complete list of available dependencies.

 If you’ve glanced at appendix B, then you’ll recognize that the dependencies offered correspond to Spring Boot starter dependencies. In fact, by selecting
 any of these dependencies, you’re telling the Initializr to add the starters as dependencies to the project’s build file.
 (We’ll talk more about Spring Boot starters in chapter 2.)

 Once you’ve filled in the form and made your dependency selections, click the Generate Project button to have Spring Initializr
 generate a project for you. The project it generates will be presented to you as a zip file (whose name is determined by the
 value in the Artifact field) that is downloaded by your browser. The contents of the zip file will vary slightly, depending
 on the choices you made before clicking Generate Project. In any event, the zip file will contain a bare-bones project to
 get you started developing an application with Spring Boot.

 For example, suppose that you were to specify the following to Spring Initializr:

