

PowerShell in Practice

 Richard Siddaway

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

 ©2010 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	
 [image:]

 	Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901

 	
 Development editor:
Copyeditor:
Cover designer:
Typesetter:

 	Sebastian Stirling
Benjamin Berg
Leslie Haimes
Gordan Salinovic

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

Dedication

 To Ann, for everything

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Getting started with PowerShell

 Chapter 1. PowerShell fundamentals

 Chapter 2. Learning PowerShell

 Chapter 3. PowerShell toolkit

 Chapter 4. Automating administration

 2. Working with people

 Chapter 5. User accounts

 Chapter 6. Mailboxes

 Chapter 7. Desktop

 3. Working with servers

 Chapter 8. Windows servers

 Chapter 9. DNS

 Chapter 10. Active Directory structure

 Chapter 11. Active Directory topology

 Chapter 12. Exchange Server 2007 and 2010

 Chapter 13. IIS 7 and XML

 Chapter 14. SQL Server

 Chapter 15. PowerShell innovations

 Appendix Afterword PowerShell is for you

 Appendix A. PowerShell reference

 Appendix B. Modules and advanced functions

 Appendix C. PowerShell events

 Appendix D. Reference data

 Appendix E. Useful links

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Getting started with PowerShell

 Chapter 1. PowerShell fundamentals

 1.1. What’s PowerShell?

 1.1.1. .NET—not necessarily

 1.2. Why PowerShell?

 1.2.1. Eureka 1

 1.2.2. Importance to you

 1.2.3. Designed for you

 1.2.4. Quicker and more powerful

 1.2.5. Extensible and flexible

 1.3. Major features

 1.3.1. Cmdlets

 1.3.2. Pipeline

 1.3.3. Utility cmdlets

 1.3.4. Providers

 1.3.5. Help system

 1.4. PowerShell v2

 1.4.1. PowerShell 2 Eureka

 1.4.2. Should I upgrade?

 1.5. Summary

 Chapter 2. Learning PowerShell

 2.1. Open the book—learn by doing

 2.2. Installation and configuration

 2.2.1. Installation

 2.2.2. Configuring PowerShell

 2.2.3. Extending PowerShell

 2.2.4. Potential issues

 2.3. Your four best friends

 2.3.1. Get-Help

 2.3.2. Get-Command

 2.3.3. Get-Member

 2.3.4. Get-PSDrive

 2.4. Language features

 2.4.1. Variables

 2.4.2. Arrays

 2.4.3. Branches

 2.4.4. Loops

 2.4.5. Functions

 2.4.6. Output

 2.5. Scripts

 2.5.1. PowerShell scripts

 2.5.2. Converting from VBScript

 2.5.3. VBScript in PowerShell

 2.5.4. PowerShell in VBScript

 2.6. Summary

 Chapter 3. PowerShell toolkit

 3.1. Eureka 2

 3.2. Using .NET

 3.2.1. Understanding .NET

 3.2.2. Accessing .NET

 3.3. Using COM

 3.3.1. Understanding COM

 3.3.2. Accessing COM

 3.4. Using ADSI

 3.4.1. Understanding ADSI

 3.4.2. Accessing Active Directory

 3.5. Using WMI

 3.5.1. Understanding WMI

 3.5.2. WMI type accelerators

 3.6. Summary

 Chapter 4. Automating administration

 4.1. Benefits of automation

 4.2. Administration styles

 4.3. Development for administrators

 4.3.1. Ad hoc development

 4.3.2. Lifecycle

 4.3.3. Error handling

 4.4. Best practice

 4.4.1. Guidelines

 4.4.2. Functions and libraries

 4.5. Automation toolkit

 4.5.1. Microsoft

 4.5.2. Commercial

 4.5.3. Community

 4.6. Securing PowerShell

 4.6.1. Script security

 4.6.2. Script signing

 4.7. Summary

 2. Working with people

 Chapter 5. User accounts

 5.1. Automating user account management

 5.1.1. Microsoft AD cmdlets

 5.1.2. Recommendations

 5.2. Local users and groups

 Technique 1: User creation

 Technique 2: Group creation

 Technique 3: Group membership

 5.3. Active Directory users

 Technique 4: User creation

 Technique 5: User creation (bulk)

 Technique 6: User modification

 Technique 7: Finding users

 Technique 8: Enabling and disabling accounts

 Technique 9: Moving accounts

 Technique 10: Last logon time

 Technique 11: Password expiration

 Technique 12: Account expiration

 5.4. Active Directory groups

 Technique 13: Group creation

 Technique 14: Changing membership

 Technique 15: Changing scope

 Technique 16: Finding group members

 Technique 17: Finding a user’s group membership

 5.5. Summary

 Chapter 6. Mailboxes

 6.1. Automating mailbox management

 Technique 18: Create a mailbox

 6.2. Enabling mail

 Technique 19: Mailboxes

 Technique 20: Mail-enabled

 Technique 21: Contact

 6.3. Modifying mailboxes

 Technique 22: Mailbox size limits

 Technique 23: Enabling IMAP

 Technique 24: Enabling POP

 Technique 25: Enabling OWA

 Technique 26: Adding an email address

 Technique 27: Hiding an address from the address list

 Technique 28: Moving a mailbox

 Technique 29: Disabling mail

 Technique 30: Reconnecting a mailbox

 6.4. Distribution groups

 Technique 31: Creating a distribution group

 Technique 32: Mail-enabling a group

 Technique 33: Dynamic distribution group

 Technique 34: View distribution group membership

 Technique 35: Modify distribution group membership

 6.5. Mailbox statistics

 Technique 36: Determining the largest mailboxes

 Technique 37: Reporting on mailbox sizes

 6.6. Deleting mailboxes

 Technique 38: Deleting a mailbox

 Technique 39: Purging a mailbox

 6.7. Summary

 Chapter 7. Desktop

 7.1. Automating desktop configuration

 7.2. Machine configuration

 Technique 40: System configuration

 Technique 41: Discovering the operating system

 Technique 42: Discovering service packs on the OS

 Technique 43: Hotfixes

 Technique 44: Listing installed software

 Technique 45: Monitoring free disk space

 Technique 46: Renaming a computer

 Technique 47: Restarting a computer

 7.3. User features

 Technique 48: Minimizing windows

 Technique 49: Desktop contents

 Technique 50: Adding a file to the desktop

 Technique 51: Listing cookies

 Technique 52: Viewing recycle bin contents

 Technique 53: Emptying the recycle bin

 Technique 54: Sending a printer test page

 Technique 55: Printer drivers

 7.4. Office applications

 Technique 56: Creating an Excel spreadsheet

 Technique 57: Adding data to a spreadsheet

 Technique 58: Opening a CSV file in Excel

 Technique 59: Creating and writing to a Word document

 Technique 60: Creating a configuration report

 7.5. Summary

 3. Working with servers

 Chapter 8. Windows servers

 8.1. Automating server administration

 8.1.1. Server Core

 8.2. Services and processes

 Technique 61: Service health check

 Technique 62: Managing services

 Technique 63: Managing processes

 Technique 64: Launching processes

 8.3. Filesystem

 Technique 65: Creating folders

 Technique 66: Creating files

 Technique 67: Reading files

 Technique 68: Searching files

 Technique 69: Searching for files

 8.4. Registry

 Technique 70: Accessing the registry

 Technique 71: Reading registry data

 Technique 72: Creating registry entries

 Technique 73: Managing registry data

 8.5. Event logs

 Technique 74: Reading event logs

 Technique 75: Exporting logs

 Technique 76: Creating an event log

 Technique 77: Creating events

 Technique 78: Managing event logs

 8.6. Summary

 Chapter 9. DNS

 9.1. Automating DNS administration

 9.2. DNS server

 Technique 79: Enable remote administration

 Technique 80: View server configuration

 Technique 81: Configuring round robin

 Technique 82: Configuring conditional forwarding

 Technique 83: Clearing the server cache

 9.3. DNS zones

 Technique 84: Creating a DNS zone

 Technique 85: Viewing zone configuration

 Technique 86: Viewing zone contents

 Technique 87: Deleting a DNS zone

 9.4. DNS records

 Technique 88: Creating DNS A records

 Technique 89: Creating DNS AAAA records

 Technique 90: Creating DNS MX records

 Technique 91: Creating DNS CNAME records

 Technique 92: Creating DNS PTR records

 Technique 93: Querying DNS records

 Technique 94: Deleting DNS records

 9.5. Client settings

 Technique 95: IP address configuration

 Technique 96: Setting an IP address

 Technique 97: Testing IP connectivity

 9.6. Summary

 Chapter 10. Active Directory structure

 10.1. Automating Active Directory administration

 10.1.1. .NET

 10.1.2. Cmdlets

 10.2. Schema

 Technique 98: Schema version

 Technique 99: Forest and domain level

 Technique 100: Default display name

 10.3. Organizational units

 Technique 101: Creating an OU

 Technique 102: Bulk creation and nesting

 Technique 103: Listing OUs in a domain

 Technique 104: Discovering child objects

 Technique 105: Moving an OU

 Technique 106: Deleting an OU

 10.4. Group Policies

 Technique 107: Creating a GPO

 Technique 108: Linking a GPO

 Technique 109: Listing GPOs

 Technique 110: Listing GPO contents

 Technique 111: GPO backup

 10.5. Protection and recovery

 Technique 112: Protection from accidental deletion

 Technique 113: Object recovery

 10.6. Summary

 Chapter 11. Active Directory topology

 11.1. Automating AD topology administration

 11.2. Domain controllers

 Technique 114: Discovering domain controllers

 Technique 115: Discovering global catalog servers

 Technique 116: Promoting to a global catalog server

 Technique 117: Discovering FSMO roles

 Technique 118: Transferring FSMO roles

 Technique 119: Monitor replication

 Technique 120: Triggering replication

 11.3. Sites

 Technique 121: Listing sites

 Technique 122: Creating a site

 Technique 123: Modifying a site

 Technique 124: Deleting a site

 11.4. Subnets

 Technique 125: Listing subnets

 Technique 126: Creating a subnet

 Technique 127: Modifying a subnet

 Technique 128: Deleting a subnet

 11.5. Site links

 Technique 129: Listing site links

 Technique 130: Creating a site link

 Technique 131: Deleting a site link

 Technique 132: Determining replication schedules

 Technique 133: Setting replication schedules

 11.6. Summary

 Chapter 12. Exchange Server 2007 and 2010

 12.1. Automating Exchange Server 2007 administration

 12.1.1. Exchange AD cmdlets

 12.1.2. Exchange scripts

 Technique 134: Exchange Server health

 Technique 135: Exchange organization

 Technique 136: Exchange Servers

 12.2. Data stores

 Technique 137: Creating storage groups

 Technique 138: Creating databases

 Technique 139: Mailbox distribution

 Technique 140: Distributing mailboxes

 Technique 141: Moving a database

 Technique 142: Removing a database

 12.3. Policies

 Technique 143: Email address

 Technique 144: Transport rules

 Technique 145: Attachments

 Technique 146: Journal rules

 12.4. Certificates

 Technique 147: Viewing certificates

 Technique 148: Self-signed certificates

 Technique 149: Third-party certificates

 12.5. Resource mailboxes

 Technique 150: Creating a resource mailbox

 Technique 151: Viewing resource mailboxes

 Technique 152: Calendar settings

 12.6. Exchange Server 2010

 Technique 153: Remote capabilities

 12.7. Summary

 Chapter 13. IIS 7 and XML

 13.1. Automating IIS 7 administration

 13.1.1. IIS administration tools

 13.1.2. .NET

 13.1.3. WMI

 13.1.4. IIS cmdlets and provider

 Technique 154: PowerShell remoting

 13.2. Websites and application pools

 Technique 155: Viewing websites

 Technique 156: Controlling websites

 Technique 157: Creating an application pool

 Technique 158: Controlling an application pool

 Technique 159: Modifying website configuration

 Technique 160: Removing a website and application pool

 Technique 161: Configuring a new website on multiple machines

 13.3. Web applications and virtual directories

 Technique 162: Creating a web application

 Technique 163: Add a virtual directory

 Technique 164: Removing virtual directories and web applications

 13.4. XML and configuration files

 Technique 165: Persisting objects

 Technique 166: Reading XML

 Technique 167: Backing up the IIS configuration

 Technique 168: Reading web configuration files

 Technique 169: Modifying web configuration files

 Technique 170: Creating HTML

 13.5. Summary

 Chapter 14. SQL Server

 14.1. Automating SQL Server administration

 14.1.1. SMO

 14.1.2. SQLPS

 14.2. Server administration

 Technique 171: Checking service health

 Technique 172: Viewing the server version

 Technique 173: Viewing server configuration

 Technique 174: Modifying the server configuration

 Technique 175: Network configuration

 Technique 176: Viewing performance counters

 14.3. Database administration

 Technique 177: Finding databases

 Technique 178: Viewing space used

 Technique 179: Creating a job

 14.4. Configuration database

 Technique 180: Creating a database

 Technique 181: Creating a table

 Technique 182: Modifying a table

 Technique 183: Adding keys

 Technique 184: Populating a table

 Technique 185: Reading data

 Technique 186: Modifying data

 Technique 187: Deleting data

 Technique 188: Backing up a database

 14.5. Summary

 Chapter 15. PowerShell innovations

 15.1. PowerShell jobs

 Technique 189: Creating a job

 Technique 190: Viewing jobs

 Technique 191: Viewing data

 Technique 192: Deleting a job

 15.2. Windows 2008 R2

 Technique 193: Modules

 Technique 194: Server Manager

 Technique 195: Troubleshooting

 Technique 196: Best practice

 Technique 197: Active Directory provider

 Technique 198: Creating an AD drive

 15.3. Virtualization

 Technique 199: Discovering Hyper-V functions

 Technique 200: Virtual machine status

 Technique 201: VM uptime

 Technique 202: Checking disk status

 Technique 203: Checking disk usage

 Technique 204: Compacting disks

 15.4. PowerShell in the cloud

 15.5. Summary

 Appendix Afterword PowerShell is for you

 Appendix A. PowerShell reference

 A.1. About files

 A.2. Add-Type

 A.3. Alias

 A.4. Computer name

 A.5. Functions

 A.6. Format files

 A.7. Loops

 A.7.1. Foreach

 A.7.2. For

 A.7.3. While

 A.7.4. Do

 A.8. Operators

 A.8.1. Arithmetic operators

 A.8.2. Assignment operators

 A.8.3. Bitwise operators

 A.8.4. Comparison operators

 A.8.5. Logical operators

 A.8.6. Range operator

 A.8.7. String operators

 A.8.8. Type operators

 A.8.9. Unary operators

 A.8.10. Special operators

 A.9. Special characters

 A.10. Standard names

 A.10.1. Verb

 A.10.2. Nouns

 A.11. Type shortcuts

 Appendix B. Modules and advanced functions

 B.1. Modules

 B.2. Advanced functions

 B.3. Recommendations

 Appendix C. PowerShell events

 Appendix D. Reference data

 D.1. Active Directory: user account control

 Technique 205: Understanding the user account control values

 D.2. Local user accounts: userflags

 D.3. LDAP Filters

 D.4. Identity in Active Directory cmdlets

 D.5. PowerShell filters in Active Directory cmdlets

 D.6. Special folders

 Appendix E. Useful links

 E.1. PowerShell downloads

 .NET 2.0

 .NET 3.5

 PowerShell v1

 PowerShell v2

 Microsoft MSDN

 .NET class library

 PowerShell

 PowerShell blogs

 Other PowerShell downloads

 Code Sources

 Podcasts

 User Groups

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 These are the last words that I am writing and perhaps the first words you will be reading. For me the journey is coming to
 an end, and for you the adventure just begins as you dive deeper into the world of PowerShell. Welcome!

 There are a significant number of PowerShell books already, so why do we need another one? I wanted to produce a book that
 showed how to use PowerShell to solve the sorts of problems administrators face every day. PowerShell is a tool for automating
 the administration of your Windows-based systems, but there wasn’t a book available that described how to use it to solve
 my problems. Now there is.

 I’ve written this for system administrators who want to automate their administration tasks. The PowerShell language is covered
 in sufficient detail to explain everything you see in the book, but we’re concentrating on providing solutions to the types
 of problems we continually face administering Windows, Exchange, Active Directory, and IIS, among others.

 We’ll look at how to automate our system administration, and equally importantly, we’ll look at why we’re doing these things.
 The book supplies a large suite of scripts that can be put to work in your environment immediately. Linked to the scripts
 is the background to the task we’re solving, so you can put the script into the context of your needs. More than a cookbook
 or a description of the PowerShell language, this is your guide to automation through PowerShell.

 As you read along, you’ll also find my thoughts on best practices for administration in general, and automating those administrative
 tasks in particular. There’s no point in automating bad practices—that just makes things go wrong more quickly.

 Solutions to the problems faced by administrators of all levels of experience can be found in these chapters. Use the scripts
 to solve your problems, and if you find a better way to perform the task, please share it with the PowerShell community.

 I’ve gained a number of things from working with PowerShell:

	A deeper understanding of the technologies I work with: I can’t automate it until I understand what it’s doing.

 	Some wonderful opportunities, including the writing of this book.

 	New friends who share my interest and passion for PowerShell.

If nothing else, I hope that you gain a sense of that interest and passion from reading the book. Use the techniques, join
 the PowerShell community, and most of all—enjoy what you do.

Acknowledgments

 This book wouldn’t have been possible without the contributions of many other people. It isn’t until you get involved in a
 project like this that you realize just how many other people contribute to any book before it gets published.

 First and foremost is the Microsoft PowerShell team. The introduction of PowerShell marks a huge change in the way we administer
 Windows systems. You guys don’t get thanked enough for creating PowerShell and the time you spend with the PowerShell community,
 so I’d like to record my thanks on behalf of that community.

 The group of people at Manning who worked with me on this book have been superb. The level of support for a first-time author
 was outstanding. I couldn’t have done this without you, so many thanks to Sebastian Stirling, Benjamin Berg, Elizabeth Martin,
 Michael Stephens, Marjan Bace, Steven Hong, Karen Tegtmeyer, Jamie Tara-toot, Mary Piergies, Gordan Salinovic, Dottie Marsico,
 Tiffany Taylor, and Gabriel Dobrescu. The book is much better thanks to your input and ideas. It’s been a pleasure working
 with such a professional group.

 There have been a number of reviews of this book during its development and production. The individual reviewers have taken
 time to read through and comment on the original manuscript, in some cases three times. Thanks are due to Jonathan Medd, Jonathan
 Noble, Jeffrey Snover, Peter Johnson, Andrew Tearle, Wolfgang Blass, Tomas Restrepro, Amos Bannister, Dave Corun, Lester Lobo,
 Anderson Patricio, Marco Shaw, Austin Osuide, Dmitriy Kopylenko, Bruce Payette, Michael Bain, Oliver Sturm, and Jeff Copeland.
 Special thanks to Marco Shaw for also performing the technical review of the manuscript and code. And I’d like to thank the
 readers who took the time to comment on the MEAP forum. I did read all of the comments and have corrected the manuscript as
 appropriate. Any errors of omission or commission are mine alone.

 The PowerShell community is young but strong and enthusiastic. The ideas that I’ve included in this book aren’t just the result
 of my work with PowerShell, but the fruit of numerous discussions, emails, and debates about how PowerShell should be used.
 The participants are too numerous to mention, but my heartfelt thanks to you all for the time you’ve put into the community
 and for graciously allowing me to quote your work. The UK PowerShell User Group deserves a special acknowledgment for putting
 up with me drilling down into the details during question times.

 Finally, thanks must go to my family, friends, and colleagues who’ve supported me through the writing and production of this
 book.

About this Book

 This is a PowerShell book for administrators. It’ll show you how to use PowerShell v1, PowerShell v2, and the PowerShell functionality
 introduced with products such as SQL Server, Exchange, and Windows Server 2008 R2. Third-party additions will also be used
 where appropriate. We’ll see problems solved using scripts in version 1 with reference to cmdlets that were introduced in
 version 2. This is a deliberate decision to ensure that the book has the widest possible scope. PowerShell v1 isn’t going
 to disappear overnight and we need to be able to work across both versions in the near future.

 I’ve aimed at covering the breadth of PowerShell, in terms of showing the number of different aspects of the environment we
 can control, and the depth in terms of showing the detailed and practical techniques for performing administrative tasks.

 When you read the book, it’ll seem to be a hybrid. It lies somewhere between a cookbook of PowerShell recipes and an explanation
 of how to administer Windows-based systems. That’s deliberate in that I believe you can’t properly apply the automation techniques
 you’ll gain from the book unless the underlying technologies are understood. The book is a PowerShell book, so the explanations
 aren’t complete—just enough to explain why we’re performing a specific task.

 Most of all, it’s a book to be used. Keep it on your desk and refer to it often. There are 205 techniques in the book, numbered
 consecutively and divided into sections called Problem, Solution, and Discussion. Techniques first appear in chapter 5. They should enable you to solve your particular problem. If not, a message on the Author Online forum will reach me and
 I may be able to supply some pointers. No promises, because I have a day job as well.

Who should read this book?

 PowerShell in Practice is written for anyone interested in using PowerShell to automate the administration of her Windows environment. The obvious
 audience is administrators in a large enterprise environment, but the lone administrator in a smaller organization will gain
 as much if not more from the techniques described here.

 The IT manager and IT architect audience will also benefit from viewing what it’s possible to achieve using PowerShell. Microsoft
 is releasing a number of workbooks that cover the actions that need to be taken to ensure the reliability of various components
 of the infrastructure such as DNS, Active Directory, or IIS. Many of the actions can be performed by PowerShell scripts taken
 directly, or adapted, from the techniques shown in the book.

 Above all, this book is written for people interested in PowerShell and what can be accomplished with it. It’s not the last
 word on the subject—we’d need a book 5 or 10 times the size for that—but it does take you a long way on the journey to automation.

Roadmap

 PowerShell in Practice is organized into three parts. The book opens with part 1, “Getting Started with PowerShell.” This introductory section covers the installation and configuration of PowerShell, together
 with the background knowledge we’ll need to work with other technologies such as WMI and Active Directory.

 Chapter 1, “PowerShell fundamentals,” covers some of the background to PowerShell, including the major features of PowerShell such
 as cmdlets and providers, the PowerShell pipeline and the utility cmdlets we use for operations such as sorting and grouping.
 The chapter closes with an overview of the new features introduced in PowerShell v2.

 Chapter 2, “Learning PowerShell,” discusses the installation and configuration of PowerShell and how we can use PowerShell to discover
 information about PowerShell, including the help system. We’ll also look at the language features we need to know, such as
 loops and branching. The use of scripts will be highlighted together with information on converting from other VBScript to
 PowerShell.

 Chapter 3, “PowerShell toolkit,” covers the other technologies we need to know. PowerShell on its own can’t solve all of our administration
 problems. We need to use other technologies such as WMI, ADSI (for Active Directory), .NET to access functionality not built
 into PowerShell, and COM to work with applications such as Microsoft Office and Internet Explorer. How to use these technologies
 is covered in depth, with examples that are immediately usable.

 Chapter 4, “Automating Administration,” concludes part 1. After a look at the way our administration scripts can evolve through an ad hoc development process, we examine some PowerShell
 best practices. These aren’t meant to dictate the way we work with PowerShell, but are more of a set of guidelines to help
 avoid major pitfalls. This chapter closes with an examination of how we can make our scripts secure, including how to use
 a code-signing certificate.

 The three chapters of part 2, “Working with people,” describe how we administer those aspects of our environment that directly impact the user population.
 The 205 techniques covered in this book can be found, numbered chronologically, in parts 2 and 3. The final technique is in appendix D

 In chapter 5, we look at the management of user accounts and groups. This covers local accounts and Active Directory accounts. In the
 enterprise environment, we’ll be mainly working with Active Directory, but there are a number of areas such as the DMZ where
 we still need local accounts.

 In chapter 6, we turn our attention to Exchange mailboxes. The usual management functions for mailboxes and other mail-enabled objects
 are discussed together with mail protocols and quotas. We also discover how to report on mailbox statistics such as size and
 number of items.

 Part 2 concludes with chapter 7, which discusses the administration of the user’s desktop. This includes system configuration, printers, special folders,
 and Microsoft Office applications such as Word and Excel.

 The third and final part of the book, “Working with servers,” opens with chapter 8, “Windows servers,” in which we find techniques for working with services, processes, the filesystem, registry, and event
 logs. This is a linking chapter between parts 2 and 3, as many of these techniques can be applied to the desktop environment.

 DNS is the subject of chapter 9. It’s a supporting technology for all modern Windows environments, and as such we need to be automate where appropriate.
 We can’t work directly with DNS, but we can use WMI and the techniques we learned in chapter 3.

 Active Directory is revisited in the next two chapters. In chapter 10, we concentrate on Active Directory structure and work with organizational units. This leads us to administering GPOs through
 PowerShell and protecting objects from accidental deletion. Chapter 10 concludes with a look at recovering objects that have been deleted from Active Directory.

 The physical topology is visited in chapter 11, with an examination of domain controllers, global catalogs, and Active Directory sites and subnets. We close out Active
 Directory by examining how we can administer site links and replication.

 The next three chapters demonstrate how we can use PowerShell to administer applications we’ll commonly find in a Windows
 environment. Chapter 12 deals with Exchange 2007/2010, where we learn how to work with data stores, mail servers, and the mail organization as a
 whole. The creation and management of Exchange policies is also covered.

 IIS 7 is the topic of chapter 13. We learn how websites and applications can be managed by PowerShell cmdlets, a PowerShell provider, and WMI or .NET classes.
 Working with XML files completes the chapter. PowerShell remoting is heavily featured in this chapter.

 In chapter 14, our attention turns to SQL Server. PowerShell functionality is directly available in SQL Server 2008, but we can use .NET
 based techniques to work with earlier versions. A framework configuration database is presented that can be created and administered
 by PowerShell.

 The final chapter looks at PowerShell innovations, including new features introduced with PowerShell v2 and Windows Server
 2008 R2. Topics include PowerShell background jobs, Server Manager cmdlets, Hyper-V PowerShell library, and new Active Directory
 functionality. We close the book with a brief glance at the administration of cloud based applications.

 Five appendices are supplied. They cover PowerShell reference material including format files, PowerShell modules and advanced
 functions, PowerShell events, reference data, and useful links to downloads and further information.

Code and typographical conventions

 This is a book about using PowerShell and there are a lot of examples provided throughout the book. A fixed-width font like this is used for all source code, and major blocks of code are formatted as a specific listing as, for example, this listing from
 chapter 5:

 Listing 5.12. Searching for a user account

 $struser = "BOSCH Herbert"

$dom = System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$root = $dom.GetDirectoryEntry()

$search = [System.DirectoryServices.DirectorySearcher]$root
$search.Filter = "(cn=$struser)"
$result = $search.FindOne()

if ($result -ne $null){$result.properties.distinguishedname}
else {Write-Host $struser " Does not exist"}

 These listings are annotated with full explanations provided in the text. In many cases, the code statements have been split
 across multiple lines to fit the page correctly. These lines terminate with a back tick (`), which is the PowerShell line
 continuation character.

 Code examples are also be embedded in the text where they aren’t long enough to warrant an explicit listing. They are presented
 as follows:

 Search-ADAccount -AccountDisabled -UsersOnly |
select Name, distinguishedName

 If the code has been typed directly at a PowerShell prompt, it’ll be displayed like this:

 PS> 1kb
1024

 PowerShell has the ability to span multiple lines at the prompt, in which case the continuation lines will be prefixed by
 >>.

 When discussing code examples, attribute names, cmdlet names, and all other PowerShell related items are displayed like this:
 - Get-Help about_Arrays.

 Source code for the examples can be downloaded from the publisher’s website at http://www.manning.com/PowerShellinPractice.

	

Warning

 In my experience, any script obtained from the internet or any other source should be treated as suspect until proven otherwise.
 This includes the scripts in this book! I’ve tested them in my environment but I don’t know and can’t guarantee that they’re
 100% safe for your environment. It’s your responsibility to test them in your environment.

	

In addition to the presentation conventions, I’ve also applied my own style to the code examples. I’ve used the following
 “rules”:

	Full cmdlet and parameter names

 	Avoid the use of aliases and partial parameter names

 	Follow common usage for the names of the *Object cmdlets so foreach instead of foreach-object, sort instead of sort-object, select instead of select-object, and so on.

 	For select, sort, and format-table or format-list code statements, just supply the property names rather than using the -property parameter.

My intention is to provide a balance between readability, conciseness, and completeness. Only you can tell if I’ve succeeded.

Author Online

 Purchase of PowerShell in Practice includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to http://www.manning.com/PowerShellinPractice. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some challenging questions,
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 [image:]

 Richard Siddaway is a technical architect for Serco in the UK, working on transformation projects in the Local Government
 and Commercial arena. With more than 20 years of experience in various aspects of IT, Richard specializes in the Microsoft
 environment at an architectural level—especially around Active Directory (AD), Exchange, SQL Server, and infrastructure optimization.

 Much of his recent experience has involved Active Directory migrations and optimizations, which often include Exchange. Richard
 has hands-on administration experience and is involved in implementation activity in addition to filling architectural and
 design roles. He has extensive experience specifying, designing, and implementing high-availability solutions for a number
 of versions of the Windows platform, especially for Exchange and SQL Server.

 Richard is always looking for the opportunity to automate a process, preferably with PowerShell. Richard founded and currently
 leads the UK PowerShell User Group. Microsoft has recognized his technical expertise and community activities by presenting
 a Microsoft Most Valued Professional award. Richard has presented to the Directory Experts Conference, at various events at
 Microsoft in the UK and Europe, and for other UK user groups. Richard has a number of articles and technical publications
 to his credit.

About the Cover Illustration

 The figure on the cover of PowerShell in Practice is a “Mufti, the chief of religion,” or the chief scholar who interpreted the religious law and whose pronouncements on matters
 both large and small were binding to the faithful. The same figure appears in full-length on the cover of PowerShell in Action, Second Edition by Bruce Payette.

 The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller
 of Old Bond Street, London. The title page is missing from the collection and we have been unable to track it down to date.
 The book’s table of contents identifies the figures in both English and French, and each illustration bears the names of two
 artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer
 programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Getting started with PowerShell

 Welcome to PowerShell in Practice. PowerShell is the new command shell and scripting language from Microsoft. This book will enable you to use Windows PowerShell
 to administer your Windows servers and applications such as SQL Server, IIS 7, Exchange 2007, and Active Directory from the
 command line. PowerShell provides a more efficient and powerful mechanism for administration that’ll save you time and effort
 in your daily job. Whether you’re a PowerShell novice or a more experienced user, there’ll be something for you in the many
 examples used to illustrate PowerShell based administration.

 The book is divided into three parts. Part 1 begins with the fundamentals of working with PowerShell, including an explanation of what it is and how it works, as well
 as the new features of PowerShell v2.

 Chapter 2 shows how to learn PowerShell with practical examples to speed the process. Chapter 3 covers the other technologies that are required to work with PowerShell—.NET, COM, ADSI, and WMI. The final chapter in this
 section, chapter 4, is concerned with the process of automation and best practice around writing scripts.

 Part 2 shows how to perform administrative tasks that are concerned with people—managing user accounts in Active Directory and on
 local systems, managing Exchange mailboxes, and managing the user’s desktop.

 Part 3 looks at working with servers, starting with Windows, including the new Server Core install option in Windows Server 2008.
 Subsequent chapters consider Exchange 2007, SQL Server, IIS 7, DNS, and Active Directory, including the new features in Windows
 Server 2008 R2.

Chapter 1. PowerShell fundamentals

 This chapter covers

	Using cmdlets and providers

 	PowerShell’s building blocks

 	Learning the pipeline

Microsoft seems to be always talking about PowerShell. Listen to a talk about Exchange Server 2007 or 2010, Windows Server
 2008 R2 (release 2), or even SQL Server 2008, and PowerShell will be mentioned. PowerShell gets its own section on the Microsoft
 scripting center and there is a stack of books on the subject. So what’s PowerShell and why are so many people excited about
 it? This chapter introduces PowerShell and answers some of those basic questions. It is formally known as Microsoft Windows
 PowerShell but that is too much of a mouthful so we will refer to it as PowerShell from now on. In this chapter you’ll discover:

	The major features of PowerShell that make it stand out from other automation tools in the Windows arena

 	The things that PowerShell is good at and the odd areas where you shouldn’t use it

 	What changes you can expect with version 2 of PowerShell

Installation and configuration of PowerShell we’ll postpone until chapter 2. This chapter will provide an overview of PowerShell and why it’s such an important tool for the administrator community.

 Microsoft is building PowerShell into all of its major products. PowerShell v1 was released in November 2006 as a free download
 from the Microsoft website. PowerShell v2 shipped with Windows 7 and Windows Server 2008 R2 in July 2009. It is also available
 as a download for older versions of Windows. This will give a consistent and coherent way to manage Windows and services such
 as Exchange and SQL Server. It’ll save you time and administrative effort across your Windows-based servers and will amply
 repay the time spent learning it.

 PowerShell has a number of unique features, such as cmdlets and providers. These features, which form the fundamentals of PowerShell, will be explained with examples. Underneath the covers the differences
 between PowerShell and other scripting tools become even more apparent. PowerShell is based on, and makes extensive use of,
 .NET objects. These provide the power to the shell.

 Scripting languages need to be able to perform utility functions such as sorting, grouping, and comparing. PowerShell has
 a number of utility cmdlets to perform these roles. We’ll discover how to use these cmdlets with practical examples relating
 to tasks that Windows administrators need to perform. Throughout the book, examples will be drawn from practical administrative
 tasks rather than demonstrating PowerShell as a programming language.

 PowerShell, like any tool, has a learning curve. It seems to be steep when you’re first introduced to it, but this chapter
 and the next three will lay the foundations for us to dive into using it in our day-to-day administrative tasks. This will
 enable us to spend more time on other, potentially more interesting, tasks.

 A number of PowerShell commands will be used in this chapter, including Get-Member, Get-Command, Get-Help, and Get-PSDrive. This chapter will provide sufficient information to explain examples as we work through them. A full explanation of these
 commands will have to wait until chapter 2.

 At the end of the chapter, you’ll understand what PowerShell is and more importantly what it isn’t; what the major features
 are and how they work; and you’ll understand the utility commands within PowerShell.

1.1. What’s PowerShell?

 Newcomers to PowerShell usually ask “What’s PowerShell” and “What can I do with it?”. This section will answer the first question. The second question takes the rest of the book
 to answer.

 A simple answer to “What’s PowerShell” would be that it’s the new scripting language and command-line shell from Microsoft. It’s better described as the automation
 engine that Microsoft is building into all major products, as shown in figure 1.1. The central position of PowerShell for administering our Windows-based environment will become even more entrenched with
 successive versions of Microsoft products.

 Figure 1.1. PowerShell is the automation and integration layer in a Microsoft environment. It can be used to administer Windows systems
 as well as an increasing number of Microsoft and third-party applications.

 [image:]

 We can think of PowerShell as a layer of automation functionality that connects the OS of our servers, the infrastructure
 applications such as Active Directory, Microsoft applications such as Exchange and SQL Server, and third-party products. PowerShell
 can be used to administer them all. This gives us a single method of automating our whole environment.

 The shell and scripting language is the most visible implementation of PowerShell, but it can also be hosted in .NET applications.
 That aspect of PowerShell is outside the scope of this book. We’ll be concentrating on using PowerShell at the command line
 and in scripts for administering Windows-based systems.

 Windows administration is often viewed as a GUI-based occupation. One of the major failings of the Windows OS, at least according
 to UNIX and Linux administrators, is the inability to perform the powerful shell-based, command-line administration activities
 they traditionally use. PowerShell addresses that failing and provides a first-class command-line experience that makes administrators’
 lives easier. It’s so good that an open source project called PASH was started to port PowerShell to the Mac and UNIX/Linux
 platforms. Unfortunately, that development is currently on hold. This book will show you how to get the most out of PowerShell
 on the Windows platform.

 1.1.1. .NET—not necessarily

 PowerShell is .NET-based and enables the .NET framework to be used in scripts and from the command line. This mixture of interactive
 and scripting use makes it easy to start using and building on what you already know. To paraphrase: “Great scripts from little
 cmdlets grow.”

	

Administrators Please Read This!

 You do not have to become a .NET programmer to be able to use PowerShell. It’s perfectly possible to work with PowerShell and never
 use any .NET code. But there are a lot of examples of using .NET code within PowerShell that can be downloaded and reused.

	

PowerShell uses a syntax that’s similar to C#. If you do any C# programming, you’ll find it close enough to be confusing sometimes.
 It’s not necessary to use a semicolon at the end of each line, though one can be used as a line separator if multiple PowerShell
 lines are combined. PowerShell isn’t case sensitive like C#.

 PowerShell commands produce .NET objects rather than the text output produced by other shells. The objects may not be “pure”
 .NET objects in that PowerShell creates a wrapper around the object. This wrapper controls the methods and properties in the
 output object. One of the great strengths of PowerShell is that extra properties called noteproperty and scriptproperty may be added to a PowerShell output object.

	

Type System

 PowerShell has an Extensible Type System (ETS) so we can even define our own types and objects.

	

A noteproperty enables a new piece of data to be attached to the object, whereas a scriptproperty is a property whose value is determined by a PowerShell script block. A script block is a piece of PowerShell code surrounded
 by braces ({}). We will meet script blocks in a number of places throughout the book. They are one of the fundamental building
 blocks of PowerShell but in many cases we use without explicitly thinking about them as separate entities.

 The relationship between PowerShell and .NET, together with how to use the .NET framework, are covered in chapter 3.

 Now that we have an idea of what PowerShell is, we’ll consider why it’s worth learning.

1.2. Why PowerShell?

 After asking “What’s PowerShell?” the next question is often “Why should I bother with PowerShell?” (I’m assuming that if you’re reading this book, you’re
 interested in using PowerShell.) There are many parts to the answer to “Why PowerShell?” For one, I think it provides the
 best automation engine for the Windows platform and saves me lots of time. We will discover the breadth and depth of PowerShell’s
 versatility in the subsequent chapters. Learning every new technology has some “Eureka!” moments where everything suddenly
 clicks. I’ll share a few of those moments as we progress through the book.

 PowerShell isn’t the answer to every problem. There are a number of situations where PowerShell v1 is difficult to use or
 can’t be used:

	Windows 2008 Server Core

 	Logon scripts

 	WinPe environments, because .NET isn’t loaded

This still leaves the vast majority of the Windows environment for PowerShell. PowerShell v2 addresses these issues, even
 to the extent of being installable on Server Core in Windows Server 2008 R2.

 1.2.1. Eureka 1

 I was once asked to look through a 12,000-seat Active Directory to find all of the users that didn’t have Outlook Web Access
 enabled. Not the sort of task to perform using GUI tools! I wrote a script that has been reused several times since. It took
 much less time to write and test the script than it would’ve to perform the process manually. That extra time can be spent
 on other, more interesting tasks.

 The original script was written in VBScript, as that was all I had available at the time. The script occupied 86 lines of
 code and took me about a day to conceive, write, and test.

 When PowerShell became available in Exchange Server 2007, I converted the code to PowerShell. It took me about 30 minutes,
 most of which was starting the virtual machine (this was when Exchange Server 2007 was in beta) and looking up the appropriate
 cmdlets. Those 86 lines of VBScript condensed to one line of PowerShell that consisted of three cmdlets linked on the pipeline. A pipeline is a method of passing data from one command to another. It is covered in detail later in the chapter.

 That drove home just how powerful PowerShell was and how much coding it was going to save me. Eureka! PowerShell rocks!

 1.2.2. Importance to you

 PowerShell is an important technology to you the administrator. It’s a small download, but it has a large impact on the administration
 of a Windows environment. The way things are changing in the Microsoft world, if you can’t do things at the command line—through
 PowerShell—you’ll be stuck with the mundane jobs. PowerShell support is being built into all of the major Microsoft products,
 either as parts of the product or as an optional download, including:

	Windows Server 2008

 	Exchange Server 2007

 	SQL Server 2008

 	IIS 7

 	Members of the System Center family

 	Small Business Server 2008 and Windows Essential Business Server 2008

Microsoft’s Common Engineering Criteria for 2009 includes PowerShell. The one major omission from the list appears to be SharePoint,
 but it’s possible to use the .NET APIs for SharePoint 2003 and 2007 within PowerShell. SharePoint 2010 includes built-in PowerShell
 support.

 Using the same automation engine across all Microsoft products enables you to transfer skills across products. The MMC GUI
 tools have a (more or less) common look and feel. This has accelerated learning, as the tools are navigated and used in the
 same way. PowerShell brings this same concept to the command line. Product-specific add-ins building on a common language
 base mean that only the new commands need to be learned, rather than a whole new language. PowerShell also provides the common
 administration tools that VBScript has never had.

 As PowerShell appears in more Microsoft (and third-party) products, it’ll be the best way to automate the administration of
 your Windows systems. PowerShell is already incorporated into products from Quest, IBM, Citrix, VMWare, Special Operations
 Software, and SDM Software, for example. Some of these we’ll meet in later chapters. The ability to use the same basic language
 makes PowerShell the only way to integrate administration using these products.

 1.2.3. Designed for you

 PowerShell has been designed from the beginning for administrators. It has built-in access to a number of the most common
 things in which administrators are interested, including:

	Processes—what’s running on the machine?

 	Services

 	Event logs—what’s happening on the machine?

 	ACLs for security

 	WMI—much easier to use than in than VBScript

 	Filesystem

One of the points that drive this home is that PowerShell understands GB, MB, and KB as gigabyte, megabyte, and kilobyte,
 respectively. In PowerShell v2, TB and PB are added to extend the coverage to terabyte and petabyte. In case you were wondering,
 1 PB is 1,125,899,906,842,624 bytes. Presumably we’ll see even more exotic extensions to this range as storage capacities
 increase. PowerShell isn’t case insensitive, so gb, mb, and kb or any combination of case are equally understood. Listing 1.1 shows an example.

 Listing 1.1. Use of GB, MB, and KB

 PS> 1kb
1024
PS> 1mb
1048576
PS> 1gb
1073741824
PS> (1024*1024)/1MB
1

 These terms can be used in a standalone manner or can be used in calculations, as shown in the listing.

 PowerShell can access the full range of .NET, with a few exceptions that really concern developers more than administrators,
 as well as COM interfaces on products such as Office. This allows administrators to continue to work with known tools. These tools, and PowerShell, enable us to perform
 our routine administrative tasks in a shorter time and with a reduced error rate. The power of the command line is now yours.

 1.2.4. Quicker and more powerful

 There’s a perception that the only way to administer Windows-based systems is through the GUI tools. In fact, Microsoft has
 been increasing the support for command-line administration through the various versions of Windows since Windows 2000. The
 use of command-line tools was emphasized at many technical events after the launch of Windows 2000. With each subsequent release,
 more command-line tools have been added. Microsoft has also promoted the use of scripting tools much more over the last five
 years or so.

 If you need to perform an administrative action on a single user in Active Directory, it may be as fast to use the GUI as
 to use a script. If you have to perform that same action on 100 users, it’ll definitely be quicker and easier to use a script.
 Once the script is written, it can be saved and used for the one-user or 100-user scenarios. The return on time spent writing
 the script is paid back every time you use it—plus it makes you look good. If you can script it, you must really understand
 this stuff. Right?

 The venerable command file could be regarded as the first, if limited, scripting language on Windows. Command files have limited
 functionality and rely to a large degree on command-line tools to perform most tasks. These tools can’t be integrated and
 only pass text between them, making processing difficult.

 VBScript was introduced early in the life of Windows NT. At that time, scripting wasn’t regarded as a mainstream activity
 by Windows administrators. That perception is slowly changing, but the majority of Windows administrators, in my experience,
 still prefer not to write scripts.

	

Note

 I’ve found that UNIX administrators who become involved in administering Windows often adopt PowerShell much more quickly
 than administrators who’ve always worked with Windows.

	

VBScript is COM-based. This gives it access to a wide range of interfaces for administration. Unfortunately, they’re often
 very different in the way they work and the way they’re used. This makes VBScript difficult to use. There are gaps in the
 products that can be administered through VBScript, which reduces its potential.

 PowerShell can be used interactively at the command line as well as in a script, which makes testing and development much
 easier. This isn’t possible with VBScript native tools. The VBScript commands have to be in a file which is then executed,
 making testing and development a slower and more difficult task.

 1.2.5. Extensible and flexible

 PowerShell is easily extensible. Writing cmdlets is a fairly straightforward piece of development work, and though providers
 may be more complicated, there are examples available. Many commercial and open source PowerShell extensions are available. Some of these extensions will be covered in
 chapter 4.

 PowerShell is a flexible system. There are often a number of ways to achieve the same task. This allows administrators to
 find a method with which they feel comfortable. It also means that it’s more likely that someone will have a found a solution
 to your problem and posted the script on a blog or forum.

 This flexibility can be a disadvantage. Many people have commented that a weakness of PowerShell is that there can be multiple
 methods of achieving the same end. I disagree that this is a weakness, but it can make life much more difficult for a newcomer.
 Let’s say he has a problem to solve, so he searches the internet for a script to copy or alter. He may find three scripts
 that say they do the same thing but seem to be very different—which one should he use? This can be a difficulty, but the idea
 of this book is to present the information required to make an informed choice, or better still, for him to be able to write
 the script himself and share it with the wider PowerShell community. No doubt, some people looking at the examples will say,
 “He should’ve done it this way....” The examples I use are those that seem to me to be the most straightforward to use and
 learn. When it comes to PowerShell, the old saying “If you have three techies in a room, there are at least four opinions
 on how to do something” was never truer. All of those opinions will be good, though.

 The more we use PowerShell, the more obvious the benefits of using it become. Our review of the benefits is now complete,
 and it’s time to start learning about PowerShell. We’ll start with the major features of PowerShell. These are the things
 that stick in your mind and make you realize it’s different.

1.3. Major features

 PowerShell has a number of features that combine to make it such a unique and powerful tool. We’ll examine the language in
 more detail in the next chapter, but for now, the most obvious features will be covered. These include:

	Cmdlets

 	Pipeline

 	Providers

 	Help system

Putting these things together will give us the basics of PowerShell that we can take into the rest of the book. I’ll concentrate
 on the needs of the administrator who wants to know how to use these features, rather than looking at it purely from a programming
 viewpoint.

 One of the great strengths of PowerShell is that it can be used interactively as well as in scripts. The same commands should,
 and usually do, work equally well from the command line and in scripts. This is useful when developing scripts, as you can
 work interactively to solve your problems. Alternatively, this could be viewed as a way to get to the head scratching and
 grumbling stage much faster.

 1.3.1. Cmdlets

 Cmdlets are probably the most obvious feature when comparing PowerShell to other scripting languages. A cmdlet (I always pronounce
 it “command-let”) is a small, self-contained piece of functionality that does one specific job. A cmdlet is analogous to a
 shell command such as ping.exe. PowerShell v1 has 129 cmdlets. More than 100 extra cmdlets are added in PowerShell v2. One
 of the nice things about PowerShell is that it’s easy to discover information like this using PowerShell itself. In this case,
 I used the following code:

 (Get-Command | Where {$_.PSSnapin -like "Microsoft.P*"}).Count

 Get-Command generates a list of PowerShell commands. That list is piped into a filter (Where is an alias or shorthand for Where-Object) that only accepts those commands installed by a PowerShell snapin (a method of extending PowerShell) whose names start Microsoft.P. We then count the number of commands in the filtered list, as shown in figure 1.2.

 Figure 1.2. PowerShell shell used to count the number of cmdlets

 [image:]

	

Cases and Operators

 PowerShell isn’t case sensitive. The code in figure 1.2 could have been written in all lowercase, all uppercase, or any random combination. I’ll follow the style of PowerShell itself
 when capitalizing cmdlet names, properties, or methods.

 The operator -like is used to perform the comparison in figure 1.2. PowerShell operators are detailed in appendix A.

	

This one line of code, simple as it seems, demonstrates a number of PowerShell features. It starts with the cmdlet Get-Command. This, like all cmdlets, has a verb-noun syntax. It starts with a verb. The PowerShell team maintains a list of approved verbs. Their aim to ensure consistency—for
 example, any time you have a command that fetches information, the verb to use is get. The second part of the name is a noun that describes what the verb is acting on—in this case, the commands within PowerShell.
 The full list of standard verbs used in PowerShell is given in appendix A.

 Cmdlet names should always be singular, so use Get-Service rather than Get-Services. This is one of the most common mistakes when writing PowerShell commands and to prove that PowerShell was designed for you
 it has a solution for this problem. Tab completion (and the IntelliSense functionality built into the editors covered in chapter 4) makes entering PowerShell commands quicker, easier, and less-error prone. Having said that, I’ll give you one guess as to
 who still makes cmdlets plural from time to time.

 Get-Command retrieves information regarding the installed cmdlets. We’ll learn much more about Get-Command in the next chapter. Having generated a list of cmdlets, we pass that list onto the pipeline. I’ll cover the pipeline in
 much greater detail in the next section.

 The second cmdlet, Where-Object, which is one of the utility cmdlets covered in detail later, functions as a filter acting on the information moving along
 the pipeline—in this case on each command. The filter determines whether the PSSnapin property is like the string Microsoft.P*, where * is the usual wildcard character. Note the use of {} to enclose the script block that provides the filtering. By wrapping
 the cmdlets in (), we can treat the results as a collection of objects and use the Count property to determine the number of cmdlets present that match the filter.

Tab Completion

 When working at the command line, PowerShell demonstrates another feature that aids productivity: tab completion. If you type
 Get- at the command line, then press the Tab key, the PowerShell engine will complete the command with the first cmdlet that matches
 what’s been typed so far. In this case, it’s usually Get-Acl. If the Tab key is pressed again, the next Get- cmdlet will be displayed, and repeated pressing of the Tab key enables you
 to cycle through the list of relevant cmdlets. Tab completion can be invoked from any relevant part of the cmdlet name, so
 for instance Get-C followed by Tab starts cycling through the Get cmdlets whose noun part starts with C.

 Tab completion also applies to parameters, in that typing—followed by the Tab key enables you to cycle through the parameter
 list. As with the cmdlet names, the more of the parameter name you give, the sooner the process brings the required parameter.

 Though the in-built Tab completion works well, there are alternatives, including one from the PowerShell Guy (usually known
 as [image:]) and the PowerShell Community Extensions. The download links for these are given in appendix E.

Aliases

 As an alternative to typing the full name of a cmdlet or parameter, it’s possible to use an alias. An alias is shorthand for
 the command. Aliases can be used at the command line as well as in scripts. The use of aliases saves on typing, but at the
 expense of readability. The list of standard aliases is provided in appendix A. It’s also possible to create your own aliases using the Set-Alias cmdlet.

	

Common Aliases

 The standard set of aliases contains a number corresponding to traditional commands from the command shell, including dir, cd, copy, and del. There are also a number of aliases for standard UNIX commands, including ls, lp, mv, and cp. This is deliberate, in order to present administrators with familiar commands wherever possible. The ability to create additional
 aliases means that the command line toolset can be tailored to match the way you want to work, rather than having to learn
 a new set of commands.

	

The following two examples show the use of aliases:

 gwmi -cl win32_process
Get-WmiObject -Class Win32_Process

gps|?{$_.Handles-gt 500}|%{$_.Name}
Get-Process | Where-Object{$_.Handles -gt 500} | ForEach-Object {$_.Name}

 The first example shows Get-WmiObject and one of its parameters being aliased. The second example shows a slightly contrived example of an aliased script. The
 use of % and ? make this especially difficult to read. Heavily aliased scripts can be off-putting for newcomers to PowerShell, and should
 be avoided apart from when working interactively.

	

In the Book

 In the rest of the book, I’ll be using full cmdlet and parameter names to aid understanding and learning. I’m slightly inconsistent,
 in that I’ll be using the aliases for the *-Object cmdlets, because Select and Where are more readable than Select-Object and Where-Object. This also matches common usage.

	

I strongly advise against using aliases in scripts: it makes them difficult to understand when you come back to them several
 months later.

 Cmdlets and their aliases aren’t used in isolation. Each has a number of parameters to further define and control its actions.

Parameters

 PowerShell cmdlets have parameters to define the input and possibly output, or to select various options. Examples of using
 parameters can be seen in code samples throughout the book. Parameters are always preceded by a hyphen. The parameters of
 a particular cmdlet can be viewed by using Get-Help. Using a command such as Get-Help Get-WmiObject –full will display the parameters of Get-WmiObject as well as the other help information. Typing Get-Help Get-WmiObject –parameter * will display only the parameters. As an example, consider the Class parameter from Get-WmiObject:

 -Class [<string>]
 Specifies the name of a WMI class. When this parameter is used, the
cmdlet retrieves instances of the WMI class.

 Required? true
 Position? 1
 Default value
 Accept pipeline input? false
 Accept wildcard characters? false

 The parameter listing commences with the parameter name and the type of data that can be used with it. This is followed by
 a short description. The description may contain a list of acceptable values if the parameter is restricted as to the values
 it can accept. The Required? option indicates whether the parameter is considered mandatory for that cmdlet, with the value given as true or false. If
 the parameter is mandatory and isn’t supplied, PowerShell will prompt for the value.

 The Position? option indicates whether data can be passed to the cmdlet and be automatically allocated to the parameter. In this case,
 the first argument passed to the cmdlet is assumed to be the WMI class to retrieve. If the data doesn’t represent a valid
 WMI class, an error will be thrown. If a value of named or 0 is given here, it means that the parameter name must explicitly be used. Default value indicates whether a default value
 has been set. If the data required by a parameter can be accepted from the pipeline, Accept pipeline input? will be set to true. The Accept wildcard characters? option will be set to true if wildcards can be used in the input.

 There are a number of common parameters defined for all cmdlets, as listed in table 1.1.

 Table 1.1. Common cmdlet parameters

	
 Parameter

 	
 Meaning

	-Debug
 	Displays detailed information useful to programmers.

	-ErrorAction
 	Indicates how the cmdlet responds to a nonterminating error. Possible values are SilentlyContinue, Continue, Inquire, Stop.

	-ErrorVariable
 	Stores information about errors in the specified variable.

	-OutBuffer
 	Determines the number of objects to store before sending them onto the pipeline. This is usually omitted, which means that
 objects are sent onto the pipeline immediately.

	-OutVariable
 	Stores error messages in the specified variable.

	-Verbose
 	Displays detailed information about the operation.

If a cmdlet will modify the system, it has another two parameters, as listed in table 1.2.

 Table 1.2. Safety parameters

	
 Parameter

 	
 Meaning

	-WhatIf
 	If present, this parameter causes PowerShell to output a list of statements indicating what would’ve happened if the command
 had been executed, without executing the command.

	-Confirm
 	Prompts the user for confirmation before performing any action.

Further information can be found using Get-Help about_CommonParameters.

 Having looked at cmdlets and their parameters, it’s time to see how we can link them together using the PowerShell pipeline.
 The pipeline is what makes PowerShell a really powerful shell.

 1.3.2. Pipeline

 The ability to pipe data from one command to another has been a standard part of shells and command-line utilities for many
 years. DOS, the command shell in later versions of Windows, and most notably UNIX/Linux shells have all had this functionality. PowerShell also has this functionality,
 as we’ve seen in some of the examples earlier in the chapter.

 If shells are expected to have this functionality, why is there such a fuss about the ability to pipe data from one command
 to the next in PowerShell? All other shells pipe text data, but PowerShell pipes .NET objects. This is one of the places where
 the power of PowerShell comes from:

 Get-Process | Where-Object {$_.Handles -gt 500} |
Sort Handles | Format-Table

 This example shows a Get-Process cmdlet passing data along the pipeline to a Where-Object cmdlet. The Get-Process cmdlet passes one .NET object for each process that’s present on the machine. A filter is applied to only accept processes
 that use more than 500 handles. The objects representing the processes are sorted by the number of handles and finally displayed
 in a table. The interaction of the cmdlets and the pipeline is shown in figure 1.3.

 Figure 1.3. The PowerShell pipeline in action. The objects pass along the pipeline, which controls their processing by the individual
 cmdlets. The PowerShell parser uses the code to tell the cmdlets what actions should be performed.

 [image:]

 .NET objects may sound complicated, but we can discover which particular .NET object is being passed by using Get-Member, as shown in listing 1.2.

 Listing 1.2. Using Get-Member to view the .NET type

 PS> Get-Process | Get-Member

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
.
.
Kill Method System.Void Kill()
.
.
Id Property System.Int32 Id {get;}
.
.
...Listing truncated for brevity

 The use of Get-Member shows that the Get-Process cmdlet is producing, or emitting, .NET objects of type System.Diagnostics.Process. This .NET type has a property called Handles. The Where-Object cmdlet performs a filtering operation based on the value of the Handles property of each .NET object. Any object that has a value greater than 500 for the Handles property is passed. All other objects are filtered out.

 The symbol $_ is used in PowerShell to refer to the current object being passed along the pipeline. We will see this symbol used in many
 of the scripts in future chapters. It functions as an object so we can refer to, and use, its properties and methods.

	

Note

 As explained earlier, the .NET objects emitted by PowerShell objects aren’t necessarily identical to an object of the same
 type produced by a .NET program. This can be seen if the output of listing 1.2 is compared to the list of properties and methods for the System.Diagnostics.Process that can be found at http://msdn.microsoft.com/en-us/library/system.diagnostics.process.aspx. More information on working with .NET can be found in chapter 3.

	

A number of cmdlets, including the Format- and Write- cmdlets, will terminate the pipeline in that the objects cannot be passed to another cmdlet. If a Foreach-Object cmdlet is used, it’s perfectly valid to create a pipeline within the loop produced by that cmdlet.

 The data that Get-Process produces is as of the time of execution. When investigating a set of data such as that referring to the running processes,
 it’s sometimes necessary to ensure that all comparisons are performed on exactly the same data. Running variants of listing 1.2 won’t suffice, as the data will change between runs. In this case, we can use a variable:

 $proc = Get-Process

$proc | Where-Object{$_.Handles -gt 500}

$proc | Where-Object{$_.CPU -gt 100}

$proc | Sort-Object -Property WS -Descending |Select-Object -First 5

 In this example, we start by setting a variable, $proc, equal to the output of Get-Process. A $ symbol is used in PowerShell to designate a variable ($_ is in effect a special variable used to refer to the current object
 on the pipeline). The result from piping $proc to Get-Member show that the variable is of type System.Diagnostics.Process. It’s an array of such objects. When it’s passed on to the pipeline, the array elements, or collection, are processed one
 at a time as they’re passed along the pipeline.

 The first use of $proc is a repeat of what we saw in listing 1.2. The second is a variant using the CPU property instead of the Handles property.

 The third use is more interesting, in that we’re sorting the data based on the WS (WorkingSet) property. The output of the sort is largest to smallest, as designated by the use of the –Descending parameter. The first five objects in the sorted output are then displayed. Select-Object discards the other objects.

 Most cmdlets will accept input from the pipeline. There are some exceptions where this isn’t possible. The help file for the
 cmdlet will show if this is the case. We will look at the help system in detail in the next chapter. The fact that the command
 will generate an error will also show this quickly!

	

Note

 For more information on the pipeline, type Get-Help about_pipeline at the PowerShell prompt.

	

This concludes our look at the pipeline. There will be many more examples throughout the book. Next we’ll look at the utility
 cmdlets that have made brief appearances up to now.

 1.3.3. Utility cmdlets

 We’ve seen how cmdlets can be linked together on the pipeline and how .NET objects are passed along the pipeline. Utility
 cmdlets are used to supply the glue to join together the cmdlets performing the processing. They supply utility actions such
 as sorting, selecting, and filtering. Some of the utility cmdlets have been used in the previous examples. The utility cmdlets
 are listed in table 1.3. When we use these cmdlets, we normally don’t include the -Object part of the name. This makes scripts more readable. Remember
 that aliases aren’t case sensitive.

 Table 1.3. Utility cmdlets and their purposes

	
 Utility cmdlet

 	
 Alias

 	
 Purpose

	Compare-Object
 	Compare or diff
 	Compares two sets of objects.

	ForEach-Object
 	Foreach or %
 	Performs an operation against each of a set of input objects.

	Group-Object
 	Group
 	Groups objects that contain the same value for specified properties.

	Measure-Object
 	Measure
 	Calculates the numeric properties of objects, and the characters, words, and lines in string objects, such as files of text.

	Select-Object
 	Select
 	Selects specified properties of an object or set of objects. It can also select unique objects from an array of objects, or
 it can select a specified number of objects from the beginning or end of an array of objects.

	Sort-Object
 	Sort
 	Sorts objects by property values

	Tee-Object
 	Tee
 	Saves command output in a file or variable and displays it in the shell.

	Where-Object
 	Where or ?
 	Creates a filter that controls which objects will be passed along a command pipeline.

Common usage is to use the alias (though I do recommend avoiding % and ?) instead of the full cmdlet name, even in scripts!
 It is just one of those delightful quirks that seem to occur in computing.

 You can generate this information from within PowerShell by using the following:

 Get-Alias | Where {$_.definition -like "*-Object"} |
 Sort Definition

 This is a good example of using PowerShell to discover more about PowerShell. Remember that PowerShell is not case sensitive
 so I could use $_.definition, $_.Definition or even $_.dEfInItIoN. I will mix the way I use case in the examples to help emphasize this point.

	

Personal Note

 I don’t particularly like % and ? as aliases of foreach and where, respectively. They make scripts harder to read for people new to PowerShell, so I tend to avoid using them. In this chapter,
 I’ll mix and match the full name and alias for the *-Object cmdlets and only use the alias in subsequent chapters.

	

The best way to demonstrate the use of these cmdlets is with examples. We’ll look at comparing files and their contents, filtering
 with Where-Object, followed by grouping and sorting the data. Examples of using Measure-Object and how to create calculated fields for use in select statements will also be shown. Full details on the syntax and use of
 these cmdlets can be found in the help system. Get-Help followed by the cmdlet name will supply the required information.

Comparing

 At some time when working in Windows administration, it’ll be necessary to compare two files. They may be two different versions
 of scripts or configuration files, but it’s almost certain that you’ll spend a long time looking at them to spot the differences.
 They never seem obvious until you’ve stared at them for a long time. The time to discover the differences can be shortened
 dramatically by using Compare-Object as follows.

 Listing 1.3. Comparing files

 PS> Compare -ReferenceObject chap01v1.txt -DifferenceObject chap01v2.txt

InputObject SideIndicator
----------- -------------
chap01v2.txt =>
chap01v1.txt <=

 Compare-Object is used for comparisons. PowerShell really is self-describing! In this case, I have two text files that I want to compare.
 The ReferenceObject parameter supplies the object against which comparisons will be made. DifferenceObject supplies the object to be compared.

 In this example, the SideIndicator shows whether an object appears in the reference object (<=) or the difference object (=>). We can see that there are differences between the files, but we have no idea what they are and where they occur in the file. We need to modify our script slightly
 in order to discover that:

 Listing 1.4. Comparing file content

 PS> Compare -ReferenceObject $(Get-Content chap01v1.txt) `
>> -DifferenceObject $(Get-Content chap01v2.txt)
>>

InputObject SideIndicator
----------- -------------
This is line 6a =>
This is line 6 <=

 Notice the use of a backtick (`) character at the end of the first line. This is the line continuation character. It’s used here to split the line of code
 onto a continuation line to make it more readable. Here we’ve compared the individual lines within the files so we can see
 exactly where the differences occur. Of special interest is the use of $(Get-Content chap01v1.txt) and $(Get-Content chap01v2.txt) when supplying the objects to be compared. The structure $() is a sub-expression that tells PowerShell to evaluate what’s between the parentheses and treat that as the variable to be
 used. All variables in PowerShell start with the $ symbol.

 Our command could also be written as:

 $v1 = Get-Content chap01v1.txt
$v2 = Get-Content chap01v2.txt
Compare -ReferenceObject $v1 -DifferenceObject $v2

 The choice of which to use is a matter of personal preference and really depends on your style of coding. I often use a multistep
 approach if I need to let other people use the script or if I am using it as a teaching example.

 By default, only data that isn’t equal is displayed in the output from Compare-Object. If matching data is required, use the IncludeEqual parameter. It’ll generate a lot of output, though. Comparing files gives us some information about our filesystem, but we
 often need to determine the distribution of file types. We turn to the grouping and sorting cmdlets for this task.

Grouping and Sorting

 Storage is relatively cheap, but no organization can afford to have an infinite amount of disk space. In order to make better
 use of the space, we need to know the distribution of files on the storage medium. Counting the number of files of each type
 can give a good indication of where the space is being used, especially if they’re files that shouldn’t be there. How many
 organizations have server disk space taken up by downloaded music or video files? In listing 1.5, we’re grouping on the file type. Any suitable property can be used.

 Listing 1.5. Counting the number of files in a folder by extension type

 PS> Get-ChildItem -Path "c:\temp" | Where {!$_.PSIsContainer} |
>> Group -Property Extension | Sort Count -Descending
>>
Count Name Group
----- ---- -----
 92 .tmp {AD~5D8C.tmp, artD5CD.tmp, artD5DE.tmp...}
 61 .cvr {CVR1162.tmp.cvr, CVR2463.tmp.cvr...}
 60 .od {12623912.od, 13136469.od, 13819442.od...}
 33 .txt {dd_depcheck_VS_PRO_90.txt...}
 14 .log {java_install_reg.log, jusched.log...}
 2 .xml {setup.xml, tmp713D.tmp.xml}
 2 .exe {msxml6-KB927977-enu-x86.exe...}
 2 .dll {fxdecod1.dll...}
 1 .sqm {wmplog00.sqm}
 1 .msi {Virtual_PC_2007_Install.msi}
 1 .psc1 {powergui.script.editor.psc1}
 1 .fzip {ImageDecoder_2.0.2008.523.fzip}
 1 .bmp {INT+rsiddaway.bmp}

 We’ll be meeting Get-ChildItem again in chapter 8 when we examine the filesystem, but for now let’s just say it’s the PowerShell equivalent of dir or ls (both of these exist in PowerShell as aliases of Get-ChildItem). Use ls; it’s less typing! It’ll also impress the UNIX admins. The Path parameter tells Get-ChildItem the folder to examine. The output of Get-ChildItem is piped to Where, which applies a filter based on whether the object is a container (a folder in this case). PowerShell adds a property (PsIsContainer) to the output of Get-ChildItem which indicates whether the object is a folder. In this case, we want those objects that aren’t folders-just the files. The
 “!” symbol means not, so !PsIsContainer means objects that aren’t containers.

 The results of the filter are piped to Group, which groups the files by extension. Finally, we use a Sort-Object to order the output by the number of files in each group. The output gives the number of files in each group, the name of
 the group (in this case, the file extension), and a partial list of the group membership.

	

Note

 The PowerShell pipeline used in this example is actually a single line of code. It could be typed at the PowerShell prompt
 and allowed to wrap around. In order to make it more readable, the input has been split across multiple lines. When entering
 code, pressing the Enter key before the command is complete (in this case immediately after the pipe symbol) causes PowerShell
 to display a continuation line, as shown in listing 1.5. Once the extra code has been typed, pressing Enter twice will run the code. Code can also be split in this manner before
 a closing bracket or closing quote for a string value.

	

This script could be modified to read a folder tree by adding the recurse parameter. The script would then start Get-ChildItem –Path "c:\temp" –recurse | and so on. If you’re not sure of the location of the temporary folder on your system, we can find it using $env:temp. If we want our scripts to be really portable, we could code it as:

 Get-ChildItem -Path $env:temp -Recurse

 Now that we’ve found our file distribution, we can see how much space is taken up by these files.

Measure

 We used Group-Object to determine the number of files of each type earlier in this section. We can use Measure-Object to determine statistics for those files, including total number and the sum of their sizes.

 Listing 1.6. Producing statistics on file sizes in a folder

 PS> Get-ChildItem -Path "c:\temp" | Where {!$_.PSIsContainer} |
>> Measure -Property Length -Average -Sum -Minimum -Maximum
>>

Count : 272
Average : 366154.713235294
Sum : 99594082
Maximum : 29440512
Minimum : 0
Property : Length

 As in the previous example, we use Get-ChildItem and Where-Object to produce a set of objects representing the files in a folder. This time, we pipe them into Measure-Object. If we use Measure-Object without any parameters, it’ll return just the number of files—the Count. By telling the cmdlet which property to measure, and selecting the measurements to make, we can generate the average, minimum,
 maximum, and sum of the file length (size in bytes). The parameters indicating which statistics to measure can be used in
 any combination that you require. A count of the total number of items will always be produced.

 Measure-Object can be used with an array of numbers. It can be applied to any numeric property, but only numeric properties. Where-Object is the cmdlet that’s used most of all. So far, we’ve seen single filters used. In some cases, we need to think about using
 multiple filters.

Filtering

 The Where-Object cmdlet is used for filtering. We’ve seen it being used in a number of the previous examples. Correct use of filtering can
 have a beneficial impact on your scripts, as they’ll run faster because less data is being processed. Filtering can also make
 the output easier to understand.

	

Where to Filter

 It is generally better to filter as early as possible especially is you are manipulating large sets of data. Performance is
 not necessarily a number one criterion for administration scripts but your scripts will run faster if you reduce the amount
 of data being processed.

	

Think of the case where a problem has arisen on a server and you need to test whether the relevant service is actually running.
 You could run Get-Service, but that involves reading through a lot of output. A better solution is to filter on just the service or services in which
 you’re interested. Get-Service does have a certain level of built-in filtering, as the parameters for service names accept wildcards. In listing 1.7, I’ll only filter using Where-Object because I want to show how to combine filters. PowerShell supports the full range of logical operators.

 Listing 1.7. Using multiple filters in Where-Object

 PS> Get-Service |
>> Where{$_.Name -like "WM*" -and $_.Status -eq "Stopped"}
>>

Status Name DisplayName
------ ---- -----------
Stopped wmiApSrv WMI Performance Adapter
Stopped WMPNetworkSvc Windows Media Player Network Sharin...
Stopped WMSvc Web Management Service

 Get-Service returns the list of Windows services installed on the system. This list is passed into Where-Object, which performs a filter on the first part of the service name and on the status of the service. This could be extended by
 making the service partial name an argument which is passed into the script. This will be covered in chapter 2.

 An alternative form of filtering is supplied by the Select-Object cmdlet. This is used to limit the properties of the objects that are passed down the pipeline. It can also be used to add
 a calculated property or select a specific number of objects from the beginning or end of the list, as shown in listing 1.8.

 Listing 1.8. Using a calculated property in Select-Object

 PS> $now = Get-Date
PS> Get-Process | Where-Object{$_.StartTime} |
>> Select Name, @{Name="Run Time";
>> Expression={[int]($now - $_.StartTime).TotalMinutes}} |
>> Sort "Run Time" -Descending | Format-Table –AutoSize
>>

Name Run Time
---- --------
svchost 909
smss 909
csrss 909

- - output truncated

WUDFHost 207
WINWORD 202
Quest.PowerGUI.ScriptEditor 190
PowerShell Assistant 187
Foxit Reader 169
notepad 119
powershell 12

 This is the most complicated example we’ve seen so far. We start by using the Get-Date cmdlet to record the current date and time in a variable. Remember that variables always start with the symbol.

 Get-Process retrieves a list of the running processes on the system. We filter out those processes that don’t report a start time. If
 they’re left in, the script will still work, but we get error messages for those processes that don’t have a start time recorded.
 Select-Object is used to filter the properties. We’re only interested in the process name and calculating the running time.

 The calculated property is a hash table (see arrays in chapter 2). It’s an array with two values separated by a semicolon. The first, known as the key, is the name of the property—in this case Run Time. The second item, known as the value, is an expression to calculate the property. This calculation will happen for every process coming along the pipeline.

 Once the property is calculated, it can be manipulated in the same way as any other property and we can use it in a sort operation.
 We can see the longest-running processes by sorting in a descending direction.

 The final step is to use Format-Table to output the results to screen. The autosize parameter is used to control the formatting of the columns onscreen.

	

Hash Tables

 Hash tables are also known as associative arrays. Details can be found in the help files about_associative_arrays (PowerShell v1) and about_ hash_ tables for PowerShell v2.

	

This concludes our look at the utility cmdlets (Tee-Object isn’t used much, and its use is self-explanatory). They’ll appear in many more scripts throughout the book. You’ve now learned
 enough about them to follow their use in future scripts, where they’ll be referred to by their aliases. Having completed learning
 about cmdlets and the pipeline, it’s time to turn our attention to another feature that gives us an alternative method of
 working in PowerShell: the providers. Once we’ve learned about the providers, we’ll have a look at the help system before
 examining PowerShell v2.

 1.3.4. Providers

 Have you ever wanted a consistent method of working with multiple data stores such as the filesystem, Active Directory, SQL
 Server, IIS, and the Windows Registry? PowerShell can deliver a large part of that vision through the use of providers.

 The provider feature in PowerShell gives us a way of treating data stores as if they were the filesystem. PowerShell demonstrations
 where we do a dir through Active Directory or the Registry always go down well. The provider exposes a data store as just another drive on
 your system. Listing 1.9 shows how to view the installed providers and the associated drives. Note that the cmdlet refers to them as PSDrives to differentiate them from physical drives.

 Listing 1.9. Viewing the installed PowerShell drives

 PS> Get-PSDrive | Format-Table -AutoSize

Name Provider Root CurrentLocation
---- -------- ---- ---------------
Alias Alias
C FileSystem C:\ Scripts
cert Certificate \
D FileSystem D:\
E FileSystem E:\
Env Environment
F FileSystem F:\
Feed FeedStore
Function Function
Gac AssemblyCache Gac
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
IIS WebAdministration \\PCRS2
OneNote OneNote OneNote
Variable Variable

	

Note

 The following drives aren’t part of the standard PowerShell install: Feed, Gac, IIS, and OneNote.

	

The list includes some drives that are specific to PowerShell, such as Environment, which exposes the environmental variables;
 Function, which exposes the PowerShell functions (see chapter 2) loaded into memory; and Variable, which contains the variables active in your session (mixture of system and user-defined
 variables). In PowerShell v2, the filesystem drives get another two columns, which supply used and free space in GB.

 An alternative way of viewing the installed providers is to use Get-PSProvider, which will display the providers, associated drives, and some capabilities. Get-PSProvider will display all providers installed in the PowerShell session, but Get-PSDrive shows only the active providers. I have a provider for Active Directory installed on my laptop, but it’s only active when
 I’m connected to the network and logged on to the Active Directory domain.

 In theory, providers should supply access to a common set of cmdlets that enable navigation through and interaction with the
 data exposed by the provider. The full list can be seen by typing Get-Help about_Core_Commands at a PowerShell prompt. The list includes cmdlets with the following nouns: Item, ItemProperty, ChildItem, Content, Location, Path, PSDrive, and PSProvider.

	

Note

 Not all providers supply access to all of the core commands; for example, the SQL Server provider doesn’t implement the New-Item cmdlet. The common cmdlets can have dynamic parameters added depending on the provider in which they are being used. Check
 help from within the provider for changes to parameters.

	

A provider is navigated in exactly the same way as the filesystem. The full cmdlet name is Set-Location, but I expect most people will be happier using the aliases cd or chdir depending on their background (it’s also much less typing!). Aliases are good things when typing interactively, but should
 be avoided in scripts.

 The core commands have aliases corresponding to DOS or UNIX commands. As a demonstration of navigating a provider, try typing
 the commands from listing 1.10 into PowerShell one at a time.

 Listing 1.10. Navigating the Registry provider

 cd HKLM:
ls
chdir software
dir
cd microsoft
ls
cd ..
dir
cd c:

	

Note

 cd and chdir are aliases of Set-Location; ls and dir are aliases of Get-ChildItem.

	

In this example, we start by navigating into the HKLM: drive (HKEY_Local_Machine). A directory listing is then produced. This
 process is repeated to view the software and Microsoft keys, respectively. It’s also possible to work with the data exposed
 by a provider directly; for example, dir HKLM:\software\Microsoft.

 We’ve now covered the basics of providers. We’ll be working with the providers again when we examine the Registry, SQL Server,
 and IIS in more depth later in the book. The last feature I want to examine is something that’s been mentioned several times:
 the help system.

 1.3.5. Help system

 PowerShell has a set of help files that are presented in the shell as text files when you use Get-Help. The help system will be covered in detail in chapter 2 when we look at learning PowerShell.

 We’ve completed our introduction to PowerShell; all that remains is a look to the future by examining some of the new features
 we can expect in PowerShell v2. The examples of using PowerShell we’ve seen so far are all usable in v2. In these early chapters,
 we’re learning how to use PowerShell. These techniques will see a lot of use in parts 2 and 3.

1.4. PowerShell v2

 PowerShell v2 is available for download from the Microsoft website (http://support.microsoft.com/kb/968929) or is available as part of Windows Server 2008 R2/ Windows 7. The folder name is still v1.0 and we still use .ps1 for script
 extensions. Like PowerShell v1, it’s also available through Windows Update. PowerShell v2 introduces a number of new features
 that extend its capabilities. If you like PowerShell, you’ll love v2. Table 1.4 covers the major new features.

 Table 1.4. New features in PowerShell v2

	
 Feature

 	
 Explanation

	Remoting
 	Enables PowerShell on the local machine to issue commands that’ll be executed on a remote machine or machines. PowerShell
 remoting requires WinRm and PowerShell v2 to be installed on the local and remote machine(s). PowerShell must be started with
 administrative privileges to use for running remote commands.

