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Foreword
      

      
      
      
      Over the last decade, search has become ubiquitous—the keyword search box has evolved to become the de facto UI for exploring
         data and for navigating most websites and applications. At the same time, delivering a truly relevant search experience has
         been elusive, if not a critical blind spot for most organizations.
      

      
      Powerful open source technologies have arisen to deliver fast, feature-rich search (Apache Lucene) in a distributed, highly
         scalable way with little-to-no coding required (Apache Solr and later Elasticsearch). This has provided the necessary infrastructure
         for almost any developer to build a “generally relevant” real-time search engine for the big data era. As more of the hard
         search infrastructure problems have been solved and their solutions commoditized, the competitive differentiators have moved
         away from providing fast, scalable search and more toward delivering the most relevant matches for a user’s information need.
         In other words, delivering “generally relevant” results is no longer sufficient—Google and other top search engines have now
         trained users to expect search applications to almost read their minds. This book is about how to move more aggressively in
         that direction of understanding user intent.
      

      
      Doug Turnbull and John Berryman are two highly experienced search and relevancy experts whom I’ve known for years, typically
         running into each other at search conferences where we’ve all presented. I fondly recall times spent with them discussing
         ideas to solve some of the world’s hardest problems in search relevancy, recommendations, and personalization. No one is more
         excited than I to see their unique expertise codified in this book—one of the best and most engaging technical books I’ve
         ever read.
      

      
      Relevancy tuning is a hard problem—it’s usually misunderstood, and it’s often not immediately obvious when something is wrong.
         It usually requires seeing many bad examples to identify problematic patterns, and it’s often challenging to know what better
         results would look like without actually seeing them show up. Unfortunately, it’s often not until well after a search system
         is deployed into production that organizations begin to realize the gap between out-of-the-box relevancy defaults and true
         domain-driven, personalized matching.
      

      
      Not only that, but the skillsets needed to think about relevancy (domain expertise, feature engineering, machine learning,
         ontologies, user testing, natural language processing) are very different from those needed to build and maintain scalable
         infrastructure (distributed systems, data structures, performance and concurrency, hardware utilization, network calls and
         communication). The role of a relevance engineer is almost entirely lacking in many organizations, leaving so much potential
         untapped for building a search experience that truly delights users and significantly moves a company forward.
      

      
      The spectrum of personalization between manually entered keyword searches and completely automated recommendations is also
         rich with opportunities to deliver relevant matches crafted for each specific user’s needs. The authors do a great job of
         explaining some of the more nuanced ways that search features/signals can be modeled to take full advantage of this spectrum.
         With the techniques in this book, you will be well-equipped to take on the role of a relevance engineer and solve many of
         the most challenging problems inherent in creating a truly personalized, relevant search experience.
      

      
      TREY GRAINGER

      
      AUTHOR, SOLR IN ACTION

      
      SENIOR VICE PRESIDENT OF ENGINEERING AT LUCIDWORKS

      
      

Preface
      

      
      
      
      John and I met while working together as consultants for OpenSource Connections (OSC) solving tough search problems for clients.
         Sometimes we triaged performance (make it go faster!). Other times we helped build out a search application. All of these
         projects had simple-to-measure success metrics. Did it go faster? Is the application complete?
      

      
      Search relevance, though, doesn’t play by these rules. And users, raised in the age of Google, won’t tolerate “good enough”
         search. They want “damn smart” search. They want search to prioritize criteria they care about, not what the search engine
         often idiotically guesses relevant.
      

      
      Like moths attracted to a flame, we both felt drawn to this hard problem. And just like said moths, we often found ourselves
         burned. Through these painful lessons, we persevered and grew, succeeding at tasks we initially considered too difficult.
      

      
      During this time, we also found our voices on OSC’s blog. We realized that little was being written about search relevance
         problems. We developed ideas such as testdriven relevancy. We documented our headaches, our problems, and our triumphs. Together
         we experimented with machine learning approaches, like latent semantic analysis. We dove into Lucene’s guts and explored techniques
         for building custom search components to solve problems. We began exploring information retrieval research. As we learned
         more techniques to solve hard problems, we continued to write about them.
      

      
      Still, blogs have their limits. John and I always hoped to express our ideas more systematically in book form. Luckily, we
         experienced one of those funny chains of events that often lead to opportunity knocking. I presented on Python concurrency
         at a local tech meet-up along with Andrew Montalenti. Since Andrew was giving this talk at PyCon, Manning called Andrew to
         discuss writing a book on Python concurrency. Andrew said he wasn’t interested in writing a book, but perhaps his copresenter
         Doug would be.
      

      
      It turns out I also wasn’t interested in writing a Python concurrency book, but I did have an idea for another book. I approached
         John with the idea, and a couple of conversations later, we’d pulled together a pretty motivating book proposal—and the rest
         is history!
      

      
      That momentous phone call with Manning occurred nearly two years ago. And what a roller-coaster ride it’s been. As these things
         go, we bundled the book with other major life transitions. Both of us added babies to our families. I began a relevance consulting
         practice. John switched jobs, becoming Eventbrite’s resident search expert. Still, we couldn’t resist writing about this fascinating
         topic.
      

      
      You’ll find this book unlike others on tech topics. This book won’t be an enumeration of one technology’s features. It’s more
         of a map through our years of pain, solving the hard problems that had no ready answers. In other words, we’ve walked through
         the search relevancy desert, stumbled upon the many oases, and learned how to avoid the sand people and the Stormtroopers.
      

      
      We present to you this map through the desert, so you don’t get quite as lost as we did. Now excuse us while we hunt for the
         nearest beach to take a nap on ...
      

      
      DOUG TURNBULL
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About this Book
      

      
      
      
      Relevant Search teaches you to respond to users’ searches with content that satisfies and sells. You’ll learn to tightly control search results
         ranking based on your criteria instead of the mystical whims of the search engine. We outline an approach for deeply customizing
         Solr or Elasticsearch relevance ranking as well as methods to help you discover what relevant means for your application.
      

      
      
      
Who should read this book
      

      
      Relevant Search is for Solr or Elasticsearch developers stuck wondering why the search engine doesn’t “get” their users’ searches. Readers
         with at least a basic familiarity of their search engine can use this book to take their skills to the next level. Although
         this book is technical, a great deal of its content frames relevance from an organizational and product-strategy point of
         view—for product managers, content strategists, marketing, or domain experts focused on search.
      

      
      
      
      
How this book is organized
      

      
      We organize Relevant Search by progressing through a technical foundation, and building up to product strategy and cultural issues you’ll face when defining
         and solving search relevance. The book ends with next steps: how to get started with personalized search, semantic search,
         and recommendations.
      

      
      Chapter 1 starts by discussing the problem of relevance. It reflects on domains such as web search, e-commerce, and expert search.
         The chapter discusses the extent that academia supports our attempts at relevance. Finally, we outline our book’s technical
         strategy for solving relevance.
      

      
      Chapter 2 provides a quick review of Lucene’s core data structures and algorithms, as they pertain to relevance. You’ll see how Lucene-based
         search provides an incredible framework for finding relevant content.
      

      
      Chapter 3 teaches you how to debug your relevance. When the data structures and algorithms introduced in chapter 2 don’t work, you’ll need to reach for your tool belt to understand where search broke down.
      

      
      Chapter 4 shows you how to decompose content and searches into descriptive features by using the search engine’s analysis process.
         This fundamental skill teaches you how to use analysis to make anything findable.
      

      
      Chapter 5 begins the discussion of query strategies over multiple fields. In this chapter, we teach you how to construct queries that
         measure specific, search-time ranking factors important to your users.
      

      
      Chapter 6 continues our discussion on query strategies. Here we focus on termcentric techniques, search strategies that support users’
         naïve understanding of relevance.
      

      
      Chapter 7 demonstrates score-shaping techniques such as boosting and filtering. You’ll often need to manipulate search by emphasizing
         recent content, profitable products, or nearby locations.
      

      
      Chapter 8 shows you alternate paths to guide users to relevant content. Sometimes UI components such as browsable facets, autocomplete,
         and highlighting can be simpler ways to steer users in the right direction when relevance ranking doesn’t succeed.
      

      
      Chapter 9 builds a full, relevance-focused search application that will leave you Yowling with insights. Now that you’re steeped in
         the skills of a relevance engineer, you’ll see the full product development process from start to finish.
      

      
      Chapter 10 steps a level higher from product strategy to focus on cultural and organizational factors. How does the search-focused organization
         determine what’s relevant? You’ll see that the organization must implement fast and accurate feedback loops to steer the relevance
         engineer’s efforts.
      

      
      Chapter 11 points you beyond the search engine. You’ll get an introduction to how machine learning, personalization, and semantic search
         can work together to enhance the search engine’s relevance ranking.
      

      
      Appendix A walks you through the step-by-step process we went through to load the book’s data into Elasticsearch through The Movie Database
         (TMDB) API.
      

      
      Appendix B guides the Solr reader through the book by mapping between Elasticsearch and Solr relevance features.
      

      
      
      
      
      
About the code
      

      
      This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source
         code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight what has changed from previous steps in the chapter, such as when a new feature adds to an existing line of
         code.
      

      
      In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
         the available page space in the book. Additionally, comments in the source code have often been removed from the listings
         when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.
      

      
      Examples have been tested with Elasticsearch 2.0 and Python 2.7.

      
      You can find code for chapters 3–9 on the Manning website (www.manning.com/books/relevant-search) and in our book’s GitHub repository (http://github.com/o19s/relevant-search-book). Examples are written in iPython Notebook/Jupyter to allow easy experimentation. The README file details how to set up the
         code’s prerequisites.
      

      
      
      
      
Author Online
      

      
      The purchase of Relevant Search includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the author and other users. To access and subscribe to the forum, point your browser to www.manning.com/books/relevant-search. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
         rules of conduct in the forum.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
         whose contributions to the book’s forum remains voluntary (and unpaid). We suggest you try asking them challenging questions,
         lest their interests stray!
      

      
      The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
         the book is in print.
      

      
      
      
      
Other online resources
      

      
      If you’d like to learn more, we recommend several high-quality resources:

      
      

      
         
         	OpenSource Connection’s blog (http://opensourceconnections.com/blog)
            
         

         
         	John Berryman’s personal blog (http://thoughtbox.solutions)
            
         

         
         	Elastic’s blog (www.elastic.co/blog)
            
         

         
         	Lucidwork’s blog (https://lucidworks.com/blog)
            
         

         
         	Salmon Run, Sujit Pal’s Solr blog (http://sujitpal.blogspot.com/)
            
         

         
         	The Solr Start newsletter (www.solr-start.com)
            
         

         
      

      
      On the more general topic of search and information retrieval, we recommend this canonical text:

      
      

      
         
         	
Introduction to Information Retrieval by Christopher Manning et al. (Cambridge University Press, 2008), http://nlp.stanford.edu/IR-book/.
            
         

         
      

      
      For questions specific to Solr/Elasticsearch, we recommend the discussion forums for each technology:

      
      

      
         
         	Elasticsearch: http://discuss.elastic.co
            
         

         
         	Solr: http://lucene.apache.org/solr/resources.html
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         relevant, semantically enriched search experiences for clients across multiple domains using a variety of search and NLP technology.
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      John Berryman’s first career was as an aerospace engineer, but after several years in aerospace, he found that he most loved his job when
         programming or when working on a good math problem. Eventually, John cut out the aircraft and satellites and started working
         full-time with software development, infrastructure architecture, and search technology. These days, John works at Eventbrite,
         helping to build out event discovery, search, and recommendations using Elasticsearch.
      

      
      

About the Cover Illustration
      

      
      
      
      The figure on the cover of Relevant Search is captioned “Homme de l’Isle de Pathmos,” or a man from the island of Patmos in Greece. The illustration is taken from a
         collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
         collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
         each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
         they lived and what their trade or station in life was just by their dress.
      

      
      The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
         tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
         cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.
      

      
      At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
         computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
         by Grasset de Saint-Sauveur’s pictures.
      

      
      
      
      


Chapter 1. The search relevance problem
      

      
      This chapter covers

      
      

      
         
         	The ubiquity of search (search is all around us!)
            
         

         
         	The challenge of building a relevant search experience
            
         

         
         	Examples of this challenge for prominent search domains
            
         

         
         	The inability of out-of-the-box solutions to solve the problem
            
         

         
         	This book’s approach for building relevant search
            
         

         
      

      
      Getting a search engine to behave can be maddening. Whether you’re just getting started with Solr or Elasticsearch, or you
         have years of experience, you’ve likely struggled with low-quality search results. Out-of-the-box settings haven’t met your
         needs, and you’ve fought to deliver even marginally relevant search results.
      

      
      When it comes to relevance ranking, a search engine can seem like a mystical black box. It’s tempting to ignore relevance
         problems—turning the focus away from search and toward other, less mystical parts of the application such as performance or
         the UI. Unfortunately, the work of search relevance ranking can’t be avoided. Users increasingly need to work with large amounts of content in today’s applications. Whether this means products,
         books, log messages, emails, vacation rentals, or medical articles—the search box is the first place your users go to explore
         and find answers. Without intuitive search to answer questions in human terms, they’ll be hopelessly lost. Thus, despite the
         maddening, seemingly mystical nature of search, you have to find solutions.
      

      
      Relevant Search demystifies relevance. What exactly is relevance? It’s at the root of the search engine’s value proposition. Relevance is the art of ranking content for a search based on how much that content satisfies the needs of the user and the business.
         The devil is completely in the details. Ranking search results for what content? (Tweets? Products? Beanie Babies?) For what
         sorts of users? (Doctors? Tech-savvy shoppers?) For what types of searches? (Written in Japanese? Full of grocery brands?
         Filled with legal jargon?) What do those users expect? (A shopping experience? A library card catalog?) And what does your
         employer hope to get out of this interaction? (Money? Page views? Goodwill?) Search has become such a ubiquitous part of our
         applications, creeping in inch by inch without much fanfare. Answering these questions (getting relevance right) means the
         difference between an engaging user experience and one that disappoints.
      

      
      
      
1.1. Your goal: gaining the skills of a relevance engineer
      

      
      How will you get there? Relevant Search teaches you the skills of a relevance engineer. A relevance engineer transforms the search engine into a seemingly smart system that understands the needs of users and the business. To do this,
         you’ll teach the search engine your content’s important features: attributes such as a restaurant’s location, the words in
         a book’s text, or the color of a dress shirt. With the right features in place, you can measure what matters to your users
         when they search: How far is the restaurant from me? Is this book about the topic I need help with? Will this shirt match
         the pants I just bought? These search-time ranking factors that measure what users care about are called signals. The ever-present challenge, you’ll see, is selecting features and implementing signals that map to the needs of your users
         and business.
      

      
      But technical wizardry is only part of the job (as shown in figure 1.1). Understanding what to implement can be more important than how to do so. Ironically, the relevance engineer rarely knows
         what “relevant” means for a given application. Instead, others—usually nontechnical colleagues—understand the content, business,
         and users’ goals. You’ll learn to advocate for a relevance-centered enterprise that uses this broader business expertise as well as user behavioral data to reveal the experience that users need from search.
      

      
      
      
      Figure 1.1. The relevance engineer works with the search engine and back-end technologies to express business-ranking logic. They collaborate
         on relevance closely with a cross-functional team and are informed heavily by user metrics.
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      We refine these concepts later in the chapter (and throughout this book). But to help set the right foundation, the remainder
         of this chapter defines the relevance problem. Why is relevance so hard? What attempts have been made to solve it? Then we’ll
         switch gears to outline this book’s approach to solving relevance.
      

      
      
      
      
      
1.2. Why is search relevance so hard?
      

      
      Search relevance is such a hard problem in part because we take the act of searching for granted. Search applications take a user’s search queries (the text typed into the search bar) and attempt to rank content
         by how likely it will satisfy.
      

      
      This act occurs so frequently that it’s barely noticed. Reflect on your own experiences. You probably woke up this morning,
         made your coffee, and started fiddling with your smartphone. You looked at the news, scanned Facebook, and checked your email.
         Before the coffee was even done brewing, you probably interacted with a dozen search applications without much thought. Did
         you send a message to a friend that you found in your phone’s contact list? Search for a crucial email? Talk to Siri? Did
         you satisfy your curiosity with a Google search? Did you shop around for that dream 50-inch flat-screen TV on Amazon?
      

      
      In a short time, you experienced the product of many thousands of hours of engineering effort. You engaged with the culmination
         of an even larger body of academic research that goes back a century in the field of information retrieval. Standing on the
         shoulders of giants, you sifted through millions of pieces of information—the entire human collection of information on the
         topic—and found the best reviewed and most popular TV in mere minutes.
      

      
      Or maybe you didn’t have such a great experience. It’s just as likely that you found at least some of your search experiences
         frustrating. Maybe you couldn’t find a contact on your phone because of a simple spelling mistake. Maybe the search engine
         didn’t understand your idea of a dream TV. In frustration you gave up, uninstalling the application while thinking, “Why should
         a reasonable search be so difficult?”
      

      
      In reality, a “simple” search that appears “reasonable” to users often requires extensive engineering work. Users expect a
         great deal out of search applications. Our search applications are asked, within the blink of an eye, to understand what information
         users want based on a few hastily entered search terms. To make it worse, users lack time to comb through dozens of search
         results. Users try your search a few fleeting times, quickly getting frustrated if it seems the search doesn’t bring back
         what they’re looking for. Your window for delivering relevant search results is small and always shrinking.
      

      
      You might be thinking, “Sure the problem seems hard, but why isn’t it easily solved?” Search has been around for a while;
         shouldn’t a search engine such as Solr or Elasticsearch always return the right result? Or why not just send users to Google?
         Why won’t a canned, commercial solution such as Amazon’s A9 solve your search problems?
      

      
      
      1.2.1. What’s a “relevant” search result?
      

      
      We’re easily tricked into seeing search as a single problem. In reality, search applications differ greatly from one another.
         It’s true that a typical search application lets the user enter text, filter through documents, and interact with a list of
         ranked results. But don’t be fooled by superficial appearances. Each application has dramatically different relevance expectations.
         Let’s look at some common classes of search applications to appreciate that your application likely has its own unique definition
         of relevance.
      

      
      First, let’s consider web search. As the web grew, early web search engines were easily tricked by unsavory sites. Shady site creators stuffed phrases into
         their pages to mislead the search engine. At best, early search engines returned any old match for a user query. At worst,
         they led users to spammy or malicious web pages.
      

      
      Google realized that relevance for the web depended on trust, not just text. Users needed help sifting through the untrustworthy
         riffraff on the web. So Google developed its PageRank algorithm[1] to measure the trustworthiness of content. PageRank computes this trustworthiness score by determining how much the rest
         of the web links to a site. Using PageRank, Google brings back not only content that matches the user’s search, but content
         that’s seen as reliable and trustworthy by the rest of the web. This emphasis on returning trustworthy content continues today
         as Google plays a cat-and-mouse game with malicious websites that continually attempt to game the system.
      

      
         1 
            

Read more at “The Anatomy of a Large-Scale Hypertextual Web Search Engine” by Sergey Brin and Lawrence Page at http://infolab.stanford.edu/~backrub/google.html.
            

         

      

      
      Now let’s contrast web search to e-commerce. A site such as Amazon, which has complete control over the content being searched, lacks the dire trustworthiness concern.
         Instead, what’s relevant to e-commerce users is the same thing that matters to any kind of shopper: affordable, highly rated
         products that will satisfy them. But it’s not just the shoppers that matter to a store. E-commerce sites have their own selfish
         interests. They must also return search results that generate profit, clear expiring inventory, and satisfy supplier relationships.
      

      
      Search becomes the e-commerce site’s salesperson. The same priorities that matter to the in-store sales experience must be
         programmed into the e-commerce search by the relevance engineer. The relevance engineer hopes to build a search that understands
         what shoppers want, so that they’ll leave the store with satisfactory purchases. To e-commerce, relevant means not just leading
         users to satisfactory purchases, but also making a buck.
      

      
      Still another kind of search, prominent in medicine, law, and research, digs deeper into text for its definition of relevance.
         This expert search depends on understanding jargon entered by specialists such as lawyers or doctors. These solutions must understand the subtle,
         domain-specific relationships—for instance, that “Heart Attack” is the same thing as “Myocardial Infarction”. Or that acute
         “Myocardial Infarction” is a specific type of “Heart Attack”.
      

      
      Just as e-commerce search mirrors a shopper’s interactions with a salesperson, expert search parallels a searcher’s conversation
         with a research librarian. These librarians understand the lingo of specialized researchers. When asked a question, they guide
         specialists toward data and related research that specialists couldn’t easily find on their own.
      

      
      The basic definition of relevant to these search applications depends on solutions originally intended to organize information
         for libraries. For example, in medicine, the Medical Subject Headings (MeSH) taxonomy shown in figure 1.2 organizes medical concepts to help retrieve information on synonymous, more-specific, or less-specific subjects. To expert
         search, relevant means carefully linking subjects and topics between search queries and content. A relevant result is something that delivers an “Aha!” moment to stuck researchers—a sudden insight
         they couldn’t easily find on their own.
      

      
      
      
      Figure 1.2. MeSH categorization of “Myocardial Infarction” (left) along with several MeSH topics closely related to “Myocardial Infarction”
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      1.2.2. Search: there’s no silver bullet!
      

      
      The classes of search problems we’ve just discussed only scratch the surface in the amazing diversity of search. Is real-estate
         search a kind of e-commerce search? Certainly there’s a resemblance (satisfying users with a satisfactory purchase), but many
         other factors come into play for a house buyer (good schools, neighborhood, number of bedrooms). What about a local restaurant
         search application? Or searching for groceries? Ordering food from a restaurant’s menu? Searching volunteer opportunities?
         Or searching for someone to shovel the driveway after a snowstorm? What about intranet search? And what about your application?
         How do you define what’s relevant?
      

      
      Given this dramatic diversity of relevance requirements, it’s surprising to find so many vendors eager to deliver a surefire,
         silver-bullet solution. Your definition of relevant is likely far more unique than you realize. Your users have expectations
         they may not even be aware of. Your content and business carry challenges you haven’t appreciated yet.
      

      
      Indeed, be grateful that Solr or Elasticsearch don’t work well for your problem out of the box. You didn’t choose a programming
         language because your product is just a module to import from its standard library. If that were true, there’d be nothing
         unique about your product! Rather, think of Solr or Elasticsearch as a search programming framework. An open source search
         engine lets you program your understanding of what’s relevant into the search engine. We’ll teach you just that: the art and science of delivering a relevance
         solution by using open source search technologies that satisfy users and meet business goals.
      

      
      
      
      
      
1.3. Gaining insight from relevance research
      

      
      Okay, so you see that your application has its own definition of what’s relevant. But why is there no universal, defined practice
         for delivering relevant search results to users? Search the web, and you’ll find any number of one-off solutions that solved
         any author’s problem particularly well. What you’re not left with is a sense that search relevance has any holistic grounding
         or common engineering principles but is instead a bag of tricks that can’t be generally applied.
      

      
      In reality, there is a discipline behind relevance: the academic field of information retrieval. It has generally accepted practices to improve
         relevance broadly across many domains. But you’ve seen that what’s relevant depends a great deal on your application. Given
         that, as we introduce information retrieval, think about how its general findings can be used to solve your narrower relevance
         problem.[2]

      
         2 
            

For an introduction to the field of information retrieval, we highly recommend the classic text Introduction to Information Retrieval by Christopher D. Manning et al. (Cambridge University Press, 2008); see http://nlp.stanford.edu/IR-book/.
            

         

      

      
      
      
      1.3.1. Information retrieval
      

      
      Luckily, experts have been studying search for decades. The academic field of information retrieval focuses on the precise
         recall of information to satisfy a user’s information need. What’s an information need? Think of it as a specification of the ideal content that would satisfy the user’s search. This specification goes beyond the search string itself. For example,
         consider a programming problem you’re attempting to solve. You might be trying to figure out why the Java library function
         sort throws a NullPointerException. The information need could be specified as follows:
      

      
      
         
         A solution as to why my particular use of the sort method causes a NullPointerException. (Though I won’t admit it to myself, it’d be nice to have some code to copy-paste that solved my problem so I can go to lunch!)
         

         
      

      
      To satisfy this information need, you’re likely to formulate search queries to find solutions to your particular problem—for
         example, “sort method NullPointerException” or “<code snippet> NullPointerException.” If you’re fortunate, you’ll find a result addressing a problem similar to your own. That information will solve your problem,
         and you’ll move on.
      

      
      In information retrieval, relevance is defined as the practice of returning search results that most satisfy the user’s information needs. Further, classic information
         retrieval focuses on text ranking. Many findings in information retrieval try to measure how likely a given article is going
         to be relevant to a user’s text search. You’ll learn about several of these invaluable methods throughout this book—as many
         of these findings are implemented in open source search engines.
      

      
      To discover better text-searching methods, information retrieval researchers benchmark different strategies by using test
         collections of articles. These test collections include Amazon reviews, Reuters news articles, Usenet posts, and other similar,
         article-length data sets. To help benchmark relevance solutions, these collections have been heavily annotated in an experimental
         search setting, grading which results are most relevant for a given query. For example, when searching for “Mitt Romney,”
         news articles about his 2008 or 2012 presidential run would be considered highly relevant. Perhaps articles about Romney’s
         early management consulting work would be considered moderately relevant. Articles that discuss his father, George Romney,
         likely would be graded much less relevant. These annotated lists of search results that are relevant with respect to a set
         of queries are known as judgment lists (see figure 1.3).
      

      
      
      
      Figure 1.3. Example of making a relevance judgment for the query “Rambo” in Quepid, a judgment list management application
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      Using judgment lists, researchers aim to measure whether changes to text relevance calculations improve the overall relevance
         of the results across every test collection. To classic information retrieval, a solution that improves a dozen text-heavy
         test collections 1% overall is a success. Rather than focusing on one particular problem in depth, information retrieval focuses
         on solving search for a broad set of problems.
      

      
      
      
      
      1.3.2. Can we use information retrieval to solve relevance?
      

      
      You’ve already seen there’s no silver bullet. But information retrieval does seem to systematically create relevance solutions.
         So ask yourself: Do these insights apply to your application? Does your application care about solutions that offer incremental,
         general improvements to searching article-length text? Would it be better to solve the specific problems faced by your application,
         here and now?
      

      
      To be more precise, classic information retrieval begs several questions when brought to bear on applied relevance problems.
         Let’s reflect on these questions to see where information retrieval research can help and where it might stop being helpful.
      

      
      

      
         
         	
Do we care only about information needs? For many applications, satisfying users’ information needs isn’t the only goal. Search exists just as much to satisfy the
            business behind the search application. You saw this with e-commerce earlier. Although it’s often said “the customer is always
            right,” it’s also true that businesses can’t function without selling ads, making a profit, satisfying suppliers, and moving inventory. Many incentives exist in any search experience that puts business needs above the user’s information
            needs. Just like the used-car salesmen trying to move an overpriced clunker off the lot, relevance engineers must work with
            these factors to keep their employer in business.
            
         

         
         	
What besides text reflects information needs? Classic information retrieval focuses on a generic, one-size-fits-all measure of text relevance. These factors may not matter—at
            all—to your application. You need to focus with greater care on your specific problems. We discussed one example: how Google
            revolutionized web search by incorporating a numerical website trust measure (PageRank). Google uses PageRank to get around
            pure text-based measures easily gamed in its domain. Even text search doesn’t always neatly fit into information retrieval’s
            focus on article-length text. Good results for short text snippets such as tweets or titles require different thinking. You,
            not information retrieval researchers, must decide which factors matter to your application, and implement those. An approach that does poorly against the Reuters test set may be exactly what you need to satisfy your
            users.
            
         

         
         	
What does the user experience imply about information needs? Often the promises of the application itself influence what users consider relevant. We discussed expert search earlier. Consider
            two medical search applications. Both serve the same users (doctors). Both hold the same content (medical articles). But there’s
            one important difference: one helps doctors serve sick patients at their bedsides, and the other allows doctors to explore
            their research interests casually in their offices. These dramatically different expectations mean a different understanding
            of what’s relevant for the same search queries. A search for “heart attack” at the patient’s bedside must provide actionable,
            reliable solutions to a dire, life-and-death problem. The research application allows for more variety: doctors search for
            “heart attack” to explore interesting and new research findings less tied to solving specific problems.
            Often the hardest part of being a relevance engineer is understanding the relationship between context and information needs.
            User searches arrive at your search engine with a great deal of baggage attached. This baggage comes in part as additional
            data, perhaps geolocation or user session. But other baggage is entirely implied in the promises made by the search application.
            Is the application built, sold, and marketed for sitting casually at one’s desk and performing research? Or is it instead
            billed as almost an expert system, ready, willing, and able to solve any problem asked of it, including helping a doctor save
            a life?
            
         

         
      

      
      Considering these questions, you can see that information retrieval builds a foundation for applying generally useful relevance
         measures to extremely broad classes of problems. Your job is to solve relevance for your application. As you’ll see, much
         of this exists outside the realm of search technology and speaks to broader product strategy questions: Who are our users?
         What do they expect from this application? What implied and unspecified information needs will search need to address?
      

      
      In fact, before we move on, let’s refine our definition of relevance to what it takes to solve an applied relevance problem:
      

      
      
         
         Relevance is the practice of improving search results for users by satisfying their information needs in the context of a particular user experience, while balancing how ranking impacts our business’s needs.
         

         
      

      
      
      
      
      
1.4. How do you solve relevance?
      

      
      Informed now by information retrieval, let’s focus on how to solve your relevance problems. Open source search engines recognize
         that what’s relevant to your application depends on a broad range of factors. Many of these are application-specific (how
         far the user is from a restaurant, for instance). Others are broader, generic, text-ranking components from information retrieval.
      

      
      Given the capabilities of open source search, how do you solve an applied relevance problem? What framework can we define
         that incorporates both the narrower, domain-specific factors alongside broader information-retrieval techniques?
      

      
      To solve relevance, the relevance engineer:

      
      

      
      
         1.  Identifies salient features describing the content, the user, or the search query
         

      

      
      
         2.  Finds a way to tell the search engine about those features through extraction and enrichment
         

      

      
      
         3.  At search time, measures what’s relevant to a user’s search by crafting signals

      

      
      
         4.  Carefully balances the influence of multiple signals to rank results by manipulating the ranking function
         

      

      
      
      This process is shown in figure 1.4.
      

      
      
      
      Figure 1.4. Relevance engineers select, enrich, or create important features from back-end systems and express ranking signals in terms
         of those features.
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      That sounds a bit abstract. What exactly do we mean? We discussed an example earlier: how Google susses out the feature of
         PageRank for websites (step 1). This feature is encoded in Google’s search engine alongside each web page (thus achieving
         step 2). When you issue a search, Google measures many factors that you, with this search, consider relevant (step 3). For
         example, Google uses PageRank directly as a trustworthiness ranking signal. Other signals could include how frequently your
         search string is mentioned in a page’s title/body or personalization factors using knowledge about your preferences. Google
         blends all of these signals (step 4) into a bigger ranking computation that orders search results in a way that it hopes you’ll
         find satisfactory.
      

      
      We discussed these ideas earlier in the chapter. But let’s lay down some more-precise definitions. A feature is an attribute of the content or query. Features drive decisions. Much of the engineering work in search relevance is in
         feature selection—the act of discovering and generating features that give us the appropriate information when a user searches.
      

      
      Those familiar with machine learning or classification may see something recognizable in these features. When performing classification,
         you identify new features of your data to make better classification decisions. Is a fruit a banana or an apple? If you know
         the color is yellow, there’s a reasonable chance it’s a banana. If you add data about the shape—round or long—then you can
         make an even more definitive decision. As you’ll see, these features also help search solutions make definitive decisions
         about data.
      

      
      Features describe, but what happens when users search? With signals, you program the search engine to rank by using your definition of what’s relevant. Signals measure whether items are relevant
         for a given search (using features, of course!). For example, in our fruit search engine, the user might search for “yellow
         fruit.” The search engine must evaluate whether a Golden Delicious apple might be relevant for this user. We know color matters to fruit shoppers, so one signal might measure how much this fruit’s
         color corresponds to a color being searched for.
      

      
      It’s rare to have only one signal that measures relevance. More often, multiple signals combine to rank search results in
         the search engine’s ranking function. For example, in addition to matching on color, perhaps the fruit shopper considers the freshness of produce. Or the user
         might recall preferred brands, using that as an additional signal. We’ll teach you how to control the search engine’s ranking
         function to rank results in a way that seems eerily “smart”—factoring in all the considerations (signals) that your users
         factor into their definitions of relevant.
      

      
      Fear not—we know these ideas are abstract right now. As you get your hands dirty in future chapters, you’ll begin to have
         the Aha! moment you need to grok what we mean. But to get the general idea, let’s consider examples of features, and how they
         can be used as ranking-time search signals:
      

      
      

      
         
         	
Sales data, user ratings —Features used to signal popular results that users will probably be happier with.
            
         

         
         	
Text with positional information —Used to signal when phrases from the user’s query match the content.
            
         

         
         	
Text with synonyms —Whether synonyms of query terms match the content.
            
         

         
         	
Geolocation —Whether something is near or far: Is the searcher close to the content? Is the sushi restaurant next to the user or in Manhattan?
            
         

         
         	
Machine learning/classification features —Is the search more easily classified into one type of content (a search for movies) and not easily classified into other
            types (a search for lawn equipment)?
            
         

         
         	
Personalization/recommendation —Has the user shown an affinity for any particular kind of content over others? Can you identify other users who are similar
            to the user making a search? Perhaps the historic preferences of the user issuing a search could be used as a signal to influence
            the search results.
            
         

         
      

      
      As you work through future chapters, you’ll see an approach that systematically improves search relevance based on selecting
         features and programming ranking signals. To form a foundation for this work, we’ll first give you an overview of the search
         engine’s internal mechanics and how to debug them in chapters 2 and 3. Chapters 4–7 get at the meaty problems of building features and signals. In chapter 8, we point out alternate strategies to guide users to relevant content when search by itself won’t do.
      

      
      Throughout this book, we use Elasticsearch as our example search engine. Elasticsearch is a modern search engine built upon
         Lucene, a commonly used Java search library. This book also applies to Solr, another search engine based on Lucene. Though
         our examples focus on Elasticsearch, these ideas are generally applicable. Solr readers in particular should follow along
         with appendix B, which helps map features between the two search engines.
      

      
      
      
      
1.5. More than technology: curation, collaboration, and feedback
      

      
      Is a technical foundation enough to solve the search relevance problem? Armed with new skills from this book, you might be
         hungry to improve your employer’s search. Targeting what you think are the biggest relevance problems, you deliver to your
         users what you consider to be an amazing search experience. You release your updates without much fuss; to the organization,
         that’s yet another one of those heads-down, back-end tasks that engineers go off and just figure out. It’s something akin
         to squeezing more performance out of the SQL database, right?
      

      
      Unfortunately, shortly after the release, your boss is at your door. Things look pretty grim. Despite your best efforts, something
         is deeply amiss. Somehow, users aren’t making purchases. They can’t find the information they need. Instead, they’re giving
         up and going to the competition. With revenue headed south, your boss grits her teeth. In desperation, she looks at you square
         in the face and pleads for you to “make it more relevant!” In other words, fix the bug, implement the feature—stay all weekend
         if you have to; just make it work!
      

      
      “Make it more relevant”? Let’s recall our definition of relevance. Perhaps if you meditate on this definition, you’ll see
         how the organization in this story misses the mark:
      

      
      
         
         Relevance is the practice of improving search results for users by satisfying their information needs in the context of a particular user experience, while balancing how ranking impacts our business’s needs.
         

         
      

      
      When you think about this definition, you quickly see that relevance engineers have no idea what relevant search should be! To satisfy your users’ information needs, you need to understand their goals, their domains, and the context of their searches.
         These could vary wildly, from a doctor helping a struggling patient to a grandparent shopping for baby shower presents. Satisfying
         these users means getting inside their heads. Understanding these users goes far beyond search technology, touching nearly
         every competence in the organization. This is especially true as you work to understand business needs such as politics, profit,
         business goals, and other internal factors.
      

      
      Solving the search relevance problem requires shifting the organization’s culture to emphasize cross-functional collaboration.
         How can the organization teach relevance engineers to understand the users’ vernacular and what they expect from search? What
         happens when the application is built for doctors or lawyers? Who helps the engineer understand these users’ domains? How
         does the organization teach a relevance engineer what makes the company the most money? Which suppliers should be kept happy?
         What content has “premium” access in search (and what’s that even supposed to mean)?
      

      
      Even seemingly mundane search applications can be fraught with these complications. Consider a restaurant search application.
         Your marketing colleagues worked hard to bring users “into the doors” of your application. Now the search, acting as the site’s
         salesperson (or perhaps concierge?), needs to satisfy them and make them eager to come back for more.
      

      
      Relevance engineers, though, aren’t the sales department. When a user types “sushi” into the search bar, what restaurants
         does that user expect? Takeout? High-end restaurants? Nearby ones? Depends on the user? Others in the organization, not the relevance engineer, understand what goals users hope to achieve. The relevance engineer is working in isolation to define
         relevance ranking and might as well be painting a house blindfolded.
      

      
      Further, this collaboration goes beyond simply educating the relevance engineer. Curation, the manipulation of content to be easily found by user searches, can matter just as much as teaching a relevance engineer.
         Recall the expert search examples earlier in this chapter. Here the expertise of the librarian can help you build better search
         by organizing content to make it easier to find. Often this organization requires a close meeting of the minds between those
         who understand the content deeply and the relevance engineers who grok how the search engine works.
      

      
      Rooted in these forms of collaboration is the notion of feedback. An effective organization strives to bring relevance engineers
         accurate and quick feedback to inform and guide their efforts. You can visualize several important feedback loops as a series
         of increasingly focused circles, as shown in Figure 1.5. Starting on the outermost loop, the search developers operate within an organization, blissfully unaware of the impact of
         search relevance. As the organization evolves, it moves to inner, more mature forms of feedback: incorporating user behavioral
         data and expert feedback. Finally, the organization encodes its wisdom into relevance tests, enabling test-driven relevancy
         practice—the most mature organizational form.
      

      
      
      
      Figure 1.5. Forms of search-relevance feedback
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      This book primarily teaches you about the technical craft of relevance engineers. But reflecting on what you should be doing hopefully echoes in your mind as you learn these technical lessons. In many examples, we state unequivocally that
         a particular search result is what users want to see. We do this to teach you technical skills to manipulate the search to
         get those results. As you work through those examples, remember the examples in this section before applying lessons directly
         to your relevance problems. We’ll dive deeper into organizational challenges in chapter 10.
      

      
      
      
      
1.6. Summary
      

      
      

      
         
         	Relevance problems are pervasive. Even established domains such as web search, e-commerce, and expert search continue to struggle
            to improve the relevance of search results.
            
         

























