

 [image: cover]

Deep Learning with R

 François Chollet with J. J. Allaire

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editor: Jerry Gaines
Review editor: Aleksandar Dragosavljević
Project editor: Tiffany Taylor
Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant
Technical proofreaders: Alex Ott and Richard Tobias
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617295546

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Authors

 About the Cover

 1. Fundamentals of deep learning

 Chapter 1. What is deep learning?

 Chapter 2. Before we begin: the mathematical building blocks of neural networks

 Chapter 3. Getting started with neural networks

 Chapter 4. Fundamentals of machine learning

 2. Deep learning in practice

 Chapter 5. Deep learning for computer vision

 Chapter 6. Deep learning for text and sequences

 Chapter 7. Advanced deep-learning best practices

 Chapter 8. Generative deep learning

 Chapter 9. Conclusions

 Appendix A. Installing Keras and its dependencies on Ubuntu

 Appendix B. Running RStudio Server on an EC2 GPU instance

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Authors

 About the Cover

 1. Fundamentals of deep learning

 Chapter 1. What is deep learning?

 1.1. Artificial intelligence, machine learning, and deep learning

 1.1.1. Artificial intelligence

 1.1.2. Machine learning

 1.1.3. Learning representations from data

 1.1.4. The “deep” in deep learning

 1.1.5. Understanding how deep learning works, in three figures

 1.1.6. What deep learning has achieved so far

 1.1.7. Don’t believe the short-term hype

 1.1.8. The promise of AI

 1.2. Before deep learning: a brief history of machine learning

 1.2.1. Probabilistic modeling

 1.2.2. Early neural networks

 1.2.3. Kernel methods

 1.2.4. Decision trees, random forests, and gradient boosting machines

 1.2.5. Back to neural networks

 1.2.6. What makes deep learning different

 1.2.7. The modern machine-learning landscape

 1.3. Why deep learning? Why now?

 1.3.1. Hardware

 1.3.2. Data

 1.3.3. Algorithms

 1.3.4. A new wave of investment

 1.3.5. The democratization of deep learning

 1.3.6. Will it last?

 Chapter 2. Before we begin: the mathematical building blocks of neural networks

 2.1. A first look at a neural network

 2.2. Data representations for neural networks

 2.2.1. Scalars (0D tensors)

 2.2.2. Vectors (1D tensors)

 2.2.3. Matrices (2D tensors)

 2.2.4. 3D tensors and higher-dimensional tensors

 2.2.5. Key attributes

 2.2.6. Manipulating tensors in R

 2.2.7. The notion of data batches

 2.2.8. Real-world examples of data tensors

 2.2.9. Vector data

 2.2.10. Timeseries data or sequence data

 2.2.11. Image data

 2.2.12. Video data

 2.3. The gears of neural networks: tensor operations

 2.3.1. Element-wise operations

 2.3.2. Operations involving tensors of different dimensions

 2.3.3. Tensor dot

 2.3.4. Tensor reshaping

 2.3.5. Geometric interpretation of tensor operations

 2.3.6. A geometric interpretation of deep learning

 2.4. The engine of neural networks: gradient-based optimization

 2.4.1. What’s a derivative?

 2.4.2. Derivative of a tensor operation: the gradient

 2.4.3. Stochastic gradient descent

 2.4.4. Chaining derivatives: the Backpropagation algorithm

 2.5. Looking back at our first example

 2.6. Summary

 Chapter 3. Getting started with neural networks

 3.1. Anatomy of a neural network

 3.1.1. Layers: the building blocks of deep learning

 3.1.2. Models: networks of layers

 3.1.3. Loss functions and optimizers: keys to configuring the learning process

 3.2. Introduction to Keras

 3.2.1. Keras, TensorFlow, Theano, and CNTK

 3.2.2. Installing Keras

 3.2.3. Developing with Keras: a quick overview

 3.3. Setting up a deep-learning workstation

 3.3.1. Getting Keras running: two options

 3.3.2. Running deep-learning jobs in the cloud: pros and cons

 3.3.3. What is the best GPU for deep learning?

 3.4. Classifying movie reviews: a binary classification example

 3.4.1. The IMDB dataset

 3.4.2. Preparing the data

 3.4.3. Building your network

 3.4.4. Validating your approach

 3.4.5. Using a trained network to generate predictions on new data

 3.4.6. Further experiments

 3.4.7. Wrapping up

 3.5. Classifying newswires: a multiclass classification example

 3.5.1. The Reuters dataset

 3.5.2. Preparing the data

 3.5.3. Building your network

 3.5.4. Validating your approach

 3.5.5. Generating predictions on new data

 3.5.6. A different way to handle the labels and the loss

 3.5.7. The importance of having sufficiently large intermediate layers

 3.5.8. Further experiments

 3.5.9. Wrapping up

 3.6. Predicting house prices: a regression example

 3.6.1. The Boston Housing Price dataset

 3.6.2. Preparing the data

 3.6.3. Building your network

 3.6.4. Validating your approach using K-fold validation

 3.6.5. Wrapping up

 3.7. Summary

 Chapter 4. Fundamentals of machine learning

 4.1. Four branches of machine learning

 4.1.1. Supervised learning

 4.1.2. Unsupervised learning

 4.1.3. Self-supervised learning

 4.1.4. Reinforcement learning

 4.2. Evaluating machine-learning models

 4.2.1. Training, validation, and test sets

 4.2.2. Things to keep in mind

 4.3. Data preprocessing, feature engineering, and feature learning

 4.3.1. Data preprocessing for neural networks

 4.3.2. Feature engineering

 4.4. Overfitting and underfitting

 4.4.1. Reducing the network’s size

 4.4.2. Adding weight regularization

 4.4.3. Adding dropout

 4.5. The universal workflow of machine learning

 4.5.1. Defining the problem and assembling a dataset

 4.5.2. Choosing a measure of success

 4.5.3. Deciding on an evaluation protocol

 4.5.4. Preparing your data

 4.5.5. Developing a model that does better than a baseline

 4.5.6. Scaling up: developing a model that overfits

 4.5.7. Regularizing your model and tuning your hyperparameters

 4.6. Summary

 2. Deep learning in practice

 Chapter 5. Deep learning for computer vision

 5.1. Introduction to convnets

 5.1.1. The convolution operation

 5.1.2. The max-pooling operation

 5.2. Training a convnet from scratch on a small dataset

 5.2.1. The relevance of deep learning for small-data problems

 5.2.2. Downloading the data

 5.2.3. Building your network

 5.2.4. Data preprocessing

 5.2.5. Using data augmentation

 5.3. Using a pretrained convnet

 5.3.1. Feature extraction

 5.3.2. Fine-tuning

 5.3.3. Wrapping up

 5.4. Visualizing what convnets learn

 5.4.1. Visualizing intermediate activations

 5.4.2. Visualizing convnet filters

 5.4.3. Visualizing heatmaps of class activation

 5.5. Summary

 Chapter 6. Deep learning for text and sequences

 6.1. Working with text data

 6.1.1. One-hot encoding of words and characters

 6.1.2. Using word embeddings

 6.1.3. Putting it all together: from raw text to word embeddings

 6.1.4. Wrapping up

 6.2. Understanding recurrent neural networks

 6.2.1. A recurrent layer in Keras

 6.2.2. Understanding the LSTM and GRU layers

 6.2.3. A concrete LSTM example in Keras

 6.2.4. Wrapping up

 6.3. Advanced use of recurrent neural networks

 6.3.1. A temperature-forecasting problem

 6.3.2. Preparing the data

 6.3.3. A common-sense, non-machine-learning baseline

 6.3.4. A basic machine-learning approach

 6.3.5. A first recurrent baseline

 6.3.6. Using recurrent dropout to fight overfitting

 6.3.7. Stacking recurrent layers

 6.3.8. Using bidirectional RNNs

 6.3.9. Going even further

 6.3.10. Wrapping up

 6.4. Sequence processing with convnets

 6.4.1. Understanding 1D convolution for sequence data

 6.4.2. 1D pooling for sequence data

 6.4.3. Implementing a 1D convnet

 6.4.4. Combining CNNs and RNNs to process long sequences

 6.4.5. Wrapping up

 6.5. Summary

 Chapter 7. Advanced deep-learning best practices

 7.1. Going beyond the sequential model: the Keras functional API

 7.1.1. Introduction to the functional API

 7.1.2. Multi-input models

 7.1.3. Multi-output models

 7.1.4. Directed acyclic graphs of layers

 7.1.5. Layer weight sharing

 7.1.6. Models as layers

 7.1.7. Wrapping up

 7.2. Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard

 7.2.1. Using callbacks to act on a model during training

 7.2.2. Introduction to TensorBoard: the TensorFlow visualization framework

 7.2.3. Wrapping up

 7.3. Getting the most out of your models

 7.3.1. Advanced architecture patterns

 7.3.2. Hyperparameter optimization

 7.3.3. Model ensembling

 7.3.4. Wrapping up

 7.4. Summary

 Chapter 8. Generative deep learning

 8.1. Text generation with LSTM

 8.1.1. A brief history of generative recurrent networks

 8.1.2. How do you generate sequence data?

 8.1.3. The importance of the sampling strategy

 8.1.4. Implementing character-level LSTM text generation

 8.1.5. Wrapping up

 8.2. DeepDream

 8.2.1. Implementing DeepDream in Keras

 8.2.2. Wrapping up

 8.3. Neural style transfer

 8.3.1. The content loss

 8.3.2. The style loss

 8.3.3. Neural style transfer in Keras

 8.3.4. Wrapping up

 8.4. Generating images with variational autoencoders

 8.4.1. Sampling from latent spaces of images

 8.4.2. Concept vectors for image editing

 8.4.3. Variational autoencoders

 8.4.4. Wrapping up

 8.5. Introduction to generative adversarial networks

 8.5.1. A schematic GAN implementation

 8.5.2. A bag of tricks

 8.5.3. The generator

 8.5.4. The discriminator

 8.5.5. The adversarial network

 8.5.6. How to train your DCGAN

 8.5.7. Wrapping up

 8.6. Summary

 Chapter 9. Conclusions

 9.1. Key concepts in review

 9.1.1. Various approaches to AI

 9.1.2. What makes deep learning special within the field of machine learning

 9.1.3. How to think about deep learning

 9.1.4. Key enabling technologies

 9.1.5. The universal machine-learning workflow

 9.1.6. Key network architectures

 9.1.7. The space of possibilities

 9.2. The limitations of deep learning

 9.2.1. The risk of anthropomorphizing machine-learning models

 9.2.2. Local generalization vs. extreme generalization

 9.2.3. Wrapping up

 9.3. The future of deep learning

 9.3.1. Models as programs

 9.3.2. Beyond backpropagation and differentiable layers

 9.3.3. Automated machine learning

 9.3.4. Lifelong learning and modular subroutine reuse

 9.3.5. The long-term vision

 9.4. Staying up to date in a fast-moving field

 9.4.1. Practice on real-world problems using Kaggle

 9.4.2. Read about the latest developments on arXiv

 9.4.3. Explore the Keras ecosystem

 9.5. Final words

 Appendix A. Installing Keras and its dependencies on Ubuntu

 A.1. Overview of the installation process

 A.2. Installing system prerequisites

 A.3. Setting up GPU support

 A.3.1 Installing CUDA

 A.3.2 Installing cuDNN

 A.3.3 The CUDA environment

 A.4. Installing Keras and TensorFlow

 Appendix B. Running RStudio Server on an EC2 GPU instance

 B.1. Why use AWS for deep learning?

 B.2. Why not use AWS for deep learning?

 B.3. Setting up an AWS GPU instance

 B.3.1 Installing R and RStudio Server

 B.3.2 Configuring CUDA

 B.3.3 Keras prerequisites

 B.4. Accessing RStudio Server

 B.5. Installing Keras

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 If you’ve picked up this book, you’re probably aware of the extraordinary progress that deep learning has represented for
 the field of artificial intelligence in the recent past. In a mere five years, we’ve gone from near-unusable image recognition
 and speech transcription, to superhuman performance on these tasks.

 The consequences of this sudden progress extend to almost every industry. But in order to begin deploying deep-learning technology
 to every problem that it could solve, we need to make it accessible to as many people as possible, including non-experts—people
 who aren’t researchers or graduate students. For deep learning to reach its full potential, we need to radically democratize
 it.

 When I released the first version of the Keras deep-learning framework in March 2015, the democratization of AI wasn’t what
 I had in mind. I had been doing research in machine learning for several years, and had built Keras to help me with my own
 experiments. But throughout 2015 and 2016, tens of thousands of new people entered the field of deep learning; many of them
 picked up Keras because it was—and still is—the easiest framework to get started with. As I watched scores of newcomers use
 Keras in unexpected, powerful ways, I came to care deeply about the accessibility and democratization of AI. I realized that
 the further we spread these technologies, the more useful and valuable they become. Accessibility quickly became an explicit
 goal in the development of Keras, and over a few short years, the Keras developer community has made fantastic advancements
 on this front. We’ve put deep learning into the hands of tens of thousands of people, who in turn are using it to solve important
 problems we didn’t even know existed until recently.

 The book you’re holding is another step on the way to making deep learning available to as many people as possible. Keras
 always needed a companion course to simultaneously cover fundamentals of deep learning, Keras usage patterns, and deep-learning
 best practices. This book is my best effort to produce such a course. I wrote it with a focus on making the concepts behind
 deep learning, and their implementation, as approachable as possible. Doing so didn’t require me to dumb down anything—I strongly
 believe that there are no difficult ideas in deep learning. I hope you’ll find this book valuable and that it will enable
 you to begin building intelligent applications and solve the problems that matter to you.

Acknowledgments

 I’d like to thank the Keras community for making this book possible. Keras has grown to have hundreds of open source contributors
 and more than 200,000 users. Your contributions and feedback have turned Keras into what it is today.

 I’d also like to thank Google for backing the Keras project. It has been fantastic to see Keras adopted as TensorFlow’s high-level
 API. A smooth integration between Keras and TensorFlow greatly benefits both TensorFlow users and Keras users and makes deep
 learning accessible to most.

 I want to thank the people at Manning who made this book possible: publisher Marjan Bace and everyone on the editorial and
 production teams, including Jennifer Stout, Janet Vail, Tiffany Taylor, Katie Tennant, Dottie Marsico, and many others who
 worked behind the scenes.

 Many thanks go to the technical peer reviewers led by Aleksandar Dragosavljević—Diego Acuña Rozas, Geoff Barto, David Blumenthal-Barby,
 Abel Brown, Clark Dorman, Clark Gaylord, Thomas Heiman, Wilson Mar, Sumit Pal, Vladimir Pasman, Gustavo Patino, Peter Rabinovitch,
 Alvin Raj, Claudio Rodriguez, Srdjan Santic, Richard Tobias, Martin Verzilli, William E. Wheeler, and Daniel Williams—and
 the forum contributors, who caught technical mistakes, errors in terminology, and typos, and made topic suggestions. Each
 pass through the review process and each piece of feedback implemented through the forum topics shaped and molded the manuscript.

 On the technical side, special thanks go to Jerry Gaines, who served as the book’s technical editor; and Alex Ott and Richard
 Tobias, who served as the book’s technical proofreaders. They’re the best technical editors I could have hoped for.

 Finally, I’d like to express my gratitude to my wife Maria for being extremely supportive throughout the development of Keras
 and the writing of this book.

About This Book

 Deep Learning with R is meant for statisticians, analysts, engineers, and students with a reasonable amount of R experience but no significant
 knowledge of machine learning and deep learning. This book is an adaptation of the previously published Deep Learning with Python (Manning, 2018) with all the code examples using the R interface to Keras. The goal of the book is to provide a learning
 resource for the R community that goes all the way from basic theory to advanced practical applications. You’ll learn from
 more than 30 code examples that include detailed commentary, practical recommendations, and simple high-level explanations
 of everything you need to know to start using deep learning to solve concrete problems.

 The code examples use the deep-learning framework Keras, with TensorFlow as a backend engine. Keras, one of the most popular
 and fastest-growing deep-learning frameworks, is widely recommended as the best tool to get started with deep learning. After
 reading this book, you’ll have a solid understanding of what deep learning is, when it’s applicable, and what its limitations
 are. You’ll be familiar with the standard workflow for approaching and solving machine-learning problems, and you’ll know
 how to address commonly encountered issues. You’ll be able to use Keras to tackle real-world problems ranging from computer
 vision to natural-language processing: image classification, timeseries forecasting, sentiment analysis, image and text generation,
 and more.

Who should read this book

 This book is written for people with R experience who want to get started with machine learning and deep learning. But this
 book can also be valuable to many different types of readers:

 	If you’re a data scientist familiar with machine learning, this book will provide you with a solid, practical introduction
 to deep learning, the fastest-growing and most significant subfield of machine learning.

 	If you’re a deep-learning expert looking to get started with the Keras framework, you’ll find this book to be the best Keras
 crash course available.

 	If you’re a graduate student studying deep learning in a formal setting, you’ll find this book to be a practical complement
 to your education, helping you build intuition around the behavior of deep neural networks and familiarizing you with key
 best practices.

 Even technically minded people who don’t code regularly will find this book useful as an introduction to both basic and advanced
 deep-learning concepts. In order to use Keras, you’ll need reasonable R proficiency. You don’t need previous experience with
 machine learning or deep learning: this book covers from scratch all the necessary basics. You don’t need an advanced mathematics
 background, either—high school–level mathematics should suffice in order to follow along.

Roadmap

 This book is structured in two parts. If you have no prior experience with machine learning, we strongly recommend that you
 complete part 1 before approaching part 2. We’ll start with simple examples, and as the book goes on, we’ll get increasingly close to state-of-the-art techniques.

 Part 1 is a high-level introduction to deep learning, providing context and definitions, and explaining all the notions required
 to get started with machine learning and neural networks:

 	
Chapter 1 presents essential context and background knowledge around AI, machine learning, and deep learning.

 	
Chapter 2 introduces fundamental concepts necessary in order to approach deep learning: tensors, tensor operations, gradient descent,
 and backpropagation. This chapter also features the book’s first example of a working neural network.

 	
Chapter 3 includes everything you need to get started with neural networks: an introduction to Keras, our deep-learning framework of
 choice; a guide for setting up your workstation; and three foundational code examples with detailed explanations. By the end
 of this chapter, you’ll be able to train simple neural networks to handle classification and regression tasks, and you’ll
 have a solid idea of what’s happening in the background as you train them.

 	
Chapter 4 explores the canonical machine-learning workflow. You’ll also learn about common pitfalls and their solutions.

 Part 2 takes an in-depth dive into practical applications of deep learning in computer vision and natural-language processing. Many
 of the examples introduced in this part can be used as templates to solve problems you’ll encounter in the real-world practice
 of deep learning:

 	
Chapter 5 examines a range of practical computer-vision examples, with a focus on image classification.

 	
Chapter 6 gives you practice with techniques for processing sequence data, such as text and timeseries.

 	
Chapter 7 introduces advanced techniques for building state-of-the-art deep-learning models.

 	
Chapter 8 explains generative models: deep-learning models capable of creating images and text, with sometimes surprisingly artistic
 results.

 	
Chapter 9 is dedicated to consolidating what you’ve learned throughout the book, as well as opening perspectives on the limitations
 of deep learning and exploring its probable future.

Software/hardware requirements

 All of this book’s code examples use the Keras deep-learning framework (https://keras.rstudio.com), which is open source and free to download. You’ll need access to a UNIX machine; it’s possible to use Windows, too, but
 we don’t recommend it.

 We also recommend that you have a recent NVIDIA GPU on your machine, such as a TITAN X. This isn’t required, but it will make
 your experience better by allowing you to run the code examples several times faster. You can find details on setting up a
 GPU workstation at https://tensorflow.rstudio.com/tools/local_gpu.

 If you don’t have access to a local workstation with a recent NVIDIA GPU, you can use a cloud environment, instead. In particular,
 you can use Google Cloud instances (such as an n1-standard-8 instance with an NVIDIA Tesla K80 add-on) or Amazon Web Services
 (AWS) GPU instances (such as a p2.xlarge instance). You can find details on various cloud GPU options at https://tensorflow.rstudio.com/tools/cloud_gpu.

Source code

 All code examples in this book are available for download as R notebooks from the book’s website, www.manning.com/books/deep-learning-with-r, and on GitHub at https://github.com/jjallaire/deep-learning-with-r-notebooks.

Book forum

 Purchase of Deep Learning with R includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/deep-learning-with-r. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the Authors

 [image:]

 FRANÇOIS CHOLLET works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a
 contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision
 and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field,
 including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information
 Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.

 J.J. ALLAIRE is the founder of RStudio and the creator of the RStudio IDE. J.J. is the author of the R interfaces to TensorFlow and Keras.

About the Cover

 The figure on the cover of Deep Learning with R is captioned “Habit of a Chinese Lady in 1700.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading
 map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of
 commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs
 of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and
 travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular,
 introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically,
 we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual
 and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative
 of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back
 to life by Jefferys’ pictures.

Part 1. Fundamentals of deep learning

 Chapters 1–4 of this book will give you a foundational understanding of what deep learning is, what it can achieve, and how it works.
 These chapters will also make you familiar with the canonical workflow for solving data problems using deep learning. If you
 aren’t already highly knowledgeable about deep learning, you should definitely begin by reading part 1 in full before moving on to the practical applications in part 2.

Chapter 1. What is deep learning?

 This chapter covers

 	High-level definitions of fundamental concepts

 	Timeline of the development of machine learning

 	Key factors behind deep learning’s rising popularity and future potential

 In the past few years, artificial intelligence (AI) has been a subject of intense media hype. Machine learning, deep learning,
 and AI come up in countless articles, often outside of technology-minded publications. We’re promised a future of intelligent
 chatbots, self-driving cars, and virtual assistants—a future sometimes painted in a grim light and other times as utopian,
 where human jobs will be scarce, and most economic activity will be handled by robots or AI agents. For a future or current
 practitioner of machine learning, it’s important to be able to recognize the signal in the noise so that you can tell world-changing
 developments from overhyped press releases. Our future is at stake, and it’s a future in which you have an active role to
 play: after reading this book, you’ll be one of those who develop the AI agents. So let’s tackle these questions: What has
 deep learning achieved so far? How significant is it? Where are we headed next? Should you believe the hype? This chapter
 provides essential context around artificial intelligence, machine learning, and deep learning.

1.1. Artificial intelligence, machine learning, and deep learning

 First, we need to define clearly what we’re talking about when we mention AI. What are artificial intelligence, machine learning, and deep learning (see figure 1.1)? How do they relate to each other?

 Figure 1.1. Artificial intelligence, machine learning, and deep learning

 [image:]

 1.1.1. Artificial intelligence

 Artificial intelligence was born in the 1950s, when a handful of pioneers from the nascent field of computer science started
 asking whether computers could be made to “think”—a question whose ramifications we’re still exploring today. A concise definition
 of the field would be as follows: the effort to automate intellectual tasks normally performed by humans. As such, AI is a general field that encompasses machine learning and deep learning, but that also includes many more approaches
 that don’t involve any learning. Early chess programs, for instance, only involved hardcoded rules crafted by programmers,
 and didn’t qualify as machine learning. For a fairly long time, many experts believed that human-level artificial intelligence
 could be achieved by having programmers handcraft a sufficiently large set of explicit rules for manipulating knowledge. This
 approach is known as symbolic AI, and it was the dominant paradigm in AI from the 1950s to the late 1980s. It reached its peak popularity during the expert systems boom of the 1980s.

 Although symbolic AI proved suitable to solve well-defined, logical problems, such as playing chess, it turned out to be intractable
 to figure out explicit rules for solving more complex, fuzzy problems, such as image classification, speech recognition, and
 language translation. A new approach arose to take symbolic AI’s place: machine learning.

 1.1.2. Machine learning

 In Victorian England, Lady Ada Lovelace was a friend and collaborator of Charles Babbage, the inventor of the Analytical Engine: the first-known general-purpose, mechanical computer. Although visionary and far ahead of its time, the Analytical Engine
 wasn’t meant as a general-purpose computer when it was designed in the 1830s and 1840s, because the concept of general-purpose computation was yet to be invented. It was merely meant as a way to
 use mechanical operations to automate certain computations from the field of mathematical analysis—hence, the name Analytical
 Engine. In 1843, Ada Lovelace remarked on the invention, “The Analytical Engine has no pretensions whatever to originate anything.
 It can do whatever we know how to order it to perform.... Its province is to assist us in making available what we’re already
 acquainted with.”

 This remark was later quoted by AI pioneer Alan Turing as “Lady Lovelace’s objection” in his landmark 1950 paper “Computing
 Machinery and Intelligence,”[1] which introduced the Turing test as well as key concepts that would come to shape AI. Turing was quoting Ada Lovelace while pondering whether general-purpose
 computers could be capable of learning and originality, and he came to the conclusion that they could.

 1

A. M. Turing, “Computing Machinery and Intelligence,” Mind 59, no. 236 (1950): 433-460.

 Machine learning arises from this question: could a computer go beyond “whatever we know how to order it to perform” and learn
 on its own how to perform a specified task? Could a computer surprise us? Rather than programmers crafting data-processing
 rules by hand, could a computer automatically learn these rules by looking at data?

 This question opens the door to a new programming paradigm. In classical programming, the paradigm of symbolic AI, humans
 input rules (a program) and data to be processed according to these rules, and out come answers (see figure 1.2). With machine learning, humans input data as well as the answers expected from the data, and out come the rules. These rules
 can then be applied to new data to produce original answers.

 Figure 1.2. Machine learning: a new programming paradigm

 [image:]

 A machine-learning system is trained rather than explicitly programmed. It’s presented with many examples relevant to a task, and it finds statistical structure
 in these examples that eventually allows the system to come up with rules for automating the task. For instance, if you wished
 to automate the task of tagging your vacation pictures, you could present a machine-learning system with many examples of
 pictures already tagged by humans, and the system would learn statistical rules for associating specific pictures to specific
 tags.

 Although machine learning only started to flourish in the 1990s, it has quickly become the most popular and most successful
 subfield of AI, a trend driven by the availability of faster hardware and larger datasets. Machine learning is tightly related
 to mathematical statistics, but it differs from statistics in several important ways. Unlike statistics, machine learning
 tends to deal with large, complex datasets (such as a dataset of millions of images, each consisting of tens of thousands
 of pixels) for which classical statistical analysis such as Bayesian analysis would be impractical. As a result, machine learning, and especially deep learning, exhibits comparatively little mathematical theory—maybe too little—and
 is engineering oriented. It’s a hands-on discipline in which ideas are proven empirically more often than theoretically.

 1.1.3. Learning representations from data

 To define deep learning and understand the difference between deep learning and other machine-learning approaches, first we need some idea of what
 machine-learning algorithms do. We just stated that machine learning discovers rules to execute a data-processing task, given examples of what’s expected.
 So, to do machine learning, we need three things:

 	
Input data points—For instance, if the task is speech recognition, these data points could be sound files of people speaking. If the task is
 image tagging, they could be pictures.

 	
Examples of the expected output—In a speech-recognition task, these could be human-generated transcripts of sound files. In an image task, expected outputs
 could be tags such as “dog,” “cat,” and so on.

 	
A way to measure whether the algorithm is doing a good job—This is necessary in order to determine the distance between the algorithm’s current output and its expected output. The
 measurement is used as a feedback signal to adjust the way the algorithm works. This adjustment step is what we call learning.

 A machine-learning model transforms its input data into meaningful outputs, a process that is “learned” from exposure to known
 examples of inputs and outputs. Therefore, the central problem in machine learning and deep learning is to meaningfully transform data: in other words, to learn useful representations of the input data at hand—representations that get us closer to the expected output. Before we go any further: what’s a representation?
 At its core, it’s a different way to look at data—to represent or encode data. For instance, a color image can be encoded in the RGB format (red-green-blue) or in the HSV format (hue-saturation-value):
 these are two different representations of the same data. Some tasks that may be difficult with one representation can become
 easy with another. For example, the task “select all red pixels in the image” is simpler in the RGB format, whereas “make
 the image less saturated” is simpler in the HSV format. Machine-learning models are all about finding appropriate representations
 for their input data—transformations of the data that make it more amenable to the task at hand, such as a classification
 task.

 Let’s make this concrete. Consider an x-axis, a y-axis, and some points represented by their coordinates in the (x, y) system,
 as shown in figure 1.3.

 Figure 1.3. Some sample data

 [image:]

 As you can see, we have a few white points and a few black points. Let’s say we want to develop an algorithm that can take
 the coordinates (x, y) of a point and output whether that point is likely to be black or to be white. In this case,

 	The inputs are the coordinates of our points.

 	The expected outputs are the colors of our points.

 	A way to measure whether our algorithm is doing a good job could be, for instance, the percentage of points that are being
 correctly classified.

 What we need here is a new representation of our data that cleanly separates the white points from the black points. One transformation
 we could use, among many other possibilities, would be a coordinate change, illustrated in figure 1.4.

 Figure 1.4. Coordinate change

 [image:]

 In this new coordinate system, the coordinates of our points can be said to be a new representation of our data. And it’s
 a good one! With this representation, the black/white classification problem can be expressed as a simple rule: “Black points
 are such that x > 0,” or “White points are such that x < 0.” This new representation basically solves the classification problem.

 In this case, we defined the coordinate change by hand. But if instead we tried systematically searching for different possible
 coordinate changes, and used as feedback the percentage of points being correctly classified, then we would be doing machine
 learning. Learning, in the context of machine learning, describes an automatic search process for better representations.

 All machine-learning algorithms consist of automatically finding such transformations that turn data into more-useful representations
 for a given task. These operations can be coordinate changes, as you just saw, or linear projections (which may destroy information),
 translations, nonlinear operations (such as “select all points such that x > 0”), and so on. Machine-learning algorithms aren’t
 usually creative in finding these transformations; they’re merely searching through a predefined set of operations, called
 a hypothesis space.

 So that’s what machine learning is, technically: searching for useful representations of some input data, within a predefined
 space of possibilities, using guidance from a feedback signal. This simple idea allows for solving a remarkably broad range of intellectual tasks, from speech recognition
 to autonomous car driving.

 Now that you understand what we mean by learning, let’s take a look at what makes deep learning special.

 1.1.4. The “deep” in deep learning

 Deep learning is a specific subfield of machine learning: a new take on learning representations from data that puts an emphasis
 on learning successive layers of increasingly meaningful representations. The deep in deep learning isn’t a reference to any kind of deeper understanding achieved by the approach; rather, it stands for this idea of successive
 layers of representations. How many layers contribute to a model of the data is called the depth of the model. Other appropriate names for the field could have been layered representations learning and hierarchical representations learning. Modern deep learning often involves tens or even hundreds of successive layers of representations—and they’re all learned
 automatically from exposure to training data. Meanwhile, other approaches to machine learning tend to focus on learning only
 one or two layers of representations of the data; hence, they’re sometimes called shallow learning.

 In deep learning, these layered representations are (almost always) learned via models called neural networks, structured in literal layers stacked on top of each other. The term neural network is a reference to neurobiology, but although some of the central concepts in deep learning were developed in part by drawing
 inspiration from our understanding of the brain, deep-learning models are not models of the brain. There’s no evidence that the brain implements anything like the learning mechanisms used in modern deep-learning
 models. You may come across pop-science articles proclaiming that deep learning works like the brain or was modeled after
 the brain, but that isn’t the case. It would be confusing and counterproductive for newcomers to the field to think of deep
 learning as being in any way related to neurobiology; you don’t need that shroud of “just like our minds” mystique and mystery,
 and you may as well forget anything you may have read about hypothetical links between deep learning and biology. For our
 purposes, deep learning is a mathematical framework for learning representations from data.

 What do the representations learned by a deep-learning algorithm look like? Let’s examine how a network several layers deep
 (see figure 1.5) transforms an image of a digit in order to recognize what digit it is.

 Figure 1.5. A deep neural network for digit classification

 [image:]

 As you can see in figure 1.6, the network transforms the digit image into representations that are increasingly different from the original image and
 increasingly informative about the final result. You can think of a deep network as a multistage information-distillation
 operation, where information goes through successive filters and comes out increasingly purified (that is, useful with regard to some task).

 Figure 1.6. Deep representations learned by a digit-classification model

 [image:]

 So that’s what deep learning is, technically: a multistage way to learn data representations. It’s a simple idea—but, as it
 turns out, very simple mechanisms, sufficiently scaled, can end up looking like magic.

 1.1.5. Understanding how deep learning works, in three figures

 At this point, you know that machine learning is about mapping inputs (such as images) to targets (such as the label “cat”),
 which is done by observing many examples of inputs and targets. You also know that deep neural networks do this input-to-target
 mapping via a deep sequence of simple data transformations (layers) and that these data transformations are learned by exposure
 to examples. Now let’s look at how this learning happens, concretely.

 The specification of what a layer does to its input data is stored in the layer’s weights, which in essence are a bunch of numbers. In technical terms, we’d say that the transformation implemented by a layer is
 parameterized by its weights (see figure 1.7). (Weights are also sometimes called the parameters of a layer.) In this context, learning means finding a set of values for the weights of all layers in a network, such that the network will correctly map example
 inputs to their associated targets. But here’s the thing: a deep neural network can contain tens of millions of parameters.
 Finding the correct values for all of them may seem like a daunting task, especially given that modifying the value of one
 parameter will affect the behavior of all the others!

 Figure 1.7. A neural network is parameterized by its weights.

 [image:]

 To control something, first you need to be able to observe it. To control the output of a neural network, you need to be able
 to measure how far this output is from what you expected. This is the job of the loss function of the network, also called the objective function. The loss function takes the predictions of the network and the true target (what you wanted the network to output) and computes
 a distance score, capturing how well the network has done on this specific example (see figure 1.8).

 Figure 1.8. A loss function measures the quality of the network’s output.

 [image:]

 The fundamental trick in deep learning is to use this score as a feedback signal to adjust the value of the weights a little,
 in a direction that will lower the loss score for the current example (see figure 1.9). This adjustment is the job of the optimizer, which implements what’s called the Backpropagation algorithm: the central algorithm in deep learning. The next chapter explains in more detail how backpropagation works.

 Figure 1.9. The loss score is used as a feedback signal to adjust the weights.

 [image:]

 Initially, the weights of the network are assigned random values, so the network merely implements a series of random transformations.
 Naturally, its output is far from what it should ideally be, and the loss score is accordingly very high. But with every example
 the network processes, the weights are adjusted a little in the correct direction, and the loss score decreases. This is the
 training loop, which, repeated a sufficient number of times (typically tens of iterations over thousands of examples), yields weight values that minimize the loss function. A network with a minimal loss is one for which the outputs are as close as
 they can be to the targets: a trained network. Once again, it’s a simple mechanism that, once scaled, ends up looking like
 magic.

 1.1.6. What deep learning has achieved so far

 Although deep learning is a fairly old subfield of machine learning, it only rose to prominence in the early 2010s. In the
 few years since, it has achieved nothing short of a revolution in the field, with remarkable results on perceptual problems
 such as seeing and hearing—problems involving skills that seem natural and intuitive to humans but have long been elusive
 for machines.

 In particular, deep learning has achieved the following breakthroughs, all in historically difficult areas of machine learning:

 	Near-human-level image classification

 	Near-human-level speech recognition

 	Near-human-level handwriting transcription

 	Improved machine translation

 	Improved text-to-speech conversion

 	Digital assistants such as Google Now and Amazon Alexa

 	Near-human-level autonomous driving

 	Improved ad targeting, as used by Google, Baidu, and Bing

 	Improved search results on the web

 	Ability to answer natural-language questions

 	Superhuman Go playing

 We’re still exploring the full extent of what deep learning can do. We’ve started applying it to a wide variety of problems
 outside of machine perception and natural-language understanding, such as formal reasoning. If successful, this may herald
 an age where deep learning assists humans in science, software development, and more.

 1.1.7. Don’t believe the short-term hype

 Although deep learning has led to remarkable achievements in recent years, expectations for what the field will be able to
 achieve in the next decade tend to run much higher than what will be possible. Although some world-changing applications like
 autonomous cars are already within reach, many more are likely to remain elusive for a long time, such as believable dialogue
 systems, human-level machine translation across arbitrary languages, and human-level natural-language understanding. In particular,
 talk of human-level general intelligence shouldn’t be taken too seriously. The risk with high expectations for the short term is that, as technology fails to deliver,
 research investment will dry up, slowing progress for a long time.

 This has happened before. Twice in the past, AI went through a cycle of intense optimism followed by disappointment and skepticism,
 with a dearth of funding as a result. It started with symbolic AI in the 1960s. In those early days, projections about AI
 were flying high. One of the best-known pioneers and proponents of the symbolic AI approach was Marvin Minsky, who claimed
 in 1967, “Within a generation ... the problem of creating ‘artificial intelligence’ will substantially be solved.” Three years
 later, in 1970, he made a more precisely quantified prediction: “In from three to eight years we will have a machine with
 the general intelligence of an average human being.” In 2016, such an achievement still appears to be far in the future—so
 far that we have no way to predict how long it will take—but in the 1960s and early 1970s, several experts believed it to
 be right around the corner (as do many people today). A few years later, as these high expectations failed to materialize,
 researchers and government funds turned away from the field, marking the start of the first AI winter (a reference to a nuclear winter, because this was shortly after the height of the Cold War).

 It wouldn’t be the last one. In the 1980s, a new take on symbolic AI, expert systems, started gathering steam among large companies. A few initial success stories triggered a wave of investment, with corporations
 around the world starting their own in-house AI departments to develop expert systems. Around 1985, companies were spending
 over $1 billion each year on the technology; but by the early 1990s, these systems had proven expensive to maintain, difficult
 to scale, and limited in scope, and interest died down. Thus began the second AI winter.

 We may be currently witnessing the third cycle of AI hype and disappointment—and we’re still in the phase of intense optimism.
 It’s best to moderate our expectations for the short term and make sure people less familiar with the technical side of the
 field have a clear idea of what deep learning can and can’t deliver.

 1.1.8. The promise of AI

 Although we may have unrealistic short-term expectations for AI, the long-term picture is looking bright. We’re only getting
 started in applying deep learning to many important problems for which it could prove transformative, from medical diagnoses
 to digital assistants. AI research has been moving forward amazingly quickly in the past five years, in large part due to
 a level of funding never before seen in the short history of AI, but so far, relatively little of this progress has made its way into the products and processes that form our world.
 Most of the research findings of deep learning aren’t yet applied, or at least not applied to the full range of problems they
 can solve across all industries. Your doctor doesn’t yet use AI, and neither does your accountant. You probably don’t use
 AI technologies in your day-to-day life. Of course, you can ask your smartphone simple questions and get reasonable answers,
 you can get fairly useful product recommendations on Amazon.com, and you can search for “birthday” on Google Photos and instantly find those pictures of your daughter’s birthday party from
 last month. That’s a far cry from where such technologies used to stand. But such tools are still only accessories to our
 daily lives. AI has yet to transition to being central to the way we work, think, and live.

 Right now, it may seem hard to believe that AI could have a great impact on our world, because it isn’t yet widely deployed—much
 as, back in 1995, it would have been difficult to believe in the future impact of the internet. Back then, most people didn’t
 see how the internet was relevant to them and how it was going to change their lives. The same is true for deep learning and
 AI today. But make no mistake: AI is coming. In a not-so-distant future, AI will be your assistant, even your friend; it will
 answer your questions, help educate your kids, and watch over your health. It will deliver your groceries to your door and
 drive you from point A to point B. It will be your interface to an increasingly complex and information-intensive world. And,
 even more important, AI will help humanity as a whole move forward, by assisting human scientists in new breakthrough discoveries
 across all scientific fields, from genomics to mathematics.

 On the way, we may face a few setbacks and maybe a new AI winter—in much the same way the internet industry was overhyped
 in 1998–1999 and suffered from a crash that dried up investment throughout the early 2000s. But we’ll get there eventually.
 AI will end up being applied to nearly every process that makes up our society and our daily lives, much like the internet
 is today.

 Don’t believe the short-term hype, but do believe in the long-term vision. It may take a while for AI to be deployed to its
 true potential—a potential the full extent of which no one has yet dared to dream—but AI is coming, and it will transform
 our world in a fantastic way.

1.2. Before deep learning: a brief history of machine learning

 Deep learning has reached a level of public attention and industry investment never before seen in the history of AI, but
 it isn’t the first successful form of machine learning. It’s safe to say that most of the machine-learning algorithms used
 in the industry today aren’t deep-learning algorithms. Deep learning isn’t always the right tool for the job—sometimes there
 isn’t enough data for deep learning to be applicable, and sometimes the problem is better solved by a different algorithm.
 If deep learning is your first contact with machine learning, then you may find yourself in a situation where all you have
 is the deep-learning hammer, and every machine-learning problem starts to look like a nail. The only way not to fall into this trap is to be familiar with other approaches and practice them when appropriate.

 A detailed discussion of classical machine-learning approaches is outside of the scope of this book, but we’ll briefly go
 over them and describe the historical context in which they were developed. This will allow us to place deep learning in the
 broader context of machine learning and better understand where deep learning comes from and why it matters.

 1.2.1. Probabilistic modeling

 Probabilistic modeling is the application of the principles of statistics to data analysis. It was one of the earliest forms of machine learning,
 and it’s still widely used to this day. One of the best-known algorithms in this category is the Naive Bayes algorithm.

 Naive Bayes is a type of machine-learning classifier based on applying Bayes’ theorem while assuming that the features in
 the input data are all independent (a strong, or “naive” assumption, which is where the name comes from). This form of data
 analysis predates computers and was applied by hand decades before its first computer implementation (most likely dating back
 to the 1950s). Bayes’ theorem and the foundations of statistics date back to the eighteenth century, and these are all you
 need to start using Naive Bayes classifiers.

 A closely related model is the logistic regression (logreg for short), which is sometimes considered to be the “hello world” of modern machine learning. Don’t be misled by its name—logreg
 is a classification algorithm rather than a regression algorithm. Much like Naive Bayes, logreg predates computing by a long
 time, yet it’s still useful to this day, thanks to its simple and versatile nature. It’s often the first thing a data scientist
 will try on a dataset to get a feel for the classification task at hand.

 1.2.2. Early neural networks

 Early iterations of neural networks have been completely supplanted by the modern variants covered in these pages, but it’s
 helpful to be aware of how deep learning originated. Although the core ideas of neural networks were investigated in toy forms
 as early as the 1950s, the approach took decades to get started. For a long time, the missing piece was an efficient way to
 train large neural networks. This changed in the mid-1980s, when multiple people independently rediscovered the Backpropagation
 algorithm—a way to train chains of parametric operations using gradient-descent optimization (later in the book, we’ll precisely
 define these concepts)—and started applying it to neural networks.

 The first successful practical application of neural nets came in 1989 from Bell Labs, when Yann LeCun combined the earlier
 ideas of convolutional neural networks and backpropagation, and applied them to the problem of classifying handwritten digits.
 The resulting network, dubbed LeNet, was used by the United States Postal Service in the 1990s to automate the reading of ZIP codes on mail envelopes.

 1.2.3. Kernel methods

 As neural networks started to gain some respect among researchers in the 1990s, thanks to this first success, a new approach
 to machine learning rose to fame and quickly sent neural nets back to oblivion: kernel methods. Kernel methods are a group of classification algorithms, the best known of which is the support vector machine (SVM). The modern formulation of an SVM was developed by Vladimir Vapnik and Corinna Cortes in the early 1990s at Bell Labs
 and published in 1995,[2] although an older linear formulation was published by Vapnik and Alexey Chervonenkis as early as 1963.[3]

 2

Vladimir Vapnik and Corinna Cortes, “Support-Vector Networks,” Machine Learning 20, no. 3 (1995): 273–297.

 3

Vladimir Vapnik and Alexey Chervonenkis, “A Note on One Class of Perceptrons,” Automation and Remote Control 25 (1964).

 SVMs aim at solving classification problems by finding good decision boundaries (see figure 1.10) between two sets of points belonging to two different categories. A decision boundary can be thought of as a line or surface
 separating your training data into two spaces corresponding to two categories. To classify new data points, you just need
 to check which side of the decision boundary they fall on.

OEBPS/01fig03.jpg

OEBPS/01fig04_alt.jpg
1: Raw data 2: Coordinate change 3. Better representation

OEBPS/01fig01.jpg
Artficial
intelligence

Machine
learning

Deep
learning

OEBPS/01fig02.jpg
Rules ——»|

Data —|

Data —|

Answers —|

Classical
programming

f—= Answers

Machine
learning

—= Rules

OEBPS/common01.jpg

OEBPS/00xifig01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/01fig05.jpg
Layer1 Layerz Layer3 Layerd

Original

input
‘y - - - - - Final
output

CENPORON2O

OEBPS/01fig07.jpg
Input X

¢

Layer

Goal: finding the Weights || (4ata transformation)
right values for . 7
these weights 1 -
—— . yer
Weights (data transformation)

i

OEBPS/01fig06_alt.jpg
Ly 5 PYE Ly
representations representations representations

Layera
representations
(fnal output)
Original ‘3
input 2
3
4
5
6
7
8
9

Layer 4

OEBPS/cover.jpg
Francois Chollet
with J.J. Allaire

L | FTTH

OEBPS/01fig09.jpg
Input X

t

Layer
(data transformation)

)

Layer
(data transformation)

Predictions True targets
Y Y

Weights ||

Weights ||

OEBPS/01fig08.jpg
Input X

'

Layer

Weights [~ (4ata transformation)

i

Layer

Weights ||

(data transformation)

i

Predictions True targets.
Y Y

