

 inside front cover

 [image:]

 [image:]

 Skills of a Successful Software Engineer

 Fernando Doglio

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image: Manning_M_small]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical development editor:

 	
 Rasmus Kirkeby Strøbæk

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre Hiam

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Tim Woolridge

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299704

 dedication

 To my wife, who’s always supported me on every single decision I’ve made and who’s always been by my side on every adventure: this book, just like everything else I do, is thanks to you.

 And to my kids, who’ve mastered the art of making me a proud dad every single day: I love you!

contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Becoming a successful software engineer

 1.1 What you don’t need

 Bachelor’s degree in CS or related degree

 Knowing the software development lifecycle

 A math, physics, or similar degree 5Certifications

 The desire to work in a fast-paced environment

 Experience

 1.2 Useful skills to have

 Patience

 Determination

 An eternal student mindset

 Accepting criticism and learning from it

 Knowing how to communicate

 1.3 What about after you get the job?

 2 Writing code everyone can read

 2.1 Your code needs to work

 Good is better than perfect

 Working, then optimized

 Sometimes terrible code actually helps

 2.2 Code for people, not for the machine

 Self-documenting code is a lie

 Readable code > one-liners

 2.3 Overengineering: The first capital sin

 Spotting a case of overengineering

 2.4 The random bug mystery

 Performing a root cause analysis (RCA)

 2.5 You have to aim to be a developer

 2.6 SOLID, DRY, and other funny terms

 SOLID: Making your code strong as a rock

 KISS your code

 Keep your code DRY

 YAGNI, another funny word

 3 Unit testing: delivering code that works

 3.1 Why unit test your code?

 What about using unit tests today?

 3.2 What to test

 Test one thing at the time

 Make sure you test a unit of code

 Only test your own code

 Don’t test external calls

 Stick to testing what’s on the rug

 3.3 How to write your tests

 Your new best friend: Dependency injection

 Tame the big four: Mocks, stubs, spies, and dummies

 Unit tests are not meant to be run manually

 3.4 When should you write your tests?

 4 Refactoring existing code (or Refactoring doesn’t mean rewriting code)

 4.1 What does refactoring mean anyway?

 4.2 What do you do before you start refactoring?

 Version control is your friend!

 Unit tests are all the rage

 Baselining your code

 I love it when a plan comes together

 4.3 What to focus on when refactoring

 Magic values

 Everyone’s doing everything

 You’re too primitive!

 Obsessive use of switch or if statements

 Duplicated duplicated code

 4.4 How to perform code refactoring

 Common refactoring techniques

 Tools to reduce human error

 Refactoring best practices

 4.5 What if you don’t need to refactor your code?

 5 Tackling the personal side of coding

 5.1 How are you learning?

 You’re not supposed to know everything

 The internet is great, but so is a formal education

 5.2 Side projects

 The case for side projects

 What’s wrong with side projects?

 What about working on open source projects?

 5.3 Asking your online friends for help

 Making mistakes

 Avoiding the naysayers

 5.4 Learning to communicate with others

 6 Interviewing for your place on the team

 6.1 The tech interview experience

 What can you expect from a tech interview?

 Warning signs you should look out for

 6.2 Things you should never say during a tech interview

 What do you do here, exactly?

 I don’t know, I’ve never done that before

 I hated that place because ...

 I’ve built multiple SPAs using SSR with MERN

 Well, nobody uses that anymore

 It’s listed on my resume

 No, I don’t have any questions

 I’m a React developer

 Oh Linux? I hate Linux, I’m a Windows guy

 I don’t know what unit tests are

 6.3 What to expect from the offering after your interview process is over

 Not everything that shines is gold

 Actually useful perks

 7 Working as part of a team

 7.1 Getting your manager to love you

 Task-tracking software is not the devil’s tool

 Meetings!

 I plan, therefore I code

 Don’t reinvent the wheel

 What you should never say to your manager

 7.2 Being a good teammate

 Make peace with your testers

 Leave your ego at the door

 Learn how to work remotely

 Be social

 7.3 Working on your own skills

 Continuous learning

 Measuring your learning progress

 Learning from code reviews

 8 Understanding team leadership

 8.1 Understanding your leader

 Key traits of a good leader

 Hard truths to hear from your leader

 Constantly asking for status updates

 Understanding task assignments

 8.2 The 90-10 rule

 8.3 Correcting your leader

 8.4 Dealing with clients

 Correcting the client

 Angry clients

 8.5 Feedback is mandatory

 Why is feedback so important?

 Different types of feedback

 8.6 Thank you

 index

front matter

preface

 The software development industry has changed, and I’m not talking about a recent change—this happened years ago. Accessing the entry-level knowledge required to start a career in software development is no longer the privilege of a few, but an opportunity for the masses. Knowledge is not the problem—technology has allowed us to make it widespread—but the industry itself hasn’t adapted yet.

 While most people trying to start a career as a developer focus on the technical side of what to learn (which language and framework to learn, which tutorial is best for understanding design patterns, etc.), they forget about everything else. And through that, they miss out on the most important detail: technical knowledge is readily available, and they will be consuming it for many years, if not decades. In contrast, understanding what to expect from your first job, choosing your first company from several job offers, or even figuring out how to work with a team of colleagues with different levels of skills than yours is not trivial, and that knowledge is less available. There are plenty of aspects of our profession that don’t involve coding, and even if they do, they don’t rely on code but rather on best practices and teamwork.

 That’s where this book comes from—the need to fill in that gap in the upbringing of new developers. I strongly believe that anyone can learn how to code if they spend enough time and find the right resources. I honestly believe that is the easiest part of our profession. But the rest? The rest is only learned through experience, and while I can’t force experience into you through a book, I can give you a head start by sharing my own. After almost two decades in this industry, I’ve picked up a tip or two, and I’m more than willing to share them with you.

 My hope is that by reading this book you’ll either be able to prepare for what’s coming, or if you’re already getting started, you’ll be able to make sense of what you’re experiencing. That’s all. I’m not going to teach the basics of programming—there is the internet for that (and plenty of other books as well). But if you’re interested in knowing what else to expect from the journey you’ve embarked on, then keep on reading!

acknowledgments

 While some people would like to think that a book is the work of a single author, the reality is very different. I’d like to acknowledge everyone who’s been involved in the creation of this (and many other titles) within Manning: from the acquisition editor who saw potential in one of my articles on the internet and thought it could become a full-blown book, to the multiple reviewers, editors, and to all the others involved in every single step of the year-long process required to publish the book.

 I thank my production editor, Deirdre Hiam; my copyeditor, Andy Carroll; my reviewing editor, Mihaela Batinić; and my proofreader, Katie Tennant. I’d also like to thank the reviewers who took the time to read my manuscript at various stages during its development and who provided invaluable feedback—your suggestions helped make this a better book: Adhir Ramjiawan, Alessandro Puzielli, Brent Boylan, Christopher Villanueva, Deepak Raghavan, Dze Richard Fang, Fabian Pietro de Franca Bram, Jeremy Chen, Jessica Daubner, João Marcelo Borovina Josko, Joseph Pereniaj, Krzysztof Hrynczenko, Lobel Strmečki, Matthias Busch, Mattia Antonino Di Gangi, Mikael Dautrey, Oliver Korten, Owain Williams, Rodney Weis, Samantha Berk, Samvid Mistry, Simone Sguazza, Stuart Ellis, Sveta Ashokchandra Natu, and Tim Wooldridge.

about this book

 Skills of a Successful Software Engineer was written with the aim of helping newcomers to the industry by sharing my own experience, my own mistakes, and the lessons I’ve learned from them. It’s intended to give you a glimpse into your future and to show you a possible pathway to traverse it. In the end, the way you evolve and move forward is going to be your own.

Who should read this book

 Everyone!

 At least, that’s my hope, but on a more serious note, I’ve written this book for a very specific type of reader: someone who’s just getting started and has potentially not even worked as a developer yet. That person will get the most out of this book.

 However, through our review process, we’ve also discovered that many developers with years-long careers already under their belts were able to learn a thing or two from different chapters. Some of them had been working for the same company all this time, and they found chapter 6 about the interview process interesting. Others have been toying around with the idea of working on a side project but didn’t know where to begin, so chapter 5 was great for them. There is something for everyone here, so I encourage you to take a look, even if you’ve been working for a while already.

How this book is organized

 It wasn’t easy, but I tried to organize the content of this book into a logical progression. The eight chapters try to parallel the evolution of your career as a developer:

 	
 Chapter 1 covers the basis of a software development career: what should be your focus and what are some of the biggest misconceptions people have about the industry. If you’re still on the fence about whether this is the right career choice for you, this chapter should help you answer that question.

 	
 Chapter 2 will walk you through some of the core concepts you’ll need to understand when tackling code. No, they’re not code-related concepts; I’m not talking about if statements or for loops. This chapter covers ideas such as understanding that there is no perfect code, and that you need to document your logic even if you’re the only one working on it. There are many ways to go about writing code, and this chapter will show you some best practices to keep you sane while doing it.

 	
 Chapter 3 is the first technical chapter of the book, and it covers unit testing. The concepts covered here are valid for any language you might decide to work with. The few code samples here are either in JavaScript or Python, but they’ll feel more like pseudocode than anything. The point of this chapter is not for you to copy and paste code and get it running, but rather to help you understand why unit testing is such a crucial task and to present the core concepts around it.

 	
 Chapter 4 is the last technical chapter of the book, and it covers another core practice within our industry: refactoring. Again, the focus of this chapter is not the code; instead, it discusses why refactoring is such an integral part of our career and best methods for tackling it.

 	
 Chapter 5 tackles the personal side of coding, with advice on how to balance your need to code and learn against the fact that you also have a life outside of your computer. Burnout is real in our industry, and sometimes it results from the need to keep on learning, so in this chapter I cover some aspects of what that means and how to move forward without burning out.

 	
 Chapter 6 focuses on the technical interview process. This can be a very stressful process for some, and very scary for others. I’ve gone through plenty of interviews (on both sides) during my career, and here I share some insights into how to best prepare for them as well as to what to expect from the process.

 	
 Chapter 7 assumes you’ve started working for a company and that you’re part of a team. In this chapter, I cover team dynamics, understanding what your manager expects from you, controlling your developer ego, and more. The way you code is influenced by these dynamics, so don’t disregard the importance of this chapter!

 	
 Chapter 8 finishes the book with an overview of what it means to be a leader. Why? Because it’s the natural progression of most developers: you start as a junior developer and eventually are presented with the opportunity to lead a small team. You might like it or you might hate it—they’re both very valid outcomes. However, often people forget to tell you what it means to actually lead a team, and this chapter tries to present some insights into that role.

 From understanding what it means to be a developer to getting some insight into what it will mean to lead your first team, this book covers a wide range of topics. This is my view of the process, and you don’t need to follow every piece of advice or perform every action the same way I suggest. However, by getting a glimpse into what’s awaiting you and some analysis of the different options, you’ll be able to make the best decisions for your own context and desires.

About the code

 The focus of this book is not on the code. The little snippets you’ll see, especially in chapters 3 and 4, are written in either JavaScript, Python, or plain pseudocode. By themselves, the snippets will not likely work or produce any meaningful results, so don’t focus on getting them to run. They’re there to illustrate the concepts I’m discussing, so just consider them in conjunction with the explanation I give in those sections.

liveBook discussion forum

 Purchase of Skills of a Successful Software Engineer includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/skills-of-a-successful-software-engineer/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image: FM_UN01_Doglio]

 Fernando Doglio has been working in the software industry for the past 19 years. He started building websites and working with JavaScript, HTML, and CSS in 2003. Between then and now, Fernando experienced some of the most popular web technologies, such as Ruby, Python, PHP, and Node.js (working with several of its frameworks and creating a set of custom ones as well).

 He made the jump from web to big data, using his experience with microservices and incorporating the use of big data-related solutions (such as Kafka, Hadoop, NoSQL databases, Spark, and the like) to become a senior architect developing and creating cloud solutions that were both highly available and fault tolerant.

 He then started transitioning into a leading role, where he dealt with the technical difficulties of different teams, as well as being the technical point of contact for clients.

 Finally, during the last six years of his career, Fernando has been working as a technical manager, leading multiple high-end projects and overseeing different aspects of the day-to-day work of developers.

about the cover illustration

 The figure on the cover of Skills of a Successful Software Engineer is “Femme de Barabinze,” or “Woman from Barabinze,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Becoming a successful software engineer

 This chapter covers

 	
Avoiding misconceptions about initial skill requirements

 	
Focusing on skills that will help you become a better software developer

 From the outside, the software industry looks very compelling: many countries have no unemployment in the industry, salaries are fair, there is always room to grow, travel is often involved, and there is the option to work from your couch for a Silicon Valley startup. Why isn’t everyone working on software?

 The truth is that while the field might seem interesting, getting in is not that simple. I knew I wanted to be a software developer before I owned my first computer. I made the choice when I was a kid, based on the value computers were generating even then. But when it was time for me to jump into the real world, it wasn’t just difficult to get in, it was scary and unwelcoming. I had no guide, no map that would help me navigate the maze that was job interviews or even job listings. I would spend a few hours every weekend going through the Jobs section of my local newspaper, looking for opportunities for junior developers without experience.

 Finding your first job as a software developer can be challenging at best; most companies looking for entry-level engineers require them to either have experience with some of the latest frameworks and technologies or to understand a lot of advanced concepts such as design patterns, software development best practices, and version control. Then they’ll go into vague requirements, such as having great “interpersonal skills” or knowledge about other IT-related areas. What is that about?

 I compiled the following junior developer job listing from multiple samples on the internet:

 	
 Bachelor’s degree in related areas and a minimum of one year of experience in similar roles

 	
 Knowledge of secure software development

 	
 Intermediate skills associated with design, development, modifications, and deployment of software, including object-oriented programming

 	
 Knowledge of other IT-related areas

 	
 Proof of software repository skills

 	
 Proof of effective communication and interpersonal skills

 	
 Self-motivated and works independently

 	
 Proof of problem-solving skills

 	
 Intermediate skills in C#, ASP.NET MVC, SQL Server, TypeScript, and React.js

 	
 Experience using Git and GitHub

 Looking at that list, how can anyone trying to get into the industry not feel intimidated? Anyone looking at that job posting will assume they need at least two more years of experience before being taken seriously.

 Having been through the same experience 18 years ago, I still remember the type of questions I had:

 	
 Should I even bother applying for the job? I only have 3 of the 10 required skills.

 	
 Do I need to stop studying X and switch to Y now? This week everyone’s asking for Y developers.

 	
 How can I get experience if I’m looking for my first job?

 They’re probably the same questions that any new developer looking to start their career has. But here’s the kicker: these questions are normal. You’re not figuring out that you’re not cut out to be a developer—you’re just living through the junior developer experience.

 That’s why I’m writing this book: to help you find your way into a successful career. I’ve been through the same struggles that any new developer experiences, and I’ve had an underpaid first job because I had no experience. I’ve met some great people who through me quite a lot about working in a team, and I’ve met some difficult people who, through their behavior, taught me a considerable amount about what to avoid.

 Throughout this book, I’ll be sharing bits and pieces of my own journey. I’ll cover the best practices you’ll have to apply to your code, and I’ll take you through some core technical concepts such as unit testing and refactoring so you understand what they mean and the importance they have in a software project. I’ll help you understand how to balance your personal and professional life without burning out in the process, and I’ll give you some hints for your first technical interview. In the end, I’ll go into what it means to be a developer working inside a bigger team, and I’ll discuss what it means to lead a team, so you understand what your manager is going through with you. Throughout this book I hope to show you that you’re just getting started in your journey, and that the issues you’re facing and the doubts you’re having are completely normal. They’re part of the developer-experience pack you bought when you decided to live off your coding skills.

 In this chapter, I’ll start by covering the basics: what exactly do you need in order to work as a developer? There is a lot of noise on the internet, and asking this question on Google can bring up a lot of different articles. Everyone has their opinion, and most people tend to focus on functional skills—the things you need to learn before thinking of applying for a job. In my experience, they’re not the most relevant skills, nor the most important ones. You’ll pick those up through experience if you have to. The truly important qualities of a good developer (even one who’s never worked a single day in their life) are not technical.

 We’ll look at two lists in this chapter: the common misconceptions of what you need to be a developer, and the truly useful skills you’ll actually need.

1.1 What you don’t need

 I’ll start by covering some of the biggest misconceptions around the requirements for getting into the software industry. None of the following qualifications will hurt your chances, but they’re not hard requirements needed to start the job. Don’t think of this as a to-do list, but rather, a nice-to-eventually-have list.

1.1.1 Bachelor’s degree in CS or related degree

 This is essentially four or more years of formal education. I went through it, I did my best to finish it, and I failed on my first try. I tried to be a “Software Engineer,” a five-year course of study in my country, but by the time I was halfway through my studies I got my first job, and my formal education ended there.

 Did I regret it? I did, which is why a few years later I completed a technical degree (two years plus a final project) to formalize a lot of my practical experience. Did I need the first two years of university? I did, yes, but mainly because they formalized a lot of the basic programming concepts I had figured out on my own, learning how to code for fun. But back then there were no bootcamps, my internet access was limited by my 2,400 baud modem, and my learning resources were mainly hacker e-magazines (which were text files with some ASCII art thrown in).

 The situation now is completely different; anyone looking to learn how to code has the world’s knowledge at their disposal. This is no exaggeration; there are free online resources such as YouTube or freeCodeCamp (www.freeCodeCamp.org), which have everything you need to go from zero to workable. And while it is true that not everyone can learn on their own, you also have other options: paid courses from sites like Udemy or Skillshare, which will cost a lot less than a university degree and will give you access to virtual classrooms, Q&A sessions with teachers, and contact with other students going through the same problems you are.

 Any of these resources can give you the practical knowledge required to start coding, and while it is true that many people value the mention of a college degree as part of your resume, a lot of companies are paying less attention to that single bullet point. Granted, this may be less true in some countries than others, but it’s also true that ours is a very international profession in the sense that we can work for companies anywhere in the world. When that starts happening, the value of a college degree starts diminishing as time goes by. I’ve personally performed hundreds of interviews with new developers, and I’ve learned that a college degree should not be an entry requirement.

 Don’t get me wrong. I believe there is still value in formal education, and I’ll go into more detail about that later on, but it’s not necessarily your best choice if you’re looking to get your first developer job. Especially if you’re in a hurry, a 4-or-more-year investment (money and time) may well be too much; when compared to 6 to 12 months for a practical bootcamp, the choice should be obvious.

 Do you need more? Yes, of course. A bootcamp or online education won’t cover everything you need to know, but that’s not what we’re after here. We’re focusing on the practical aspects of the profession, so you can start learning by doing.

1.1.2 Knowing the software development lifecycle

 A typical software project has to go through a development lifecycle:

 	
 You first need to do a requirement analysis to understand exactly what you need to do.

 	
 You then move on to planning your project to understand when you’ll need to do those things and how much time you’ll need.

 	
 Designing the project architecture comes third. Once you know the “what” and the “when,” you have to start thinking about the “how,” and the architecture will give you the blueprints for that.

 	
 Only then can you start writing code. This is the step that most developers tend to focus on, but as you can see, it’s not the first thing you’d normally do.

 	
 Testing your code and your product comes next. Determining whether the previous step produced the right output is a must-do before moving on to the next one.

 	
 Deploying your product is the final step. This is when you give it to users so they can start testing it and giving you feedback.

 Because it’s a cycle, you’d take that feedback from step 6 and start all over again, but you get the idea.

 If you’ve never worked on a software project before, you’ve never had to apply most of these concepts, and that’s perfectly fine. You don’t need to understand any of that to get your first job. Yes, these steps will be part of your tasks, and you’ll be applying this knowledge every day. But turning it into an entry-level requirement for the role of junior developer is like asking an acting surgeon to lead their first surgery. Eventually they’ll be able to do that, and they’ve probably read about it, but you don’t want them doing it on day one. It’s the same for you as a developer. You should not be expected to understand what all these steps really mean on day one—you won’t be in charge of doing it anyway. You’ll learn about it because you’ll be part of the process.

1.1.3 A math, physics, or similar degree

 I’m guilty of believing this one myself, back when I started. I blame college because they were teaching me calculus and algebra at the same time I was learning to code. Was that a mistake? In the long run, no, but it did nothing to help me get my first job as a developer.

 Math, physics, or other sciences are not going to help you understand programming. Some of them require you to understand abstract concepts (such as infinity, or the number pi), which can be good practice when you need to create mental models of an algorithm you’re trying to write. However, you won’t be solving hard math problems or implementing difficult physics simulations on your first job, and even if you happen to find yourself in such a conundrum, there is a big chance you’ll be using someone else’s code library.

 So should you get a math degree before making the jump to computer science or a junior developer role? No, not at all. Eventually you might find shared concepts between programming and these other sciences (such as sets in many programming languages), or you might find yourself implementing concepts from other realms in your code (such as implementing the concept of gravity on a platform game), but none of this requires a full degree before starting to code.

 Note The role of a junior data scientist might require you to have a math or science degree. That requirement is not for understanding how to code but rather how to model the problems you’re trying to solve.

1.1.4 Certifications

 Certifications are tempting because they have that “not-as-long-as-formal-education-but-still-useful” kind of vibe. And they do have their merit, but they’re not a hard requirement to get a developer job.

 Listing certifications on your junior developer resume shows you care about your learning and about improving your skills. This is indeed a good thing, but it’s not a requirement. You won’t find job listings for a junior developer asking for particular certifications. Instead, they’ll be looking for knowledge about a group of technologies, and this is easier to achieve by following online courses or bootcamps.

 What I’m saying here is, if you have to choose between investing in a certification or an online course, go for the latter. Get a broader education before you start narrowing down on a particular subject.

1.1.5 The desire to work in a fast-paced environment

 You can find this requirement in many job listings and in basic software development skill sets. But what does “fast-paced” even mean here? It could mean almost anything, but I’m assuming (because that is what anyone reading a job listing would do) it means you have to be interested in working in an industry that changes a lot. And by that, I mean the technologies, working methodologies, project focus, or even projects themselves change.

 That probably sounds scary, especially for someone who’s not even working yet. But I can confirm that you can be a software developer and still hate “fast-paced” environments. Not everyone likes changing technologies, or even changing projects. You don’t have to, either.

 Granted, startups normally work that way because they have to. They normally need to grow fast and adapt to changes. Contractors work like that too. There are companies out there that will hire you to be part of someone’s team for the duration of a project, and when that’s done, you move on to the next client. If you find those scenarios interesting, go ahead and apply. Chances are you’ll enjoy your work there.

 But there are other companies—ones that have been working for years on their products—that tend to have a more stable environment. In fact, the perfect example of that is banks (I should know; I’ve worked for some of them as an external contractor). They have so much data from so many clients that making a change to their tech stack is quite hard and, honestly, scary for them.

 There is no right choice here. Most of the time you don’t get to choose your first company—the fact that they accept your lack of experience will be the deciding factor. However, keep in mind that just because a section of our industry is “fast-paced” doesn’t mean you need to like it or to be looking for that.

1.1.6 Experience

 Asking for experience from a junior developer is not only counterintuitive, it’s just plain silly. And I’ve been there. I know how it feels when you read a job listing asking for junior developers with experience in different technologies. You’re reading the listing trying to find a job so you can get the experience. It’s the egg and chicken problem.

 My advice is to ignore that part of the listing. It makes no sense, after all. Apply if you feel comfortable with some of the other requirements or if you feel like you can pick them up quickly.

 If you’re applying for the job and are worried about the experience part, you can showcase the types of experience you do have:

 	
 If you’ve done some kind of online course, you can list it here.

 	
 If you have published one or more personal projects somewhere (on GitHub, or somewhere else), you will definitely want to list it here.

 	
 If you’ve worked as a volunteer on something remotely related to IT, list it here.

 Requiring experience for an entry-level position makes no sense, so listing experience should not be a prerequisite. But if you do want to address that point on your application, listing some of the preceding items is definitely better than saying “none.”

1.2 Useful skills to have

 On the other end of the spectrum are skills that are never listed in typical job offers but that will help you to get your first job or to be considered a great developer. They’re not technical skills, though, so many new developers tend to omit them from their resumes.

 These are passive skills. You won’t actively have to use them; rather, they’ll be there in the back of your mind helping you in your daily routine. The most frustrating part about these skills is that there are no online courses or bootcamps that will help you train. These are soft skills that you need to be aware of in order to develop them (if you don’t already have them).

 I know that’s probably not what you wanted to hear, but these skills are the cornerstone of growing as a developer. Any technical skill can be learned over time by reading a manual or watching a video. But the skills discussed in this section will be there, helping you through that learning process. Yes, you’ll become a developer by learning how to code, but if you skip these five skills, it’ll be like learning to run before knowing how to walk.

1.2.1 Patience

 Nothing says “I’m a software developer” like spending three hours debugging a piece of code, just to figure out that the problem was a missing comma somewhere in the middle. You’ll go through this a lot, and that is no sign of “juniority” or of lack of experience. Trust me, I go through that same process every now and then today, after almost 20 years.

 Understanding someone else’s code requires time and effort; researching how to solve a problem requires time and effort; writing code and getting it to work requires time and effort. Patience is not a virtue for a developer, it’s a must-have. Copying and pasting code from the internet will only get you half way. The rest needs to come from you, and there is a lot of trial and error involved.

1.2.2 Determination

 In line with patience is determination—you have to understand that this is not an easy profession. I’m not saying this to scare you off. On the contrary, setting the right expectations is key to avoiding discouragement when bad things happen during your journey.

 The fact is that your chosen profession will be filled with roadblocks, with problems that once fixed become ten. You will encounter bugs that take months to solve, and each and every one of these situations will become a reason for you to quit. Trust me, I’ve wanted to quit programming multiple times during my career. The idea of moving to the middle of nowhere, away from technology, and growing tomatoes in the desert is appealing to many developers in our industry. Is that the sign of a problem in software development? I don’t think so, but it is proof that ours can be a frustrating profession at times.

 That is why determination is a must-have skill for developers, and you can build it up over time. It’s hard to know if you’re determined enough until you’re faced with a situation that challenges you, but if you’re already a determined person—someone who’s known to not give up on the first try—you’ll do fine as a developer.

1.2.3 An eternal student mindset

 The underlying topic of this book is professional growth; you might have picked that up from browsing the table of contents. However, growth can’t happen without learning. I’ll cover learning in chapter 5, but I still want to highlight it here.

 One hard requirement I would demand from every new software developer is that they should always be learning, or at least be open to the idea of learning. While it is true that you don’t have to like a fast-paced work environment, our industry is always moving. Sometimes it moves forward, and sometimes it goes backward, making a 20-year-old pattern new again (I’m looking at you, React), and if you don’t keep tabs on these changes, you’ll be left behind.

 I’m not saying you need to go out and learn “all the things.” What I’m saying is that you should be open to the idea that the tools you’re using right now and the things you know right now will not always be the norm. If you don’t accept that, you’ll find yourself unable to move forward in your career within two years.

 Technology pushes technology forward; it’s that simple. The tools you use today will not be the same as the ones you’ll use tomorrow. New technology developments will open new areas of research, new ways of processing data, and new ways of interacting with users, and when that happens, development tools will have to adapt. If you don’t adapt with them, you’ll be left behind.

1.2.4 Accepting criticism and learning from it

 Programming is not a solo profession. Even if you’re considering going freelance, you’ll have to interact with other developers in one way or another. And part of that interaction happens through feedback.

 Code review, for example, is a very common practice in software development. It ensures code quality by having a group of developers review the code written by someone else. If you’ve never been through it, it might sound strange, but it can be a growing experience for both parties if they perform it correctly:

 	
 On the reviewing end, the group of developers reading the code need to understand that their job is to improve the code by finding logic issues, missing standards, or even some bugs.

 	
 On the receiving end, you’ll need to understand that the feedback they’re giving you is not personal. Displaying your code for this kind of review can feel like that nightmare where you realize a little too late that you’re already in class, naked, in front of everyone. But trust me, the reviewers are putting their years of experience at your disposal. Accept their feedback, make sure you understand why it is given, and you’ll come out learning a lot.

 There are other instances where feedback will come into play as well. Sometimes you’ll be expecting it, like with performance reviews, and other times you won’t, like when an issue is reported on your open source project. Surviving negative feedback, especially when it’s not expected, can be hard if you’re not open to learning from it.

 I think it’s important to distinguish between feedback that shows a negative quality in our work (such as identifying a bug) and nonconstructive (negative) feedback that only shows how our work has affected others, to the point where they need to hurt or disqualify us with their words. There is always a nugget of wisdom in negative feedback; you just have to ignore the negative coating around it, and cut through to the core message and the lesson to be taken from it. You should consider the rest to be noise.

 As a technical lead, I’ve received hundreds of performance reviews in my career, and they’ve not always been positive. Whenever that happens, I always try to focus on getting to the core of the problem, to what caused that negative review so that I can avoid that behavior in the future.

 If you only see feedback as a bad thing, you’ll start second-guessing your decisions, and the whole point of that feedback (which was to help you improve) will be lost.

1.2.5 Knowing how to communicate

 This is a tough one, because a very common problem among developers, even experienced ones, is that they don’t know how to communicate well with people. Sometimes we focus so much on learning how to write logic code for machines that our soft skills, no matter how small and undeveloped they are, tend to wither away. Machines don’t need us to write eloquent sentences, and they don’t really care for synonyms or the use of metaphors and figurative speech. They need clear, unquestionable logic. However, as a developer, you also need to work with humans, who, unlike machines, favor all those things.

 When you need to ask a colleague for help and explain a problem you’re having, or when you have to solve someone else’s problem, you’ll need to switch from your “machine-understandable syntax” to your “human-understandable” settings. This is why having communication skills before applying to your first job will give you a major advantage over everyone else in your situation. The moment your interviewer notices you can communicate effectively, the battle is half won.

 How can you develop this skill? One way to do it is through writing. Back when I started, both my written and spoken communication skills were terrible. I remember spending 30 minutes writing “important” emails because I had to go through them multiple times, adding words and explanations and asking colleagues to review them to see if they made sense or not.

 It was only when I started making a conscious effort to write online (articles for my own blog) that I started learning how to write more eloquently. You can say I started finding human-friendly ways of explaining concepts. This, in turn, helped my spoken communication skills as well—something “clicked” in my brain. Through that and other working experiences, I was able to learn how to effectively talk to others, which then helped me in my path to leading teams as well.

 Knowing how to communicate well with others is an important skill to have, and the great news is that you can start practicing it right now, for free.

1.3 What about after you get the job?

 The trick to having a successful career as a software developer is to remember that you’re not done when you get your job. You’re just getting started. Getting the job is like getting to the max level on your favorite MMORPG and thinking you beat the game, when, in fact, you just unlocked a whole new level of content specifically designed for you. Getting the job doesn’t mean you’ve mastered the trade; it just means you’re now standing on the first step of a huge ladder. The skills I listed in this chapter will have to be developed and maintained throughout the course of your life, and the more you work on them, the better you’ll do.

 The rest of this book will cover other areas you’ll need to focus on once you’ve decided to become a software developer, and they are just as important as the ones covered here. But always keep these skills in mind, as they’ll be the building blocks for everything else you learn in the coming chapters.

Summary

 	
 Keep honing your communication skills. They’ll always be useful, but the higher on the ladder you climb, the more important they’ll become.

 	
 Understanding how to grow from negative feedback will keep you from getting stuck in your career.

 	
 Working on your patience and determination will ensure you never meet a problem you can’t solve. These two skills have taught me that nothing is impossible in our profession, as long as you have enough time and people to work on it.

 	
 Staying relevant in our industry is a must for anyone who’s interested in advancing their career. That means looking outside your own box (outside your daily work) to find out what others are doing. Technology evolves constantly, so keep an eye on it.

2 Writing code everyone can read

 This chapter covers

 	
Focusing on working code first

 	
Writing code that’s understandable to the whole team

 	
Ways around overengineering

 	
Eliminating apparently random bugs

 	
Learning about languages you don’t normally use

 During your journey as a developer, one of the main activities in your day is going to be coding. Writing code needs to become part of your life, not because you want to make a living out of it, but because you’re looking to be great at it. Just as any Olympic athlete spends a portion of their day training and the rest of it thinking about their training, you need to do the same. If you’re aiming to become an Olympic coder (granted, that’s not a thing, but it should be) you need to make code your life.

 I’m not asking you to forfeit time with your loved ones, but keeping code in the back of your mind is something that you’ll want to do. While that might sound a bit vague, my point is that the intrinsic logic behind the act of coding—what’s usually known as Boolean logic—should be present in all you do. That’s how, when you sit down to write some code, the logic will just flow out of your fingers.

 You will never improve by repeating a task if you just keep mindlessly doing it over and over again. You need to understand what to aim for. Be clear about the standards you have to achieve and the best practices to follow. Only then will you be able to measure your progress and understand whether you’re improving. That’s what I mean by “keeping code in the back of your mind.” You’ll be solving problems and thinking about algorithms even without noticing.

 This book is not going to teach you how to code; you should already know how to do that. What I will cover are some of the lessons I’ve learned about the process of coding.

 If you’ve been coding for a while, you might recognize some of the behaviors and problems I’ll mention in this chapter. If you’re just starting on your coding journey, you might consider some of them obvious or trivial right now, but take them to heart, because you’ll soon start seeing how easy it is to fall for these traps.

 You could say that this will be an inception chapter. I’ll be presenting lots of ideas that you may not usually think about, but once they get in the back of your mind, they’ll become a major guiding force for your coding decisions in the future.

2.1 Your code needs to work

 The first concept I want to get into your head is that your code needs to work. This might sound obvious, but bear with me. When you’re writing code, the first version you write only needs to have a single purpose: to do whatever job you need it to do. The initial goal is not to solve the problem quickly, or to solve it using the least amount of resources, or to fit any other constraints you might come up with. Your code just needs to work.

 Imagine being assigned the task of delivering a working prototype for a new system sign-up form in under a week. A prototype is just a simpler version of the final product—something that helps you see how it will work but that you know will require more work before releasing it into production. You and your team know that a completely functional feature like this requires two months of work. You’ll need to consider things like where the user directory will be stored, the auth methods you’ll allow and how they’re integrated, whether you’ll let users sign in through their Google account or GitHub, how their APIs work, and so on. There are many questions to answer before you can call it done. In this case, though, we’re just thinking about a simple prototype, probably using a MySQL database to store passwords as plain text. Nobody cares about that part right now; they just want to see it working.

 The question then is how you would tackle your part of the code. You have at least a couple of options. If you think you know where the feature is going in the future, you can create placeholder entities and maybe even code some methods, trying to do some work ahead of time. This approach assumes that you’ll be using this code as is in the next iteration of the feature. That sounds smart, right? Work now, so you don’t have to work later. Or as others would put it, don’t leave for tomorrow what you can do today. Alternatively, you can simply code the bare minimum to make it work, since you expect most of the feature will be reworked for its next version, given how many things in the backend will change.

 How would you tackle it? Would you go the extra mile and pave the way for the next version? Or would you write some throwaway code that will only prove your point right now?

2.1.1 Good is better than perfect

 Thinking we can create a perfect piece of code, especially on our first try, is not only foolish but misguided. It’s also a perfectly understandable trap to fall for if you’re just starting out, so don’t let my harsh words get to you.

 Perfection is in the eye of the beholder, and that is true even for code. We as developers tend to consider our code a work of art, and like every artist, we get attached to our creations. Yet, as Stephen King says in his book On Writing, “Kill your darlings, kill your darlings, even when it breaks your egocentric little scribbler’s heart.” Why am I quoting the master of horror in my book aimed at developers? Because he says authors should understand that every line in their book needs to fulfill a purpose in the story. No matter how great a sentence might sound or how intriguing a plot might be, if it doesn’t add value to the story, then it doesn’t belong there. It’s a way of saying that you have to edit yourself.

OEBPS/OEBPS/Images/IFC.png
Top non-technical nuggets of wisdom from this book.

Adr

e

Your code should work first; you can worry about opti-
mization later.

Your code needs to run on a machine, but it also
needs to be read by a human.

Keep away from boxes; you're a developer.
Write unit tests for your code!

Knowledge is everywhere; learn how to tap into it and
make the most of it.

Side projects are fantastic and should not be a scary
thing to tackle.

Avoid companies that are like family.

Unlimited time off can be a trap, but it can also be a
wonderful perk; make sure you ask the right questions.

Trivial perks that only ador the job offering, such as
free food and chillout zones should be ignored.

Flexible hours, paid parental leave, company gear,
and other useful perks are what you should look for
as part of a job offer.

Plan first, code later. That way you have a blueprint to
base your work on.

Everyone in your team is as important as you, even
those who don’t write code.

Your ego can be the end of your career; you have to
lean to keep it under control.

Do not fear code reviews. They're a perfect learning
opportunity; learn to get the most out of them.

21

2.2

25
All of chapter 3
5.1

5.2

6.1.2

6.1.2

6.3.1

6.3.2

713

7.21

722

733

Page number

14

15

30
a1
87

91

109
112

119

121

127

135

137

147

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/cover.jpeg
Fernando Doglio

M MANNING

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/FM_UN01_Doglio.png

