

 [image: IFC_F01_Long2]

 [image:]

 Good Code, Bad Code

 Think like a software engineer

 Tom Long

 To comment go to liveBook

 [image: Manning_M_small]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image: Manning_M_small]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Senior technical development editor:

 	
 Al Scherer

 	
 Technical development editor:

 	
 Mike Jensen

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Chris Villanueva

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617298936

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 In theory

 1 Code quality

 1.1 How code becomes software

 1.2 The goals of code quality

 Code should work

 Code should keep working

 Code should be adaptable to changing requirements

 Code should not reinvent the wheel

 1.3 The pillars of code quality

 Make code readable

 Avoid surprises

 Make code hard to misuse

 Make code modular

 Make code reusable and generalizable

 Make code testable and test it properly

 1.4 Does writing high-quality code slow us down?

 2 Layers of abstraction

 2.1 Nulls and the pseudocode convention in this book

 2.2 Why create layers of abstraction?

 Layers of abstraction and the pillars of code quality

 2.3 Layers of code

 APIs and implementation details

 Functions

 Classes

 Interfaces

 When layers get too thin

 2.4 What about microservices?

 3 Other engineers and code contracts

 3.1 Your code and other engineers’ code

 Things that are obvious to you are not obvious to others

 Other engineers will inadvertently try to break your code

 In time, you will forget about your own code

 3.2 How will others figure out how to use your code?

 Looking at the names of things

 Looking at the data types of things

 Reading documentation

 Asking you in person

 Looking at your code

 3.3 Code contracts

 Small print in contracts

 Don’t rely too much on small print

 3.4 Checks and assertions

 Checks

 Assertions

 4 Errors

 4.1 Recoverability

 Errors that can be recovered from

 Errors that cannot be recovered from

 Often only the caller knows if an error can be recovered from

 Make callers aware of errors they might want to recover from

 4.2 Robustness vs. failure

 Fail fast

 Fail loudly

 Scope of recoverability

 Don’t hide errors

 4.3 Ways of signaling errors

 Recap: Exceptions

 Explicit: Checked exceptions

 Implicit: Unchecked exceptions

 Explicit: Nullable return type

 Explicit: Result return type

 Explicit: Outcome return type

 Implicit: Promise or future

 Implicit: Returning a magic value

 4.4 Signaling errors that can’t be recovered from

 4.5 Signaling errors that a caller might want to recover from

 Arguments for using unchecked exceptions

 Arguments for using explicit techniques

 My opinion: Use an explicit technique

 4.6 Don’t ignore compiler warnings

 Part 2 In practice

 5 Make code readable

 5.1 Use descriptive names

 Nondescriptive names make code hard to read

 Comments are a poor substitute for descriptive names

 Solution: Make names descriptive

 5.2 Use comments appropriately

 Redundant comments can be harmful

 Comments are a poor substitute for readable code

 Comments can be great for explaining why code exists

 Comments can provide useful high-level summaries

 5.3 Don’t fixate on number of lines of code

 Avoid succinct but unreadable code

 Solution: Make code readable, even if it requires more lines

 5.4 Stick to a consistent coding style

 An inconsistent coding style can cause confusion

 Solution: Adopt and follow a style guide

 5.5 Avoid deeply nesting code

 Deeply nested code can be hard to read

 Solution: Restructure to minimize nesting

 Nesting is often a result of doing too much

 Solution: Break code into smaller functions

 5.6 Make function calls readable

 Arguments can be hard to decipher

 Solution: Use named arguments

 Solution: Use descriptive types

 Sometimes there’s no great solution

 What about the IDE?

 5.7 Avoid using unexplained values

 Unexplained values can be confusing

 Solution: Use a well-named constant

 Solution: Use a well-named function

 5.8 Use anonymous functions appropriately

 Anonymous functions can be great for small things

 Anonymous functions can be hard to read

 Solution: Use named functions instead

 Large anonymous functions can be problematic

 Solution: Break large anonymous functions into named functions

 5.9 Use shiny, new language features appropriately

 New features can improve code

 Obscure features can be confusing

 Use the best tool for the job

 6 Avoid surprises

 6.1 Avoid returning magic values

 Magic values can lead to bugs

 Solution: Return null, an optional, or an error

 Sometimes magic values can happen accidentally

 6.2 Use the null object pattern appropriately

 Returning an empty collection can improve code

 Returning an empty string can sometimes be problematic

 More complicated null objects can cause surprises

 A null object implementation can cause surprises

 6.3 Avoid causing unexpected side effects

 Side effects that are obvious and intentional are fine

 Unexpected side effects can be problematic

 Solution: Avoid a side effect or make it obvious

 6.4 Beware of mutating input parameters

 Mutating an input parameter can lead to bugs

 Solution: Copy things before mutating them

 6.5 Avoid writing misleading functions

 Doing nothing when a critical input is missing can cause surprises

 Solution: Make critical inputs required

 6.6 Future-proof enum handling

 Implicitly handling future enum values can be problematic

 Solution: Use an exhaustive switch statement

 Beware of the default case

 Caveat: Relying on another project’s enum

 6.7 Can’t we just solve all this with testing?

 7 Make code hard to misuse

 7.1 Consider making things immutable

 Mutable classes can be easy to misuse

 Solution: Set values only at construction time

 Solution: Use a design pattern for immutability

 7.2 Consider making things deeply immutable

 Deep mutability can lead to misuse

 Solution: Defensively copy things

 Solution: Use immutable data structures

 7.3 Avoid overly general data types

 Overly general types can be misused

 Pair types are easy to misuse

 Solution: Use a dedicated type

 7.4 Dealing with time

 Representing time with integers can be problematic

 Solution: Use appropriate data structures for time

 7.5 Have single sources of truth for data

 Second sources of truth can lead to invalid states

 Solution: Use primary data as the single source of truth

 7.6 Have single sources of truth for logic

 Multiple sources of truth for logic can lead to bugs

 Solution: Have a single source of truth

 8 Make code modular

 8.1 Consider using dependency injection

 Hard-coded dependencies can be problematic

 Solution: Use dependency injection

 Design code with dependency injection in mind

 8.2 Prefer depending on interfaces

 Depending on concrete implementations limits adaptability

 Solution: Depend on interfaces where possible

 8.3 Beware of class inheritance

 Class inheritance can be problematic

 Solution: Use composition

 What about genuine is-a relationships?

 8.4 Classes should care about themselves

 Caring too much about other classes can be problematic

 Solution: Make classes care about themselves

 8.5 Encapsulate related data together

 Unencapsulated data can be difficult to handle

 Solution: Group related data into objects or classes

 8.6 Beware of leaking implementation details in return types

 Leaking implementation details in a return type can be problematic

 Solution: Return a type appropriate to the layer of abstraction

 8.7 Beware of leaking implementation details in exceptions

 Leaking implementation details in exceptions can be problematic

 Solution: Make exceptions appropriate to the layer of abstraction

 9 Make code reusable and generalizable

 9.1 Beware of assumptions

 Assumptions can lead to bugs when code is reused

 Solution: Avoid unnecessary assumptions

 Solution: If an assumption is necessary, enforce it

 9.2 Beware of global state

 Global state can make reuse unsafe

 Solution: Dependency-inject shared state

 9.3 Use default return values appropriately

 Default return values in low-level code can harm reusability

 Solution: Provide defaults in higher level code

 9.4 Keep function parameters focused

 A function that takes more than it needs can be hard to reuse

 Solution: Make functions take only what they need

 9.5 Consider using generics

 Depending on a specific type limits generalizability

 Solution: Use generics

 Part 3 Unit testing

 10 Unit testing principles

 10.1 Unit testing primer

 10.2 What makes a good unit test?

 Accurately detects breakages

 Agnostic to implementation details

 Well-explained failures

 Understandable test code

 Easy and quick to run

 10.3 Focus on the public API but don’t ignore important behaviors

 Important behaviors might be outside the public API

 10.4 Test doubles

 Reasons for using a test double

 Mocks

 Stubs

 Mocks and stubs can be problematic

 Fakes

 Schools of thought on mocking

 10.5 Pick and choose from testing philosophies

 11 Unit testing practices

 11.1 Test behaviors not just functions

 One test case per function is often inadequate

 Solution: Concentrate on testing each behavior

 11.2 Avoid making things visible just for testing

 Testing private functions is often a bad idea

 Solution: Prefer testing via the public API

 Solution: Split the code into smaller units

 11.3 Test one behavior at a time

 Testing multiple behaviors at once can lead to poor tests

 Solution: Test each behavior in its own test case

 Parameterized tests

 11.4 Use shared test setup appropriately

 Shared state can be problematic

 Solution: Avoid sharing state or reset it

 Shared configuration can be problematic

 Solution: Define important configuration within test cases

 When shared configuration is appropriate

 11.5 Use appropriate assertion matchers

 Inappropriate matchers can lead to poorly explained failures

 Solution: Use an appropriate matcher

 11.6 Use dependency injection to aid testability

 Hard-coded dependencies can make code impossible to test

 Solution: Use dependency injection

 11.7 Some final words on testing

 appendix A Chocolate brownie recipe

 appendix B Null safety and optionals

 appendix C Extra code examples

 index

 front matter

preface

 I’ve been coding in one form or another since I was 11 years old, so by the time I landed my first job as a software engineer, I’d written quite a lot of code. Despite this, I quickly discovered that coding and software engineering are not the same thing. Coding as a software engineer meant that my code had to make sense to other people and not break when they changed things. It also meant that there were real people (sometimes lots of them) using and relying on my code, so the consequences of things going wrong were a lot more serious.

 As a software engineer gets more experienced, they learn how the decisions they make in their everyday coding can have big consequences on whether software will work properly, keep working properly, and be maintainable by others. Learning how to write good code (from a software engineering point of view) can take many years. These skills are often picked up slowly and in an ad hoc way as engineers learn from their own mistakes or get piecemeal advice from more senior engineers that they work with.

 This book aims to give new software engineers a jump-start in acquiring these skills. It teaches some of the most important lessons and theoretical underpinnings of writing code that will be reliable, maintainable, and adaptable to changing requirements. I hope that you find it useful.

acknowledgments

 Writing a book is not a lone effort, and I’d like to thank everyone who had a hand in bringing this book into reality. In particular, I’d like to thank my development editor, Toni Arritola, for patiently guiding me through the process of authoring a book, and for her constant focus on the reader and high-quality teaching. I’d also like to thank my acquisition editor, Andrew Waldron, for believing in the idea for the book in the first place and for the many invaluable insights provided along the way. I’d also like to thank my technical development editor, Michael Jensen, for his deep technical insights and suggestions throughout the book. And thank you to my technical proofreader, Chris Villanueva, for carefully reviewing the code and technical content of the book, and for all the great suggestions.

 I’d also like to thank all of the reviewers—Amrah Umudlu, Chris Villanueva, David Racey, George Thomas, Giri Swaminathan, Harrison Maseko, Hawley Waldman, Heather Ward, Henry Lin, Jason Taylor, Jeff Neumann, Joe Ivans, Joshua Sandeman, Koushik Vikram, Marcel van den Brink, Sebastian Larsson, Sebastián Palma, Sruti S, Charlie Reams, Eugenio Marchiori, Jing Tang, Andrei Molchanov, and Satyaki Upadhyay—who took the time to read the book at multiple stages throughout its development and provide precise and actionable feedback. It’s hard to overstate just how important and useful this feedback has been.

 Nearly all the concepts in this book are well-established ideas and techniques within the software engineering community, so as a final acknowledgement I’d like to say thank you to all those who have contributed to, and shared, this body of knowledge over the years.

about this book

 Good Code, Bad Code introduces key concepts and techniques that professional software engineers regularly use to produce reliable and maintainable code. Rather than just enumerating do’s and don’ts, the book aims to explain the core reasoning behind each concept and technique, as well as any trade-offs. This should help readers develop a fundamental understanding of how to think and code like a seasoned software engineer.

Who should read this book

 This book is aimed at people who can already code but who want to improve their skills at coding as a software engineer in a professional environment. This book will be most useful to anyone with zero to three years’ experience as a software engineer. More experienced engineers will probably find that they already know many of the things in the book, but I hope that they will still find it a useful resource for mentoring others.

How this book is organized: A roadmap

 The book is organized into 11 chapters, spread across three parts. The first part introduces some more theoretical, high-level concepts that shape the way we think about code. The second part moves onto more practical lessons. Each chapter in part 2 is split into a series of topics that cover a particular consideration or technique. The third and final part of the book covers principles and practices that go into creating effective and maintainable unit tests.

 The general pattern in individual sections of the book is to demonstrate a scenario (and some code) that can be problematic and to then show an alternative approach that eliminates some or all of the problems. In this sense, sections tend to progress from showing “bad” code to showing “good” code, with the caveat that the terms bad and good are subjective and context dependent. And as the book aims to emphasize, there are often nuances and trade-offs to consider, meaning this distinction is not always clear-cut.

 Part 1, “In theory,” sets the foundations for some overarching and slightly more theoretical considerations that shape our approach to writing code as software engineers.

 	
 Chapter 1 introduces the concept of code quality, and in particular a practical set of goals for what we aim to achieve with high-quality code. It then expands these into six “pillars of code quality,” which provide high-level strategies that can be employed in our everyday coding.

 	
 Chapter 2 discusses layers of abstraction, a fundamental consideration that guides how we structure and split code into distinct parts.

 	
 Chapter 3 highlights the importance of thinking about other engineers who will have to work with our code. It goes on to discuss code contracts and how thinking carefully about these can prevent bugs.

 	
 Chapter 4 discusses errors and why thinking carefully about how to signal and handle them is a vital part of writing good code.

 Part 2, “In practice,” covers the first five pillars of code quality (established in chapter 1) in a more practical way with specific techniques and examples.

 	
 Chapter 5 covers making code readable, which ensures that other engineers will be able to make sense of it.

 	
 Chapter 6 covers avoiding surprises, which minimizes the chance of bugs by ensuring that other engineers will not misinterpret what a piece of code does.

 	
 Chapter 7 covers making code hard to misuse, which minimizes the chance of bugs by making it difficult for engineers to accidentally produce code that is logically wrong or that violates assumptions.

 	
 Chapter 8 covers making code modular, a key technique that helps ensure code exhibits clean layers of abstraction, and that it will be adaptable to changing requirements.

 	
 Chapter 9 covers making code reusable and generalization. This makes adding new functionality or building new features easier and safer by preventing the need to reinvent the wheel.

 Part 3, “Unit testing,” introduces key principles and practices that go into writing effective unit tests.

 	
 Chapter 10 introduces a number of principles and higher level considerations that influence how we unit test code.

 	
 Chapter 11 builds on the principles in chapter 10 to provide a number of specific and practical suggestions for writing unit tests.

 The ideal way to read this book is cover to cover, because the ideas in earlier parts of the book lay the foundations for subsequent parts. But despite this, the topics in part 2 (and chapter 11) are typically quite self-contained, and each span only a few pages, so most will be useful even if read in isolation. This is deliberate, with the aim of providing an effective way to quickly explain an established best practice to another engineer. This is intended to be useful for any engineers wishing to explain a specific concept in a code review or while mentoring another engineer.

About the code

 The book is aimed at engineers who code in a statically typed, object-oriented programming language, such as one of the following: Java, C#, TypeScript, JavaScript (ECMAScript 2015 or later with a static type checker), C++, Swift, Kotlin, Dart 2, or similar. The concepts covered in this book are widely applicable whenever coding in a language like one of these.

 Different programming languages have different syntaxes and paradigms for expressing logic and code structure. But in order to provide code examples in this book, it’s necessary to standardize on some kind of syntax and set of paradigms. For this, the book uses a pseudocode that borrows ideas from a number of different languages. The aim with the pseudocode is to be explicit, clear, and easily recognizable to the greatest number of engineers. Please bear this utilitarian intent in mind; the book does not aim to suggest that any one language is better or worse than any other.

 Similarly, where there is a trade-off between being unambiguous and being succinct, the pseudocode examples tend to err on the side of being unambiguous. One example of this is the use of explicit variable types, as opposed to inferred types with a keyword like var. Another example is the use of if-statements to handle nulls, rather than the more succinct (but perhaps less familiar) null coalescing and null conditional operators (see appendix B). In real codebases (and outside of the context of a book) engineers may wish to place a greater emphasis on succinctness.

liveBook discussion forum

 Purchase of Good Code, Bad Code: Think Like a Software Engineer includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/good-code-bad-code/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

How to use the advice in this book

 While reading any book or article about software engineering, it’s always worth remembering that it’s a subjective topic and that the solutions to real-world problems are rarely clear-cut. In my experience, the best engineers approach everything they read with a healthy amount of skepticism and a desire to understand the fundamental thinking behind it. Opinions differ and evolve, and the tools and programming languages available are constantly improving. Understanding the reasons behind a particular piece of advice, its context, and its limits are essential for knowing when to apply it and when to ignore it.

 This book aims to collect a number of useful topics and techniques to help guide engineers toward writing better code. Even though it’s probably wise to consider these things, nothing in this book should be considered infallible or applied as a hard-and-fast rule that can never be broken. Good judgment is an essential ingredient of good engineering.

Further reading

 This book aims to be a stepping stone into the world of coding as a software engineer. It should give the reader a broad idea of ways to think about code, things that can be problematic, and techniques for avoiding these problems. But the journey shouldn’t end here; software engineering is a huge and ever evolving subject area, and it’s highly advisable to read broadly and to keep up-to date with things. In addition to reading articles and blogs, some books on the subject that readers may find useful are as follows:

 	
 Refactoring: Improving the Design of Existing Code, second edition, Martin Fowler (Addison-Wesley, 2019)

 	
 Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin (Prentice Hall, 2008)

 	
 Code Complete: A Practical Handbook of Software Construction, second edition, Steve McConnell (Microsoft Press, 2004)

 	
 The Pragmatic Programmer: Your Journey to Mastery, 20th anniversary, second edition, David Thomas and Andrew Hunt (Addison-Wesley 2019)

 	
 Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994)

 	
 Effective Java, third edition, Joshua Bloch (Addison-Wesley, 2017)

 	
 Unit Testing: Principles, Practices and Patterns, Vladimir Khorikov (Manning Publications, 2020)

about the author

 Tom Long is a software engineer at Google. He works as a tech lead, and among other tasks, regularly mentors new software engineers in professional coding best practices.

about the cover illustration

 The figure on the cover of Good Code, Bad Code is captioned “Homme Zantiote,” or a man from the island of Zakynthos in Greece. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1 In theory

 The world of software engineering is full of advice and opinions on how best to write code. But life is rarely as simple as just absorbing as many of these as possible and then following them religiously. For a start, different pieces of advice from different sources can often contradict one another, so how do we know which one to follow? But more to the point: software engineering is not an exact science, and it can’t be distilled down to a set of infallible rules (however hard we might try). Every project is different, and there are nearly always trade-offs to consider.

 In order to write good code, we need to apply a sound sense of judgment to the scenario at hand and be able to think through the consequences (good and bad) of a particular way of doing something. For this, we need to understand the fundamentals: What are we actually trying to achieve when we write code? And what are the high-level considerations that help us get there? Part 1 aims to provide a solid grounding in these more theoretical aspects of writing good code.

1 Code quality

 This chapter covers

 	
The reason code quality matters

 	
The four goals that high-quality code aims to achieve

 	
The six high-level strategies we can use to ensure code is of a high-quality

 	
How writing high-quality code actually saves time and effort in the medium to long term

 You’ve probably used hundreds, maybe even thousands of different pieces of software in the past year. Every program installed on your computer, every app on your phone, and every self-service checkout you’ve had the pleasure of contending with—we interact with software a lot.

 There are also many pieces of software that we depend on without even necessarily realizing it. We trust our bank, for example, to have a well-behaved backend system that isn’t going to unexpectedly transfer the contents of our bank account to someone else, or suddenly decide that we’re in millions of dollars of debt.

 Sometimes we encounter pieces of software that are an absolute delight to use; they do exactly what we want, contain very few bugs, and are easy to use. But other times we encounter pieces of software that are absolutely horrible to use. They are full of bugs, crash all the time, and are unintuitive.

 Some pieces of software are obviously less critical than others; an app on our phone containing a bug is probably annoying but not the end of the world. A bug in a bank’s backend system, on the other hand, has the potential to ruin lives. Even issues in pieces of software that don’t seem critical can ruin businesses. If users find a piece of software annoying or difficult to use, then there’s a good chance that they will switch to an alternative.

 Higher quality code tends to produce software that is more reliable, easier to maintain, and less buggy. Many of the principles around increasing code quality are concerned not just with ensuring that software is initially this way, but that it stays this way throughout its lifetime as requirements evolve and new scenarios emerge. Figure 1.1 illustrates some of the ways in which code quality can affect the quality of the software.

 [image: CH01_F01_Long2]

 Figure 1.1 High-quality code maximizes the chance that the software will be reliable, maintainable, and meet its requirements. Low-quality code tends to do the opposite.

 Good code is obviously not the only ingredient that goes into making good software, but it is one of the main ones. We can have the best product and marketing teams in the world, deploy on the best platforms, and build with the best frameworks, but at the end of the day everything a piece of software does happens because someone wrote a piece of code to make it happen.

 The everyday decisions engineers make when writing code can seem small in isolation and sometimes insignificant, but they collectively determine whether a piece of software will be good or bad. If code contains bugs, is misconfigured, or doesn’t handle error cases properly, then software built from it will likely be buggy and unstable and probably not do its job properly.

 This chapter identifies four goals that high-quality code should aim to achieve. This is then expanded into six high-level strategies we can employ in our everyday work to ensure the code we write is of high quality. Later chapters in this book explore these strategies in increasing levels of detail, with many worked examples using pseudocode.

1.1 How code becomes software

 Before we delve into talking about code quality, it’s worth briefly discussing how code becomes software. If you already have familiarity with the software development and deployment process, then feel free to skip to section 1.2. If you’re someone who knows how to code but you’ve never worked in a software engineering role before, then this section should give you a good high-level overview.

 Software is made from code; that much is obvious and doesn’t really need stating. What can be less obvious (unless you already have experience as a software engineer) is the process by which code becomes software running in the wild (in the hands of users, or performing business-related tasks).

 Code generally doesn’t become software running in the wild the moment an engineer writes it. There are usually various processes and checks in place to try and ensure that the code does what it’s meant to and doesn’t break anything. These are often referred to as the software development and deployment process.

 We don’t need detailed knowledge of this process for this book to make sense, but it’ll help to at least know the high-level outline of it. To start, it’s useful to introduce a few pieces of terminology:

 	
 Codebase —The repository of code from which pieces of software can be built. This will typically be managed by a version control system such as git, subversion, perforce, etc.

 	
 Submitting code —Sometimes called “committing code” or “merging a pull request,” a programmer will typically make changes to the code in a local copy of the codebase. Once they are happy with the change they will submit it to the main codebase. Note: in some setups, a designated maintainer has to pull the changes into the codebase rather than the author submitting them.

 	
 Code review —Many organizations require code to be reviewed by another engineer before it can be submitted to the codebase. This is a bit like having code proofread; a second pair of eyes will often spot issues the author of the code missed.

 	
 Pre-submit checks —Sometimes called “pre-merge hooks,” “pre-merge checks,” or “pre-commit checks,” these will block a change from being submitted to the codebase if tests fail or if the code does not compile.

 	
 A release —A piece of software is built from a snapshot of the codebase. After various quality assurance checks, this is then released into the wild. You will often hear the phrase “cutting a release” to refer to the process of taking a certain revision of the codebase and making a release from it.

 	
 Production —This is the proper term for in the wild when software is deployed to a server or a system (rather than shipped to customers). Once software is released and performing business-related tasks it is said to be running in production.

 There are many variations on the process of how code becomes software running in the wild, but the key steps in the processes are usually the following:

 	
 An engineer will work on a local copy of the codebase to make changes.

 	
 Once they are happy, they will send these changes for a code review.

 	
 Another engineer will review the code and possibly suggest alterations.

 	
 Once both the author and the reviewer are happy, the code will be submitted to the codebase.

 	
 Releases will be periodically cut from the codebase. The frequency of this can vary between different organizations and teams (from the order of every few minutes to the order of every few months).

 	
 Any tests failing or the code not compiling will either block code from being submitted to the codebase or block the code from being released.

 Figure 1.2 provides an outline of a typical software development and deployment process. Different companies and teams all have their own variations on this process, and the level to which parts of the process are automated can vary enormously.

 It’s worth noting that software development and deployment processes are enormous topics in their own right; many entire books have been written about them. There are also many different frameworks and ideologies around them, and it’s well worth reading more about it if you’re interested. This book is not primarily about these topics, so we won’t cover them in any more detail than we just did. All you need to know for this book is the rough idea of how code becomes software.

 [image: CH01_F02_Long2]

 Figure 1.2 A simplified diagram of a typical software development and deployment process. The exact steps and the level of automation can vary greatly between different organizations and teams.

1.2 The goals of code quality

 If we’re buying a car, quality would probably be one of our primary considerations. We want a car that

 	
 is safe,

 	
 actually works,

 	
 doesn’t break down, and

 	
 behaves predictably: when we hit the brake pedal, the car should slow down.

 If we ask someone what makes a car high quality, one of the most likely answers we’ll get is that it’s well built. This means that the car was well designed, that it was tested for safety and reliability before being put into production, and that it was assembled correctly. Making software is much the same: to create high-quality software, we need to ensure that it’s well built. This is what code quality is all about.

 The words “code quality” can sometimes stir up connotations of nit-picky advice about trivial and unimportant things. You’ll no doubt come across this from time to time, but it’s not actually what code quality is about. Code quality is very much grounded in practical concerns. It can sometimes be concerned with small details and sometimes big details, but the aim is the same: creating better software.

 Despite this, code quality can still be a bit of a hard concept to put our finger on. Sometimes we might see particular code and think, “Yuck” or “Wow, that looks hacky,” and other times we might stumble across code and think, “This is excellent.” It’s not always obvious why code invokes these kinds of reactions, and it can sometimes just be a gut reaction with no real justification.

 Defining code as being high quality or low quality is an inherently subjective and somewhat judgmental thing. To try to be a bit more objective about it; I personally find it useful to step back and think about what I’m really trying to achieve when I write code. Code that helps me achieve these things is high quality in my mind, and code that hinders these things is low quality.

 There are four high-level goals that I aim to achieve when writing code:

 	
 It should work.

 	
 It should keep working.

 	
 It should be adaptable to changing requirements.

 	
 It should not reinvent the wheel.

 The next few subsections explain these four goals in more detail.

1.2.1 Code should work

 This one is so obvious it probably doesn’t need stating, but I’ll go ahead and say it anyway. When we write code, we are trying to solve a problem, such as implementing a feature, fixing a bug, or performing a task. The primary aim of our code is that it should work; it should solve the problem that we intend it to solve. This also implies that the code is bug free, because the presence of bugs will likely prevent it from working properly and fully solving the problem.

 When defining what code “working” means, we need to capture all the requirements. For example, if the problem we are solving is particularly sensitive to performance (such as latency or CPU usage), then ensuring that our code is adequately performant comes under “code should work,” because it’s part of the requirements. The same applies to other important considerations such as user privacy and security.

1.2.2 Code should keep working

 Code working can be a very transient thing; it might work today, but how do we make sure that it will still work tomorrow, or in a year’s time? This might seem like an odd thing to worry about; why would code suddenly stop working? The point is that code does not live in isolation, and if we’re not careful it can easily break as things around it change.

 	
 Code likely depends on other code that will get modified, updated, and changed.

 	
 Any new functionality required may mean that modifications are required to the code.

 	
 The problem we’re trying to solve might evolve over time: consumer preferences, business needs, and technology considerations can all change.

 Code that works today but breaks tomorrow when one of these things changes is not very useful. It’s often easy to create code that works but a lot harder to create code that keeps working. Ensuring that code keeps working is one of the biggest considerations that software engineers face and is something that needs to be considered at all stages of coding. Considering it as an afterthought or assuming that just adding some tests later on will achieve this are often not effective approaches.

1.2.3 Code should be adaptable to changing requirements

 It’s quite rare that a piece of code is written once and then never modified again. Continued development on a piece of software can span several months, usually several years, and sometimes even decades. Throughout this process requirements change:

 	
 Business realities shift.

 	
 Consumer preferences change.

 	
 Assumptions get invalidated.

 	
 New features are continually added.

 Deciding how much effort to put into making code adaptable can be a tricky balancing act. On the one hand, we pretty much know that the requirements for a piece of software will evolve over time (it’s extremely rare that they don’t). But on the other hand, we often have no certainty about exactly how they will evolve. It’s impossible to make perfectly accurate predictions about how a piece of code or software will change over time. But just because we don’t know exactly how something will evolve doesn’t mean that we should completely ignore the fact that it will evolve. To illustrate this, let’s consider two extreme scenarios:

 	
 Scenario A —We try to predict exactly how the requirements might evolve in the future and engineer our code to support all these potential changes. We will likely spend days or weeks mapping out all the ways that we think the code and software might evolve. We’ll then have to carefully deliberate every minutiae of the code we write to ensure that it supports all these potential future requirements. This will slow us down enormously; a piece of software that might have taken three months to complete could now take a year or more. And at the end, it will probably have been a waste of time because a competitor will have beat us to market by several months, and our predictions about the future will probably turn out to be wrong anyway.

 	
 Scenario B —We completely ignore the fact that the requirements might evolve. We write code to exactly meet the requirements as they are now and put no effort into making any of the code adaptable. Brittle assumptions get baked in all over the place, and solutions to subproblems are all bundled together into large inseparable chunks of code. We get the first version of the software launched within three months, but the feedback from the initial set of users makes it clear that we need to modify some of the features and add new ones if we want the software to be successful. The changes to the requirements are not massive, but because we didn’t consider adaptability when writing the code, our only option is to throw everything away and start again. We then have to spend another three months rewriting the software, and if the requirements change again, we’ll have to spend another three months rewriting it again after that. By the time we’ve created a piece of software that meets the users’ needs, a competitor has once again beaten us to it.

 Scenario A and scenario B represent two opposing extremes. The outcome in both scenarios is quite bad, and neither is an effective way to create software. Instead, we need to find an approach somewhere in the middle of these two extremes. There’s no single answer for which point on the spectrum between scenario A and scenario B is optimal. It will depend on the kind of project we’re working on and on the culture of the organization we work for.

 Luckily, there are some generally applicable techniques we can adopt to ensure that code is adaptable without having to know exactly how it might be adapted in the future. We’ll cover many of these techniques in this book.

1.2.4 Code should not reinvent the wheel

 When we write code to solve a problem, we generally take a big problem and break it down into multiple smaller subproblems. For example, if we were writing code to load an image file, turn it into a grayscale image, and then save it again, the subproblems we need to solve are as follows:

 	
 Load some bytes of data from a file.

 	
 Parse the bytes of data into an image format.

 	
 Transform the image to grayscale.

 	
 Convert the image back into bytes.

 	
 Save those bytes back to the file.

 Many of these problems have already been solved by others; for example, loading some bytes from a file is likely something that the programming language has built-in support for. We wouldn’t write our own code to do low-level communication with the file system. Similarly there is probably an existing library we can pull in to parse the bytes into an image.

 If we do write our own code to do low-level communication with the file system or to parse some bytes into an image, then we are effectively reinventing the wheel. There are several reasons it’s best to make use of an existing solution over reinventing it:

 	
 It saves time and effort —If we made use of the built-in support for loading a file, it’d probably take only a few lines of code and a few minutes of our time. In contrast, writing our own code to do this would likely require reading numerous standards documents about file systems and writing many thousands of lines of code. It would probably take us many days if not weeks.

 	
 It decreases the chance of bugs —If there is existing code somewhere to solve a given problem, then it should already have been thoroughly tested. It’s also likely that it’s already being used in the wild, so the chance of the code containing bugs is lowered, because if there were any, they’ve likely been discovered and fixed already.

 	
 It utilizes existing expertise —The team maintaining the code that parses some bytes into an image are likely experts on image encoding. If a new version of JPEG-encoding comes out, then they’ll likely know about it and update their code. By reusing their code we benefit from their expertise and future updates.

 	
 It makes code easier to understand —If there is a standardized way of doing something, then there’s a reasonable chance that another engineer will have seen it before. Most engineers have probably had to read a file at some point and will instantly recognize the built-in way of doing that and understand how it functions. If we write our own custom logic for doing this, then other engineers will not be familiar with it and won’t instantly know how it functions.

 The concept of not reinventing the wheel applies in both directions. If another engineer has already written code to solve a subproblem, then we should call their code rather than writing our own to solve it. But similarly, if we write code to solve a subproblem, then we should structure our code in a way that makes it easy for other engineers to reuse so that they don’t need to reinvent the wheel.

 The same classes of subproblems often crop up again and again, so the benefits of sharing code between different engineers and teams are often realized very quickly.

1.3 The pillars of code quality

 The four goals we just looked at help us focus on what we’re fundamentally trying to achieve, but they don’t provide particularly specific advice about what to do in our everyday coding. It’s useful to try to identify more specific strategies that will help us write code that meets these goals. This book will be centered around six such strategies, which I’ll refer to (in an overly grand way) as “the six pillars of code quality.” We’ll start with a high-level description of each pillar, but later chapters will provide specific examples that show how to apply these in our everyday coding.

 The six pillars of code quality:

 	
 Make code readable.

 	
 Avoid surprises.

 	
 Make code hard to misuse.

 	
 Make code modular.

 	
 Make code reusable and generalizable.

 	
 Make code testable and test it properly.

1.3.1 Make code readable

 Consider the following passage of text. It’s deliberately hard to read, so don’t waste too much time deciphering it. Skim read and absorb what you can:

 Take a bowl; we’ll now refer to this as A. Take a saucepan; we’ll now refer to this as B. Fill B with water and place on the hob. Take A and place butter and chocolate into it, 100 grams of the former, 185 grams of the latter. It should be 70% dark chocolate. Place A on top of B; leave it there until the contents of A have melted, then take A off of B. Take another bowl; we’ll now refer to this as C. Take C and place eggs, sugar, and vanilla essence in it, 2 of the first, and 185 grams of the second, and half a teaspoon of the third. Mix the contents of C. Once the contents of A have cooled, add the contents of A to C and mix. Take a bowl; we’ll refer to this as D. Take D and place flour, cocoa powder, and salt in it, 50 grams of the first, 35 grams of the second, and half a teaspoon of the third. Mix the contents of D thoroughly and then sieve into C. Mix contents of D just enough to fully combine them. We’re making chocolate brownies by the way; did I forget to mention that? Take D and add 70 grams of chocolate chips, mix contents of D just enough to combine. Take a baking tin; we will refer to this as E. Grease and line E with baking paper. Place the contents of D into E. We will refer to your oven as F. You should have preheated F to 160°C by the way. Place E into F for 20 minutes, then remove E from F. Allow E to cool for several hours.

 Now some questions:

 	
 What is the passage of text about?

 	
 What will we end up with after following all the instructions?

 	
 What ingredients, and how much of them, do we need?

 We can find the answer to all these questions in the passage of text, but it’s not easy; the text has poor readability. There are several issues that make the text less readable, including the following:

 	
 There is no title, so we have to read the whole passage just to figure out what it is about.

 	
 The passage is not nicely presented as a series of steps (or subproblems); it is instead presented as one big wall of text.

 	
 Things are referred to with unhelpfully vague names, like “A” instead of “the bowl with melted butter and chocolate.”

 	
 Pieces of information are placed far away from where they’re needed: ingredients and their quantities are separated, and the important instruction that the oven needs preheating is only mentioned at the end.

 (In case you got fed up and stopped reading the passage of text, it’s a recipe for chocolate brownies. There is a more readable version in appendix A in case you actually want to make them.)

 Reading a piece of badly written code and trying to figure things out is not dissimilar from the experience we just had of reading the brownie recipe. In particular, we might struggle to understand the following things about the code:

 	
 What it does

 	
 How it does it

 	
 What ingredients it needs (inputs or state)

 	
 What we’ll get after running that piece of code

 At some point, another engineer will most likely need to read our code and understand it. If our code has to undergo a code review before being submitted, then this will happen almost immediately. But even ignoring the code review, at some point someone will find themselves looking at our code and trying to figure out what it does. This can happen when requirements change or the code needs debugging.

 If our code has poor readability, other engineers will have to spend a lot of time trying to decipher it. There is also a high chance that they might misinterpret what it does or miss some important details. If this happens, then it’s less likely that bugs will be spotted during code review, and it’s more likely that new bugs will be introduced when someone else has to modify our code to add new functionality. Everything a piece of software does happens because of some code that makes it happen. If engineers can’t understand what that code does, then it becomes almost impossible to make sure the software as a whole will do its job properly. Just like with a recipe, code needs to be readable.

 In chapter 2, we’ll see how defining the right layers of abstraction can help with this. And in chapter 5 we’ll cover a number of specific techniques for making code more readable.

1.3.2 Avoid surprises

 Being given a gift on your birthday or winning the lottery are both examples of nice surprises. When we’re trying to get a specific task done, however, surprises are usually a bad thing.

 Imagine you’re hungry, so you decide to order some pizza. You get your phone out, find the number for the pizza restaurant, and hit dial. The line is silent for a weirdly long period of time but eventually connects and the voice on the other end asks you what you want.

 “One large margherita for delivery please.”

 “Uh okay, what’s your address?”

 Half an hour later your order is delivered, you open the bag to find the following (figure 1.3).

 [image: CH01_F03_Long2]

 Figure 1.3 If you think you’re talking to a pizza restaurant, when you’re in fact talking to a Mexican restaurant, your order may still make sense, but you’ll get a surprise when it’s delivered.

 Wow, that’s surprising. Obviously someone has mistaken “margherita” (a type of pizza) for “margarita” (a type of cocktail), but that’s kind of weird because the pizza restaurant doesn’t serve cocktails.

 It turns out that the custom dialer app you use on your phone has added a new “clever” feature. The developers of it observed that when users call a restaurant and find the line busy, 80% of them will immediately call a different restaurant, so they created a handy, time-saving feature: when you call a number that the dialer recognizes as a restaurant and the line is busy, it seamlessly dials the next restaurant number in your phone instead.

 In this case that happened to be your favorite Mexican restaurant rather than the pizza restaurant you thought you were calling. The Mexican restaurant most definitely does serve margarita cocktails but not pizzas. The developers of the app had good intentions and thought they were making users’ lives easier, but they created a system that does something surprising. We rely on our mental model of a phone call to determine what is happening based on what we hear. Importantly, if we hear a voice answer, then our mental model tells us we’ve been connected to the number we dialed.

 The new feature in the dialer app modifies the behavior outside of what we would expect; it breaks our mental model’s assumption that if a voice answers we have been connected to the number we dialed. It could well be a useful feature, but because its behavior is outside of a normal person’s mental model, it needs to make explicit what is happening, like having an audio message that tells us that the number we called is busy and asking us if we’d like to be connected to another restaurant instead.

 The dialer app is analogous to a piece of code. Another engineer using our code will use cues such as names, data types, and common conventions to build a mental model about what they expect our code to take as input, what it will do, and what it will return. If our code does something outside of this mental model, then it can very often lead to bugs creeping into a piece of software.

 In the example of calling the pizza restaurant, it seemed like everything was working even after the unexpected happened: you ordered a margherita and the restaurant was happy to oblige. It was only much later, after it was too late to rectify, that you discovered you had inadvertently ordered a cocktail instead of food. This is analogous to what often happens in software systems when some code does something surprising: because the caller of the code doesn’t know to expect it, they carry on unaware. It will often look like things are fine for a bit, but then later things will go horribly wrong when the program finds itself in an invalid state or a weird value is returned to a user.

 Even with the best of intentions, writing code that does something helpful or clever can run the risk of causing surprises. If code does something surprising, then the engineer using that code will not know or think to handle that scenario. Often this will cause a system to limp on until some weird behavior manifests far away from the code in question. This might cause a mildly annoying bug, but it might also cause a catastrophic problem that corrupts some important data. We should be wary of causing surprises in our code and try to avoid them if we can.

 In chapter 3, we’ll see how thinking about code contracts is a fundamental technique that can help with this. Chapter 4 covers errors, which can be a cause of surprises if not signaled or handled appropriately. And chapter 6 looks at a number of more specific techniques for avoiding surprises.

1.3.3 Make code hard to misuse

 If we look at the back of a TV, it will probably look something like figure 1.4. It will have a bunch of different sockets that we can plug cables into. Importantly, the sockets will have different shapes; the manufacturer of the TV has made it impossible to plug the power cord into the HDMI socket.

 [image: CH01_F04_Long2]

 Figure 1.4 The sockets on the back of a TV are deliberately different shapes to make it hard to plug the wrong cables into the wrong holes.

 Imagine if the manufacturer had not done this and had instead made every socket the same shape. How many people do you think might accidentally end up plugging cables into the wrong sockets as they are fumbling around at the back of their TV? If someone plugged the HDMI cable into the power socket, then stuff would probably not work. That would be annoying but not too catastrophic. If someone plugged the power cable into the HDMI socket though, that might literally cause things to blow up.

 Code we write is often called by other code and is a bit like the back of a TV. We expect that other code to “plug” certain things in, like input arguments or placing the system in a certain state before calling. If the wrong things get plugged into our code, then things might blow up; the system crashes, a database gets permanently corrupted, or some important data gets lost. Even if things don’t blow up there’s a good chance that the code is not going to work. There was a reason our code got called, and the incorrect stuff being plugged in might mean that an important task doesn’t get performed or some weird behavior happens but goes unnoticed.

 We can maximize the chance that code works and stays working by making things hard or impossible to misuse. There are numerous practical ways of doing this. Chapter 3 covers code contracts, which (similarly to avoiding surprises) is a fundamental technique that can help make code hard to misuse. Chapter 7 covers a number of more specific techniques for making code hard to misuse.

1.3.4 Make code modular

 Modularity means that an object or system is composed of smaller components that can be independently exchanged or replaced. To demonstrate this, as well as the benefits of modularity, consider the two toys in figure 1.5.

 The toy on the left is highly modular. The head, arms, hands, and legs can all be easily and independently exchanged or replaced without affecting other parts of the toy. The toy on the right, conversely, is highly non-modular. There is no easy way to exchange or replace the head, arms, hands, or legs.

 [image: CH01_F05_Long2]

 Figure 1.5 A modular toy can be easily reconfigured. A toy that has been stitched together is extremely hard to reconfigure.

 One of the key features of a modular system (such as the toy on the left) is that the different components have well-defined interfaces, with as few points of interaction as possible. If we consider a hand as a component, then with the toy on the left there is a single point of interaction with a simple interface: a single peg and a single hole that it fits into. The toy on the right has an incredibly complex interface between a hand and the rest of the toy: 20-plus loops of thread on the hand and the arm interwoven into one another.

 Now imagine that our job is maintaining these toys, and one day our manager tells us that there is a new requirement that the hands now need to have fingers. Which toy/system would we rather be working with?

 With the toy on the left, we could manufacture a new design of the hand and then very easily exchange it with the existing ones. If our manager then changed their mind two weeks later, we’d have no trouble returning the toy to its previous configuration.

 With the toy on the right, we’d probably have to get the scissors out, cut 20-plus strands of thread, and then stitch new hands directly onto the toy. We’d likely damage the toy in the process, and if our manager did change their mind two weeks later, we’d have a similarly laborious process to return the toy to the previous configuration.

 Software systems and codebases are very much analogous to these toys. It’s often beneficial to break a piece of code down into self-contained modules, where interactions between two adjacent modules happen in a single place and use a well-defined interface. This helps ensure that the code will be easier to adapt to changing requirements, because changes to one piece of functionality don’t require lots of changes all over the place.

 Modular systems are also generally easier to comprehend and reason about, because functionality is broken into manageable chunks and the interactions between the chunks of functionality are well defined and documented. This increases the chance that code will work in the first place and keep working in the future, because it’s less likely that engineers will misunderstand what the code does.

 In chapter 2, we’ll see how creating clean layers of abstraction is a fundamental technique that can guide us toward more modular code. And in chapter 8, we’ll look at a number of specific techniques for making code more modular.

1.3.5 Make code reusable and generalizable

 Reusability and generalizability are two similar but slightly different concepts:

 	
 Reusability means that something can be used to solve the same problem but in multiple scenarios. A hand drill is reusable because it can be used to drill holes in walls, in floor boards, and in ceilings. The problem is the same (a hole needs drilling), but the scenario is different (drilling into a wall versus into the floor versus into the ceiling).

 	
 Generalizability means something can be used to solve multiple conceptually similar problems that are subtly different. A hand drill is also generalizable, because as well as being used to drill holes, it can also be used to drive screws into things. The drill manufacturer recognized that rotating something is a general problem that applies to both drilling holes and driving screws, so they created a tool that generalizes to solve both problems.

 In the case of the drill, we can immediately recognize the benefits of this. Imagine if we needed four different tools:

 	
 A drill that only worked while being held level, meaning it was only useful for drilling into walls.

 	
 A drill that only worked while being pointed down at a 90° angle, meaning it was only useful for drilling into the floor.

 	
 A drill that only worked while being pointed up at a 90° angle, meaning it was only useful for drilling into the ceiling.

 	
 An electric screwdriver for driving screws into things.

 We’d have spent a lot more money acquiring this collection of four tools, we’d have to carry more stuff around with us, and we’d have to charge four times as many batteries—it’s just wasteful. Thankfully someone created a drill that is both reusable and generalizable, and we only need one to do all these different jobs. There are no prizes for guessing that the hand drill here is yet another analogy for code.

 Code takes time and effort to create, and once it’s created it also takes ongoing time and effort to maintain. Creating code is also not without risks: however careful we are, some amount of the code we write will contain bugs, and the more of it we write, the more bugs we’re likely to have. The point here is that the fewer lines of code we have in a codebase, the better. It might seem weird to say this when our job seems to involve being paid to write code, but really we’re being paid to solve a problem, and code is just a means to that end. If we can solve that problem while exerting less effort and also reduce the chance that we’re inadvertently creating other problems by introducing bugs, then great.

 Making code reusable and generalizable allows us (and others) to use it in multiple places throughout a codebase, in more than one scenario, and to solve more than one problem. It saves time and effort and makes our code more reliable because we’ll often be reusing logic that has already been tried and tested in the wild, meaning any bugs have likely already been discovered and fixed.

 Code that is more modular also tends to be more reusable and generalizable. The chapters relating to modularity go hand-in-hand with the topic of reusability and generalizability. In addition, chapter 9 covers a number of techniques and considerations specific to making code more reusable and generalizable.

1.3.6 Make code testable and test it properly

 As we saw earlier in the software development and deployment diagram (figure 1.2), tests are a vital part of the process of ensuring that bugs and broken functionality do not end up running in the wild. They’re often the main defense at two of the key points in the process (figure 1.6):

 	
 Preventing buggy or broken functionality from being submitted to the code- base

 	
 Ensuring that a release with bugs or broken functionality is blocked and doesn’t end up in the wild

 Tests are therefore an essential part of ensuring that code works and that it keeps working.

 [image: CH01_F06_Long2]

 Figure 1.6 Tests are vital for minimizing the chance that bugs and broken functionality enter the codebase and for ensuring they are not released into the wild if they do.

 It’s hard to overstate just how important testing is in software development. You’ve no doubt heard this multiple times before, and it becomes easy to start dismissing it as just another platitude, but it really is important. As we’ll see at multiple points throughout the book,

 	
 software systems and codebases tend to be too big and complicated for a single person to know every minute detail about them, and

 	
 people (even exceptionally clever engineers) make mistakes.

 These are more or less facts of life, and unless we lock the functionality of our code in with tests, then these have a habit of ganging up on us (and our code).

 The title of this pillar of code quality contains two important concepts: “make code testable” and “test it properly.” Testing and testability are related, but have different considerations:

 	
 Testing—As the name suggests, this relates to testing our code or the software as a whole. Testing can be manual or automated. As engineers, we will usually strive to make our testing automated by writing test code that exercises the “real” code and checks that everything behaves as it should. There are different levels of testing. Three of the most common you will probably work with are as follows. (Please note that this is not an exhaustive list; there are many ways of categorizing tests, and different organizations often use different nomenclatures.)

 	

 	
 Unit tests—These usually test small units of code such as individual functions or classes. Unit testing is the level of testing engineers tend to work with most often in their everyday coding. This is the only level of testing this book will cover in any detail.

 	
 Integration tests—A system is usually built up of multiple components, modules, or subsystems. The process of linking these components and subsystems together is known as integration. Integration tests try to ensure that these integrations work and stay working.

 	
 End-to-end (E2E) tests—These test typical journeys (or workflows) through a whole software system from start to finish. If the software in question were an online shopping store, then an example of an E2E test might be one that automatically drives a web browser to ensure that a user can go through the workflow of completing a purchase.

 	
 Testability—This refers to the “real” code (as opposed to the test code) and describes how well that code lends itself to being tested. The concept of something being testable can also apply at the subsystem or system level. Testability is often highly related to modularity, with more modular code (or systems) being more testable. Imagine a car manufacturer is developing an emergency pedestrian braking system. If the system is not very modular, then the only way to test it might be to install it in a real car, drive the car at a real pedestrian, and check that the car automatically comes to a stop. If this is the case, then the number of scenarios that the system can be tested in is limited, because the cost of each test is so high: building an entire car, renting a test track, and putting a real person at risk as they pretend to be a pedestrian in the road. The emergency braking system becomes a lot more testable if it’s a distinct module that can be run outside of a real car. It can now be tested by feeding it a prerecorded video of a pedestrian stepping out and then checking that the system outputs the correct signal intended for the braking system. It’s now very easy, cheap, and safe to test many thousands of different pedestrian scenarios.

 If code is not testable, then it can become impossible to test it properly. To ensure that the code we write is testable, it’s good to continually ask ourselves “How will we test this?” as we are writing the code. Therefore, testing should not be considered an afterthought: it’s an integral and fundamental part of writing code at all stages. Chapters 10 and 11 are all about testing, but because testing is so integral to writing code, we will find that it crops up in numerous places throughout this book.

 NOTE: Test-driven development Because testing is so integral to writing code, some engineers advocate that the tests should be written before the code. This is one of the practices championed by the test-driven development (TDD) process. We’ll discuss this more in chapter 10 (section 10.5).

 Software testing is a huge topic, and to be upfront about it, this book will not come close to doing it justice. In this book, we’ll cover some of the most important, and often overlooked, aspects of unit testing code because these are usually most useful in the course of everyday coding. But please be aware that by the end of this book we will only have scratched the surface of what there is to know about software testing.

1.4 Does writing high-quality code slow us down?

 The answer to this question is that in the very short term it might seem like writing high-quality code slows us down. Writing code that is high quality usually requires a little more thought and effort than just coding the first thing that comes into our heads. But if we’re writing anything more substantive than a small, run-once-then-throw-away utility, then writing high-quality code will usually speed up development times over the mid to long term.

 Imagine we are putting a shelf up at home. There is the “proper” way of doing this, and then there is the quick, “hacky” way of doing this:

 	
 The proper way —We attach brackets to the wall by drilling and screwing into something solid like the wall studs or masonry. We then mount the shelf on these brackets. Time taken: 30 minutes.

 	
 The hacky way —We buy some glue and glue the shelf to the wall. Time taken: 10 minutes.

 It seems like the hacky way of putting the shelf up can save us 20 minutes and also saves us the effort of getting the drill and screwdriver out. We chose the quick approach; now let’s consider what happens next.

 We glued the shelf to whatever the wall is surfaced with; this is most likely a layer of plaster. Plaster is not strong and can easily crack and come off in large chunks. As soon as we start using the shelf, the weight of items on it will likely cause the plaster to crack, and the shelf will fall and bring a large chunk of plaster with it. We now don’t have a working shelf and also need to replaster and redecorate the wall (a job that will take several hours, if not days). Even if by some miracle the shelf doesn’t fall down, we’ve created future problems for ourselves by putting it up the quick way. Imagine a couple of scenarios:

 	
 We realize that we haven’t put the shelf up quite level (a bug):

 	

 	
 For the bracketed shelf, we can just add a smaller spacer between the bracket and the shelf. Time taken: 5 minutes.

 	
 For the glued shelf, we need to rip it off the wall; this will then take a big chunk of plaster with it. We now need to replaster the wall and then put the shelf back up. Time taken: several hours, if not days.

 	
 We decide to redecorate the room (a new requirement):

 	

 	
 We can take the bracketed shelf down by taking the screws out. We redecorate the room and then put the shelf back up afterward. Time taken for shelf-related work: 15 minutes.

 	
 For the glued shelf, we either leave the shelf up and then run the risk of dripping paint on it and having untidy edges where we have to paint or wallpaper around it. Or we need to rip the shelf off the wall and deal with the fact that we’ll need to replaster. Our choice is between doing a shoddy redecorating job or spending several hours or days replastering the wall.

OEBPS/OEBPS/Images/CH01_F01_Long2.png

OEBPS/OEBPS/Images/CH01_F02_Long2.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F03_Long2.png

OEBPS/OEBPS/Images/CH01_F04_Long2.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/IFC_F01_Long2.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F05_Long2.png

OEBPS/OEBPS/Images/CH01_F06_Long2.png

