

 [image:]

 Microservices in .NET

 Second Edition

 Christian Horsdal Gammelgaard

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Helen Stergius

 	
 Technical development editor:

 	
 Michael Lund

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Karsten Strøbæk

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617297922

Praise for the first edition

 The best microservices in .Net reference I have read so far.

 —Julien Pohie, Senior Software Developer, Thoughtworks

 This book lays out all the necessary details to design new solutions with microservices; it has material to transform your existing monolithic, tiered, service-oriented architectures.

 —Karthikeyarajan Rajendran, Architect, McAfee

 Detailed analysis on how to use microservices in the .Net world with a good set of real-world examples.

 —Raushan Jha, SDE 2, Microsoft IDC

 Microservices in .Net provides the knowledge to start working in a professional environment to develop real industry microservices, with the perfect tuning to be cost effective.

 —Daniel Vasquez, Senior Developer, Tokiota

 If you’re building SaaS products, you will eventually realize that agility in product delivery is important. This book provides a detailed understanding of how microservices can enable your .Net applications to be resilient in production.

 —Adhir Ramjiawan, Software Developer, Dotdigital

 A well-written, concise, and comprehensive book covering important topics surrounding microservices. I could not put it down and would definitely recommend it.

 —Tanya Wilke, Web Application Developer, Sanlam

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Getting started with microservices

 1 Microservices at a glance

 1.1 What is a microservice?

 1.2 What is a microservices architecture?

 Microservice characteristics

 1.3 Why microservices?

 Enabling continuous delivery

 High level of maintainability

 Robust and scalable

 1.4 Costs and downsides of microservices

 1.5 Greenfield vs. brownfield

 1.6 Code reuse

 1.7 Serving a user request: An example of how microservices work in concert

 Main handling of the user request

 Side effects of the user request

 The complete picture

 1.8 A .NET microservices technology stack

 ASP.NET and MVC

 Kubernetes

 Setting up a development environment

 1.9 A simple microservices example

 Creating an empty ASP.NET application

 Adding ASP.NET MVC to the project

 Adding an MVC controller with an implementation of the endpoint

 2 A basic shopping cart microservice

 2.1 Overview of the Shopping Cart microservice

 Components of the Shopping Cart microservice

 2.2 Implementing the Shopping Cart microservice

 Creating an empty project

 The Shopping Cart microservice’s API for other services

 Fetching product information

 Parsing the product response

 Adding a failure-handling policy

 Implementing a basic event feed

 2.3 Running the code

 3 Deploying a microservice to Kubernetes

 3.1 Choosing a production environment

 3.2 Putting the Shopping Cart microservice in a container

 Adding a Dockerfile to the Shopping Cart microservice

 Building and running the shopping cart container

 3.3 Running the shopping cart container in Kubernetes

 Setting up Kubernetes localhost

 3.4 Creating Kubernetes deployment for the shopping cart

 3.5 Running the shopping cart container on Azure Kubernetes Service

 Setting up AKS

 Running the shopping cart in AKS

 Part 2 Building microservices

 4 Identifying and scoping microservices

 4.1 The primary driver for scoping microservices: Business capabilities

 What is a business capability?

 Identifying business capabilities

 Example: Point-of-sale system

 4.2 The secondary driver for scoping microservices: Supporting technical capabilities

 What is a technical capability?

 Examples of supporting technical capabilities

 Identifying technical capabilities

 4.3 The tertiary driver for scoping microservices: Supporting efficiency of work

 4.4 What to do when the correct scope isn’t clear

 Starting a bit bigger

 Carving out new microservices from existing microservices

 Planning to carve out new microservices later

 4.5 Well-scoped microservices adhere to the microservice characteristics

 Primary scoping to business capabilities leads to good microservices

 Secondary scoping to support technical capabilities leads to good microservices

 Tertiary scoping to support efficiency of work

 5 Microservice collaboration

 5.1 Types of collaboration: Commands, queries, and events

 Commands and queries: Synchronous collaboration

 Events: Asynchronous collaboration

 Data formats

 5.2 Implementing collaboration

 Setting up a project for the loyalty program

 Implementing commands and queries

 Implementing commands with HTTP POST or PUT

 Implementing queries with HTTP GET

 Implementing an event-based collaboration

 Deploying to Kubernetes

 Building a Docker container special offers microservice

 Building a Docker container for both parts of the loyalty program

 Deploying the loyalty program API and the special offers

 Deploy EventConsumer 126

 6 Data ownership and data storage

 6.1 Each microservice has a data store

 6.2 Partitioning data between microservices

 Rule 1: Ownership of data follows business capabilities

 Rule 2: Replicate for speed and robustness

 Where does a microservice store its data?

 6.3 Implementing data storage in a microservice

 Preparing a development setup

 Storing data owned by a microservice

 Storing events raised by a microservice

 Setting cache headers in HTTP responses

 Reading and using cache headers

 7 Designing for robustness

 7.1 Expect failures

 Keeping good logs

 Using trace IDs

 Rolling forward vs. rolling backward

 Don’t propagate failures

 7.2 The client side’s responsibility for robustness

 Robustness pattern: Retry

 Robustness pattern: Circuit breaker

 7.3 Implementing robustness patterns

 Implementing a fast-paced retry strategy with Polly

 Implementing a circuit breaker with Polly

 Implementing a slow-paced retry strategy

 Logging all unhandled exceptions

 Deploying to Kubernetes

 8 Writing tests for microservices

 8.1 What and how to test

 The test pyramid: What to test in a microservices system

 System-level tests: Testing a complete microservice system end to end

 Service-level tests: Testing a microservice from outside its process

 Unit-level tests: Testing endpoints from within the process

 8.2 Testing libraries: Microsoft.AspNetCore.TestHost and xUnit

 Meet Microsoft.AspNetCore.TestHost

 Meet xUnit

 xUnit and Microsoft.AspNetCore.TestHost working together

 8.3 Writing unit tests using Microsoft.AspNetCore.TestHost

 Setting up a unit-test project

 Using the TestServer and HttpClient to unit-test endpoints

 Injecting mocks into endpoints

 8.4 Writing service-level tests

 Creating a service-level test project

 Creating mocked endpoints

 Executing the test scenario against the microservice under test

 Part 3 Handling cross-cutting concerns: Building a reusable microservice platform

 9 Cross-cutting concerns: Monitoring and logging

 9.1 Monitoring needs in microservices

 9.2 Logging needs in microservices

 Tracing requests across microservices

 Structured logging with Serilog

 9.3 Implementing the monitoring endpoints

 Implementing the /health/live monitoring endpoint

 Implementing the /health/startup monitoring endpoint

 9.4 Implementing structured logging

 Adding a trace ID to all log messages

 Trace ID is included in outgoing HTTP requests

 Logging unhandled exceptions

 9.5 Implementing monitoring and logging in Kubernetes

 Configure monitoring in Kubernetes

 10 Securing microservice-to-microservice communication

 10.1 Microservice security concerns

 Authenticating users at the edge

 Authorizing users in microservices

 How much should microservices trust each other?

 10.2 Implementing secure microservice-to-microservice communication

 Accessing the user identity in the loyalty program

 Limiting which microservices can communicate

 11 Building a reusable microservice platform

 11.1 Creating a new microservice should be quick and easy

 11.2 Handling cross-cutting concerns

 11.3 Creating a reusable microservice platform

 11.4 Packaging and sharing cross-cutting code with NuGet

 Creating a logging package

 Creating a package with monitoring endpoints

 11.5 The ASP.NET pipeline

 What belongs in middleware?

 11.6 Writing middleware

 Middleware as lambdas

 Middleware classes

 11.7 Testing middleware and pipelines

 Part 4 Building applications

 12 Creating applications over microservices

 12.1 End user applications for microservice systems: One or many applications?

 General-purpose applications

 Specialized applications

 12.2 Patterns for building applications over microservices

 Composite applications: Integrating at the frontend

 API Gateway

 Backend for frontend (BFF) pattern

 When to use each pattern

 Client-side or server-side rendering?

 12.3 Example: A shopping cart and a product list

 Creating an API Gateway

 Creating the product list GUI

 Creating the shopping cart GUI

 Letting users add products to the shopping cart

 Letting users remove products from the shopping cart

 appendix A Development environment setup

 further reading

 index

 front matter

preface

 When I first talked to Manning about writing a book, we discussed a book about Nancy. Part of me was excited to write about Nancy again, because it was an awesome web framework, but my first book was also about Nancy, and a different part of me wanted this book to be something more. After some contemplation and some back and forth with Manning, it became clear that I wanted to write about microservices; I wanted to write a book that was more about designing and implementing microservices than about any specific technology, while at the same time showcasing some great, lightweight .NET technologies. That became the first edition of this book.

 Since then, the technology landscape has moved on: development of Nancy has stopped and .NET Core (which was nascent when the first edition was written) has incorporated many useful ideas from community projects and changed its name to .NET. At the same time, microservices have become even more widespread, and most of the design and architecture advice from the first edition still holds up. I felt the first edition still has a lot to offer, but I also felt it needed a technology update. That’s the book you’re about to read, and I hope you’ll not only learn how to be successful with microservices, but also learn the value of simplicity.

acknowledgments

 Writing a book takes time—a lot of time. So the first thank you is to my wife, Jane Horsdal Gammelgaard, for supporting me all the way through. You’re awesome, Jane.

 I would like to thank my editor on the second edition, Helen Stergius, whose patience through many missed deadlines, advice, and guidance made this edition possible. I’d also like to thank the editor on the first edition, Dan Maharry, who pushed me to write a much better book than I thought I could at the time. A big thank you also goes to my technical editor, Michael Lund, for his thorough code reviews and suggestions for improvements, and for ripping apart my line of reasoning whenever it wasn’t clear. A special thanks to Karsten Strøbæk for his in-depth technical proofreading.

 I can’t thank enough the amazing group of technical peer reviewers: Adhir Ramjiawan, Allan Makura, Alper Silistre, Daniel Vasquez, David Paccoud, Dennis Hayes, Edin Kapic, Emanuele Origgi, Ernesto Cardenas Cangahuala, George Onofrei, Jeff Smith, Johnathan Sewell, Juan Luis Barreda, Julien Pohie, Justin Coulston, Kalyan Chanumolu, Karthikeyarajan Rajendran, Matt Ferderer, Mike Burgess, Mike Manuel, Oliver Korten, Raushan Jha, Raymond Cheung, Ricardo Peres, Richard B. Ward, Sau Fai Fong, Simon Seyag, Stefan Turalsk, Sumit K Singh, Tanya Wilke, Thomas Overby Hansen, Unnikrishnan Kumar, Viorel-Marian Moisei, and Wayne Mather. They suggested topics and other ways of presenting topics and caught typos and mistakes in code and terminology. Each pass through the review process and each piece of feedback provided through the forum discussions helped shape the book.

 Finally, I want to thank the people at Manning who made this book possible: publisher Marjan Bace, acquisitions editor Eleonor Gardner, production editor Deirdre Hiam, copyeditor Michele Mitchell, page proofer Keri Hales, and everyone else on the editorial and production teams.

about this book

 Microservices in .NET is a practical introduction to writing microservices in .NET using powerful yet easy-to-use technologies, like the simple MVC controllers and middleware. I’ve tried to present the material in a way that will enable you to use what you learn right away. To that end, I’ve tried to tell you why I build things the way I do, as well as show you exactly how to build them.

Who should read this book

 Microservices in .NET has 12 chapters spread across four parts.

 Part 1 gives a quick introduction to microservices, answering what they are and why they’re interesting. This part also introduces ASP.NET, MVC, middleware, and Kubernetes, the main technologies used throughout the book.

 	
 Chapter 1 introduces microservices—what they are and why they matter. It introduces the six characteristics of microservices that I use to guide the design and implementation of them. At the end of the chapter, we say hello to ASP.NET and MVC.

 	
 Chapter 2 is a comprehensive example of coding a microservice using ASP.NET, along with the Polly library. At the end of the chapter, we have a complete, albeit simple, microservice.

 	
 Chapter 3 gives a quick introduction to containerizing ASP.NET microservices and deploying them to Kubernetes—both locally and in the Azure cloud.

 Part 2 covers how to split a system into microservices and how to implement functionality in a system of microservices.

 	
 Chapter 4 covers how to identify microservices and decide what to put into each. This chapter is about the design of a system of microservices as a whole.

 	
 Chapter 5 shows how to design and implement the collaboration between microservices. This chapter discusses the different ways microservices can collaborate and shows how to implement those collaborations.

 	
 Chapter 6 discusses where data should be stored in a system of microservices and how some of the data may be replicated across several microservices.

 	
 Chapter 7 explains and demonstrates the implementation of some important techniques for making microservice systems robust.

 	
 Chapter 8 takes a thorough look at testing a microservice system, including testing the complete system, testing each microservice, and testing the code inside the microservices.

 Part 3 shows how to speed up development of new microservices by building a solid microservice platform leveraging features of ASP.NET and Kubernetes, tailored toward the needs of your particular system. Such a platform provides implementation of many important concerns that cut across the entire system of microservices, such as logging, monitoring, and security. In this part, you’ll build such a platform and see how it’s used to create new microservices quickly.

 	
 Chapter 9 explains the importance of monitoring and logging in a microservice system and shows how to leverage ASP.NET and Kubernetes to implement consistent logging, tracing, and monitoring across all your microservices.

 	
 Chapter 10 discusses the highly distributed nature of a microservice system, which poses some security concerns. As an example, I’ll also walk you through using Kubernetes to secure the collaboration between microservices.

 	
 Chapter 11 builds on top of chapters 9 and 10 to create a microservice platform by taking code from the previous chapters and packaging it in NuGet packages ready to be shared across microservices. The chapter includes an introduction to middleware, as well as an example of creating a new microservice using the platform.

 Part 4 consists of chapter 12, which rounds off the book with some approaches to creating end-user applications for a microservices system. The chapter also shows how to build a small application on top of some of the microservices from earlier chapters.

 Together, the 12 chapters will teach you how to design and code microservices using a lightweight, no-nonsense, .NET-based technology stack.

About the code

 Most chapters in this book have sample code. All of this can be found in the download for this book on Manning’s site at https://www.manning.com/books/microservices -in-net-second-edition, or in the Git repository at https://github.com/horsdal/micro services-in-dotnet-book-second-edition. The code is based on .NET 5, so you need to install .NET, the dotnet command-line tool, and a suitable IDE. You can find information on how to set these up in the appendix.

 In the GitHub repository (https://github.com/horsdal/microservices-in-dotnet -book-second-edition), the main branch contains the code as it appears in the book. I may add additional branches that show updated or alternative implementations of the examples, but the main branch will remain the same.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Microservices in .NET includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/microservices-in-net-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	
 [image: 1_CHG]

 	
 Christian Horsdal Gammelgaard is an independent consultant and trainer with many years of experience building web and distributed systems on .NET as well as other platforms. He is an experienced solution architect and domain-driven design practitioner. Christian is always trying to learn more about building software systems well and tries to share what he learns in blogs, on Twitter, speaking at conferences, and occasionally contributing to open source.

about the cover illustration

 The figure on the cover of Microservices in .NET is captioned “Emperor of China in his Robes, in 1700.” The illustration is taken from publisher Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum Arabic. Thomas Jefferys (1719-1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.

Part 1 Getting started with microservices

 This first part explains what microservices are and why you should care. I’ll begin by discussing six characteristics you can use to recognize and guide your design of microservices. Along the way, we’ll look at the benefits and costs of microservices.

 Toward the end of chapter 1, I’ll give you a whirlwind tour of the technology stack used throughout the book; the stack consists of .NET, ASP.NET, and the ASP.NET MVC web framework. Chapter 2 moves on to an example of building your first microservice. You’ll see how little is needed to get started, and begin to see ASP.NETs strength. Chapter 3 shows how to containerize the microservice from chapter 2 and how to deploy it to Kubernetes in Azure.

 By the end of part 1, you will have your first microservice running in the cloud.

1 Microservices at a glance

 This chapter covers

 	
Understanding microservices and their core characteristics

 	
Examining the benefits and drawbacks of microservices

 	
An example of microservices working in concert to serve a user request

 	
Using ASP.NET for a simple application

 In this chapter, I’ll explain what microservices are and demonstrate why they’re interesting. We’ll also look at the six characteristics of a microservice. Finally, I’ll introduce you to the most important technologies we’ll use in this book: ASP.NET and ASP.NET MVC.

1.1 What is a microservice?

 A microservice is a service with one, and only one, very narrowly focused capability that a remote API exposes to the rest of the system. For example, think of a system for managing a warehouse. If you broke down its capabilities, you might come up with the following list:

 	
 Receive stock arriving at the warehouse.

 	
 Determine where new stock should be stored.

 	
 Calculate placement routes inside the warehouse for putting stock into the right storage units.

 	
 Assign placement routes to warehouse employees.

 	
 Receive orders.

 	
 Calculate pick routes in the warehouse for a set of orders.

 	
 Assign pick routes to warehouse employees.

 Let’s consider how the first of these capabilities—receive stock arriving at the warehouse—would be implemented as a microservice. We’ll call it the Receive Stock microservice:

 	
 A request to receive and log new stock arrives over HTTP. This might come from another microservice or perhaps from a web page that a foreman uses to register stock arrivals. The responsibility of Receive Stock microservice is to handle such requests by validating the request and correctly registering the new stock in a data store.

 	
 A response is sent back from the Receive Stock microservice to acknowledge that the stock has been received.

 Figure 1.1 shows the Receive Stock microservice receiving a request from another collaborating microservice.

 [image: CH01_F01_Horsdal3]

 Figure 1.1 The Receive Stock microservice exposes an API for use when new stock arrives. Other microservices can call that API, as indicated by the arrow. The Receive Stock microservice is responsible for registering all received stock in a data store.

 Each capability in the system, no matter how small, is implemented as an individual microservice. Every microservice in a system

 	
 Runs in its own separate process

 	
 Can be deployed on its own, independently of the other microservices

 	
 Has its own dedicated data store

 	
 Collaborates with other microservices to complete its own action

 It’s also important to note that a microservice doesn’t need to be written in the same programming language (C#, Java, Erlang, Javascript, etc.) as the one it collaborates with. They just need to know how to communicate with each other. Some may communicate via queues, a service bus, gRPC, or GraphQL, for instance, depending on system requirements; but often, microservices do communicate over HTTP.

 NOTE This book focuses on implementing microservices in .NET using C# and ASP.NET. The microservices I’ll show you are small, tightly focused ASP.NET applications that collaborate over HTTP.

 NOTE This book focuses on collaboration over HTTP, but the principles guiding how the collaboration is designed are not specific to HTTP. I choose to use HTTP because it is ubiquitous and familiar to many developers and I want to focus more on the design principles than the technology. These principles also apply with different technology, notably gRPC, which is gaining in popularity in the .NET space and is also a good choice.

1.2 What is a microservices architecture?

 This book focuses on designing and implementing individual microservices, but it’s worth noting that the term microservices can also be used to describe an architectural style for an entire system consisting of many microservices. Microservices as an architectural style is a lightweight form of service-oriented architecture (SOA) where the services are each tightly focused on doing one thing and doing it well. A system with a microservices architecture is a distributed system with a (probably large) number of collaborating microservices.

 The microservices architectural style has been quickly gaining in popularity for building and maintaining complex server-side software systems. And understandably so: microservices offer a number of potential benefits over both more traditional service-oriented approaches and monolithic architectures. Microservices, when done well, are malleable, scalable, and robust, and they allow for systems that do well on all four of the key metrics identified by Nicole Forsgren et al., Accelerate1 and the DORA state of DevOps reports,2 namely

 	
 Deployment frequency

 	
 Lead time for changes

 	
 Time to restore service

 	
 Change failure rate

 This combination often proves elusive for complex software systems. Furthermore, it is, as documented by Forsgren et al., a reliable predictor of software delivery performance.

 In this book you will learn how to design and implement malleable, scalable, and robust microservices that form systems that deliver on all four of these key metrics.

1.2.1 Microservice characteristics

 I’ve said that a microservice is “a service with a very narrowly focused capability,” but what exactly does that mean? Well, there’s not a broadly accepted definition in the industry of precisely what a microservice is.3 We can, however, look at what generally characterizes a microservice. I’ve found there to be six core microservice characteristics:

 	
 A microservice is responsible for a single capability.

 	
 A microservice is individually deployable.

 	
 A microservice consists of one or more processes.

 	
 A microservice owns its own data store.

 	
 A small team can maintain a few handfuls of microservices.

 	
 A microservice is replaceable.

 This list of characteristics should help you recognize a well-formed microservice when you see one, and it will also help you scope and implement your own microservices. By incorporating these characteristics, you’ll be on your way to getting the best from your microservices and producing a malleable, scalable, and robust system as a result. Throughout this book, I’ll show how these characteristics should drive the design of your microservices and how to write the code that a microservice needs to fulfill them. Now, let’s look briefly at each characteristic in turn.

 Responsible for a single capability

 A microservice is responsible for one and only one capability in the overall system. We can break this statement into two parts:

 	
 A microservice has a single responsibility.

 	
 That responsibility is for a capability.

 The single responsibility principle has been stated in several ways. One traditional form is, “A class should have only one reason to change.”4 Although this way of putting it specifically mentions a class, the principle turns out to apply beyond the context of a class in an object-oriented language. With microservices, we apply the single responsibility principle at the service level.

 Another, newer, way of stating the single responsibility principle, also from Robert C. Martin, is as follows: “Gather together the things that change for the same reasons. Separate those things that change for different reasons.”5 This way of stating the principle applies to microservices: a microservice should implement exactly one capability. That way, it will have to change only when there’s a change to that capability. Furthermore, you should strive to have the microservice fully implement the capability so that only one microservice has to change when the capability is changed.

 There are two types of capabilities in a microservice system:

 	
 A business capability is something the system does that contributes to the purpose of the system, like keeping track of users’ shopping carts or calculating prices. A good way to tease apart a system’s separate business capabilities is to use domain-driven design.

 	
 A technical capability is one that several other microservices need to use—integration to some third-party system, for instance. Technical capabilities aren’t the main drivers for breaking down a system to microservices; they’re only identified when you find several business-capability microservices that need the same technical capability.

 NOTE Defining the scope and responsibility of a microservice will be covered in chapter 4.

 Individually deployable

 A microservice should be individually deployable. When you change a particular microservice, you should be able to deploy it to the production environment without deploying (or touching) any other part of your system. The other microservices in the system should continue running and working during the deployment of the changed microservice and continue running once the new version is deployed.

 Consider an e-commerce site. Whenever a change is made to the shopping cart microservice, you should be able to deploy just that microservice, as illustrated in figure 1.2. Meanwhile, the price calculation, recommendation, and product catalog microservices, and others, should continue working and serving user requests.

 [image: CH01_F02_Horsdal3]

 Figure 1.2 Other microservices continue to run while the shopping cart microservice is being deployed.

 Being able to deploy each microservice individually is important because in a microservice system there are many microservices, and each may collaborate with several others. At the same time, development work is done on some or all of the microservices in parallel. If you had to deploy all or groups of them in lockstep, managing the deployments would quickly become unwieldy, typically resulting in infrequent and big, risky deployments. This is something you should avoid. Instead, you want to be able to deploy small changes to each microservice frequently, resulting in small, low-risk deployments.

 To be able to deploy a single microservice while the rest of the system continues to function, the build process should be set up with the following in mind:

 	
 Each microservice should be built into separate artifacts (e.g., separate Docker containers).

 	
 The deployment process should also be set up to support deploying microservices individually while other microservices continue running. For instance, you might use a rolling deployment process where the microservice is deployed to one server at a time in order to reduce downtime. Kubernetes—as well as other orchestration technologies—supports this and other useful deployment patterns.

 The fact that you want to deploy microservices individually affects the way they interact. Changes to a microservice’s interface usually must be backward compatible so that other existing microservices can continue to collaborate with the new version the same way they did with the old. Furthermore, the way microservices interact must be robust in the sense that each must expect other services to fail once in a while and continue working as best it can. One microservice failing—for instance, due to downtime during deployment—must not result in other microservices failing, only in reduced functionality or slightly longer processing time.

 NOTE Microservice collaboration and robustness will be covered in chapters 4, 5, and 7.

 Consists of one or more processes

 A microservice must run in a separate process, or in separate processes, if it’s to remain as independent as possible of other microservices in the same system. The same is true if a microservice is to remain individually deployable. This can be summarized in two points:

 	
 Each microservice must run in separate processes from other microservices.

 	
 Each microservice can have more than one process.

 Consider a shopping cart microservice again. If it ran in the same process as a product catalog microservice, as shown in figure 1.3, the shopping cart code might cause a side effect in the product catalog. That would mean a tight, undesirable coupling between the shopping cart and product catalog microservices: one might cause downtime or bugs in the other.

 [image: CH01_F03_Horsdal3]

 Figure 1.3 Running more than one microservice within a process leads to high coupling between the two: they cannot be deployed individually, and one might cause downtime in the other.

 Now consider deploying a new version of the shopping cart microservice. You’d either have to redeploy the product catalog microservice or need some sort of dynamic code-loading capable of switching out the shopping cart code in the running process. The first option goes directly against microservices being individually deployable. The second is complex and at a minimum puts the product catalog microservice at risk of going down due to a deployment to the shopping cart microservice.

 Speaking of complexity, why should a microservice consist of more than one process? You are, after all, trying to make each microservice as simple as possible to handle.

 Let’s consider a recommendation microservice. It implements and runs the algorithms that drive recommendations for your e-commerce site. It also has a database that stores the data needed to provide recommendations. The algorithms run in one process, and the database runs in another. Often, a microservice needs two or more processes so that it can implement everything (such as data storage and background processing) it needs in order to provide a capability to the system.

 Owns its own data store

 A microservice owns the data store where it stores the data it needs. This is another consequence of a microservice’s scope being a complete capability. Most business capabilities require some data storage. For instance, a product catalog microservice needs some information about each product to be stored. To keep the product catalog loosely coupled with other microservices, the data store containing the product information is completely owned by the microservice. The product catalog microservice decides how and when the product information is stored. As illustrated in figure 1.4, other microservices, such as a shopping cart, can only access product information through the interface to the product catalog and never directly from the product catalog data store.

 [image: CH01_F04_Horsdal3]

 Figure 1.4 One microservice can’t access another’s data store.

 The fact that each microservice owns its own data store makes it possible to use different database technologies for different microservices depending on the needs of each microservice. The product catalog microservice, for example, might use an SQL server to store product information; the shopping cart microservice might store each user’s shopping cart in Redis; and the recommendations microservice might use an Elasticsearch index to provide recommendations. The database technology chosen for a microservice is part of the implementation and is hidden from the view of other microservices.

 This approach allows each microservice to use whichever database is best suited for the job, which can also lead to benefits in terms of development time, performance, and scalability. The obvious downside is the need to administer, maintain, and work with more than one database, if that’s how you choose to architect your system. Databases tend to be complicated pieces of technology, and learning to use and run one reliably in production isn’t free. When choosing a database for a microservice, you need to consider this tradeoff. But one benefit of a microservice owning its own data store is that you can swap out one database for another later.

 NOTE Data ownership, access, and storage will be covered in chapter 5.

 Maintained by a small team

 So far, I haven’t talked much about the size of a microservice, even though the “micro” part of the term indicates that microservices are small. I don’t think it makes sense to discuss the number of lines of code that a microservice should have, or the number of requirements, use cases, or function points it should implement. All that depends on the complexity of the capability provided by the microservice.

 What does make sense, though, is considering the amount of work involved in maintaining a microservice. The following rule of thumb can guide you regarding the size of microservices: a small team of people—five, perhaps—should be able to maintain a few handfuls of microservices. Here, “maintaining a microservice” means dealing with all aspects of keeping it healthy and fit for purpose: developing new functionality, factoring out new microservices from ones that have grown too big, running it in production, monitoring it, testing it, fixing bugs, and everything else required. Depending on the volume of change in the microservices “a few handfuls” can mean anything from 10 to 30 microservices, or even more when the system, the tooling, and the automation is mature and effective. A team should usually own a cohesive set of business and technical capabilities leading to it owning the microservices that implement these capabilities.

 Replaceable

 For a microservice to be replaceable, it must be able to be rewritten from scratch within a reasonable time frame. In other words, the team maintaining the microservice should be able to replace the current implementation with a completely new implementation and do so within the normal pace of their work. This characteristic is another constraint on the size of a microservice: if it grows too large, it will be expensive to replace; but if it’s kept small, rewriting it is realistic.

 Why would a team decide to rewrite a microservice? Perhaps the code is a big jumble and no longer easily maintainable. Perhaps it doesn’t perform well enough in production. Neither is a desirable situation, but changes in requirements over time can result in a codebase that it makes sense to replace rather than maintain. If the microservice is small enough to be rewritten within a reasonable time frame, it’s okay to end up with one of these situations from time to time. The team does the rewrite based on all the knowledge obtained from writing the existing implementation and keeping any new requirements in mind.

 Now that you know the characteristics of microservices, let’s look at their benefits, costs, and other considerations.

1.3 Why microservices?

 Building a system from microservices that adhere to the characteristics outlined in the previous section has some appealing benefits: they’re malleable, scalable, and robust, and they allow a short lead time from start of implementation to deployment to production. This adds up to doing well on all of the four key metrics outlined in Accelerate.6 These benefits are realized because, when done well, microservices

 	
 Enable continuous delivery

 	
 Allow for an efficient developer workflow because they’re highly maintainable

 	
 Are robust by design

 	
 Can scale up or down independently of each other

 Let’s talk more about these points.

1.3.1 Enabling continuous delivery

 The microservices architectural style takes continuous delivery into account. It does so by focusing on services that

 	
 Can be developed and modified quickly

 	
 Can be comprehensively tested by automated tests

 	
 Can be deployed independently

 	
 Can be operated efficiently

 These properties enable continuous delivery, but this doesn’t mean continuous delivery follows from adopting a microservices architecture. The relationship is more complex: practicing continuous delivery becomes easier with microservices than it typically is with more traditional SOA. On the other hand, fully adopting microservices is possible only if you’re able to deploy services efficiently and reliably. Continuous delivery and microservices complement each other.

 The benefits of continuous delivery are well known. They include increased agility on the business level, reliable releases, risk reduction, and improved product quality.

 What is continuous delivery?

 Continuous delivery is a development practice where the team ensures that the software can always be deployed to production quickly at any time. Releasing to market remains a business decision, but teams that practice continuous delivery tend to deploy to production often and to deploy newly developed software shortly after it hits source control.

 There are two main requirements for continuous delivery. First, the software must always be in a fully functional state. To achieve that, the team needs a keen focus on quality. This leads to a high degree of test automation and to developing in very small increments. Second, the deployment process must be repeatable, reliable, and fast in order to enable frequent production deployments. This part is achieved through full automation of the deployment process and a high degree of insight into the health of the production environment.

 Although continuous delivery takes a good deal of technical skill, it’s much more a question of process and culture. This level of quality, automation, and insight requires a culture of close collaboration among all parties involved in developing and operating the software, including businesspeople, developers, information security experts, and system administrators. In other words, it requires a DevOps culture where development, operations, and other groups collaborate and learn from each other.

 Continuous delivery goes hand-in-hand with microservices. Without the ability to deploy individual microservices quickly and cheaply, implementing a system of them will fast become expensive. If microservice deployment isn’t automated, the amount of manual work involved in deploying a full system of microservices will be overwhelming.

 Along with continuous delivery comes a DevOps culture, which is also a prerequisite for microservices. To succeed with microservices, everybody must be invested in making the services run smoothly in production and in creating a high level of transparency into the health of the production system. This requires the collaboration of people with operations, development, and security skills, as well as people with insight into the business domain, among others.

 This book won’t focus on continuous delivery or DevOps, but it will take for granted that the environment in which you develop microservices uses continuous delivery. The services built in this book can be deployed to any cloud or to on-premise servers using any number of deployment-automation technologies capable of handling .NET. This book does cover the implications of continuous delivery and DevOps for individual microservices. In part 3, we’ll go into detail about how to build a platform that handles a number of the operational concerns that all microservices must address.

 As an example of deployment, we will create a Kubernetes environment in Microsoft’s Azure cloud in chapter 3 and deploy a microservice to it. In the chapters that follow, we will continue to use that Kubernetes environment as an example and deploy microservices to it.

1.3.2 High level of maintainability

 Well-factored and well-implemented microservices are highly maintainable from a couple of perspectives. From a developer perspective, several factors play a part in making microservices maintainable:

 	
 Each well-factored microservice provides a single capability. Not two—just one.

 	
 A microservice owns its own data store. No other services can interfere with a microservice’s data store. This, combined with the typical size of the codebase for a microservice, means you can understand a complete service all at once.

 	
 Well-written microservices can (and should) be comprehensively covered by automated tests.

 From an operations perspective, a couple of factors play a role in the maintainability of microservices:

 	
 A small team can maintain a few handfuls of microservices that must be built to be operated efficiently, which implies you should be able to easily determine the current health of any microservice.

 	
 Each microservice is individually deployable.

 It should follow that issues in production can be discovered in a timely manner and be addressed quickly, such as by scaling out the microservice in question or deploying a new version of it. The fact that a microservice owns its own data store also adds to its operational maintainability, because the scope of maintenance on the data store is limited to the owning microservice.

 Favor lightweight

 Because every microservice handles a single capability, microservices are by nature fairly small, both in their scope and in the size of their codebase. The simplicity that follows from this limited scope is a major benefit.

 When developing microservices, it’s important to avoid complicating their codebase by using large, complicated frameworks, libraries, or products because you think you may need their functionality in the future. Chances are this won’t be the case, so you should prefer smaller, lightweight technologies that address the microservice’s current needs. Remember, a microservice is replaceable: you can completely rewrite it within a reasonable budget, if at some point, the technologies you used originally no longer meet your needs.

1.3.3 Robust and scalable

 A microservices-based distributed architecture allows you to scale out each microservice individually, based on where bottlenecks occur. Furthermore, microservices favor asynchronous event-based collaboration and stress the importance of fault tolerance wherever synchronous communication is needed. When implemented well, these properties result in highly available, highly scalable systems. We will return to these topics in more detail in chapters 5, 6, and 7.

1.4 Costs and downsides of microservices

 Significant costs are associated with choosing a microservices architecture, and these costs shouldn’t be ignored:

 	
 Microservice systems are distributed systems. The costs associated with distributed systems are well known: they can be harder to reason about and harder to test than monolithic systems, and communication across process boundaries or across networks is orders of magnitude slower than in-process method calls.

 	
 Microservice systems are made up of many microservices, each of which has to be developed, deployed, and managed in production. This means you’ll have many deployments and a complex production setup.

 	
 Each microservice is a separate codebase. Consequently, refactorings that move code from one microservice to another are painful. You need to invest in getting the scope of each microservice just right.

 Before jumping head-first into building a system of microservices, you should consider whether the system you’re implementing is sufficiently complex to justify the associated overhead.

 Do microservices perform?

 One question that always seems to pop up in discussions of whether to use microservices is whether a system built with microservices will be as performant as a system that’s not. The argument against is that if the system is built from many collaborating microservices, every user request will involve several microservices, and the collaboration between them will involve remote calls. What happens when a user request comes in? Do you chain together a long series of remote calls going from one microservice to the next? Considering that remote calls are orders of magnitude slower than calls inside a process, this sounds slow.

 The problem with this argument is the idea that you’d be making roughly the same calls between different parts of the system as you would if everything were in one process. First, as we’ll learn in chapters 5 and 7, the interaction between microservices should be much less fine-grained than calls within a process tend to be. Second, as we’ll discuss in chapters 5 and 6, you’ll prefer event-based asynchronous collaboration over making synchronous remote calls, and you’ll store copies of the same data in several microservices to make sure it’s available where it’s needed. All in all, these techniques drastically reduce the need to make remote calls while a user is waiting. Moreover, the fine-grained nature of microservices enables you to scale out the specific parts of the system that get congested.

 There isn’t a simple yes-or-no answer as to whether microservices perform well. What I can say is that a well-designed microservice system can easily meet the performance requirements of many, if not most, systems.

1.5 Greenfield vs. brownfield

 Should you introduce microservices from the get-go on a new project, or are they only relevant for large, existing systems? This question tends to come up in discussions about microservices.

 The microservices architectural style has grown out of the fact that many organizations’ systems started out small but have grown big over time. Many of these systems consist of a single large application—a monolith that often exposes the well-known disadvantages of big, monolithic systems:

 	
 Coupling is high throughout the codebase.

 	
 There’s hidden coupling between subcomponents: coupling that is now obvious at first glance can string from knowledge implicit in the code about how certain strings are formatted, how certain columns in a databases are used, and so on.

 	
 Deploying the application is a lengthy process that may involve several people and system downtime.

 	
 The system has a one-size-fits-all architecture intended to handle the most complex components. If you insist on architectural consistency across the monolith, the least complex parts of the system will be over-engineered. This is true of layering, technology choices, chosen patterns, and so on.

 The microservices architectural style arose as a result of solving these problems in existing monolithic systems. If you repeatedly split subcomponents of a monolith into ever smaller and more manageable parts, microservices are eventually created.7

 On the other hand, new projects are started all the time. Are microservices irrelevant for these greenfield projects? That depends. Here are some questions you need to ask yourself:

 	
 Is the system’s scope large enough to justify the complexity of a distributed architecture?

 	
 Is the system’s scope large enough to justify the cost of building the deployment automation?

 	
 Would this system benefit from the ability to deploy subsystems separately?

 	
 Can you build sufficient deployment automation?

 	
 Are you sufficiently knowledgeable about the domain to properly identify and separate the system’s various independent business capabilities?

 	
 Will the project survive long enough to recover the up-front investment in automation and distribution?

 Some greenfield projects meet these criteria and may benefit from adopting a microservices architecture from the outset.

1.6 Code reuse

 Adopting a microservices architecture leads to having many services, each of which has a separate codebase that you’ll have to maintain. It’s tempting to look for code reuse across services in the hope that you can reduce the maintenance effort. And although there’s an obvious potential benefit to code reuse, pulling code out of a service and into a reusable library incurs a number of costs that may not be immediately apparent and that might mean the code reuse isn’t worth it:

 	
 The service now has one more dependency that you must understand in order to understand the complete service. This isn’t to say that there’s more code to comprehend, but by moving code out of the service and into a library you move the code further away, making simple code navigation slower and refactoring more difficult.

 	
 The code in the new library must be developed and maintained with multiple use cases in mind. This tends to take more effort than developing for just one use case.

 	
 The shared library introduces a form of coupling between the services using it. Updates to the library driven by the needs of service A may not be needed in service B. Should service B update to the new version of the library even though it’s not strictly necessary? If you upgrade B, it will have code it doesn’t need—and worse, B will run the risk of errors caused by that code. If you don’t upgrade, you’ll have several versions of the library in production, further complicating the library’s maintenance. Both cases incur some complexity, either in service B or in the combined service landscape.

 These points apply particularly to business code, which should almost never be reused across microservices. That type of reuse leads to harmful coupling between microservices and identifying a new business capability. Implementing it in a new microservice is usually a better option.

 With these points in mind, you should be wary of code reuse and only judiciously attempt it. There is, however, a case to be made for reusing infrastructure code that implements technical concerns.

 To keep a service small and focused on providing one capability well, you’ll often prefer to write a new service from scratch rather than add functionality to an existing service. It’s important to do this quickly and painlessly, and this is where code reuse across services is relevant. As we’ll explore in detail in part 3, there are a number of technical concerns that all services need to implement in order to fit well into the overall service landscape. You don’t need to write this code for every service; you can put it into a reusable platform and reuse it across services to gain consistency in how these technical aspects are handled and to reduce the effort needed to create a new service.

1.7 Serving a user request: An example of how microservices work in concert

 To get a feel for how a microservices architecture works, let’s look at an example: a user of an e-commerce website adding an item to their shopping cart. From the viewpoint of the client-side code, a request is fired to the backend system via an API Gateway, and an updated shopping cart along with some price information is returned. This is as simple as the interaction shown in figure 1.5. We’ll return to the topic of API Gateways in chapter 13.

 [image: CH01_F05_Horsdal3]

 Figure 1.5 When frontend code makes a request to add an item to the shopping cart, it only communicates with the API Gateway microservice. What goes on behind the gateway isn’t visible.

 This is neither surprising nor exciting. The interesting part is the interactions taking place behind the API Gateway microservice to fulfill the request. To add the new item to the user’s shopping cart, the API Gateway uses a few other microservices. Each microservice is a separate process, and in this example they communicate via HTTP requests.

1.7.1 Main handling of the user request

 All the microservices and their interactions for fulfilling a user request to add an item to their shopping cart are shown in figure 1.6. The request to add an item to the shopping cart is divided into smaller tasks, each of which is handled by a separate microservice:

 	
 The API Gateway microservice is responsible only for a cursory validation of the incoming request. Once it’s validated, the work is delegated first to the shopping cart microservice and then to the price calculation microservice.

 	
 The shopping cart microservice uses another microservice—the product catalog—to look up the necessary information about the item being added to the cart. The shopping cart then stores the user’s shopping cart information in its own data store and returns a representation of the updated shopping cart to the API Gateway. For performance and robustness reasons, the shopping cart will likely cache the responses from the product catalog microservice.

OEBPS/OEBPS/Images/1_CHG.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F03_Horsdal3.png

OEBPS/OEBPS/Images/CH01_F04_Horsdal3.png

OEBPS/OEBPS/Images/CH01_F05_Horsdal3.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F02_Horsdal3.png

OEBPS/OEBPS/Images/CH01_F01_Horsdal3.png

