

 [image: cover]

 Lucene in Action, Second Edition

 Michael McCandless, Erik Hatcher & Otis Gospodnetic

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

 ©2010 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine

 [image:]

	Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901

	
 Development editor: Sebastian Stirling
Copyeditor: Liz Welch
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 More Praise for the First Edition

 Foreword

 Preface

 Preface to the First Edition

 Acknowledgments

 About this Book

 JUnit primer

 About the Authors

 1. Core Lucene

 Chapter 1. Meet Lucene

 Chapter 2. Building a search index

 Chapter 3. Adding search to your application

 Chapter 4. Lucene’s analysis process

 Chapter 5. Advanced search techniques

 Chapter 6. Extending search

 2. Applied Lucene

 Chapter 7. Extracting text with Tika

 Chapter 8. Essential Lucene extensions

 Chapter 9. Further Lucene extensions

 Chapter 10. Using Lucene from other programming languages

 Chapter 11. Lucene administration and performance tuning

 3. Case studies

 Chapter 12. Case study 1: Krugle

 Chapter 13. Case study 2: SIREn

 Chapter 14. Case study 3: LinkedIn

 Appendix A. Installing Lucene

 Appendix B. Lucene index format

 Appendix C. Lucene/contrib benchmark

 D. Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 More Praise for the First Edition

 Foreword

 Preface

 Preface to the First Edition

 Acknowledgments

 About this Book

 JUnit primer

 About the Authors

 1. Core Lucene

 Chapter 1. Meet Lucene

 1.1. Dealing with information explosion

 1.2. What is Lucene?

 1.2.1. What Lucene can do

 1.2.2. History of Lucene

 1.3. Lucene and the components of a search application

 1.3.1. Components for indexing

 1.3.2. Components for searching

 1.3.3. The rest of the search application

 1.3.4. Where Lucene fits into your application

 1.4. Lucene in action: a sample application

 1.4.1. Creating an index

 1.4.2. Searching an index

 1.5. Understanding the core indexing classes

 1.5.1. IndexWriter

 1.5.2. Directory

 1.5.3. Analyzer

 1.5.4. Document

 1.5.5. Field

 1.6. Understanding the core searching classes

 1.6.1. IndexSearcher

 1.6.2. Term

 1.6.3. Query

 1.6.4. TermQuery

 1.6.5. TopDocs

 1.7. Summary

 Chapter 2. Building a search index

 2.1. How Lucene models content

 2.1.1. Documents and fields

 2.1.2. Flexible schema

 2.1.3. Denormalization

 2.2. Understanding the indexing process

 2.2.1. Extracting text and creating the document

 2.2.2. Analysis

 2.2.3. Adding to the index

 2.3. Basic index operations

 2.3.1. Adding documents to an index

 2.3.2. Deleting documents from an index

 2.3.3. Updating documents in the index

 2.4. Field options

 2.4.1. Field options for indexing

 2.4.2. Field options for storing fields

 2.4.3. Field options for term vectors

 2.4.4. Reader, TokenStream, and byte[] field values

 2.4.5. Field option combinations

 2.4.6. Field options for sorting

 2.4.7. Multivalued fields

 2.5. Boosting documents and fields

 2.5.1. Boosting documents

 2.5.2. Boosting fields

 2.5.3. Norms

 2.6. Indexing numbers, dates, and times

 2.6.1. Indexing numbers

 2.6.2. Indexing dates and times

 2.7. Field truncation

 2.8. Near-real-time search

 2.9. Optimizing an index

 2.10. Other directory implementations

 2.11. Concurrency, thread safety, and locking issues

 2.11.1. Thread and multi-JVM safety

 2.11.2. Accessing an index over a remote file system

 2.11.3. Index locking

 2.12. Debugging indexing

 2.13. Advanced indexing concepts

 2.13.1. Deleting documents with IndexReader

 2.13.2. Reclaiming disk space used by deleted documents

 2.13.3. Buffering and flushing

 2.13.4. Index commits

 2.13.5. ACID transactions and index consistency

 2.13.6. Merging

 2.14. Summary

 Chapter 3. Adding search to your application

 3.1. Implementing a simple search feature

 3.1.1. Searching for a specific term

 3.1.2. Parsing a user-entered query expression: QueryParser

 3.2. Using IndexSearcher

 3.2.1. Creating an IndexSearcher

 3.2.2. Performing searches

 3.2.3. Working with TopDocs

 3.2.4. Paging through results

 3.2.5. Near-real-time search

 3.3. Understanding Lucene scoring

 3.3.1. How Lucene scores

 3.3.2. Using explain() to understand hit scoring

 3.4. Lucene’s diverse queries

 3.4.1. Searching by term: TermQuery

 3.4.2. Searching within a term range: TermRangeQuery

 3.4.3. Searching within a numeric range: NumericRangeQuery

 3.4.4. Searching on a string: PrefixQuery

 3.4.5. Combining queries: BooleanQuery

 3.4.6. Searching by phrase: PhraseQuery

 3.4.7. Searching by wildcard: WildcardQuery

 3.4.8. Searching for similar terms: FuzzyQuery

 3.4.9. Matching all documents: MatchAllDocsQuery

 3.5. Parsing query expressions: QueryParser

 3.5.1. Query.toString

 3.5.2. TermQuery

 3.5.3. Term range searches

 3.5.4. Numeric and date range searches

 3.5.5. Prefix and wildcard queries

 3.5.6. Boolean operators

 3.5.7. Phrase queries

 3.5.8. Fuzzy queries

 3.5.9. MatchAllDocsQuery

 3.5.10. Grouping

 3.5.11. Field selection

 3.5.12. Setting the boost for a subquery

 3.5.13. To QueryParse or not to QueryParse?

 3.6. Summary

 Chapter 4. Lucene’s analysis process

 4.1. Using analyzers

 4.1.1. Indexing analysis

 4.1.2. QueryParser analysis

 4.1.3. Parsing vs. analysis: when an analyzer isn’t appropriate

 4.2. What’s inside an analyzer?

 4.2.1. What’s in a token?

 4.2.2. TokenStream uncensored

 4.2.3. Visualizing analyzers

 4.2.4. TokenFilter order can be significant

 4.3. Using the built-in analyzers

 4.3.1. StopAnalyzer

 4.3.2. StandardAnalyzer

 4.3.3. Which core analyzer should you use?

 4.4. Sounds-like querying

 4.5. Synonyms, aliases, and words that mean the same

 4.5.1. Creating SynonymAnalyzer

 4.5.2. Visualizing token positions

 4.6. Stemming analysis

 4.6.1. StopFilter leaves holes

 4.6.2. Combining stemming and stop-word removal

 4.7. Field variations

 4.7.1. Analysis of multivalued fields

 4.7.2. Field-specific analysis

 4.7.3. Searching on unanalyzed fields

 4.8. Language analysis issues

 4.8.1. Unicode and encodings

 4.8.2. Analyzing non-English languages

 4.8.3. Character normalization

 4.8.4. Analyzing Asian languages

 4.8.5. Zaijian

 4.9. Nutch analysis

 4.10. Summary

 Chapter 5. Advanced search techniques

 5.1. Lucene’s field cache

 5.1.1. Loading field values for all documents

 5.1.2. Per-segment readers

 5.2. Sorting search results

 5.2.1. Sorting search results by field value

 5.2.2. Sorting by relevance

 5.2.3. Sorting by index order

 5.2.4. Sorting by a field

 5.2.5. Reversing sort order

 5.2.6. Sorting by multiple fields

 5.2.7. Selecting a sorting field type

 5.2.8. Using a nondefault locale for sorting

 5.3. Using MultiPhraseQuery

 5.4. Querying on multiple fields at once

 5.5. Span queries

 5.5.1. Building block of spanning, SpanTermQuery

 5.5.2. Finding spans at the beginning of a field

 5.5.3. Spans near one another

 5.5.4. Excluding span overlap from matches

 5.5.5. SpanOrQuery

 5.5.6. SpanQuery and QueryParser

 5.6. Filtering a search

 5.6.1. TermRangeFilter

 5.6.2. NumericRangeFilter

 5.6.3. FieldCacheRangeFilter

 5.6.4. Filtering by specific terms

 5.6.5. Using QueryWrapperFilter

 5.6.6. Using SpanQueryFilter

 5.6.7. Security filters

 5.6.8. Using BooleanQuery for filtering

 5.6.9. PrefixFilter

 5.6.10. Caching filter results

 5.6.11. Wrapping a filter as a query

 5.6.12. Filtering a filter

 5.6.13. Beyond the built-in filters

 5.7. Custom scoring using function queries

 5.7.1. Function query classes

 5.7.2. Boosting recently modified documents using function queries

 5.8. Searching across multiple Lucene indexes

 5.8.1. Using MultiSearcher

 5.8.2. Multithreaded searching using ParallelMultiSearcher

 5.9. Leveraging term vectors

 5.9.1. Books like this

 5.9.2. What category?

 5.9.3. TermVectorMapper

 5.10. Loading fields with FieldSelector

 5.11. Stopping a slow search

 5.12. Summary

 Chapter 6. Extending search

 6.1. Using a custom sort method

 6.1.1. Indexing documents for geographic sorting

 6.1.2. Implementing custom geographic sort

 6.1.3. Accessing values used in custom sorting

 6.2. Developing a custom Collector

 6.2.1. The Collector base class

 6.2.2. Custom collector: BookLinkCollector

 6.2.3. AllDocCollector

 6.3. Extending QueryParser

 6.3.1. Customizing QueryParser’s behavior

 6.3.2. Prohibiting fuzzy and wildcard queries

 6.3.3. Handling numeric field-range queries

 6.3.4. Handling date ranges

 6.3.5. Allowing ordered phrase queries

 6.4. Custom filters

 6.4.1. Implementing a custom filter

 6.4.2. Using our custom filter during searching

 6.4.3. An alternative: FilteredQuery

 6.5. Payloads

 6.5.1. Producing payloads during analysis

 6.5.2. Using payloads during searching

 6.5.3. Payloads and SpanQuery

 6.5.4. Retrieving payloads via TermPositions

 6.6. Summary

 2. Applied Lucene

 Chapter 7. Extracting text with Tika

 7.1. What is Tika?

 7.2. Tika’s logical design and API

 7.3. Installing Tika

 7.4. Tika’s built-in text extraction tool

 7.5. Extracting text programmatically

 7.5.1. Indexing a Lucene document

 7.5.2. The Tika utility class

 7.5.3. Customizing parser selection

 7.6. Tika’s limitations

 7.7. Indexing custom XML

 7.7.1. Parsing using SAX

 7.7.2. Parsing and indexing using Apache Commons Digester

 7.8. Alternatives

 7.9. Summary

 Chapter 8. Essential Lucene extensions

 8.1. Luke, the Lucene Index Toolbox

 8.1.1. Overview: seeing the big picture

 8.1.2. Document browsing

 8.1.3. Using QueryParser to search

 8.1.4. Files and plugins view

 8.2. Analyzers, tokenizers, and TokenFilters

 8.2.1. SnowballAnalyzer

 8.2.2. Ngram filters

 8.2.3. Shingle filters

 8.2.4. Obtaining the contrib analyzers

 8.3. Highlighting query terms

 8.3.1. Highlighter components

 8.3.2. Standalone highlighter example

 8.3.3. Highlighting with CSS

 8.3.4. Highlighting search results

 8.4. FastVectorHighlighter

 8.5. Spell checking

 8.5.1. Generating a suggestions list

 8.5.2. Selecting the best suggestion

 8.5.3. Presenting the result to the user

 8.5.4. Some ideas to improve spell checking

 8.6. Fun and interesting Query extensions

 8.6.1. MoreLikeThis

 8.6.2. FuzzyLikeThisQuery

 8.6.3. BoostingQuery

 8.6.4. TermsFilter

 8.6.5. DuplicateFilter

 8.6.6. RegexQuery

 8.7. Building contrib modules

 8.7.1. Get the sources

 8.7.2. Ant in the contrib directory

 8.8. Summary

 Chapter 9. Further Lucene extensions

 9.1. Chaining filters

 9.2. Storing an index in Berkeley DB

 9.3. Synonyms from WordNet

 9.3.1. Building the synonym index

 9.3.2. Tying WordNet synonyms into an analyzer

 9.4. Fast memory-based indices

 9.5. XML QueryParser: Beyond “one box” search interfaces

 9.5.1. Using XmlQueryParser

 9.5.2. Extending the XML query syntax

 9.6. Surround query language

 9.7. Spatial Lucene

 9.7.1. Indexing spatial data

 9.7.2. Searching spatial data

 9.7.3. Performance characteristics of Spatial Lucene

 9.8. Searching multiple indexes remotely

 9.9. Flexible QueryParser

 9.10. Odds and ends

 9.11. Summary

 Chapter 10. Using Lucene from other programming languages

 10.1. Ports primer

 10.1.1. Trade-offs

 10.1.2. Choosing the right port

 10.2. CLucene (C++)

 10.2.1. Motivation

 10.2.2. API and index compatibility

 10.2.3. Supported platforms

 10.2.4. Current and future work

 10.3. Lucene.Net (C# and other .NET languages)

 10.3.1. API compatibility

 10.3.2. Index compatibility

 10.4. KinoSearch and Lucy (Perl)

 10.4.1. KinoSearch

 10.4.2. Lucy

 10.4.3. Other Perl options

 10.5. Ferret (Ruby)

 10.6. PHP

 10.6.1. Zend Framework

 10.6.2. PHP Bridge

 10.7. PyLucene (Python)

 10.7.1. API compatibility

 10.7.2. Other Python options

 10.8. Solr (many programming languages)

 10.9. Summary

 Chapter 11. Lucene administration and performance tuning

 11.1. Performance tuning

 11.1.1. Simple performance-tuning steps

 11.1.2. Testing approach

 11.1.3. Tuning for index-to-search delay

 11.1.4. Tuning for indexing throughput

 11.1.5. Tuning for search latency and throughput

 11.2. Threads and concurrency

 11.2.1. Using threads for indexing

 11.2.2. Using threads for searching

 11.3. Managing resource consumption

 11.3.1. Disk space

 11.3.2. File descriptors

 11.3.3. Memory

 11.4. Hot backups of the index

 11.4.1. Creating the backup

 11.4.2. Restoring the index

 11.5. Common errors

 11.5.1. Index corruption

 11.5.2. Repairing an index

 11.6. Summary

 3. Case studies

 Chapter 12. Case study 1: Krugle

 12.1. Introducing Krugle

 12.2. Appliance architecture

 12.3. Search performance

 12.4. Parsing source code

 12.5. Substring searching

 12.6. Query vs. search

 12.7. Future improvements

 12.7.1. FieldCache memory usage

 12.7.2. Combining indexes

 12.8. Summary

 Chapter 13. Case study 2: SIREn

 13.1. Introducing SIREn

 13.2. SIREn’s benefits

 13.2.1. Searching across all fields

 13.2.2. A single efficient lexicon

 13.2.3. Flexible fields

 13.2.4. Efficient handling of multivalued fields

 13.3. Indexing entities with SIREn

 13.3.1. Data model

 13.3.2. Implementation issues

 13.3.3. Index schema

 13.3.4. Data preparation before indexing

 13.4. Searching entities with SIREn

 13.4.1. Searching content

 13.4.2. Restricting search within a cell

 13.4.3. Combining cells into tuples

 13.4.4. Querying an entity description

 13.5. Integrating SIREn in Solr

 13.6. Benchmark

 13.7. Summary

 Chapter 14. Case study 3: LinkedIn

 14.1. Faceted search with Bobo Browse

 14.1.1. Bobo Browse design

 14.1.2. Beyond simple faceting

 14.2. Real-time search with Zoie

 14.2.1. Zoie architecture

 14.2.2. Real-time vs. near-real-time

 14.2.3. Documents and indexing requests

 14.2.4. Custom IndexReaders

 14.2.5. Comparison with Lucene near-real-time search

 14.2.6. Distributed search

 14.3. Summary

 Appendix A. Installing Lucene

 A.1. Binary installation

 A.2. Running the command-line demo

 A.3. Running the web application demo

 A.4. Building from source

 A.5. Troubleshooting

 Appendix B. Lucene index format

 B.1. Logical index view

 B.2. About index structure

 B.2.1. Understanding the multifile index structure

 B.2.2. Understanding the compound index structure

 B.2.3. Converting from one index structure to the other

 B.3. Inverted index

 Field Names (.FNM)

 Term Dictionary (.TIS, .TII)

 Term Frequencies

 Term Positions

 Stored Fields

 Term Vectors

 Norms

 Deletions

 B.4. Summary

 Appendix C. Lucene/contrib benchmark

 C.1. Running an algorithm

 C.2. Parts of an algorithm file

 C.2.1. Content source and document maker

 C.2.2. Query maker

 C.3. Control structures

 C.4. Built-in tasks

 C.4.1. Creating and using line files

 C.4.2. Built-in reporting tasks

 C.5. Evaluating search quality

 C.6. Errors

 C.7. Summary

 D. Resources

 D.1. Lucene knowledgebases

 D.2. Internationalization

 D.3. Language detection

 D.4. Term vectors

 D.5. Lucene ports

 D.6. Case studies

 D.7. Miscellaneous

 D.8. IR software

 D.9. Doug Cutting’s publications

 D.9.1. Conference papers

 D.9.2. U.S. Patents

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 This is definitely the book to have if you’re planning on using Lucene in your application, or are interested in what Lucene
 can do for you.

 JavaLobby

 Search powers the information age. This book is a gateway to this invaluable resource...It succeeds admirably in elucidating
 the application programming interface (API), with many code examples and cogent explanations, opening the door to a fine tool.

 Computing Reviews

 A must-read for anyone who wants to learn about Lucene or is even considering embedding search into their applications or
 just wants to learn about information retrieval in general. Highly recommended!

 TheServerSide.com

 Well thought-out...thoroughly edited...stands out clearly from the crowd....I enjoyed reading this book. If you have any text-searching
 needs, this book will be more than sufficient equipment to guide you to successful completion. Even, if you are just looking
 to download a pre-written search engine, then this book will provide a good background to the nature of information retrieval
 in general and text indexing and searching specifically.

 Slashdot.org

 The book is more like a crystal ball than ink on pape--I run into solutions to my most pressing problems as I read through
 it.

 Arman Anwar, Arman@Web

 Provides a detailed blueprint for using and customizing Lucene...a thorough introduction to the inner workings of what’s arguably
 the most popular open source search engine...loaded with code examples and emphasizes a hands-on approach to learning.

 SearchEngineWatch.com

 Hatcher and Gospodnetić bring their experience as two of Lucene’s core committers to author this excellently written book.
 This book helps any developer not familiar with Lucene or development of a search engine to get up to speed within minutes
 on the project and domain....I would recommend this book to anyone who is new to Lucene, anyone who needs powerful indexing
 and searching capabilities in their application, or anyone who needs a great reference for Lucene.

 Fort Worth Java Users Group

More Praise for the First Edition

 Outstanding...comprehensive and up-to-date ...grab this book and learn how to leverage Lucene’s potential.

 Val’s blog

 ...the code examples are useful and reusable.

 Scott Ganyo, Lucene Java Committer

 ...packed with examples and advice on how to effectively use this incredibly powerful tool.

 Brian Goetz, Quiotix Corporation

 ...it unlocked for me the amazing power of Lucene.

 Reece Wilton, Walt Disney Internet Group

 ...code samples as JUnit test cases are incredibly helpful.

 Norman Richards, co-author XDoclet in Action

 A quick and easy guide to making Lucene work.

 Books-On-Line

 A comprehensive guide...The authors of this book are experts in this field...they have unleashed the power of Lucene ...the
 best guide to Lucene available so far.

 JavaReference.com

Foreword

 Lucene started as a self-serving project. In late 1997, my job uncertain, I sought something of my own to market. Java was
 the hot new programming language, and I needed an excuse to learn it. I already knew how to write search software, and thought
 I might fill a niche by writing search software in Java. So I wrote Lucene.

 In 2000, I realized that I didn’t like to market stuff. I had no interest in negotiating licenses and contracts, and I didn’t
 want to hire people and build a company. I liked writing software, not selling it. So I tossed Lucene up on SourceForge, to
 see if open source might let me keep doing what I liked.

 A few folks started using Lucene right away. In 2001, folks at Apache offered to adopt Lucene. The number of daily messages
 on the Lucene mailing lists grew steadily. Code contributions started to trickle in. Most were additions around the edges
 of Lucene: I was still the only active developer who fully grokked its core. Still, Lucene was on the road to becoming a real
 collaborative project.

 Now, in 2010, Lucene has a pool of active developers with deep understanding of its core. I’m no longer involved in day-to-day
 development; substantial additions and improvements are regularly made by this strong team.

 Through the years, Lucene has been translated into several other programming languages, including C++, C#, Perl, and Python.
 In the original Java, and in these other incarnations, Lucene is used much more widely than I ever would have dreamed. It
 powers search in diverse applications like discussion groups at Fortune 100 companies, commercial bug trackers, email search
 supplied by Microsoft, and a web search engine that scales to billions of pages. When, at industry events, I am introduced
 to someone as the “Lucene guy,” more often than not folks tell me how they’ve used Lucene in a project. I figure I’ve only
 heard about a small fraction of all Lucene applications.

 Lucene is much more widely used than it ever would have been if I had tried to sell it. Application developers seem to prefer
 open source. Instead of having to contact technical support when they have a problem (and then wait for an answer, hoping
 they were correctly understood), they can frequently just look at the source code to diagnose their problems. If that’s not
 enough, the free support provided by peers on the mailing lists is better than most commercial support. A functioning open-source
 project like Lucene makes application developers more efficient and productive.

 Lucene, through open source, has become something much greater than I ever imagined it would. I set it going, but it took
 the combined efforts of the Lucene community to make it thrive.

 So what’s next for Lucene? I can’t predict the future. What I do know is that even after over 10 years in existence, Lucene
 is still going strong, and its user and development communities are bigger and busier than ever, in part thanks to the first
 edition of Lucene in Action making it easier for more people to get started with Lucene. With every new release Lucene is getting better, more mature,
 more feature-rich, and faster.

 Since the first edition of Lucene in Action was published in 2004, Lucene internals and its API have gone through radical changes that called for more than just minor
 book updates. In this totally revised second edition, the authors bring you up to speed on the latest improvements and new
 APIs in Lucene.

 Armed with the second edition of Lucene in Action, you too are now a member of the Lucene community, and it’s up to you to take Lucene to new places. Bon voyage!

 DOUG CUTTING
FOUNDER OF LUCENE,
NUTCH, AND HADOOP

Preface

 I first started with Lucene about a year after the first edition of Lucene in Action was published. I already had experience building search engines, but didn’t know much about Lucene in particular. So, I picked
 up a copy of Lucene in Action by Erik and Otis and read it, cover to cover, and I was hooked!

 As I used Lucene, I found small improvements here and there, so I started contributing small patches, updating javadocs, discussing
 topics on Lucene’s mailing lists, and so forth. I eventually became an active core committer and PMC member, committing many
 changes over the years.

 It has now been five-and-a-half years since the first edition of Lucene in Action was published, which is practically an eternity in the fast-paced world of open source development! Lucene has gone through
 two major releases, and now has all sorts of new functionality such as numeric fields, the reusable analysis API, payloads,
 near-realtime search, and transactional APIs for indexing and searching, and so on.

 When Manning first approached me, it was clear that a second edition was sorely needed. Furthermore, as one of the active
 core committers largely responsible for committing so many of these changes, I felt rather obligated to create the second
 edition. So I said yes, and then worked fiendishly to cover Lucene’s changes, and I’m quite happy with the results. I hope
 this Second Edition of Lucene in Action will serve you well as you create your search applications, and I look forward to seeing you on the user and developer lists,
 asking your own interesting questions, and continuing to drive Lucene’s relentless growth!

 MICHAEL MCCANDLESS

Preface to the First Edition

From Erik Hatcher

 I’ve been intrigued with searching and indexing from the early days of the Internet. I have fond memories (circa 1991) of
 managing an email list using majordomo, MUSH (Mail User’s Shell), and a handful of Perl, awk, and shell scripts. I implemented
 a CGI web interface to allow users to search the list archives and other users’ profiles using grep tricks under the covers.
 Then along came Yahoo!, AltaVista, and Excite, all which I visited regularly.

 After my first child, Jakob, was born, my digital photo archive began growing rapidly. I was intrigued with the idea of developing
 a system to manage the pictures so that I could attach metadata to each picture, such as keywords and date taken, and, of
 course, locate the pictures easily in any dimension I chose. In the late 1990s, I prototyped a filesystem-based approach using
 Microsoft technologies, including Microsoft Index Server, Active Server Pages, and a third COM component for image manipulation.
 At the time, my professional life was consumed with these same technologies. I was able to cobble together a compelling application
 in a couple of days of spare-time hacking.

 My professional life shifted toward Java technologies, and my computing life consisted of less and less Microsoft Windows.
 In an effort to reimplement my personal photo archive and search engine in Java technologies in an operating system–agnostic
 way, I came across Lucene. Lucene’s ease of use far exceeded my expectations—I had experienced numerous other open-source
 libraries and tools that were far simpler conceptually yet far more complex to use.

 In 2001, Steve Loughran and I began writing Java Development with Ant (Manning). We took the idea of an image search engine application and generalized it as a document search engine. This application
 example is used throughout the Ant book and can be customized as an image search engine. The tie to Ant comes not only from
 a simple compile-and-package build process but also from a custom Ant task, <index>, we created that indexes files during
 the build process using Lucene. This Ant task now lives in Lucene’s Sandbox and is described in section 8.4 of the first edition.

 This Ant task is in production use for my custom blogging system, which I call BlogScene (http://www.blogscene.org/erik). I run an Ant build process, after creating a blog entry, which indexes new entries and uploads them to my server. My blog
 server consists of a servlet, some Velocity templates, and a Lucene index, allowing for rich queries, even syndication of
 queries. Compared to other blogging systems, BlogScene is vastly inferior in features and finesse, but the full-text search
 capabilities are very powerful.

 I’m now working with the Applied Research in Patacriticism group at the University of Virginia (http://www.patacriticism.org), where I’m putting my text analysis, indexing, and searching expertise to the test and stretching my mind with discussions
 of how quantum physics relates to literature. “Poets are the unacknowledged engineers of the world.”

From Otis Gospodnetić

 My interest in and passion for information retrieval and management began during my student years at Middlebury College. At
 that time, I discovered an immense source of information known as the Web. Although the Web was still in its infancy, the
 long-term need for gathering, analyzing, indexing, and searching was evident. I became obsessed with creating repositories
 of information pulled from the Web, began writing web crawlers, and dreamed of ways to search the collected information. I
 viewed search as the killer application in a largely uncharted territory. With that in the back of my mind, I began the first
 in my series of projects that share a common denominator: gathering and searching information.

 In 1995, fellow student Marshall Levin and I created WebPh, an open-source program used for collecting and retrieving personal
 contact information. In essence, it was a simple electronic phone book with a web interface (CGI), one of the first of its
 kind at that time. (In fact, it was cited as an example of prior art in a court case in the late 1990s!) Universities and
 government institutions around the world have been the primary adopters of this program, and many are still using it. In 1997,
 armed with my WebPh experience, I proceeded to create Populus, a popular white pages at the time. Even though the technology
 (similar to that of WebPh) was rudimentary, Populus carried its weight and was a comparable match to the big players such
 as WhoWhere, Big-foot, and Infospace.

 After two projects that focused on personal contact information, it was time to explore new territory. I began my next venture,
 Infojump, which involved culling high-quality information from online newsletters, journals, newspapers, and magazines. In
 addition to my own software, which consisted of large sets of Perl modules and scripts, Infojump utilized a web crawler called
 Webinator and a full-text search product called Texis. The service provided by Infojump in 1998 was much like that of FindArticles.com today.

 Although WebPh, Populus, and Infojump served their purposes and were fully functional, they all had technical limitations.
 The missing piece in each of them was a powerful information-retrieval library that would allow full-text searches backed
 by inverted indexes. Instead of trying to reinvent the wheel, I started looking for a solution that I suspected was out there.
 In early 2000, I found Lucene, the missing piece I’d been looking for, and I fell in love with it.

 I joined the Lucene project early on when it still lived at SourceForge and, later, at the Apache Software Foundation when
 Lucene migrated there in 2002. My devotion to Lucene stems from its being a core component of many ideas that had queued up
 in my mind over the years. One of those ideas was Simpy, my latest pet project. Simpy is a feature-rich personal web service
 that lets users tag, index, search, and share information found online. It makes heavy use of Lucene, with thousands of its
 indexes, and is powered by Nutch, another project of Doug Cutting’s (see chapter 10 of the first edition). My active participation in the Lucene project resulted in an offer from Manning to co-author Lucene in Action with Erik Hatcher.

 Lucene in Action is the most comprehensive source of information about Lucene. The information contained in the chapters encompasses all the
 knowledge you need to create sophisticated applications built on top of Lucene. It’s the result of a very smooth and agile
 collaboration process, much like that within the Lucene community. Lucene and Lucene in Action exemplify what people can achieve when they have similar interests, the willingness to be flexible, and the desire to contribute
 to the global knowledge pool, despite the fact that they have yet to meet in person.

Acknowledgments

 We are sincerely and humbly indebted to Doug Cutting. Without Doug’s generosity to the world, there would be no Lucene. Without
 the other Lucene committers, Lucene would have far fewer features, more bugs, and a much tougher time thriving with its growing
 adoption. Many thanks to all the committers, past and present. Similarly, we thank all those who contributed the case studies
 that appear in chapters 12, 13 and 14: Michele Catasta, Renaud Delbru, Mikkel Kamstrup Erlandsen, Toke Eskildsen, Robert Fuller, Grant Glouser, Ken Krugler, Jake
 Mannix, Nickolai Toupikov, Giovanni Tummarello, Mads Villadsen, and John Wang. We’d also like to thank Doug Cutting for penning
 the foreword to the second edition.

 Our thanks to the staff at Manning, including Marjan Bace, Jeff Bleiel, Sebstian Stirling, Karen Tegtmeyer, Liz Welch, Elizabeth
 Martin, Dottie Marsico, Mary Piergies, and Marija Tudor. Manning rounded up a great set of reviewers, whom we thank for improving
 our drafts into the book you now read. The reviewers include Chad Davis, Dave Pawson, Rob Allen, Rick Wagner, Michele Galli,
 Robi Sen, Stuart Caborn, Jeremy Flowers, Robert Hanson, Rodney Woodruff, Anton Mazkovoi, Ramarao Kanneganti, Matt Payne, Curtis
 Miller, Nathan Levesque, Cos DiFazio, and Andy Dingley. Extra-special thanks go to Shai Erera for his technical editing. Thank
 you to all our MEAP readers who posted feedback on Manning’s forums.

Michael McCandless

 Writing a book is not easy. Writing a book about something as technically rich as Lucene is especially challenging. Writing
 a book about a successful, active, and fast moving open-source project is nearly impossible! Many things had to happen right
 for me to start and finish this book.

 I would never have been part of this book without Doug having the initial itch, technical strength, and generosity to open-source
 his idea, without a vibrant community relentlessly pushing Lucene forward, without a forward-looking IBM supporting my involvement
 with Lucene and this book, and without Erik and Otis writing the first edition.

 My four kids—Mia, Kyra, Joel, Kyle—always inspire me, with everything they do. Their boundless energy, free thinking, infinite
 series of insightful questions, amazing happiness, insatiable curiosity, gentle persistence, free sense of humor, sheer passion,
 temper tantrums, and sharp minds keep me very young at heart and inspire me to tackle big projects like this. You should strive,
 always, to remain a child.

 I thank my wife, Jane, for convincing me to pursue this when Manning came knocking, and for her unmatched skills in efficiently
 running our busy family. Remarkably, she has made lots of time for me to work, write this book and still pursue all my crazy
 hobbies, and I can see that this ability is very rare.

 My parents, all four of them, raised me with the courage to always stretch myself in what I try to tackle, but also with the
 discipline and persistence to finish what I start. They taught me integrity: if you commit to do something, you do it well.
 Always under-promise and overdeliver. They also led by example, showing me that individuals can do big things when they work
 hard. More importantly, they taught me that you should spend your life doing the things you love. Life is far too short to
 do otherwise.

Erik Hatcher

 First, and really only, heartfelt thanks go to none other than Mike McCandless. He has pretty much single-handedly revised
 this book from its 1.0 release to the current spiffy “3.0” state. Mike approaches Lucene, this book, and life in general enthusiastically,
 with eagerness to tackle any task at hand. The first edition acknowledgments also very much apply here, as these influences
 are timelessly felt.

 I personally thank Otis for his efforts with this book. Although we’ve yet to meet in person, Otis has been a joy to work
 with. He and I have gotten along well and have agreed on the structure and content on this book throughout. Thanks to Java
 Java in Charlottesville, Virginia, for keeping me wired and wireless; thanks, also, to Green-berry’s for staying open later
 than Java Java and keeping me out of trouble by not having internet access (update: they now have wi-fi, much to the dismay
 of my productivity). The people I’ve surrounded myself with enrich my life more than anything. David Smith has been a life-long
 mentor, and his brilliance continues to challenge me; he gave me lots of food for thought regarding Lucene visualization (most
 of which I’m still struggling to fully grasp, and I apologize that it didn’t make it into this manuscript). Jay Zimmerman
 and the No Fluff, Just Stuff symposium circuit have been dramatically influential for me. The regular NFJS speakers, including
 Dave Thomas, Stuart Halloway, James Duncan Davidson, Jason Hunter, Ted Neward, Ben Galbraith, Glenn Vanderburg, Venkat Subramaniam,
 Craig Walls, and Bruce Tate, have all been a great source of support and friendship. Rick Hightower and Nick Lesiecki deserve
 special mention: they both were instrumental in pushing me beyond the limits of my technical and communication abilities.
 Words do little to express the tireless enthusiasm and encouragement Mike Clark has given me throughout writing Lucene in Action. Technically, Mike contributed the JUnitPerf performance-testing examples, but his energy, ambition, and friendship were far
 more pivotal. I extend gratitude to Darden Solutions for working with me through my tiring book and travel schedule and allowing
 me to keep a low-stress part-time day job. A Darden co-worker, Dave Engler, provided the CellPhone skeleton Swing application
 that I’ve demonstrated at NFJS sessions and JavaOne; thanks, Dave! Other Darden coworkers, Andrew Shannon and Nick Skriloff,
 gave us insight into Verity, a competitive solution to using Lucene. Amy Moore provided graphical insight. My great friend
 Davie Murray patiently endured several revision requests for a figure he created. Daniel Steinberg is a personal friend and
 mentor, and he allowed me to air Lucene ideas as articles at java.net. Simon Galbraith, a great friend and now a search guru,
 and I had fun bouncing search ideas around in email.

Otis Gospodnetić

 I hate cheesy acknowledgments, but I really can’t thank Margaret enough for being so supporting and patient with me. I owe
 her a lifetime supply of tea and rice. My parents Sanja and Vito opened my eyes early in my childhood by showing me as much
 of the world as they could, and that made a world of difference. They were also the ones who suggested I write my first book,
 which eliminated the fear of book-writing early in my life. Of course, I have to thank Doug Cutting, whose decision to open-source
 Lucene made a huge impact in my life, and to Michael McCandless for the amazing effort he has been putting into both Lucene in Action, Second Edition and Lucene. I think Mike actually has a few clones of him working 24/7 in his basement. No wonder I haven’t met him in person
 yet!

About this Book

 Lucene in Action, Second Edition delivers details, best practices, caveats, tips, and tricks for using the best open-source search engine available.

 This book assumes the reader is familiar with basic Java programming. Lucene’s core itself is a single Java Archive (JAR)
 file, less than 1MB and with no dependencies, and integrates into the simplest Java stand-alone console program as well as
 the most sophisticated enterprise application.

Roadmap

 We organized part 1 of this book to cover the core Lucene Application Programming Interface (API) in the order you’re likely to encounter it
 as you integrate Lucene into your applications:

	In chapter 1, you meet Lucene. We introduce basic information-retrieval terminology and describe the components of modern search applications.
 Without wasting any time, we immediately build simple indexing and searching applications that you can put right to use or
 adapt to your needs. This example application opens the door for exploring the rest of Lucene’s capabilities.

 	
Chapter 2 familiarizes you with Lucene’s indexing operations. We describe the various field types and techniques for indexing numbers
 and dates. Tuning the indexing process, optimizing an index, using near real-time search and handling thread-safety are covered.

 	
Chapter 3 takes you through basic searching, including details of how Lucene ranks documents based on a query. We discuss the fundamental
 query types as well as how they can be created through human-entered query expressions using Lucene’s QueryParser.

 	
Chapter 4 delves deep into the heart of Lucene’s indexing magic, the analysis process. We cover the analyzer building blocks including
 tokens, token streams, and token filters. Each of the built-in analyzers gets its share of attention and detail. We build
 several custom analyzers, showcasing synonym injection and metaphone (like soundex) replacement. Analysis of non-English languages
 is covered, with specific examples of analyzing Chinese text.

 	
Chapter 5 picks up where the searching chapter left off, with analysis now in mind. We cover several advanced searching features, including
 sorting, filtering, and term vectors. The advanced query types make their appearance, including the spectacular SpanQuery family. Finally, we cover Lucene’s built-in support for querying multiple indexes, even in parallel.

 	
Chapter 6 goes well beyond advanced searching, showing you how to extend Lucene’s searching capabilities. You’ll learn how to customize
 search results sorting, extend query expression parsing, implement hit collecting, and tune query performance. Whew!

Part 2 goes beyond Lucene’s built-in facilities and shows you what can be done around and above Lucene:

	In chapter 7, we show how to use Tika, another open-source project under the same Apache Lucene umbrella, to parse documents in many formats,
 in order to extract their text and metadata.

 	
Chapter 8 shows the important and popular set of extensions and tools around Lucene. Most of these are referred to as “contrib modules”,
 in reference to the contrib subdirectory that houses them in Lucene’s source control system. We start with Luke, an amazingly
 useful standalone tool for interacting with a Lucene index, and then move on to contrib modules that enable highlighting search
 terms and applying spelling correction, along with other goodies like non-English-language analyzers and several new query
 types.

 	
Chapter 9 covers additional functionality offered by Lucene’s contrib modules, including chaining multiple filters together, storing
 an index in a Berkeley database, and leveraging synonyms from WordNet. We show two fast options for storing an index entirely
 in RAM, and then move on to xml-query-parser which enables creating queries from XML. We see how to do spatial searching with
 Lucene, and touch on a new modular QueryParser, plus a few odds and ends.

 	
Chapter 10 demonstrates how to access Lucene functionality from various programming languages, such as C++, C#, Python, Perl and Ruby.

 	
Chapter 11 covers the administrative side of Lucene, including how to understand disk, memory, and file descriptor usage. We see how
 to tune Lucene for various metrics like indexing throughput and latency, show you to make a hot backup of the index without
 pausing indexing, and how to easily take advantage of multiple threads during indexing and searching.

Part 3 (chapters 12, 13, and 14) brings all the technical details of Lucene back into focus with case studies contributed by those who have built interesting,
 fast, and scalable applications with Lucene at their core.

What’s new in the second edition?

 Much has changed in Lucene in the 5 years since this book was originally published. As is often the case with a successful
 open-source project with a strong technical architecture, a robust community of users and developers has thrived over time,
 and from all that energy has emerged a number of amazing improvements. Here’s a sampling of the changes:

	Using near real-time searching

 	Using Tika to extract text from documents

 	Indexing with NumericField and performing fast numeric range querying with NumericRangeQuery

 	Updating and deleting documents using IndexWriter

 	Working with IndexWriter’s new transactional semantics (commit, rollback)

 	Improving search concurrency with read-only IndexReaders and NIOFSDirectory

 	Enabling pure Boolean searching

 	Adding payloads to your index and using them with BoostingTermQuery

 	Using IndexReader.reopen to efficiently open a new reader from an existing one

 	Understanding resource usage, like memory, disk, and file descriptors

 	Using Function queries

 	Tuning for performance metrics like indexing and searching throughput

 	Making a hot backup of your index without pausing indexing

 	Using new ports of Lucene to other programming languages

 	Measuring performance using the “benchmark” contrib package

 	Understanding the new reusable TokenStream API

 	Using threads to gain concurrency during indexing and searching

 	Using FieldSelector to speed up loading of stored fields

 	Using TermVectorMapper to customize how term vectors are loaded

 	Understanding simplifications to Lucene’s locking

 	Using custom LockFactory, DeletionPolicy, IndexDeletionPolicy, MergePolicy, and MergeScheduler implementations

 	Using new contrib modules, like XMLQueryParser and Local Lucene search

 	Debugging common problems

Entirely new case studies have been added, in Chapters 12, 13 and 14. A new chapter (11) has been added to cover the administrative aspects of Lucene. Chapter 7, which previously described a custom framework for parsing different document types, has been rewritten entirely based on
 Tika. In addition all code samples have been updated to Lucene’s 3.0.1 APIs. And of course lots of great feedback from our
 readers has been folded in (thank you, and please keep it coming!).

Who should read this book?

 Developers who need powerful search capabilities embedded in their applications should read this book. Lucene in Action, Second Edition is also suitable for developers who are curious about Lucene or indexing and search techniques, but who may not have an immediate
 need to use it. Adding Lucene know-how to your toolbox is valuable for future projects—search is a hot topic and will continue
 to be in the future.

 This book primarily uses the Java version of Lucene (from Apache), and the majority of the code examples use the Java language.
 Readers familiar with Java will be right at home. Java expertise will be helpful; however, Lucene has been ported to a number
 of other languages including C++, C#, Python, and Perl. The concepts, techniques, and even the API itself are comparable between
 the Java and other language versions of Lucene.

Code examples

 The source code for this book is available from Manning’s website at http://www.manning.com/LuceneinActionSecondEdition or http://www.manning.com/hatcher3. Instructions for using this code are provided in the README file included with the source-code package.

 The majority of the code shown in this book was written by us and is included in the source-code package, licensed under the
 Apache Software License (http://www.apache.org/licenses/LICENSE-2.0). Some code (particularly the case-study code, and the examples from Lucene’s ports to other programming languages) isn’t
 provided in our source-code package; the code snippets shown there are owned by the contributors and are donated as is. In
 a couple of cases, we have included a small snippet of code from Lucene’s codebase, which is also licensed under Apache Software
 License 2.0.

 Code examples don’t include package and import statements, to conserve space; refer to the actual source code for these details.
 Likewise, in the name of brevity and keeping examples focused on Lucene’s code, there are numerous places where we simply
 declare throws Exception, while for production code you should declare and catch only specific exceptions and implement proper handling when exceptions
 occur. In some cases there are fragments of code, inlined in the text, that are not full standalone examples; these cases
 are included in source files named Fragments.java, under each subdirectory.

Why JUnit?

 We believe code examples in books should be top-notch quality and real-world applicable. The typical “hello world” examples
 often insult our intelligence and generally do little to help readers see how to really adapt to their environment.

 We’ve taken a unique approach to the code examples in Lucene in Action, Second Edition. Many of our examples are actual JUnit test cases (http://www.junit.org), version 4.1. JUnit, the de facto Java unit-testing framework, easily allows code to assert that a particular assumption
 works as expected in a repeatable fashion. It also cleanly separates what we are trying to accomplish, by showing the small
 test case up front, from how we accomplish it, by showing the source code behind the APIs invoked by the test case. Automating
 JUnit test cases through an IDE or Ant allows one-step (or no steps with continuous integration) confidence building. We chose
 to use JUnit in this book because we use it daily in our other projects and want you to see how we really code. Test Driven
 Development (TDD) is a development practice we strongly espouse.

 If you’re unfamiliar with JUnit, please read the JUnit primer section. We also suggest that you read Pragmatic Unit Testing in Java with JUnit by Dave Thomas and Andy Hunt, followed by Manning’s JUnit in Action by Vincent Massol and Ted Husted, a second edition of which is in the works by Petar Tahchiev, Felipe Leme, Vincent Massol,
 and Gary Gregory.

Code conventions and downloads

 Source code in listings or in text is in a fixed width font to separate it from ordinary text. Java method names, within text, generally won’t include the full method signature.

 In order to accommodate the available page space, code has been formatted with a limited width, including line continuation
 markers where appropriate.

 We don’t include import statements and rarely refer to fully qualified class names—this gets in the way and takes up valuable
 space. Refer to Lucene’s Javadocs for this information. All decent IDEs have excellent support for automatically adding import
 statements; Erik blissfully codes without knowing fully qualified classnames using IDEA IntelliJ, Otis and Mike both use XEmacs.
 Add the Lucene JAR to your project’s classpath, and you’re all set. Also on the classpath issue (which is a notorious nuisance),
 we assume that the Lucene JAR and any other necessary JARs are available in the classpath and don’t show it explicitly. The
 lib directory, with the source code, includes JARs that the source code uses. When you run the ant targets, these JARs are
 placed on the classpath for you.

 We’ve created a lot of examples for this book that are freely available to you. A .zip file of all the code is available from
 Manning’s web site for Lucene in Action: http://www.manning.com/LuceneinActionSecondEdition. Detailed instructions on running the sample code are provided in the main directory of the expanded archive as a README
 file.

Our test data

 Most of our book revolves around a common set of example data to provide consistency and avoid having to grok an entirely
 new set of data for each section. This example data consists of book details. Table 1 shows the data so that you can reference it and make sense of our examples.

 Table 1. Sample data used throughout this book

	
 Title / Author

 	
 Category

 	
 Subject

	
A Modern Art of Education Rudolf Steiner

 	/education/pedagogy
 	education philosophy psychology practice Waldorf

	
Lipitor, Thief of Memory Duane Graveline, Kilmer S. McCully, Jay S. Cohen

 	/health
 	cholesterol, statin, lipitor

	
Nudge: Improving Decisions About Health, Wealth, and Happiness Richard H. Thaler, Cass R. Sunstein

 	/health
 	information architecture, decisions, choices

	
Imperial Secrets of Health and Longevity Bob Flaws

 	/health/alternative/Chinese
 	diet chinese medicine qi gong health herbs

	
Tao Te Ching [image:] Stephen Mitchell

 	/philosophy/eastern
 	taoism

	
Gödel, Escher, Bach: an Eternal Golden Braid Douglas Hofstadter

 	/technology/computers/ai
 	artificial intelligence number theory mathematics music

	
Mindstorms: Children, Computers, And Powerful Ideas Seymour Papert

 	/technology/computers/programming/education
 	children computers powerful ideas LOGO education

	
Ant in Action Steve Loughran, Erik Hatcher

 	/technology/computers/programming
 	apache ant build tool junit java development

	
JUnit in Action, Second Edition Petar Tahchiev, Felipe Leme, Vincent Massol, Gary Gregory

 	/technology/computers/programming
 	junit unit testing mock objects

	
Lucene in Action, Second Edition Michael McCandless, Erik Hatcher, Otis Gospodnetić

 	/technology/computers/programming
 	lucene search java

	
Extreme Programming Explained Kent Beck

 	/technology/computers/programming/methodology
 	extreme programming agile test driven development methodology

	
Tapestry in Action Howard Lewis-Ship

 	/technology/computers/programming
 	tapestry web user interface components

	
The Pragmatic Programmer Dave Thomas, Andy Hunt

 	/technology/computers/programming
 	pragmatic agile methodology developer tools

The data, besides the fields shown in the table, includes fields for ISBN, URL, and publication month. When you unzip the
 source code available for download at www.manning.com/hatcher3, the books are represented as *.properties files under the data sub-directory, and the command-line tool at src/lia/common/CreateTestIndex.java is used to create the test index used throughout the book. The fields for category and subject are our own subjective values,
 but the other information is objectively factual about the books.

Author Online

 The purchase of Lucene in Action, Second Edition includes free access to a web forum run by Manning Publications, where you can discuss the book with the authors and other
 readers. To access the forum and subscribe to it, point your web browser to http://www.manning.com/LuceneinActionSecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember are things they discover during self-motivated
 exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, re-telling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of Lucene in Action, Second Edition is “An inhabitant of the coast of Syria.” The illustration is taken from a collection of costumes of the Ottoman Empire published
 on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have
 been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and
 each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their
 art gracing the front cover of a computer programming book?two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down.

 With the seller flying back to Ankara that evening the situation was getting hopeless. What was the solution? It turned out
 to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller simply proposed that the money
 be transferred to him by wire and the editor walked out with the seller’s bank information on a piece of paper and the portfolio
 of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this
 unknown person’s trust in one of us. It recalls something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago—brought back to life by the pictures from this collection.

JUnit primer

 This section is a quick and admittedly incomplete introduction to JUnit. We’ll provide the basics needed to understand our
 code examples. First, JUnit test cases extend junit.framework.TestCase. Our concrete test classes adhere to a naming convention: we suffix class names with Test. For example, our QueryParser tests are in QueryParserTest.java.

 JUnit automatically executes all methods with the signature public void test-XXX(), where XXX is an arbitrary but meaningful name. JUnit test methods should be concise and clear, keeping good software design in mind
 (such as not repeating yourself, creating reusable functionality, and so on).

Assertions

 JUnit is built around a set of assert statements, freeing you to code tests clearly and letting the JUnit framework handle failed assumptions and reporting the
 details. The most frequently used assert statement is assertEquals; there are a number of overloaded variants of the assertEquals method signature for various data types. An example test method looks like this:

 public void testExample() {
 SomeObject obj = new SomeObject();
 assertEquals(10, obj.someMethod());
}

 The assert methods throw a runtime exception if the expected value (10, in this example) isn’t equal to the actual value (the result
 of calling someMethod on obj, in this example). Besides assertEquals, there are several other assert methods for convenience. We also use assertTrue(expression), assertFalse(expression), and assertNull(expression) statements. These test whether the expression is true, false, and null, respectively.

 The assert statements have overloaded signatures that take an additional String parameter as the first argument. This String argument is used entirely for reporting purposes, giving the developer more information when a test fails. We use this String message argument to be more descriptive (or sometimes comical).

 By coding our assumptions and expectations in JUnit test cases in this manner, we free ourselves from the complexity of the
 large systems we build and can focus on fewer details at a time. With a critical mass of test cases in place, we can remain
 confident and agile. This confidence comes from knowing that changing code, such as optimizing algorithms, won’t break other
 parts of the system, because if it did, our automated test suite would let us know long before the code made it to production.
 Agility comes from being able to keep the codebase clean through refactoring. Refactoring is the art (or is it a science?)
 of changing the internal structure of the code so that it accommodates evolving requirements without affecting the external
 interface of a system.

JUnit in context

 Let’s take what we’ve said so far about JUnit and frame it within the context of this book. One of our test cases (from chapter 3) is shown here:

 [image:]

 Of course, we’ll explain the Lucene API used in this test case later. Here we’ll focus on the JUnit details. The TestUtil class, from lia/common/TestUtil.java, contains a few utility methods used frequently throughout the book. Each time we use such a method for the first time, we
 show its source code. Here’s getBookIndexDirectory:

 public static String getBookIndexDirectory() {
 // The build.xml ant script sets this property for us:
 return System.getProperty("index.dir");
}

 That method returns the path to where our sample data index resides in the filesystem. While we don’t use it in this test,
 JUnit provides an initialization hook that executes prior to every test method; this hook is a method with the public void setUp() signature.

 If our first assert in testTerm fails, we see an exception like this:

 junit.framework.AssertionFailedError:
 Ant in Action expected:<1> but was:<0>
 at lia.searching.BasicSearchingTest.testTerm(BasicSearchingTest.java:20)

 This failure indicates our test data is different than what we expect.

Testing Lucene

 The majority of the tests in this book test Lucene itself. In practice, is this realistic? Isn’t the idea to write test cases
 that test our own code, not the libraries themselves? There is an interesting twist to Test Driven Development used for learning
 an API: Test Driven Learning. It’s immensely helpful to write tests directly to a new API in order to learn how it works and
 what you can expect from it. This is precisely what we’ve done in most of our code examples, so that tests are testing Lucene
 itself. Don’t throw these learning tests away, though. Keep them around to ensure your expectations of the API hold true when
 you upgrade to a new version of the API, and refactor them when the inevitable API change is made.

Mock objects

 In a couple of cases, we use mock objects for testing purposes. Mock objects are used as probes sent into real business logic
 in order to assert that the business logic is working properly. For example, in chapter 4, we have a SynonymEngine interface (see section 4.6). The real business logic that uses this interface is an analyzer. When we want to test the analyzer itself, it’s unimportant
 what type of SynonymEngine is used, but we want to use one that has well defined and predictable behavior. We created a MockSynonymEngine, allowing us to reliably and predictably test our analyzer. Mock objects help simplify test cases such that they test only
 a single facet of a system at a time rather than having intertwined dependencies that lead to complexity in troubleshooting
 what really went wrong when a test fails. A nice effect of using mock objects comes from the design changes it leads us to,
 such as separation of concerns and designing using interfaces instead of direct concrete implementations.

About the Authors

 MICHAEL MCCANDLESS has been building search engines for over a decade. In 1999, with three other people, he founded iPhrase Technologies, a
 startup providing user-centric enterprise search engine software, written in Python and C++. After IBM acquired iPhrase in
 2005, Michael became involved in Lucene and started contributing patches, becoming a committer in 2006 and PMC member in 2008.
 Michael received his B.S., M.S and Ph.D. from MIT, and now lives in Lexington, MA along with his wonderful wife, Jane, and
 four delightful kids, Mia, Kyra, Joel and Kyle. Michael’s blog is at http://chbits.blogspot.com.

 ERIK HATCHER codes, writes, and speaks on technical topics that he finds fun and challenging. He has written software for a number of
 diverse industries using many different technologies and languages. Erik coauthored Java Development with Ant (Manning, 2002) with Steve Loughran, a book that has received industry acclaim. Since the release of Erik’s first book, he
 has spoken at numerous venues including the No Fluff, Just Stuff symposium circuit, JavaOne, O’Reilly’s Open Source Convention,
 JavaZone, devoxx, user groups, and even sometimes webinars. As an Apache Software Foundation member, he is an active contributor
 and committer on several Apache projects including Lucene and Solr. Erik proudly presents his favorite technologies passionately,
 recently notables are Solr, Solritas, Flare, Blacklight, and solr-ruby—preferring to dabble at the intersection of user experiences
 and Solr. Erik cofounded Lucid Imagination, where he helps carry the torch for open-source search goodness. Erik keeps fit
 and serene in central Virginia.

 OTIS GOSPODNETIĆ has been a Lucene developer since before Lucene became Apache Lucene. He is the co-founder of Sematext, a company that focuses
 on providing services and products around search (focusing on Lucene, Solr, and Nutch) and analytics (think BigData, Hadoop,
 etc.). Otis has given talks about Lucene and Solr over the years and some of his previous technical publications include articles
 about Lucene, published by O’Reilly Network and IBM developerWorks. Years ago, Otis also wrote To Choose and Be Chosen: Pursuing Education in America, a guidebook for foreigners wishing to study in the United States; it’s based on his own experience. Otis currently lives
 in New York City where he runs the NY Search & Discovery Meetup.

Part 1. Core Lucene

 The first half of this book covers out-of-the-box (errr... out of the JAR) Lucene. Chapter 1, “Meet Lucene,” provides a general overview, and you’ll develop a complete indexing and searching application. Each successive
 chapter systematically delves into specific areas. “Building a search index,” chapter 2, and “Adding search to your application,” chapter 3, are the first steps to using Lucene. Returning to a glossed-over indexing process, “Lucene’s analysis process,” chapter 4, will round out your understanding of what happens to the text indexed with Lucene.

 After those four chapters you’ll have a good sense of Lucene’s basic capabilities. But searching is where Lucene really shines,
 and so this part concludes with two additional chapters on searching: chapter 5, “Advanced search techniques,” using only the built-in features, and “Extending search,” chapter 6, showcasing Lucene’s extensibility for custom purposes.

Chapter 1. Meet Lucene

 This chapter covers

	Learning about Lucene

 	Understanding the typical search application architecture

 	Using the basic indexing API

 	Working with the search API

Lucene is a powerful Java search library that lets you easily add search to any application. In recent years Lucene has become
 exceptionally popular and is now the most widely used information retrieval library: it powers the search features behind
 many websites and desktop applications. Although it’s written in Java, thanks to its popularity and the determination of zealous
 developers you now have at your disposal a number of ports or integrations to other programming languages (C/C++, C#, Ruby,
 Perl, Python, and PHP, among others).

 One of the key factors behind Lucene’s popularity is its simplicity, but don’t let that fool you: under the hood sophisticated,
 state-of-the-art information retrieval techniques are quietly at work. The careful exposure of its indexing and searching
 API is a sign of the well-designed software. You don’t need in-depth knowledge about how Lucene’s information indexing and
 retrieval work in order to start using it. Moreover, Lucene’s straightforward API requires using only a handful of classes
 to get started. Finally, for those of you tired of bloatware, Lucene’s core JAR is refreshingly tiny—only 1 MB—and it has
 no dependencies!

 In this chapter we cover the overall architecture of a typical search application and where Lucene fits. It’s crucial to recognize
 that Lucene is simply a search library, and you’ll need to handle the other components of a search application (crawling,
 document filtering, runtime server, user interface, administration, etc.) as your application requires. We show you how to
 perform basic indexing and searching with ready-to-use code examples. We then briefly introduce all the core elements you
 need to know for both of these processes. We start with the modern problem of information explosion, to understand why we
 need powerful search functionality in the first place.

	

Note

 Lucene is an active open source project. By the time you read this, likely Lucene’s APIs and features will have changed. This
 book is based on the 3.0.1 release of Lucene, and thanks to Lucene’s backward compatibility policy, all code samples should
 compile and run fine for future 3.x releases. If you encounter a problem, send an email to javauser@lucene.apache.org and Lucene’s large, passionate, and responsive community will surely help.

	

1.1. Dealing with information explosion

 To make sense of the perceived complexity of the world, humans have invented categorizations, classifications, genuses, species,
 and other types of hierarchical organizational schemes. The Dewey decimal system for categorizing items in a library collection
 is a classic example of a hierarchical categorization scheme.

 The explosion of the internet and digital repositories has brought large amounts of information within our reach. With time,
 the amount of data available has become so vast that we need alternate, more dynamic ways of finding information (see figure 1.1). Although we can classify data, trawling through hundreds or thousands of categories and subcategories of data is no longer
 an efficient method for finding information.

 Figure 1.1. Searching the internet with Google

 [image:]

 The need to quickly locate certain information out of the sea of data isn’t limited to the internet realm—desktop computers
 store increasingly more data on multi-terabyte hard drives. Changing directories and expanding and collapsing hierarchies
 of folders isn’t an effective way to access stored documents. Furthermore, we no longer use computers only for their raw computing
 abilities: they also serve as communication devices, multimedia players, and media storage devices. Those uses require the
 ability to quickly find a specific piece of data; what’s more, we need to make rich media—such as images, video, and audio
 files in various formats—easy to locate.

 With this abundance of information, and with time one of the most precious commodities for most people, we must be able to
 make flexible, free-form, ad hoc queries that can quickly cut across rigid category boundaries and find exactly what we’re
 after while requiring the least effort possible.

 To illustrate the pervasiveness of searching across the internet and the desktop, figure 1.1 shows a search for lucene at Google. Figure 1.2 shows the Apple Mac OS X Finder (the counterpart to Microsoft’s Explorer on Windows) and the search feature embedded at the upper right. The Mac OS
 X music player, iTunes, also has embedded search capabilities, as shown in figure 1.3.

 Figure 1.2. Mac OS X Finder with its embedded search capability

 [image:]

 Figure 1.3. Apple’s iTunes intuitively embeds search functionality.

 [image:]

 Search is needed everywhere! All major operating systems have embedded searching. The Spotlight feature in Mac OS X integrates
 indexing and searching across all file types, including rich metadata specific to each type of file, such as emails, contacts,
 and more.[1]

 1 Erik and Mike freely admit to fondness of all things Apple.

 Different people are fighting the same problem—information overload—using different approaches. Some have been working on
 novel user interfaces, some on intelligent agents, and others on developing sophisticated search tools and libraries like
 Lucene. Before we jump into action with code samples, we’ll give you a high-level picture of what Lucene is, what it isn’t,
 and how it came to be.

1.2. What is Lucene?

 Lucene is a high-performance, scalable information retrieval (IR) library. IR refers to the process of searching for documents,
 information within documents, or metadata about documents. Lucene lets you add searching capabilities to your applications.
 It’s a mature, free, open source project implemented in Java, and a project in the Apache Software Foundation, licensed under
 the liberal Apache Software License. As such, Lucene is currently, and has been for quite a few years, the most popular free
 IR library.

	

Note

 Throughout the book, we’ll use the term information retrieval (or its acronym IR) to describe search tools like Lucene. People often refer to IR libraries as search engines, but you shouldn’t confuse IR libraries with web search engines.

	

As you’ll soon discover, Lucene provides a simple yet powerful core API that requires minimal understanding of full-text indexing
 and searching. You need to learn about only a handful of its classes in order to start integrating Lucene into an application.
 Because Lucene is a Java library, it doesn’t make assumptions about what it indexes and searches, which gives it an advantage
 over a number of other search applications. Its design is compact and simple, allowing Lucene to be easily embedded into desktop
 applications.

 Beyond Lucene’s core JAR are a number of extensions modules that offer useful add-on functionality. Some of these are vital
 to almost all applications, like the spellchecker and highlighter modules. These modules are housed in a separate area called
 contrib, and you’ll see us referring to such contrib modules throughout the book. There are so many modules that we have two
 chapters, 8 and 9, to cover them!

 Lucene’s website, at http://lucene.apache.org/java, is a great place to learn more about the current status of Lucene. There you’ll find the tutorial, Javadocs for Lucene’s
 API for all recent releases, an issue-tracking system, links for downloading releases, and Lucene’s wiki (http://wiki.apache.org/lucene-java), which contains many community-created and -maintained pages.

 You’ve probably used Lucene without knowing it! Lucene is used in a surprisingly diverse and growing number of places: NetFlix,
 Digg, MySpace, LinkedIn, Fedex, Apple, Ticketmaster, SalesForce.com, the Encyclopedia Britannica CD-ROM/DVD, the Eclipse IDE,
 the Mayo Clinic, New Scientist magazine, Atlassian (JIRA), Epiphany, MIT’s OpenCourseWare and DSpace, the Hathi Trust Digital Library, and Akamai’s Edge-Computing
 platform. Your name may be on this list soon, too! The “powered by” Lucene page on Lucene’s wiki has even more examples.

 1.2.1. What Lucene can do

 People new to Lucene often mistake it for a ready-to-use application like a file-search program, a web crawler, or a website
 search engine. That isn’t what Lucene is: Lucene is a software library, a toolkit if you will, not a full-featured search
 application. It concerns itself with text indexing and searching, and it does those things very well. Lucene lets your application
 deal with business rules specific to its problem domain while hiding the complexity of indexing and searching behind a simple-to-use
 API. Lucene is the core that the application wraps around.

 A number of full-featured search applications have been built on top of Lucene. If you’re looking for something prebuilt or
 a framework for crawling, document handling, and searching, the “powered by” page on Lucene’s wiki lists some of these options.

 Lucene allows you to add search capabilities to your application. Lucene can index and make searchable any data that you can
 extract text from. Lucene doesn’t care about the source of the data, its format, or even its language, as long as you can
 derive text from it. This means you can index and search data stored in files: web pages on remote web servers, documents
 stored in local file systems, simple text files, Microsoft Word documents, XML or HTML or PDF files, or any other format from
 which you can extract textual information.

 Similarly, with Lucene’s help you can index data stored in your databases, giving your users rich, full-text search capabilities
 that many databases provide only on a limited basis. Once you integrate Lucene, users of your applications can perform searches
 by entering queries like +George +Rice -eat -pudding, Apple -pie +Tiger, animal:monkey AND food:banana, and so on. With Lucene, you can index and search email messages, mailing-list archives, instant messenger chats, your wiki
 pages...the list goes on. Let’s recap Lucene’s history.

 1.2.2. History of Lucene

 Lucene was written by Doug Cutting;[2] it was initially available for download from its home at the SourceForge website. It joined the Apache Software Foundation’s
 Jakarta family of high-quality open source Java products in September 2001 and became its own top-level Apache project in
 February 2005. It now has a number of subprojects, which you can see at http://lucene.apache.org. This book is primarily about the Java subproject, at http://lucene.apache.org/java, though many people refer to it simply as “Lucene.”

 2Lucene is Doug’s wife’s middle name; it’s also her maternal grandmother’s first name.

 With each release, the project has enjoyed increased visibility, attracting more users and developers. As of March 2010, the
 most recent release of Lucene is 3.0.1. Table 1.1 shows Lucene’s release history.

 Table 1.1. Lucene’s release history

	
 Version

 	
 Release date

 	
 Milestones

	0.01
 	March 2000
 	First open source release (SourceForge)

	1.0
 	October 2000
 	

	1.01b
 	July 2001
 	Last SourceForge release

	1.2
 	June 2002
 	First Apache Jakarta release

	1.3
 	December 2003
 	Compound index format, QueryParser enhancements, remote searching, token positioning, extensible scoring API

	1.4
 	July 2004
 	Sorting, span queries, term vectors

	1.4.1
 	August 2004
 	Bug fix for sorting performance

	1.4.2
 	October 2004
 	IndexSearcher optimization and miscellaneous fixes

	1.4.3
 	November 2004
 	Miscellaneous fixes

	1.9.0
 	February 2006
 	Binary stored fields, DateTools, NumberTools, RangeFilter, RegexQuery; requires Java 1.4

	1.9.1
 	March 2006
 	Bug fix in BufferedIndexOutput

	2.0
 	May 2006
 	Removed deprecated methods

	2.1
 	February 2007
 	Delete/update document in IndexWriter, locking simplifications, QueryParser improvements, benchmark contrib module

	2.2
 	June 2007
 	Performance improvements, function queries, payloads, preanalyzed fields, custom deletion policies

	2.3.0
 	January 2008
 	Performance improvements, custom merge policies and merge schedulers, background merges by default, tool to detect index corruption,
 IndexReader.reopen

	2.3.1
 	February 2008
 	Bug fixes from 2.3.0

	2.3.2
 	May 2008
 	Bug fixes from 2.3.1

	2.4.0
 	October 2008
 	Further performance improvements, transactional semantics (rollback, commit), expungeDeletes method, delete by query in IndexWriter

	2.4.1
 	March 2009
 	Bug fixes from 2.4.0

	2.9
 	September 2009
 	New per-segment Collector API, faster search performance, near real-time search, attribute-based analysis

	2.9.1
 	November 2009
 	Bug fixes from 2.9

	2.9.2
 	February 2010
 	Bug fixes from 2.9.1

	3.0.0
 	November 2009
 	Removed deprecated methods, fixed some bugs

	3.0.1
 	February 2010
 	Bug fixes from 3.0.0

	

Note

 Lucene’s creator, Doug Cutting, has significant theoretical and practical experience in the field of IR. He’s published a
 number of research papers on IR topics and has worked for companies such as Excite, Apple, Grand Central and Yahoo!. In 2004,
 worried about the decreasing number of web search engines and a potential monopoly in that realm, he created Nutch, the first
 open source World Wide Web search engine (http://lucene.apache.org/nutch); it’s designed to handle crawling, indexing, and searching of several billion frequently updated web pages. Not surprisingly,
 Lucene is at the core of Nutch. Doug is also actively involved in Hadoop (http://hadoop.apache.org), a project that spun out of Nutch to provide tools for distributed storage and computation using the map/reduce framework.

	

Doug Cutting remains a strong force behind Lucene, and many more developers have joined the project with time. As of this
 writing, Lucene’s core team includes about half a dozen active developers, three of whom are authors of this book. In addition
 to the official project developers, Lucene has a fairly large and active technical user community that frequently contributes
 patches, bug fixes, and new features.

 One way to judge the success of open source software is by the number of times it’s been ported to other programming languages.
 Using this metric, Lucene is quite a success! Although Lucene is written entirely in Java, as of this writing there are Lucene
 ports and bindings in many other programming environments, including Perl, Python, Ruby, C/C++, PHP, and C# (.NET). This is
 excellent news for developers who need to access Lucene indices from applications written in diverse programming languages.
 You can learn more about many of these ports in chapter 10.

 To understand how Lucene fits into a search application, including what Lucene can and can’t do, in the next rather large
 section we review the architecture of a “typical” modern search application.

1.3. Lucene and the components of a search application

 It’s important to grasp the big picture so that you have a clear understanding of which parts Lucene can handle and which
 parts your application must separately handle. A common misconception is that Lucene is an entire search application, when
 in fact it’s simply the core indexing and searching component.

 We’ll see that a search application starts with an indexing chain, which in turn requires separate steps to retrieve the raw
 content; create documents from the content, possibly extracting text from binary documents; and index the documents. Once
 the index is built, the components required for searching are equally diverse, including a user interface, a means for building
 up a programmatic query, query execution (to retrieve matching documents), and results rendering.

 Modern search applications have wonderful diversity. Some run quietly, as a small component deeply embedded inside an existing
 tool, searching a specific set of content (local files, email messages, calendar entries, etc.). Others run on a remote website,
 on a dedicated server infrastructure, interacting with many users via a web browser or mobile device, perhaps searching a product catalog or a known and clearly scoped set of documents. Some run inside
 a company’s intranet and search a massive collection of documents visible inside the company. Still others index a large subset
 of the entire web and must deal with unbelievable scale both in content and in simultaneous search traffic. Yet despite all
 this variety, search engines generally share a common overall architecture, as shown in figure 1.4.

 Figure 1.4. Typical components of search application; the shaded components show which parts Lucene handles.

 [image:]

 When designing your application, you clearly have strong opinions on what features are necessary and how they should work.
 Be forewarned: modern popular web search engines (notably Google) have pretty much set the baseline requirements that all
 users will expect the first time they interact with your search application. If your search can’t meet this baseline, users
 will be disappointed right from the start. Google’s spell correction is amazing, the dynamic summaries with highlighting under
 each result are accurate, and the response time is well under a second. When in doubt, look to Google for inspiration and
 guidance on which basic features your search application must provide. Imitation is the sincerest form of flattery!

OEBPS/01fig02_alt.jpg

OEBPS/01fig03_alt.jpg

OEBPS/xxxv-fig01_alt.jpg

OEBPS/01fig01_alt.jpg

OEBPS/manning.jpg

OEBPS/logo.jpg

OEBPS/xxxifig01.jpg

OEBPS/infin.jpg

OEBPS/01fig03a.jpg

OEBPS/cover.jpg

