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Foreword
      

      “Kirk told me I could buy beer at the petrol station,” was the first sentence I heard out of Ben Evans’ mouth. He had come
         to Crete for an Open Spaces Java conference. I explained that I usually bought petrol at the petrol station, but that there
         was a shop around the corner that sold beer. Ben looked disappointed. I had lived on this Greek island for five years and
         had never thought of trying to buy beer at the local BP.
      

      I felt a bit like this while reading this book. I consider myself a Java fundi. I have spent the past 15 years programming
         Java, writing hundreds of articles, speaking at conferences, and teaching advanced Java courses. And yet, when I read Ben
         and Martijn’s book, I kept coming across ideas that I hadn’t thought of. They start by explaining the development effort of
         changing certain parts of the Java ecosystem. Changing the internals of a library is relatively easy, and we might see some
         improved performance for certain input. Arrays.sort() is now using TimSort, instead of MergeSort. If you sort a partially ordered array, you might see a slight performance improvement
         without changing your code. Changing the class file format or adding a new VM feature requires a major effort. Ben knows.
         He sits on the JCP Executive Committee. This book is also about Java 7, so you’ll learn all the new features, such as the
         syntactic sugar enhancements, switching on Strings, fork/join, and the Java NIO.2.
      

      Concurrency? That’s Thread and synchronized, right? If that’s all you know about multithreading, it’s time to upgrade your skills. As the authors point out, “the area
         of concurrency is undergoing a massive amount of research at present.” There are daily discussions on the concurrency interest
         mailing list, and new ideas are emerging all the time. This book shows you how to think about divide-and-conquer and how to
         avoid some of the safety flaws.
      

      When I saw the chapter on classloading, I thought they had gone a bit too far. Here were the tricks that my friends and I
         had used to create magical code, laid bare for all to learn! They explain how javap works, a little tool that can give you insight into the bytecode generated by the Java compiler. They also cover the new
         invokedynamic and explain how it differs from plain reflection.
      

      One chapter that I particularly like is “Understanding performance tuning.” This is the first book since Jack Shirazi’s Java Performance Tuning that has captured the essence of how to make your system faster. I can summarize the chapter in three words: “Measure, don’t
         guess.” This is the essence of good performance tuning. It’s impossible for a human to guess which code is slow. Instead of
         offering a single coding trick, this chapter explains performance from a hardware perspective. It also shows you how to measure the performance. An interesting little benchmark tool is their CacheTester class, which shows the cost of cache misses.
      

      Part 3 of the book explains polyglot programming on the JVM. Java is so much more than a Java programming language. It’s also a
         platform on which other languages can run. We’ve seen an explosion of different types of languages. Some are functional, some
         are declarative. Some are ports (Jython and JRuby), allowing other languages to run on the JVM. Languages can be dynamic (Groovy)
         or stable (Java and Scala). There are many reasons to use a non-Java language on the JVM. If you’re starting a new project,
         look at what’s available before deciding. You might save yourself a lot of boilerplate code.
      

      Ben and Martijn show us three alternative languages: Groovy, Scala, and Clojure. In my opinion, these are the most viable
         languages at the moment. The authors describe the differences between these languages, how they compare to Java, and their
         special features. The chapter on each language is just enough to help you figure out which you should be using, without too
         much technical detail. Don’t expect a reference manual to Groovy; do expect insight on which language is the right one for
         you.
      

      Next, you’ll gain insight into how to do test-driven development and continuous integration of your system. I found it amusing
         that the old faithful butler Hudson was so quickly replaced with Jenkins. In any case, these are essential tools for managing
         your project, along with tools like Checkstyle and FindBugs.
      

      Studying this book will help you become a well-grounded Java developer. Not only that, it will give you tips on how to stay well-grounded. Java is constantly changing. We’ll see lambdas and modularization in the next version. New languages are being
         designed; the concurrency constructs are being updated. Many of the things that you know are true now might not be true in
         the future. The lesson is, don’t ever stop learning!
      

      The other day I drove past the petrol station where Ben wanted to buy his beer. Like so many companies in depressed Greece,
         it had closed. I never did find out if they sold beer.
      

      DR. HEINZ KABUTZ THE JAVA SPECIALISTS’ NEWSLETTER

      



Preface
      

      This book started life as a set of training notes written for new graduate intake in the Foreign Exchange IT department of
         Deutsche Bank. One of us (Ben), looking at the existing books on the market, found a lack of up-to-date material aimed at
         inexperienced Java developers. So he resolved to write that missing book.
      

      With the encouragement of Deutsche’s IT management team, Ben traveled to the Devoxx conference in Belgium to look for inspiration
         on additional topics. There, he met three IBM engineers (Rob Nicholson, Zoe Slattery, and Holly Cummins), who introduced him
         to the London Java Community (LJC—London’s Java User Group).
      

      The following Saturday was the annual Open Conference organized by the LJC—and it was at that conference that Ben met one
         of the leaders of the LJC, Martijn Verburg. By the end of the day—fueled by their mutual love of teaching, technical communities,
         and beer—they’d resolved to collaborate on the project and what would become The Well-Grounded Java Developer was born.
      

      In this book, we hope that the theme of software development as a social activity rings out clearly. We believe that the technical
         aspects of the craft are important, but the more subtle concerns of communication and interaction between people are at least
         as important. It can be hard to explain these facets easily in a book, but that theme is present throughout.
      

      Developers are sustained throughout their careers by their engagement with technology and the passion to keep learning. In
         this book, we hope that we’ve been able to highlight some of the topics that will ignite that passion. It’s a sightseeing
         tour, rather than an encyclopedic study, but that’s the intention—to get you started and then leave you to follow up on those
         topics that capture your imagination.
      

      Over the course of the project’s lifespan, the emphasis moved slightly away from being purely a bridging guide for graduates
         (it still largely achieves this goal) to becoming a guide for all Java developers wondering, “What do I need to know next?
         Where’s my future heading? I want to care again!”
      

      We take you from the new features of Java 7 through to best practices of modern software development and the future of the
         platform. Along the way, we show you some of the highlights that have had great relevance to us on our own journey as Java
         technologists. Concurrency, performance, bytecode, and classloading are the core techniques that fascinated us the most. We
         also talk about new, non-Java languages on the JVM (a.k.a. polyglot programming) because they will become more important to
         many developers in the years to come.
      

      Above all, this is a journey that’s forward-looking, and puts you and your interests front and center. We feel that becoming
         a well-grounded Java developer will help to keep you engaged and in control of your own development and will help you learn
         more about the changing world of Java and the ecosystem that surrounds it.
      

      We hope that the distilled experience that you’re holding in your hands is useful and interesting to you, and that reading
         it is thought-provoking and fun. Writing it certainly was!
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About this Book
      

      Welcome to The Well-Grounded Java Developer. This book is aimed at turning you into a Java developer for the modern age, reigniting your passion for both the language
         and platform. Along the way, you’ll discover new Java 7 features, ensure that you’re familiar with essential modern software
         techniques (such as dependency injection, test-driven development, and continuous integration), and start to explore the brave
         new world of non-Java languages on the JVM.
      

      To begin, let’s consider this description of the Java language provided by James Iry in a wonderful blog post “A Brief, Incomplete,
         and Mostly Wrong History of Programming Languages”:
      

      
         1996 – James Gosling invents Java. Java is a relatively verbose, garbage collected, class-based, statically typed, single
            dispatch, object-oriented language with single implementation inheritance and multiple interface inheritance. Sun loudly heralds
            Java’s novelty.
         

      

      While the point of Java’s entry is mostly to set up a gag where C# is given the same write-up, this is not bad as descriptions
         of languages go. The full blog post contains a bunch of other gems—you can find it on the web at James’ blog (http://james-iry.blogspot.com/). It’s well worth a read in an idle moment.
      

      This does present a very real question. Why are we still talking about a language that is now around 16 years old? Surely
         it’s stable and not much new or interesting can be said about it?
      

      If that were the case, this would be a short book. We are still talking about it, because one of Java’s greatest strengths
         has been its ability to build on a few core design decisions, which have proved to be very successful in the marketplace:
      

      

      
	Automatic management of the runtime environment (for example, garbage collection, just-in-time compilation)
         

         	Simple syntax and relatively few concepts in the core language
         

         	Conservative approach to evolving the language
         

         	Add functionality and complexity in libraries
         

         	Broad, open ecosystem
         

      

These design decisions have kept innovation moving in the Java world—the simple core has kept the barrier to joining the developer
         community low, and the broad ecosystem has made it easy for newcomers to find pre-existing components that fit their needs.
      

      These traits have kept the Java platform and language strong and vibrant—even if the language has had a historical tendency
         to change slowly. This trend has continued with Java 7. The language changes are evolutionary, not revolutionary. One major
         difference with earlier versions, however, is that Java 7 is the first version explicitly released with an eye to the next
         version. Java 7 contains the groundwork for major language changes in Java 8, due to Oracle’s “Plan B” strategy for releases.
      

      The other big shift in recent years has been the rise of non-Java languages on the JVM. This has led to cross-fertilization
         between Java and other JVM languages and there’s now a large (and growing) number of projects running completely on the JVM
         that include Java as one of the languages that they use.
      

      The emergence of the polyglot project, particularly involving languages such as Groovy, Scala, and Clojure, is a major factor
         in the current Java ecosystem, and is the topic of the final part of the book.
      

      
How to use this book
      

      The material in this book is broadly designed to be read end-to-end, but we understand that some readers may want to dive
         straight into particular topics and have partly catered to that style of reading.
      

      We strongly believe in hands-on learning and so we recommend that readers try out the sample code that comes with the book
         as they read through the text. The rest of this section deals with how you can approach the book if you are more of a standalone-chapter
         style of reader.
      

      The Well-Grounded Java Developer is split into four parts:
      

      

      
	Developing with Java 7
         

         	Vital techniques
         

         	Polyglot programming on the JVM
         

         	Crafting the polyglot project
         

      

Part 1 contains two chapters on Java 7. The book uses Java 7 syntax and semantics throughout, so chapter 1, “Introducing Java 7,” should be considered required reading. Chapter 2, “New I/O,” will be of specific interest to developers who work with files, filesystems, and network I/O.
      

      Part 2 contains four chapters (3-6) covering the topics of dependency injection, modern concurrency, classfiles/byte code, and performance tuning.
      

      Part 3 (chapters 7-10) covers polyglot programming on the JVM. Chapter 7 should be considered required reading as it sets the stage by discussing the categorization and use of alternative languages on the JVM. The following
         three language chapters move from a Java-like language (Groovy), through a hybrid OO-functional language (Scala), to a fully
         functional one (Clojure). Those languages can be read standalone although developers new to functional programming will probably
         want to read them in order.
      

      Part 4 (the final four chapters) introduces new material as well as builds on topics that have been introduced earlier. Although
         the chapters can be read stand-alone, in some sections we assume that you’ve read the earlier chapters and/or already have
         familiarity with certain topics.
      

      In short, chapter 1 is required reading for the entire book. Chapter 7 can be considered as required reading for part 3. The other chapters can be read in sequence or standalone, but there will be sections in later chapters that assume you’ve
         read earlier material.
      

      
Who should read this book
      

      This book is firmly aimed at Java developers who wants to modernize their knowledge base in both the language and the platform.
         If you want to get up to speed with what Java 7 has to offer, this is the book for you.
      

      If you are looking to brush up on your techniques and understanding of topics such as dependency injection, concurrency, and
         test-driven development, this book will give you a good grounding in those topics.
      

      This is also a book for those developers who have acknowledged the polyglot programming trend and want to get started down
         that path. In particular, if you want to learn about functional programming, then our language chapters (especially Scala
         and Clojure) will be of great benefit to you.
      

      
Roadmap
      

      In part 1 there are just two chapters. Chapter 1 introduces Java 7 with its wealth of small but productivity-enhancing features known collectively as Project Coin. Chapter 2 takes you through the new I/O APIs including an overhaul of the filesystem support, new asynchronous I/O capabilities, and
         more.
      

      Part 2 contains four chapters on vital techniques. Chapter 3 takes you through a journey of how the industry arrived at dependency injection as a technique and goes on to show a standardized
         solution in Java with Guice 3. Chapter 4 covers how to deal with modern concurrency properly in Java, a topic that has once more come to the fore as the hardware
         industry firmly moves to multicore processors. Chapter 5 takes you into the classfiles and bytecode of the JVM, demystifying its secrets and enabling you to understand why Java works
         the way it does. Chapter 6 takes you through the initial steps in performance tuning your Java applications and understanding areas such as the garbage
         collector.
      

      Part 3 is about polyglot programming on the JVM and consists of four chapters. Chapter 7 starts the polyglot story and gives you the context of why it’s important and when it’s appropriate to use another language.
         Chapter 8 is an introduction to Groovy, Java’s dynamic friend. Groovy highlights how a syntactically similar yet dynamic language can
         provide great productivity boosts for a Java developer. Chapter 9 brings you into the hybrid functional/OO world of Scala. Scala is a language of great power and conciseness. Chapter 10 is for the Lisp fans out there. Clojure is widely lauded as “Lisp done right” and showcases the full power of a functional
         language on the JVM.
      

      Part 4 takes learning from the first three parts and discusses polyglot techniques in several software development areas. Chapter 11 visits test-driven development and provides a methodology around dealing with mock objects as well as some practical tips.
         Chapter 12 introduces two widely used tools for your build pipeline (Maven 3) and continuous integration (Jenkins/Hudson) needs. Chapter 13 covers the topic of rapid web development and why Java has been traditionally weak in this area, and offers some new technologies
         to prototype with (Grails and Compojure). Chapter 14 wraps up and takes a look to the future, including the functional support arriving in Java 8.
      

      
Code conventions and downloads
      

      The initial download and installation you’ll need is Java 7. Simply follow the download and installation instructions for
         the binary you need for the OS you use. You can find binaries and instructions online at Oracle’s website for Java SE: www.oracle.com/technetwork/java/javase/downloads/index.html.
      

      For everything else, head to appendix A where the instructions for the installation and running of the source code can be found.
      

      All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
         numbered bullets are sometimes used in the text to provide additional information about the code. We have tried to format
         the code so that it fits within the available page space in the book by adding line breaks and using indentation carefully.
         Sometimes, however, very long lines include line continuation markers.
      

      Source code for all the working examples is available from www.manning.com/ TheWell-GroundedJavaDeveloper. Code examples appear throughout the book. Longer listings appear under clear listing headers;
         shorter listings appear between lines of text.
      

      
Software requirements
      

      Java 7 runs on just about every modern platform there is today. As long as you are running on one of the following operating
         systems you’ll be able to run the source examples:
      

      

      
	MS Windows XP and above
         

         	A recent version of *nix
         

         	Mac OS X 10.6 and above
         

      

Most of you will want to try out the code samples in an IDE. Java 7 and the latest versions of Groovy, Scala, and Clojure
         are fairly well supported by the following versions of the main IDEs:
      

      

      
	Eclipse 3.7.1 and above
         

         	NetBeans 7.0.1 and above
         

         	IntelliJ 10.5.2 and above
         

      

We used NetBeans 7.1 and Eclipse 3.7.1 to create and run the examples.

      
Author Online
      

      Purchase of The Well-Grounded Java Developer includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
         browser to www.manning.com/ TheWell-GroundedJavaDeveloper. This page provides information on how to get on the forum once you’re registered, what kind
         of help is available, and the rules of conduct on the forum.
      

      Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
         readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
         lest their interest stray!
      

      The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
         the book is in print.
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Part 1. Developing with Java 7
      

      These first two chapters are about ramping up with Java 7. You’ll ease in with an introductory chapter that covers some small
         syntax changes that will increase your productivity—all of which punch above their weight. This will set the stage for the
         larger topic in this part—a chapter on new I/O in Java.
      

      The well-grounded Java developer needs to be aware of the latest language features available. Java 7 comes with several new
         features that will make your life as a working developer much easier. But it isn’t enough simply to understand the syntax
         of these new changes. In order to write efficient and safe code quickly, you need an in-depth understanding of how and why the new features were implemented. The Java 7 language changes can be
         roughly split into two sets: Project Coin and NIO.2.
      

      The first set is known as Project Coin, a group of small language-level changes that were designed to increase developer productivity
         without heavily impacting the underlying platform. These changes include:
      

      

      
	A try-with-resources construct (which automatically closes off resources)
         

         	Strings in switch
         

         	Enhanced numeric literals
         

         	Multi-catch (declare multiple exceptions in a catch block)
         

         	Diamond syntax (requiring less boilerplate when dealing with generics)
         

      

Each of these changes may seem small, but exploring the semantics behind the simple syntax changes also gives you extra insight
         into the split between Java the language and Java the platform.
      

      The second set of changes is the new I/O (NIO.2) API, which completely overhauls Java’s filesystem support as well as providing
         new powerful asynchronous capabilities. These changes include:
      

      

      
	A new Path construct in order to reference files and file-like entities
         

         	A Files utility class that simplifies creating, copying, moving, and deleting files
         

         	Built-in directory tree navigation
         

         	Future and callback-based asynchronous I/O to deal with large I/O in the background
         

      

By the end of part 1, you’ll be thinking and writing naturally in Java 7. This new knowledge is reinforced throughout the book, as Java 7 features
         are used in the later chapters as well.
      

      


Chapter 1. Introducing Java 7
      

      This chapter covers

      

      
	Java as a platform and a language
         

         	Small yet powerful syntax changes
         

         	The try-with-resources statement
         

         	Exception-handling enhancements
         

      

Welcome to Java 7. Things around here are a little different than you may be used to. This is a really good thing—we have
         a lot to explore, now that the dust has settled and Java 7 has been unleashed. By the time you finish this book, you’ll have
         taken your first steps into a larger world—a world of new features, of software craftsmanship, and of other languages on the
         Java Virtual Machine (JVM).
      

      We’re going to warm up with a gentle introduction to Java 7, but one that still acquaints you with powerful features. We’ll
         start by explaining a distinction that is sometimes misunderstood—the duality between the language and the platform.
      

      After that, we’ll introduce Project Coin—a collection of small yet effective new features in Java 7. We’ll show you what’s
         involved in getting a change to the Java platform accepted, incorporated, and released. With that process covered, we’ll move
         on to the six main new features that were introduced as part of Project Coin.
      

      You’ll learn new syntax, such as an improved way of handling exceptions (multi-catch) as well as try-with-resources, which
         helps you avoid bugs in code that deals with files or other resources. By the end of this chapter, you’ll be writing Java in a new way and you’ll be fully primed
         and ready for the big topics that lie ahead.
      

      Let’s get under way by discussing the language versus platform duality that lies at the heart of modern Java. This is a critically
         important point that we’ll come back to again throughout the book, so it’s an essential one to grasp.
      

      
1.1. The language and the platform
      

      The critical concept we’re kicking off with is the distinction between the Java language and the Java platform. Surprisingly,
         different authors sometimes give slightly different definitions of what constitutes the language and platform. This can lead
         to a lack of clarity and some confusion about the differences between the two and about which provides the programming features
         that application code uses.
      

      Let’s make that distinction clear right now, as it cuts to the heart of a lot of the topics in this book. Here are our definitions:

      

      
	
The Java language— The Java language is the statically typed, object-oriented language that we lightly lampooned in the “About This Book” section. Hopefully, it’s already very familiar to you. One very obvious point about the Java language is that it’s human-readable
            (or it should be!).
         

         	
The Java platform— The platform is the software that provides a runtime environment. It’s the JVM that links and executes your code as provided
            to it in the form of (not human-readable) class files. It doesn’t directly interpret Java language source files, but instead
            requires them to be converted to class files first.
         

      

One of the big reasons for the success of Java as a software system is that it’s a standard. This means that it has specifications
         that describe how it’s supposed to work. Standardization allows different vendors and project groups to produce implementations
         that should all, in theory, work the same way. The specs don’t make guarantees about how well different implementations will
         perform when handling the same task, but they can provide assurances about the correctness of the results.
      

      There are a number of separate specs that govern the Java system—the most important are the Java Language Specification (JLS)
         and the JVM Specification (VMSpec). In Java 7, this separation is taken very seriously; in fact, the VMSpec no longer makes
         any reference whatsoever to the JLS. If you’re thinking that this might be an indication of how seriously non-Java source
         languages are taken in Java 7, then well done, and stay tuned. We’ll talk a lot more about the differences between these two
         specs later.
      

      One obvious question, when you’re faced with the described duality, is, “What’s the link between them?” If they’re now so
         separate in Java 7, how do they come together to make the familiar Java system?
      

      The link between the language and platform is the shared definition of the class file format (the .class files). A serious
         study of the class file definition will reward you, and it’s one of the ways a good Java programmer can start to become a
         great one. In figure 1.1 you can see the full process by which Java code is produced and used.
      

      

      Figure 1.1. Java source code is transformed into .class files, then manipulated at load time before being JIT-compiled.
      

      [image: ]

      As you can see in the figure, Java code starts life as human-readable Java source, and it’s then compiled by javac into a .class file. This is then loaded into a JVM. Note that it’s very common for classes to be manipulated and altered
         during the loading process. Many of the most popular frameworks (especially those with “Enterprise” in their names) will transform
         classes as they’re loaded.
      

       




	
            




         Is Java a compiled or interpreted language?
         The standard picture of Java is of a language that’s compiled into .class files before being run on a JVM. If pressed, many
            developers can also explain that bytecode starts off by being interpreted by the JVM but will undergo just-in-time (JIT) compilation
            at some later point. Here, however, many people’s understanding breaks down in a somewhat hazy conception of bytecode as basically
            being machine code for an imaginary or simplified CPU.
         

         In fact, JVM bytecode is more like a halfway house between human-readable source and machine code. In the technical terms
            of compiler theory, bytecode is really a form of intermediate language (IL) rather than a true machine code. This means that
            the process of turning Java source into bytecode isn’t really compilation in the sense that a C or C++ programmer would understand
            it, and javac isn’t a compiler in the same sense as gcc is—it’s really a class file generator for Java source. The real compiler
            in the Java ecosystem is the JIT compiler, as you can see in figure 1.1.
         

         Some people describe the Java system as “dynamically compiled.” This emphasizes that the compilation that matters is the JIT
            compilation at runtime, not the creation of the class file during the build process.
         

         So, the real answer to, “Is Java compiled or interpreted?” is “Both.”

      

      


	
            



 

With the distinction between language and platform hopefully now clearer, let’s move on to talk about some of the visible
         changes in language syntax that have arrived with Java 7, starting with smaller syntax changes brought in with Project Coin.
      

      
1.2. Small is beautiful—Project Coin
      

      Project Coin is an open source project that has been running as part of the Java 7 (and 8) effort since January 2009. In this
         section, we’re going to explain how features get chosen and how the language evolution process works by using the small changes of Project Coin as a case study.
      

       




	
            




         Naming Project Coin
         The aim of Project Coin was to come up with small changes to the Java language. The name is a piece of wordplay—small change
            comes as coins, and “to coin a phrase” means to add a new expression to our language.
         

         These types of word games, whimsy, and the inevitable terrible puns are to be found everywhere in technical culture. You may
            just as well get used to them.
         

      

      


	
            



 

We think it’s important to explain the “why” of language change as well as the “what.” During the development of Java 7, there
         was a lot of interest around new language features, but the community didn’t always understand how much work is required to
         get changes fully engineered and ready for prime time. We hope to shed a bit of light on this area, and hopefully dispel a
         few myths. But if you’re not very interested in how Java evolves, feel free to skip ahead to section 1.3 and jump right into the language changes.
      

      There is an effort curve involved in changing the Java language—some possible implementations require less engineering effort
         than others. In figure 1.2 we’ve tried to represent the different routes and show the relative effort required for each, in a complexity scale of increasing
         effort.
      

      Figure 1.2. The relative effort involved in implementing new functionality in different ways
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      In general, it’s better to take the route that requires the least effort. This means that if it’s possible to implement a
         new feature as a library, you generally should. But not all features are easy, or even possible, to implement in a library
         or an IDE capability. Some features have to be implemented deeper inside the platform.
      

      Here’s how some (mostly Java 7) features fit into our complexity scale for new language features:
      

      

      
	
Syntactic sugar— Underscores in numbers (Java 7)
         

         	
Small new language feature— try-with-resources (Java 7)
         

         	
Class file format change— Annotations (Java 5)
         

         	
New JVM feature—invokedynamic (Java 7)
         

      

 




	
            




         Syntactic sugar
         A phrase that’s sometimes used to describe a language feature is “syntactic sugar.” This means that the syntax form is redundant—it
            already exists in the language—but the syntactic sugar form is provided because it’s easier for humans to work with.
         

         As a rule of thumb, a feature referred to as syntactic sugar is removed from the compiler’s representation of the program
            early on in the compilation process—it’s said to have been “desugared” into the basic representation of the same feature.
         

         This makes syntactic sugar changes to a language easier to implement because they usually involve a relatively small amount
            of work, and only involve changes to the compiler (javac in the case of Java).
         

      

      


	
            



 

Project Coin (and the rest of this chapter) is all about changes that are somewhere in the range from syntactic sugar to small
         new language features.
      

      The initial period for suggestions for Project Coin changes ran on the coin-dev mailing list from February to March 2009 and
         saw almost 70 proposals submitted, representing a huge range of possible enhancements. The suggestions even included a joke
         proposal for adding multiline strings in the style of lolcat captions (superimposed captions on pictures of cats that are
         either funny or irritating, depending on your viewpoint—http://icanhascheezburger.com/).
      

      The Project Coin proposals were judged under a fairly simple set of rules. Contributors needed to do three things:

      

      
	Submit a detailed proposal form describing their change (which should fundamentally be a Java language change, rather than
            a virtual machine change)
         

         	Discuss their proposal openly on a mailing list and field constructive criticism from the other participants
         

         	Be prepared to produce a prototype set of patches that could implement their change
         

      

Project Coin provides a good example of how the language and platform may evolve in the future, with changes discussed openly,
         early prototyping of features, and calls for public participation.
      

      One question that might well be asked at this point is, “What constitutes a small change to the spec?” One of the changes
         we’ll discuss in a minute adds a single word—"String"—to section 14.11 of the JLS. You can’t really get much smaller than that as a change, and yet even this change touches several
         other aspects of the spec.
      

      

 




	
            




         Java 7 is the first version developed in an open source manner
         Java was not always an open source language, but following an announcement at the JavaOne conference in 2006, the source code
            for Java itself (minus a few bits that Sun didn’t own the source for) was released under the GPLv2 license. This was around
            the time of the release of Java 6, so Java 7 is the first version of Java to be developed under an open source software (OSS)
            license. The primary focus for open source development of the Java platform is the OpenJDK project.
         

         Mailing lists such as coin-dev, lambda-dev, and mlvm-dev have been major forums for discussing possible future features, allowing
            developers from the wider community to participate in the process of producing Java 7. In fact, we help lead the “Adopt OpenJDK”
            program to guide developers new to the OpenJDK, helping improve Java itself! See http://java.net/projects/jugs/pages/AdoptOpenJDK if you’d like to join us.
         

      

      


	
            



 

Any alteration produces consequences, and these have to be chased through the entire design of the language.

      The full set of actions that that must be performed (or at least investigated) for any change is as follows:
      

      

      
	Update the JLS
         

         	Implement a prototype in the source compiler
         

         	Add library support essential for the change
         

         	Write tests and examples
         

         	Update documentation
         

      

In addition, if the change touches the VM or platform aspects:

      

      
	Update the VMSpec
         

         	Implement the VM changes
         

         	Add support in the class file and VM tools
         

         	Consider the impact on reflection
         

         	Consider the impact on serialization
         

         	Think about any impacts on native code components, such as Java Native Interface (JNI).
         

      

This isn’t a small amount of work, and that’s after the impact of the change across the whole language spec has been considered!

      An area of particular hairiness, when it comes to making changes, is the type system. That isn’t because Java’s type system
         is bad. Instead, languages with rich static type systems are likely to have a lot of possible interaction points between different
         bits of those type systems. Making changes to them is prone to creating unexpected surprises.
      

      Project Coin took the very sensible route of suggesting to contributors that they mostly stay away from the type system when
         proposing changes. Given the amount of work that has gone into even the smallest of these small changes, this has proved a
         pragmatic approach.
      

      With that bit of the background on Project Coin covered, it’s time to start looking at the features chosen for inclusion.
      

      
1.3. The changes in Project Coin
      

      Project Coin brought six main new features to Java 7. These are Strings in switch, new numeric literal forms, improved exception handling, try-with-resources, diamond syntax, and fixes for varargs warnings.
      

      We’re going to talk in some detail about these changes from Project Coin—we’ll discuss the syntax and the meaning of the new
         features, and also try to explain the motivations behind the features whenever possible. We won’t resort to the full formal
         details of the proposals, but all that material is available from the archives of the coin-dev mailing list, so if you’re
         a budding language designer, you can read the full proposals and discussion there.
      

      Without further ado, let’s kick off with our very first new Java 7 feature—String values in a switch statement.
      

      1.3.1. Strings in switch
      

      The Java switch statement allows you to write an efficient multiple-branch statement without lots and lots of ugly nested ifs—like this:
      

      public void printDay(int dayOfWeek) {
  switch (dayOfWeek) {
     case 0: System.out.println("Sunday"); break;
     case 1: System.out.println("Monday"); break;
     case 2: System.out.println("Tuesday"); break;
     case 3: System.out.println("Wednesday"); break;
     case 4: System.out.println("Thursday"); break;
     case 5: System.out.println("Friday"); break;
     case 6: System.out.println("Saturday"); break;
     default: System.err.println("Error!"); break;
  }
}

      In Java 6 and before, the values for the cases could only be constants of type byte, char, short, int (or, technically, their reference-type equivalents Byte, Character, Short, Integer) or enum constants. With Java 7, the spec has been extended to allow for the String type to be used as well. They’re constants after all.
      

      public void printDay(String dayOfWeek) {
  switch (dayOfWeek) {
    case "Sunday": System.out.println("Dimanche"); break;
    case "Monday": System.out.println("Lundi"); break;
    case "Tuesday": System.out.println("Mardi"); break;
    case "Wednesday": System.out.println("Mercredi"); break;
    case "Thursday": System.out.println("Jeudi"); break;
    case "Friday": System.out.println("Vendredi"); break;
    case "Saturday": System.out.println("Samedi"); break;
    default: System.out.println("Error: '"+ dayOfWeek
    [image: ] +"' is not a day of the week"); break;
  }
}

      In all other respects, the switch statement remains the same. Like many Project Coin enhancements, this is really a very simple change to make life in Java
         7 a little bit easier.
      

      1.3.2. Enhanced syntax for numeric literals
      

      There were several separate proposals around new syntax for the integral types. The following aspects were eventually chosen:

      

      
	Numeric constants (that is, one of the integer primitive types) may now be expressed as binary literals.
         

         	Underscores may be used in integer constants to improve readability
         

      

Neither of these is, at first sight, particularly earth-shattering, but both have been minor annoyances to Java programmers.

      These are both of special interest to the low-level programmer—the sort of person who works with raw network protocols, encryption,
         or other pursuits, where a certain amount of bit twiddling is involved. Let’s begin with a look at binary literals.
      

      
Binary literals
      

      Before Java 7, if you wanted to manipulate a binary value, you’d have had to either engage in awkward (and error-prone) base
         conversion or utilize parseX methods. For example, if you wanted to ensure that an int x represented the bit pattern for the decimal value 102 correctly, you’d write an expression like:
      

      int x = Integer.parseInt("1100110", 2);

      This is a lot of code just to ensure that x ends up with the correct bit pattern. There’s worse to come though. Despite looking fine, there are a number of problems
         with this approach:
      

      

      
	It’s really verbose.
         

         	There is a performance hit for that method call.
         

         	You’d have to know about the two-argument form of parseInt().
         

         	You need to remember the details of how parseInt() behaves when it has two arguments.
         

         	It makes life hard for the JIT compiler.
         

         	It represents a compile-time constant as a runtime expression, which means the constant can’t be used as a value in a switch statement.
         

         	It will give you a RuntimeException (but no compile-time exception) if you have a typo in the binary value.
         

      

Fortunately, with the advent of Java 7, we can now write this:

      int x = 0b1100110;

      No one’s saying that this is doing anything that couldn’t be done before, but it has none of the problems we listed.

      If you’ve got a reason to work with binary, you’ll be glad to have this small feature. For example, when doing low-level handling
         of bytes, you can now have bit patterns as binary constants in switch statements.
      

      Another small, yet useful, new feature for representing groups of bits or other long numeric representations is underscores
         in numbers.
      

      
Underscores in numbers
      

      You’ve probably noticed that the human mind is radically different from a computer’s CPU. One specific example of this is
         in the way that our minds handle numbers. Humans aren’t, in general, very comfortable with long strings of numbers. That’s
         one reason we invented hexadecimal—because our minds find it easier to deal with shorter strings that contain more information,
         rather than long strings containing not much information per character.
      

      That is, we find 1c372ba3 easier to deal with than 00011100001101110010101110100011, even though a CPU would only ever see
         the second form. One way that we humans deal with long strings of numbers is to break them up. A U.S. phone number is usually
         represented like this: 404-555-0122.
      

       




	
            



Note

      If you’re like the (European) authors and have ever wondered why US phone numbers in films or books always start with 555,
         it’s because the numbers 555-01xx are reserved for fictional use—precisely to prevent real people getting calls from people
         who take their Hollywood movies a little too seriously.
      

      


	
            



 

Other long strings of numbers have separators too:

      

      
	$100,000,000 (large sums of money)
         

         	08-92-96 (UK banking sort codes)
         

      

Unfortunately, both the comma (,) and hyphen (-) have too many possible meanings within the realm of handling numbers in programming, so we can’t use either as a separator.
         Instead, the Project Coin proposal borrowed an idea from Ruby, and introduced the underscore (_) as a separator. Note that this is just a bit of easy-on-the-eyes compile-time syntax. The compiler strips out those underscores
         and stores the usual digits.
      

      This means that you can write 100_000_000 and hopefully not confuse it with 10_000_000, whereas 100000000 is easily confused
         with 10000000. Let’s look at a couple of examples, at least one of which should be familiar:
      

      long anotherLong = 2_147_483_648L;
int bitPattern = 0b0001_1100__0011_0111__0010_1011__1010_0011;

      Notice how much easier it is to read the value being assigned to anotherLong.
      

       




	
            



Warning

      In Java, it’s still legal to use the lowercase l character to denote a long. For example 1010100l. Make sure you always use an uppercase L so that maintainers don’t get confused between the number 1 and the letter l: 1010100L is much clearer!
      

      


	
            



 

By now, you should be convinced of the benefit of these tweaks to the handling of integers, so let’s move on to looking at
         Java 7’s improved exception handling.
      

      1.3.3. Improved exception handling
      

      There are two parts to this improvement—multicatch and final rethrow. To see why they’re a help, consider the following Java
         6 code, which tries to find, open, and parse a config file and handle a number of different possible exceptions.
      

      Listing 1.1. Handling several different exceptions in Java 6
      

      public Configuration getConfig(String fileName) {
  Configuration cfg = null;
  try {
    String fileText = getFile(fileName);
    cfg = verifyConfig(parseConfig(fileText));
  } catch (FileNotFoundException fnfx) {
    System.err.println("Config file '" + fileName + "' is missing");
  } catch (IOException e) {
    System.err.println("Error while processing file '" + fileName + "'");
  } catch (ConfigurationException e) {
    System.err.println("Config file '" + fileName + "' is not consistent");
  } catch (ParseException e) {
    System.err.println("Config file '" + fileName + "' is malformed");
  }
  return cfg;
}

      This method can encounter a number of different exceptional conditions:

      

      
	The config file may not exist.
         

         	The config file may disappear while you’re trying to read from it.
         

         	The config file may be malformed syntactically.
         

         	The config file may have invalid information in it.
         

      

These conditions fit into two distinct functional groups. Either the file is missing or bad in some way, or the file is present
         and correct but couldn’t be retrieved properly (perhaps because of a hardware failure or network outage).
      

      It would be nice to compress this down to just these two cases, and handle all the “file is missing or bad in some way” exceptions
         in one catch clause. Java 7 allows you to do this.
      

      Listing 1.2. Handling several different exceptions in Java 7
      

      public Configuration getConfig(String fileName) {
  Configuration cfg = null;
  try {
    String fileText = getFile(fileName);
    cfg = verifyConfig(parseConfig(fileText));
  } catch (FileNotFoundException|ParseException|ConfigurationException e) {
    System.err.println("Config file '" + fileName +
                       "' is missing or malformed");
  } catch (IOException iox) {
    System.err.println("Error while processing file '" + fileName + "'");
  }
  return cfg;
}

      The exception e has a type that isn’t precisely knowable at compile time. This means that it has to be handled in the catch block as the common supertype of the exceptions that it could be (which will often be Exception or Throwable, in practice).
      

      An additional bit of new syntax helps with rethrowing exceptions. In many cases, developers may want to manipulate a thrown
         exception before rethrowing it. The problem is that in previous versions of Java you’ll often see code like this:
      

      try {
  doSomethingWhichMightThrowIOException();
  doSomethingElseWhichMightThrowSQLException();
} catch (Exception e) {
  ...
  throw e;
}

      This forces you to declare the exception signature of this code as Exception—the real dynamic type of the exception has been swallowed.
      

      Nevertheless, it’s relatively easy to see that the exception can only be an IOException or a SQLException, and if you can see it, so can the compiler. This snippet changes a single word change to use the Java 7 syntax:
      

      try {
  doSomethingWhichMightThrowIOException();
  doSomethingElseWhichMightThrowSQLException();
} catch (final Exception e) {
  ...
  throw e;
}

      The appearance of the final keyword indicates that the type that’s actually thrown is the runtime type of the exception that was encountered—in this
         example, that would be either IOException or SQLException. This is referred to as final rethrow, and it can protect against throwing an overly general type, which then has to be caught by a very general catch in a higher scope.
      















