

 [image: cover]

 The Well-Grounded Java Developer:
Vital techniques of Java 7 and polyglot programming

 Benjamin J. Evans and Martijn Verburg

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

	Development editors: Renae Gregoire, Karen G. Miller
 Copyeditor: Andy Carroll
 Proofreader: Elizabeth Martin
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Developing with Java 7

 Chapter 1. Introducing Java 7

 Chapter 2. New I/O

 2. Vital techniques

 Chapter 3. Dependency Injection

 Chapter 4. Modern concurrency

 Chapter 5. Class files and bytecode

 Chapter 6. Understanding performance tuning

 3. Polyglot programming on the JVM

 Chapter 7. Alternative JVM languages

 Chapter 8. Groovy: Java’s dynamic friend

 Chapter 9. Scala: powerful and concise

 Chapter 10. Clojure: safer programming

 4. Crafting the polyglot project

 Chapter 11. Test-driven development

 Chapter 12. Build and continuous integration

 Chapter 13. Rapid web development

 Chapter 14. Staying well-grounded

 Appendix A. Java7developer—source code installation

 Appendix B. Glob pattern syntax and examples

 Appendix C. Installing alternative JVM languages

 Appendix D. Downloading and installing Jenkins

 Appendix E. Java7developer—the Maven POM

 Appendix Rules of the Java Memory Model

 Appendix Polyglot Programming Pyramid

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Developing with Java 7

 Chapter 1. Introducing Java 7

 1.1. The language and the platform

 1.2. Small is beautiful—Project Coin

 1.3. The changes in Project Coin

 1.3.1. Strings in switch

 1.3.2. Enhanced syntax for numeric literals

 1.3.3. Improved exception handling

 1.3.4. Try-with-resources (TWR)

 1.3.5. Diamond syntax

 1.3.6. Simplified varargs method invocation

 1.4. Summary

 Chapter 2. New I/O

 2.1. Java I/O—a history

 2.1.1. Java 1.0 to 1.3

 2.1.2. Java 1.4 and NIO

 2.1.3. Introducing NIO.2

 2.2. Path—a foundation of file-based I/O

 2.2.1. Creating a Path

 2.2.2. Retrieving information from a Path

 2.2.3. Removing redundancies

 2.2.4. Converting Paths

 2.2.5. NIO.2 Path and Java’s existing File class

 2.3. Dealing with directories and directory trees

 2.3.1. Finding files in a directory

 2.3.2. Walking the directory tree

 2.4. Filesystem I/O with NIO.2

 2.4.1. Creating and deleting files

 2.4.2. Copying and moving files

 2.4.3. File attributes

 2.4.4. Reading and writing data quickly

 2.4.5. File change notification

 2.4.6. SeekableByteChannel

 2.5. Asynchronous I/O operations

 2.5.1. Future style

 2.5.2. Callback style

 2.6. Tidying up Socket-Channel functionality

 2.6.1. NetworkChannel

 2.6.2. MulticastChannel

 2.7. Summary

 2. Vital techniques

 Chapter 3. Dependency Injection

 3.1. Inject some knowledge—understanding IoC and DI

 3.1.1. Inversion of Control

 3.1.2. Dependency Injection

 3.1.3. Transitioning to DI

 3.2. Standardized DI in Java

 3.2.1. The @Inject annotation

 3.2.2. The @Qualifier annotation

 3.2.3. The @Named annotation

 3.2.4. The @Scope annotation

 3.2.5. The @Singleton annotation

 3.2.6. The Provider<T> interface

 3.3. Guice 3—the reference implementation for DI in Java

 3.3.1. Getting started with Guice

 3.3.2. Sailor’s knots—the various bindings of Guice

 3.3.3. Scoping your injected objects with Guice

 3.4. Summary

 Chapter 4. Modern concurrency

 4.1. Concurrency theory—a primer

 4.1.1. Explaining Java’s threading model

 4.1.2. Design concepts

 4.1.3. How and why do the forces conflict?

 4.1.4. Sources of overhead

 4.1.5. A transaction processor example

 4.2. Block-structured concurrency (pre-Java 5)

 4.2.1. Synchronization and locks

 4.2.2. The state model for a thread

 4.2.3. Fully synchronized objects

 4.2.4. Deadlocks

 4.2.5. Why synchronized?

 4.2.6. The volatile keyword

 4.2.7. Immutability

 4.3. Building blocks for modern concurrent applications

 4.3.1. Atomic classes—java.util.concurrent.atomic

 4.3.2. Locks—java.util.concurrent.locks

 4.3.3. CountDownLatch

 4.3.4. ConcurrentHashMap

 4.3.5. CopyOnWriteArrayList

 4.3.6. Queues

 4.4. Controlling execution

 4.4.1. Modeling tasks

 4.4.2. ScheduledThreadPoolExecutor

 4.5. The fork/join framework

 4.5.1. A simple fork/join example

 4.5.2. ForkJoinTask and work stealing

 4.5.3. Parallelizing problems

 4.6. The Java Memory Model (JMM)

 4.7. Summary

 Chapter 5. Class files and bytecode

 5.1. Classloading and class objects

 5.1.1. Overview—loading and linking

 5.1.2. Verification

 5.1.3. Class objects

 5.1.4. Classloaders

 5.1.5. Example—classloaders in Dependency Injection

 5.2. Using method handles

 5.2.1. MethodHandle

 5.2.2. MethodType

 5.2.3. Looking up method handles

 5.2.4. Example—reflection vs. proxies vs. MethodHandles

 5.2.5. Why choose MethodHandles?

 5.3. Examining class files

 5.3.1. Introducing javap

 5.3.2. Internal form for method signatures

 5.3.3. The constant pool

 5.4. Bytecode

 5.4.1. Example—disassembling a class

 5.4.2. The runtime environment

 5.4.3. Introduction to opcodes

 5.4.4. Load and store opcodes

 5.4.5. Arithmetic opcodes

 5.4.6. Execution control opcodes

 5.4.7. Invocation opcodes

 5.4.8. Platform operation opcodes

 5.4.9. Shortcut opcode forms

 5.4.10. Example—string concatenation

 5.5. Invokedynamic

 5.5.1. How invokedynamic works

 5.5.2. Example—disassembling an invokedynamic call

 5.6. Summary

 Chapter 6. Understanding performance tuning

 6.1. Performance terminology—some basic definitions

 6.1.1. Latency

 6.1.2. Throughput

 6.1.3. Utilization

 6.1.4. Efficiency

 6.1.5. Capacity

 6.1.6. Scalability

 6.1.7. Degradation

 6.2. A pragmatic approach to performance analysis

 6.2.1. Know what you’re measuring

 6.2.2. Know how to take measurements

 6.2.3. Know what your performance goals are

 6.2.4. Know when to stop optimizing

 6.2.5. Know the cost of higher performance

 6.2.6. Know the danger of premature optimization

 6.3. What went wrong? Why we have to care

 6.3.1. Moore’s Law—historic and future performance trends

 6.3.2. Understanding the memory latency hierarchy

 6.3.3. Why is Java performance tuning hard?

 6.4. A question of time—from the hardware up

 6.4.1. Hardware clocks

 6.4.2. The trouble with nanoTime()

 6.4.3. The role of time in performance tuning

 6.4.4. A case study—understanding cache misses

 6.5. Garbage collection

 6.5.1. Basics

 6.5.2. Mark and sweep

 6.5.3. jmap

 6.5.4. Useful JVM parameters

 6.5.5. Reading the GC logs

 6.5.6. Visualizing memory usage with VisualVM

 6.5.7. Escape analysis

 6.5.8. Concurrent Mark-Sweep

 6.5.9. G1—Java’s new collector

 6.6. JIT compilation with HotSpot

 6.6.1. Introduction to HotSpot

 6.6.2. Inlining methods

 6.6.3. Dynamic compilation and monomorphic calls

 6.6.4. Reading the compilation logs

 6.7. Summary

 3. Polyglot programming on the JVM

 Chapter 7. Alternative JVM languages

 7.1. Java too clumsy? Them’s fighting words!

 7.1.1. The reconciliation system

 7.1.2. Conceptual basics of functional programming

 7.1.3. Map and filter idioms

 7.2. Language zoology

 7.2.1. Interpreted vs. compiled languages

 7.2.2. Dynamic vs. static typing

 7.2.3. Imperative vs. functional languages

 7.2.4. Reimplementation vs. original

 7.3. Polyglot programming on the JVM

 7.3.1. Why use a non-Java language?

 7.3.2. Up-and-coming languages

 7.4. How to choose a non-Java language for your project

 7.4.1. Is the project area low-risk?

 7.4.2. Does the language interoperate well with Java?

 7.4.3. Is there good tooling and test support for the language?

 7.4.4. How hard is the language to learn?

 7.4.5. Are there lots of developers using this language?

 7.5. How the JVM supports alternative languages

 7.5.1. Runtime environments for non-Java languages

 7.5.2. Compiler fictions

 7.6. Summary

 Chapter 8. Groovy: Java’s dynamic friend

 8.1. Getting started with Groovy

 8.1.1. Compiling and running

 8.1.2. Groovy console

 8.2. Groovy 101—syntax and semantics

 8.2.1. Default imports

 8.2.2. Numeric handling

 8.2.3. Variables, dynamic versus static types, and scoping

 8.2.4. Syntax for lists and maps

 8.3. Differences from Java—traps for new players

 8.3.1. Optional semicolons and return statements

 8.3.2. Optional parentheses for method parameters

 8.3.3. Access modifiers

 8.3.4. Exception handling

 8.3.5. Equality in Groovy

 8.3.6. Inner classes

 8.4. Groovy features not (yet) in Java

 8.4.1. GroovyBeans

 8.4.2. The safe-dereference operator

 8.4.3. The Elvis operator

 8.4.4. Enhanced strings

 8.4.5. Function literals

 8.4.6. First-class support for manipulating collections

 8.4.7. First-class support for regular expressions

 8.4.8. Simple XML handling

 8.5. Interoperating between Groovy and Java

 8.5.1. Calling Java from Groovy

 8.5.2. Calling Groovy from Java

 8.6. Summary

 Chapter 9. Scala: powerful and concise

 9.1. A quick tour of Scala

 9.1.1. Scala as a concise language

 9.1.2. Match expressions

 9.1.3. Case classes

 9.1.4. Actors

 9.2. Is Scala right for my project?

 9.2.1. Comparing Scala and Java

 9.2.2. When and how to start using Scala

 9.2.3. Signs that Scala may not be right for your current project

 9.3. Making code beautiful again with Scala

 9.3.1. Using the compiler and the REPL

 9.3.2. Type inference

 9.3.3. Methods

 9.3.4. Imports

 9.3.5. Loops and control structures

 9.3.6. Functional programming in Scala

 9.4. Scala’s object model—similar but different

 9.4.1. Everything is an object

 9.4.2. Constructors

 9.4.3. Traits

 9.4.4. Singleton and companion objects

 9.4.5. Case classes and match expressions

 9.4.6. A cautionary tale

 9.5. Data structures and collections

 9.5.1. List

 9.5.2. Map

 9.5.3. Generic types

 9.6. Introduction to actors

 9.6.1. All the code’s a stage

 9.6.2. Communicating with actors via the mailbox

 9.7. Summary

 Chapter 10. Clojure: safer programming

 10.1. Introducing Clojure

 10.1.1. Hello World in Clojure

 10.1.2. Getting started with the REPL

 10.1.3. Making a mistake

 10.1.4. Learning to love the brackets

 10.2. Looking for Clojure—syntax and semantics

 10.2.1. Special forms bootcamp

 10.2.2. Lists, vectors, maps, and sets

 10.2.3. Arithmetic, equality, and other operations

 10.3. Working with functions and loops in Clojure

 10.3.1. Some simple Clojure functions

 10.3.2. Loops in Clojure

 10.3.3. Reader macros and dispatch

 10.3.4. Functional programming and closures

 10.4. Introducing Clojure sequences

 Conceptual problems with Java iterators

 Clojure’s key abstraction

 10.4.2. Sequences and variable-arity functions

 10.5. Interoperating between Clojure and Java

 10.5.1. Calling Java from Clojure

 10.5.2. The Java type of Clojure values

 10.5.3. Using Clojure proxies

 10.5.4. Exploratory programming with the REPL

 10.5.5. Using Clojure from Java

 10.6. Concurrent Clojure

 10.6.1. Futures and pcalls

 10.6.2. Refs

 10.6.3. Agents

 10.7. Summary

 4. Crafting the polyglot project

 Chapter 11. Test-driven development

 11.1. TDD in a nutshell

 11.1.1. A TDD example with a single use case

 11.1.2. A TDD example with multiple use cases

 11.1.3. Further thinking on the red-green-refactor lifecycle

 11.1.4. JUnit

 11.2. Test doubles

 11.2.1. Dummy object

 11.2.2. Stub object

 11.2.3. Fake object

 11.2.4. Mock object

 11.3. Introducing ScalaTest

 11.4. Summary

 Chapter 12. Build and continuous integration

 12.1. Getting started with Maven 3

 12.2. Maven 3—a quick-start project

 12.3. Maven 3—the Java7developer build

 12.3.1. The POM

 12.3.2. Running the examples

 12.4. Jenkins—serving your CI needs

 12.4.1. Basic configuration

 12.4.2. Setting up a job

 12.4.3. Executing a job

 12.5. Code metrics with Maven and Jenkins

 12.5.1. Installing Jenkins plugins

 12.5.2. Making code consistent with Checkstyle

 12.5.3. Setting the quality bar with FindBugs

 12.6. Leiningen

 12.6.1. Getting started with Leiningen

 12.6.2. Leiningen’s architecture

 12.6.3. Example—Hello Lein

 12.6.4. REPL-oriented TDD with Leiningen

 12.6.5. Packaging and deploying with Leiningen

 12.7. Summary

 Chapter 13. Rapid web development

 13.1. The problem with Java-based web frameworks

 13.1.1. Why Java compilation is bad for rapid web development

 13.1.2. Why static typing is bad for rapid web development

 13.2. Criteria in selecting a web framework

 13.3. Getting started with Grails

 13.4. Grails quick-start project

 13.4.1. Domain object creation

 13.4.2. Test-driven development

 13.4.3. Domain object persistence

 13.4.4. Test data creation

 13.4.5. Controllers

 13.4.6. GSP/JSP views

 13.4.7. Scaffolding and automatic UI creation

 13.4.8. Rapid turnaround development

 13.5. Further Grails exploration

 13.5.1. Logging

 13.5.2. GORM—object-relational mapping

 13.5.3. Grails plugins

 13.6. Getting started with Compojure

 13.6.1. Hello World with Compojure

 13.6.2. Ring and routes

 13.6.3. Hiccup

 13.7. A sample Compojure project—“Am I an Otter or Not?”

 13.7.1. Setting up “Am I an Otter”

 13.7.2. Core functions in “Am I an Otter”

 13.8. Summary

 Chapter 14. Staying well-grounded

 14.1. What to expect in Java 8

 14.1.1. Lambdas (a.k.a. closures)

 14.1.2. Modularization (a.k.a. Jigsaw)

 14.2. Polyglot programming

 14.2.1. Language interoperability and metaobject protocols

 14.2.2. Multilanguage modularity

 14.3. Future concurrency trends

 14.3.1. The many-core world

 14.3.2. Runtime-managed concurrency

 14.4. New directions in the JVM

 14.4.1. VM convergence

 14.4.2. Coroutines

 14.4.3. Tuples

 14.5. Summary

 Appendix A. Java7developer—source code installation

 A.1. Java7developer source code structure

 A.2. Downloading and installing Maven

 A.3. Running the java7developer build

 A.3.1. One-off build preparation

 A.3.2. Clean

 A.3.3. Compile

 A.3.4. Test

 A.4. Summary

 Appendix B. Glob pattern syntax and examples

 B.1. Glob pattern syntax

 B.2. Glob pattern examples

 Appendix C. Installing alternative JVM languages

 C.1. Groovy

 C.1.1. Downloading Groovy

 C.1.2. Installing Groovy

 C.2. Scala

 C.3. Clojure

 C.4. Grails

 C.4.1. Downloading Grails

 C.4.2. Installing Grails

 Appendix D. Downloading and installing Jenkins

 D.1. Downloading Jenkins

 D.2. Installing Jenkins

 D.2.1. Running the WAR file

 D.2.2. Installing the WAR file

 D.2.3. Installing the standalone package

 D.2.4. Running Jenkins for the first time

 Appendix E. Java7developer—the Maven POM

 E.1. Build configuration

 E.2. Dependency management

 Appendix Rules of the Java Memory Model

 Appendix Polyglot Programming Pyramid

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 “Kirk told me I could buy beer at the petrol station,” was the first sentence I heard out of Ben Evans’ mouth. He had come
 to Crete for an Open Spaces Java conference. I explained that I usually bought petrol at the petrol station, but that there
 was a shop around the corner that sold beer. Ben looked disappointed. I had lived on this Greek island for five years and
 had never thought of trying to buy beer at the local BP.

 I felt a bit like this while reading this book. I consider myself a Java fundi. I have spent the past 15 years programming
 Java, writing hundreds of articles, speaking at conferences, and teaching advanced Java courses. And yet, when I read Ben
 and Martijn’s book, I kept coming across ideas that I hadn’t thought of. They start by explaining the development effort of
 changing certain parts of the Java ecosystem. Changing the internals of a library is relatively easy, and we might see some
 improved performance for certain input. Arrays.sort() is now using TimSort, instead of MergeSort. If you sort a partially ordered array, you might see a slight performance improvement
 without changing your code. Changing the class file format or adding a new VM feature requires a major effort. Ben knows.
 He sits on the JCP Executive Committee. This book is also about Java 7, so you’ll learn all the new features, such as the
 syntactic sugar enhancements, switching on Strings, fork/join, and the Java NIO.2.

 Concurrency? That’s Thread and synchronized, right? If that’s all you know about multithreading, it’s time to upgrade your skills. As the authors point out, “the area
 of concurrency is undergoing a massive amount of research at present.” There are daily discussions on the concurrency interest
 mailing list, and new ideas are emerging all the time. This book shows you how to think about divide-and-conquer and how to
 avoid some of the safety flaws.

 When I saw the chapter on classloading, I thought they had gone a bit too far. Here were the tricks that my friends and I
 had used to create magical code, laid bare for all to learn! They explain how javap works, a little tool that can give you insight into the bytecode generated by the Java compiler. They also cover the new
 invokedynamic and explain how it differs from plain reflection.

 One chapter that I particularly like is “Understanding performance tuning.” This is the first book since Jack Shirazi’s Java Performance Tuning that has captured the essence of how to make your system faster. I can summarize the chapter in three words: “Measure, don’t
 guess.” This is the essence of good performance tuning. It’s impossible for a human to guess which code is slow. Instead of
 offering a single coding trick, this chapter explains performance from a hardware perspective. It also shows you how to measure the performance. An interesting little benchmark tool is their CacheTester class, which shows the cost of cache misses.

 Part 3 of the book explains polyglot programming on the JVM. Java is so much more than a Java programming language. It’s also a
 platform on which other languages can run. We’ve seen an explosion of different types of languages. Some are functional, some
 are declarative. Some are ports (Jython and JRuby), allowing other languages to run on the JVM. Languages can be dynamic (Groovy)
 or stable (Java and Scala). There are many reasons to use a non-Java language on the JVM. If you’re starting a new project,
 look at what’s available before deciding. You might save yourself a lot of boilerplate code.

 Ben and Martijn show us three alternative languages: Groovy, Scala, and Clojure. In my opinion, these are the most viable
 languages at the moment. The authors describe the differences between these languages, how they compare to Java, and their
 special features. The chapter on each language is just enough to help you figure out which you should be using, without too
 much technical detail. Don’t expect a reference manual to Groovy; do expect insight on which language is the right one for
 you.

 Next, you’ll gain insight into how to do test-driven development and continuous integration of your system. I found it amusing
 that the old faithful butler Hudson was so quickly replaced with Jenkins. In any case, these are essential tools for managing
 your project, along with tools like Checkstyle and FindBugs.

 Studying this book will help you become a well-grounded Java developer. Not only that, it will give you tips on how to stay well-grounded. Java is constantly changing. We’ll see lambdas and modularization in the next version. New languages are being
 designed; the concurrency constructs are being updated. Many of the things that you know are true now might not be true in
 the future. The lesson is, don’t ever stop learning!

 The other day I drove past the petrol station where Ben wanted to buy his beer. Like so many companies in depressed Greece,
 it had closed. I never did find out if they sold beer.

 DR. HEINZ KABUTZ THE JAVA SPECIALISTS’ NEWSLETTER

Preface

 This book started life as a set of training notes written for new graduate intake in the Foreign Exchange IT department of
 Deutsche Bank. One of us (Ben), looking at the existing books on the market, found a lack of up-to-date material aimed at
 inexperienced Java developers. So he resolved to write that missing book.

 With the encouragement of Deutsche’s IT management team, Ben traveled to the Devoxx conference in Belgium to look for inspiration
 on additional topics. There, he met three IBM engineers (Rob Nicholson, Zoe Slattery, and Holly Cummins), who introduced him
 to the London Java Community (LJC—London’s Java User Group).

 The following Saturday was the annual Open Conference organized by the LJC—and it was at that conference that Ben met one
 of the leaders of the LJC, Martijn Verburg. By the end of the day—fueled by their mutual love of teaching, technical communities,
 and beer—they’d resolved to collaborate on the project and what would become The Well-Grounded Java Developer was born.

 In this book, we hope that the theme of software development as a social activity rings out clearly. We believe that the technical
 aspects of the craft are important, but the more subtle concerns of communication and interaction between people are at least
 as important. It can be hard to explain these facets easily in a book, but that theme is present throughout.

 Developers are sustained throughout their careers by their engagement with technology and the passion to keep learning. In
 this book, we hope that we’ve been able to highlight some of the topics that will ignite that passion. It’s a sightseeing
 tour, rather than an encyclopedic study, but that’s the intention—to get you started and then leave you to follow up on those
 topics that capture your imagination.

 Over the course of the project’s lifespan, the emphasis moved slightly away from being purely a bridging guide for graduates
 (it still largely achieves this goal) to becoming a guide for all Java developers wondering, “What do I need to know next?
 Where’s my future heading? I want to care again!”

 We take you from the new features of Java 7 through to best practices of modern software development and the future of the
 platform. Along the way, we show you some of the highlights that have had great relevance to us on our own journey as Java
 technologists. Concurrency, performance, bytecode, and classloading are the core techniques that fascinated us the most. We
 also talk about new, non-Java languages on the JVM (a.k.a. polyglot programming) because they will become more important to
 many developers in the years to come.

 Above all, this is a journey that’s forward-looking, and puts you and your interests front and center. We feel that becoming
 a well-grounded Java developer will help to keep you engaged and in control of your own development and will help you learn
 more about the changing world of Java and the ecosystem that surrounds it.

 We hope that the distilled experience that you’re holding in your hands is useful and interesting to you, and that reading
 it is thought-provoking and fun. Writing it certainly was!

Acknowledgments

 There’s a cliché about it taking a village to raise a child, and in the case of this book, the phrase is entirely applicable.
 We could not have done this without our network of friends, partners, colleagues, peers, and even the occasional adversarial
 relationship. We have been exceptionally lucky in that most of our strongest critics can also be counted among our friends.

 It’s difficult to fit the names of the many people who helped us in this endeavor. Please visit http://www.java7developer.com and seek out the blog post announcing the printing of this book and the extra thank-yous. Those names deserve to be acknowledged.

 If we’ve forgotten anyone, or our bookkeeping wasn’t up to scratch, please accept our apologies! In no particular order, we’d
 like to thank the following folks for making this book possible.

The London Java Community

 The London Java Community (LJC) at www.meetup.com/londonjavacommunity is where we met and has become a huge part of our lives. We’d like to acknowledge the following people who helped review
 material: Peter Budo, Nick Harkin, Jodev Devassy, Craig Silk, N. Vanderwildt, Adam J. Markham, “Rozallin,” Daniel Lemon, Frank
 Appiah, P. Franc, “Sebkom” Praveen, Dinuk Weerasinghe, Tim Murray Brown, Luis Murbina, Richard Doherty, Rashul Hussain, John
 Stevenson, Gemma Silvers, Kevin Wright, Amanda Waite, Joel Gluth, Richard Paul, Colin Vipurs, Antony Stubbs, Michael Joyce,
 Mark Hindess, Nuno, Jon Poulton, Adrian Smith, Ioannis Mavroukakis, Chris Reed, Martin Skurla, Sandro Mancuso, and Arul Dhesiaseelan.

 We received some detailed help with non-Java languages from James Cook, Alex Anderson, Leonard Axelsson, Colin Howe, Bruce
 Durling, and Dr. Russel Winder. They deserve special thanks.

 A special thank you also to the LJC JCP committee—Mike Barker, Trisha Gee, Jim Gough, Richard Warburton, Simon Maple, Somay
 Nakhal, and David Illsley.

 Last, but not least, a thank-you to Barry Cranford, the founder of the LJC, who four years ago started with a few brave souls
 and a dream. Today, the LJC has approximately 2500 members and many other tech communities have sprung from it—a true cornerstone
 of the London tech scene.

www.coderanch.com

 We’d like to thank Maneesh Godbole, Ulf Ditmer, David O’Meara, Devaka Cooray, Greg Charles, Deepak Balu, Fred Rosenberger,
 Jesper De Jong, Wouter Oet, David O’Meara, Mark Spritzler, and Roel De Nijs for their detailed comments and valuable feedback.

Manning Publications

 Thanks to Marjan Bace at Manning for taking on two new authors with a crazy idea. We worked with a number of people over the
 course of the book. Many thanks for the hard work by Renae Gregoire, Karen G. Miller, Andy Carroll, Elizabeth Martin, Mary
 Piergies, Dennis Dalinnik, Janet Vail, and no doubt others behind the scenes that we’ve missed; we wouldn’t have made it without
 you!

 Thanks to Candace Gillhoolley for her marketing efforts and Christina Rudloff and Maureen Spencer for their ongoing support.

 Thanks to John Ryan III who did a thorough final technical review of the manuscript during production, shortly before the
 book went to press.

 Thanks to the following reviewers who read the manuscript at different stages of its development and provided valuable feedback
 to our editors and to us: Aziz Rahman, Bert Bates, Chad Davis, Cheryl Jerozal, Christopher Haupt, David Strong, Deepak Vohra,
 Federico Tomassetti, Franco Lombardo, Jeff Schmidt, Jeremy Anderson, John Griffin, Maciej Kreft, Patrick Steger, Paul Benedict,
 Rick Wagner, Robert Wenner, Rodney Bollinger, Santosh Shanbhag, Antti Koivisto, and Stephen Harrison.

Special Thanks

 Thanks to Andy Burgess for the awesome www.java7developer.com website and to Dragos Dogaru, our incredible intern, who tried out the code samples as we went along.

 Thanks to Matt Raible for his kind permission to reuse some material about how to choose your web framework in chapter 13.

 Thanks to Alan Bateman, lead for Java 7’s NIO.2; his feedback was invaluable in making this great new API available for the
 day-to-day Java developer.

 Jeanne Boyarsky kindly served as our most excellent technical proofer and, true to her reputation, nothing fell past her eagle
 eyes. Thanks Jeanne!

 Thanks to Martin Ling for a very detailed explanation of timing hardware, which was the primary motivation for the section
 in chapter 4.

 Thanks to Jason Van Zyl for his kind permission to reuse some material from Sonatype’s Maven: The Complete Reference for chapter 12.

 Thanks to Kirk Pepperdine for his insight and comments on chapter 6, in addition to his friendship and his unique take on our industry.

 Thanks to Dr. Heinz M. Kabutz for his great foreword and amazing hospitality in Crete, as well as the awesome Java Specialists’ Newsletter (www.javaspecialists.eu/).

From Ben Evans

 So many people contributed in different ways that there’s scarcely space to thank them all. Special thanks to these people:

 To Bert Bates and others at Manning, for teaching me the difference between a manuscript and a book.

 To Martijn, of course, for friendship, for keeping me writing during the tough times, and for so much more.

 To my family, especially my grandfathers, John Hinton and John Evans, from whom I inherited so much of myself.

 Lastly, to E-J (who is the reason otters occur so frequently in the book) and to Liz, who were both always understanding about
 “one more evening” being disrupted by writing. My love to you both.

From Martijn Verburg

 To my mum Janneke and my dad Nico, thanks for having the foresight to bring home a Commodore 64 when my sister and I were
 young. Although “Jumpman”[1] dominated computer time for the family, it was the programming manual that came with it that sparked my passion for all things
 tech. Dad also taught me that if you do the little things right, the large things that they make up tend to take care of themselves,
 a philosophy I still apply to my coding and work life today.

 1 A really, really cool platform game; it was hysterical watching Mum move with the joystick :-).

 To my sister Kim, thanks for writing code with me in our preteen and teenage years! I’ll never forget when that first (slow[2]) star field came into being onscreen; magic had truly happened! My brother-in-law Jos is an inspiration to us all (not just
 for being a space scientist, although, how cool is that!). My super-cute niece Gweneth features in this book; see if you can
 spot her!

 2 Let’s just say that performance tuning wasn’t my forte back then.

 Ben is simply one of the most amazing technologists I’ve run across in the industry. His level of technical ability is simply
 scary at times! It’s been a privilege to write this book with him; I’ve certainly learned more about the JVM than I ever thought
 possible. Ben has also been a great leader for the LJC, and an entertaining cospeaker with me at conferences (apparently we
 even have something of a reputation as a comedy act now). It was good to write a book with a friend.

 Finally, to my rocking wife Kerry, from putting up with having date nights canceled for the sake of yet another chapter to
 graciously delivering all of the graphics and screenshots for the book—as always you’ve simply been amazing. Would that everyone
 had the same sort of love and support I have from her.

About this Book

 Welcome to The Well-Grounded Java Developer. This book is aimed at turning you into a Java developer for the modern age, reigniting your passion for both the language
 and platform. Along the way, you’ll discover new Java 7 features, ensure that you’re familiar with essential modern software
 techniques (such as dependency injection, test-driven development, and continuous integration), and start to explore the brave
 new world of non-Java languages on the JVM.

 To begin, let’s consider this description of the Java language provided by James Iry in a wonderful blog post “A Brief, Incomplete,
 and Mostly Wrong History of Programming Languages”:

 1996 – James Gosling invents Java. Java is a relatively verbose, garbage collected, class-based, statically typed, single
 dispatch, object-oriented language with single implementation inheritance and multiple interface inheritance. Sun loudly heralds
 Java’s novelty.

 While the point of Java’s entry is mostly to set up a gag where C# is given the same write-up, this is not bad as descriptions
 of languages go. The full blog post contains a bunch of other gems—you can find it on the web at James’ blog (http://james-iry.blogspot.com/). It’s well worth a read in an idle moment.

 This does present a very real question. Why are we still talking about a language that is now around 16 years old? Surely
 it’s stable and not much new or interesting can be said about it?

 If that were the case, this would be a short book. We are still talking about it, because one of Java’s greatest strengths
 has been its ability to build on a few core design decisions, which have proved to be very successful in the marketplace:

	Automatic management of the runtime environment (for example, garbage collection, just-in-time compilation)

 	Simple syntax and relatively few concepts in the core language

 	Conservative approach to evolving the language

 	Add functionality and complexity in libraries

 	Broad, open ecosystem

These design decisions have kept innovation moving in the Java world—the simple core has kept the barrier to joining the developer
 community low, and the broad ecosystem has made it easy for newcomers to find pre-existing components that fit their needs.

 These traits have kept the Java platform and language strong and vibrant—even if the language has had a historical tendency
 to change slowly. This trend has continued with Java 7. The language changes are evolutionary, not revolutionary. One major
 difference with earlier versions, however, is that Java 7 is the first version explicitly released with an eye to the next
 version. Java 7 contains the groundwork for major language changes in Java 8, due to Oracle’s “Plan B” strategy for releases.

 The other big shift in recent years has been the rise of non-Java languages on the JVM. This has led to cross-fertilization
 between Java and other JVM languages and there’s now a large (and growing) number of projects running completely on the JVM
 that include Java as one of the languages that they use.

 The emergence of the polyglot project, particularly involving languages such as Groovy, Scala, and Clojure, is a major factor
 in the current Java ecosystem, and is the topic of the final part of the book.

How to use this book

 The material in this book is broadly designed to be read end-to-end, but we understand that some readers may want to dive
 straight into particular topics and have partly catered to that style of reading.

 We strongly believe in hands-on learning and so we recommend that readers try out the sample code that comes with the book
 as they read through the text. The rest of this section deals with how you can approach the book if you are more of a standalone-chapter
 style of reader.

 The Well-Grounded Java Developer is split into four parts:

	Developing with Java 7

 	Vital techniques

 	Polyglot programming on the JVM

 	Crafting the polyglot project

Part 1 contains two chapters on Java 7. The book uses Java 7 syntax and semantics throughout, so chapter 1, “Introducing Java 7,” should be considered required reading. Chapter 2, “New I/O,” will be of specific interest to developers who work with files, filesystems, and network I/O.

 Part 2 contains four chapters (3-6) covering the topics of dependency injection, modern concurrency, classfiles/byte code, and performance tuning.

 Part 3 (chapters 7-10) covers polyglot programming on the JVM. Chapter 7 should be considered required reading as it sets the stage by discussing the categorization and use of alternative languages on the JVM. The following
 three language chapters move from a Java-like language (Groovy), through a hybrid OO-functional language (Scala), to a fully
 functional one (Clojure). Those languages can be read standalone although developers new to functional programming will probably
 want to read them in order.

 Part 4 (the final four chapters) introduces new material as well as builds on topics that have been introduced earlier. Although
 the chapters can be read stand-alone, in some sections we assume that you’ve read the earlier chapters and/or already have
 familiarity with certain topics.

 In short, chapter 1 is required reading for the entire book. Chapter 7 can be considered as required reading for part 3. The other chapters can be read in sequence or standalone, but there will be sections in later chapters that assume you’ve
 read earlier material.

Who should read this book

 This book is firmly aimed at Java developers who wants to modernize their knowledge base in both the language and the platform.
 If you want to get up to speed with what Java 7 has to offer, this is the book for you.

 If you are looking to brush up on your techniques and understanding of topics such as dependency injection, concurrency, and
 test-driven development, this book will give you a good grounding in those topics.

 This is also a book for those developers who have acknowledged the polyglot programming trend and want to get started down
 that path. In particular, if you want to learn about functional programming, then our language chapters (especially Scala
 and Clojure) will be of great benefit to you.

Roadmap

 In part 1 there are just two chapters. Chapter 1 introduces Java 7 with its wealth of small but productivity-enhancing features known collectively as Project Coin. Chapter 2 takes you through the new I/O APIs including an overhaul of the filesystem support, new asynchronous I/O capabilities, and
 more.

 Part 2 contains four chapters on vital techniques. Chapter 3 takes you through a journey of how the industry arrived at dependency injection as a technique and goes on to show a standardized
 solution in Java with Guice 3. Chapter 4 covers how to deal with modern concurrency properly in Java, a topic that has once more come to the fore as the hardware
 industry firmly moves to multicore processors. Chapter 5 takes you into the classfiles and bytecode of the JVM, demystifying its secrets and enabling you to understand why Java works
 the way it does. Chapter 6 takes you through the initial steps in performance tuning your Java applications and understanding areas such as the garbage
 collector.

 Part 3 is about polyglot programming on the JVM and consists of four chapters. Chapter 7 starts the polyglot story and gives you the context of why it’s important and when it’s appropriate to use another language.
 Chapter 8 is an introduction to Groovy, Java’s dynamic friend. Groovy highlights how a syntactically similar yet dynamic language can
 provide great productivity boosts for a Java developer. Chapter 9 brings you into the hybrid functional/OO world of Scala. Scala is a language of great power and conciseness. Chapter 10 is for the Lisp fans out there. Clojure is widely lauded as “Lisp done right” and showcases the full power of a functional
 language on the JVM.

 Part 4 takes learning from the first three parts and discusses polyglot techniques in several software development areas. Chapter 11 visits test-driven development and provides a methodology around dealing with mock objects as well as some practical tips.
 Chapter 12 introduces two widely used tools for your build pipeline (Maven 3) and continuous integration (Jenkins/Hudson) needs. Chapter 13 covers the topic of rapid web development and why Java has been traditionally weak in this area, and offers some new technologies
 to prototype with (Grails and Compojure). Chapter 14 wraps up and takes a look to the future, including the functional support arriving in Java 8.

Code conventions and downloads

 The initial download and installation you’ll need is Java 7. Simply follow the download and installation instructions for
 the binary you need for the OS you use. You can find binaries and instructions online at Oracle’s website for Java SE: www.oracle.com/technetwork/java/javase/downloads/index.html.

 For everything else, head to appendix A where the instructions for the installation and running of the source code can be found.

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out the key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code. We have tried to format
 the code so that it fits within the available page space in the book by adding line breaks and using indentation carefully.
 Sometimes, however, very long lines include line continuation markers.

 Source code for all the working examples is available from www.manning.com/ TheWell-GroundedJavaDeveloper. Code examples appear throughout the book. Longer listings appear under clear listing headers;
 shorter listings appear between lines of text.

Software requirements

 Java 7 runs on just about every modern platform there is today. As long as you are running on one of the following operating
 systems you’ll be able to run the source examples:

	MS Windows XP and above

 	A recent version of *nix

 	Mac OS X 10.6 and above

Most of you will want to try out the code samples in an IDE. Java 7 and the latest versions of Groovy, Scala, and Clojure
 are fairly well supported by the following versions of the main IDEs:

	Eclipse 3.7.1 and above

 	NetBeans 7.0.1 and above

 	IntelliJ 10.5.2 and above

We used NetBeans 7.1 and Eclipse 3.7.1 to create and run the examples.

Author Online

 Purchase of The Well-Grounded Java Developer includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/ TheWell-GroundedJavaDeveloper. This page provides information on how to get on the forum once you’re registered, what kind
 of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 BEN EVANS is an organizer for the LJC (London JUG) and a member of the Java Community Process Executive Committee, helping define standards
 for the Java ecosystem. He has lived through many years of “Interesting Times” in the tech industry and is CEO of a Java-based
 technology firm working mainly in the financial industry. Ben is a frequent public speaker on topics such as the Java platform,
 performance, and concurrency.

 MARTIJN VERBURG (CTO, jClarity) has over 10 years of experience as a technology professional and OSS mentor in environments from start-ups
 to large enterprises. He is the coleader of the London Java User Group (LJC), and leads the global effort of JUG members who
 contribute to JSRs (Adopt a JSR program) and the OpenJDK (Adopt OpenJDK program).

 As a recognized expert on technical team optimization, his talks and presentations are in demand at major conferences (JavaOne,
 Devoxx, OSCON, FOSDEM, and so on) where he’s known for challenging the industry status quo as the “Diabolical Developer.”

About the Cover Illustration

 The figure on the cover of The Well-Grounded Java Developer is captioned “A Posy Seller.” The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
 compendium of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich
 variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years
 ago. Isolated from each other, people spoke different dialects and languages. On the streets or in the countryside, it was
 easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Developing with Java 7

 These first two chapters are about ramping up with Java 7. You’ll ease in with an introductory chapter that covers some small
 syntax changes that will increase your productivity—all of which punch above their weight. This will set the stage for the
 larger topic in this part—a chapter on new I/O in Java.

 The well-grounded Java developer needs to be aware of the latest language features available. Java 7 comes with several new
 features that will make your life as a working developer much easier. But it isn’t enough simply to understand the syntax
 of these new changes. In order to write efficient and safe code quickly, you need an in-depth understanding of how and why the new features were implemented. The Java 7 language changes can be
 roughly split into two sets: Project Coin and NIO.2.

 The first set is known as Project Coin, a group of small language-level changes that were designed to increase developer productivity
 without heavily impacting the underlying platform. These changes include:

	A try-with-resources construct (which automatically closes off resources)

 	Strings in switch

 	Enhanced numeric literals

 	Multi-catch (declare multiple exceptions in a catch block)

 	Diamond syntax (requiring less boilerplate when dealing with generics)

Each of these changes may seem small, but exploring the semantics behind the simple syntax changes also gives you extra insight
 into the split between Java the language and Java the platform.

 The second set of changes is the new I/O (NIO.2) API, which completely overhauls Java’s filesystem support as well as providing
 new powerful asynchronous capabilities. These changes include:

	A new Path construct in order to reference files and file-like entities

 	A Files utility class that simplifies creating, copying, moving, and deleting files

 	Built-in directory tree navigation

 	Future and callback-based asynchronous I/O to deal with large I/O in the background

By the end of part 1, you’ll be thinking and writing naturally in Java 7. This new knowledge is reinforced throughout the book, as Java 7 features
 are used in the later chapters as well.

Chapter 1. Introducing Java 7

 This chapter covers

	Java as a platform and a language

 	Small yet powerful syntax changes

 	The try-with-resources statement

 	Exception-handling enhancements

Welcome to Java 7. Things around here are a little different than you may be used to. This is a really good thing—we have
 a lot to explore, now that the dust has settled and Java 7 has been unleashed. By the time you finish this book, you’ll have
 taken your first steps into a larger world—a world of new features, of software craftsmanship, and of other languages on the
 Java Virtual Machine (JVM).

 We’re going to warm up with a gentle introduction to Java 7, but one that still acquaints you with powerful features. We’ll
 start by explaining a distinction that is sometimes misunderstood—the duality between the language and the platform.

 After that, we’ll introduce Project Coin—a collection of small yet effective new features in Java 7. We’ll show you what’s
 involved in getting a change to the Java platform accepted, incorporated, and released. With that process covered, we’ll move
 on to the six main new features that were introduced as part of Project Coin.

 You’ll learn new syntax, such as an improved way of handling exceptions (multi-catch) as well as try-with-resources, which
 helps you avoid bugs in code that deals with files or other resources. By the end of this chapter, you’ll be writing Java in a new way and you’ll be fully primed
 and ready for the big topics that lie ahead.

 Let’s get under way by discussing the language versus platform duality that lies at the heart of modern Java. This is a critically
 important point that we’ll come back to again throughout the book, so it’s an essential one to grasp.

1.1. The language and the platform

 The critical concept we’re kicking off with is the distinction between the Java language and the Java platform. Surprisingly,
 different authors sometimes give slightly different definitions of what constitutes the language and platform. This can lead
 to a lack of clarity and some confusion about the differences between the two and about which provides the programming features
 that application code uses.

 Let’s make that distinction clear right now, as it cuts to the heart of a lot of the topics in this book. Here are our definitions:

	
The Java language— The Java language is the statically typed, object-oriented language that we lightly lampooned in the “About This Book” section. Hopefully, it’s already very familiar to you. One very obvious point about the Java language is that it’s human-readable
 (or it should be!).

 	
The Java platform— The platform is the software that provides a runtime environment. It’s the JVM that links and executes your code as provided
 to it in the form of (not human-readable) class files. It doesn’t directly interpret Java language source files, but instead
 requires them to be converted to class files first.

One of the big reasons for the success of Java as a software system is that it’s a standard. This means that it has specifications
 that describe how it’s supposed to work. Standardization allows different vendors and project groups to produce implementations
 that should all, in theory, work the same way. The specs don’t make guarantees about how well different implementations will
 perform when handling the same task, but they can provide assurances about the correctness of the results.

 There are a number of separate specs that govern the Java system—the most important are the Java Language Specification (JLS)
 and the JVM Specification (VMSpec). In Java 7, this separation is taken very seriously; in fact, the VMSpec no longer makes
 any reference whatsoever to the JLS. If you’re thinking that this might be an indication of how seriously non-Java source
 languages are taken in Java 7, then well done, and stay tuned. We’ll talk a lot more about the differences between these two
 specs later.

 One obvious question, when you’re faced with the described duality, is, “What’s the link between them?” If they’re now so
 separate in Java 7, how do they come together to make the familiar Java system?

 The link between the language and platform is the shared definition of the class file format (the .class files). A serious
 study of the class file definition will reward you, and it’s one of the ways a good Java programmer can start to become a
 great one. In figure 1.1 you can see the full process by which Java code is produced and used.

 Figure 1.1. Java source code is transformed into .class files, then manipulated at load time before being JIT-compiled.

 [image:]

 As you can see in the figure, Java code starts life as human-readable Java source, and it’s then compiled by javac into a .class file. This is then loaded into a JVM. Note that it’s very common for classes to be manipulated and altered
 during the loading process. Many of the most popular frameworks (especially those with “Enterprise” in their names) will transform
 classes as they’re loaded.

	

 Is Java a compiled or interpreted language?
 The standard picture of Java is of a language that’s compiled into .class files before being run on a JVM. If pressed, many
 developers can also explain that bytecode starts off by being interpreted by the JVM but will undergo just-in-time (JIT) compilation
 at some later point. Here, however, many people’s understanding breaks down in a somewhat hazy conception of bytecode as basically
 being machine code for an imaginary or simplified CPU.

 In fact, JVM bytecode is more like a halfway house between human-readable source and machine code. In the technical terms
 of compiler theory, bytecode is really a form of intermediate language (IL) rather than a true machine code. This means that
 the process of turning Java source into bytecode isn’t really compilation in the sense that a C or C++ programmer would understand
 it, and javac isn’t a compiler in the same sense as gcc is—it’s really a class file generator for Java source. The real compiler
 in the Java ecosystem is the JIT compiler, as you can see in figure 1.1.

 Some people describe the Java system as “dynamically compiled.” This emphasizes that the compilation that matters is the JIT
 compilation at runtime, not the creation of the class file during the build process.

 So, the real answer to, “Is Java compiled or interpreted?” is “Both.”

	

With the distinction between language and platform hopefully now clearer, let’s move on to talk about some of the visible
 changes in language syntax that have arrived with Java 7, starting with smaller syntax changes brought in with Project Coin.

1.2. Small is beautiful—Project Coin

 Project Coin is an open source project that has been running as part of the Java 7 (and 8) effort since January 2009. In this
 section, we’re going to explain how features get chosen and how the language evolution process works by using the small changes of Project Coin as a case study.

	

 Naming Project Coin
 The aim of Project Coin was to come up with small changes to the Java language. The name is a piece of wordplay—small change
 comes as coins, and “to coin a phrase” means to add a new expression to our language.

 These types of word games, whimsy, and the inevitable terrible puns are to be found everywhere in technical culture. You may
 just as well get used to them.

	

We think it’s important to explain the “why” of language change as well as the “what.” During the development of Java 7, there
 was a lot of interest around new language features, but the community didn’t always understand how much work is required to
 get changes fully engineered and ready for prime time. We hope to shed a bit of light on this area, and hopefully dispel a
 few myths. But if you’re not very interested in how Java evolves, feel free to skip ahead to section 1.3 and jump right into the language changes.

 There is an effort curve involved in changing the Java language—some possible implementations require less engineering effort
 than others. In figure 1.2 we’ve tried to represent the different routes and show the relative effort required for each, in a complexity scale of increasing
 effort.

 Figure 1.2. The relative effort involved in implementing new functionality in different ways

 [image:]

 In general, it’s better to take the route that requires the least effort. This means that if it’s possible to implement a
 new feature as a library, you generally should. But not all features are easy, or even possible, to implement in a library
 or an IDE capability. Some features have to be implemented deeper inside the platform.

 Here’s how some (mostly Java 7) features fit into our complexity scale for new language features:

	
Syntactic sugar— Underscores in numbers (Java 7)

 	
Small new language feature— try-with-resources (Java 7)

 	
Class file format change— Annotations (Java 5)

 	
New JVM feature—invokedynamic (Java 7)

	

 Syntactic sugar
 A phrase that’s sometimes used to describe a language feature is “syntactic sugar.” This means that the syntax form is redundant—it
 already exists in the language—but the syntactic sugar form is provided because it’s easier for humans to work with.

 As a rule of thumb, a feature referred to as syntactic sugar is removed from the compiler’s representation of the program
 early on in the compilation process—it’s said to have been “desugared” into the basic representation of the same feature.

 This makes syntactic sugar changes to a language easier to implement because they usually involve a relatively small amount
 of work, and only involve changes to the compiler (javac in the case of Java).

	

Project Coin (and the rest of this chapter) is all about changes that are somewhere in the range from syntactic sugar to small
 new language features.

 The initial period for suggestions for Project Coin changes ran on the coin-dev mailing list from February to March 2009 and
 saw almost 70 proposals submitted, representing a huge range of possible enhancements. The suggestions even included a joke
 proposal for adding multiline strings in the style of lolcat captions (superimposed captions on pictures of cats that are
 either funny or irritating, depending on your viewpoint—http://icanhascheezburger.com/).

 The Project Coin proposals were judged under a fairly simple set of rules. Contributors needed to do three things:

	Submit a detailed proposal form describing their change (which should fundamentally be a Java language change, rather than
 a virtual machine change)

 	Discuss their proposal openly on a mailing list and field constructive criticism from the other participants

 	Be prepared to produce a prototype set of patches that could implement their change

Project Coin provides a good example of how the language and platform may evolve in the future, with changes discussed openly,
 early prototyping of features, and calls for public participation.

 One question that might well be asked at this point is, “What constitutes a small change to the spec?” One of the changes
 we’ll discuss in a minute adds a single word—"String"—to section 14.11 of the JLS. You can’t really get much smaller than that as a change, and yet even this change touches several
 other aspects of the spec.

	

 Java 7 is the first version developed in an open source manner
 Java was not always an open source language, but following an announcement at the JavaOne conference in 2006, the source code
 for Java itself (minus a few bits that Sun didn’t own the source for) was released under the GPLv2 license. This was around
 the time of the release of Java 6, so Java 7 is the first version of Java to be developed under an open source software (OSS)
 license. The primary focus for open source development of the Java platform is the OpenJDK project.

 Mailing lists such as coin-dev, lambda-dev, and mlvm-dev have been major forums for discussing possible future features, allowing
 developers from the wider community to participate in the process of producing Java 7. In fact, we help lead the “Adopt OpenJDK”
 program to guide developers new to the OpenJDK, helping improve Java itself! See http://java.net/projects/jugs/pages/AdoptOpenJDK if you’d like to join us.

	

Any alteration produces consequences, and these have to be chased through the entire design of the language.

 The full set of actions that that must be performed (or at least investigated) for any change is as follows:

	Update the JLS

 	Implement a prototype in the source compiler

 	Add library support essential for the change

 	Write tests and examples

 	Update documentation

In addition, if the change touches the VM or platform aspects:

	Update the VMSpec

 	Implement the VM changes

 	Add support in the class file and VM tools

 	Consider the impact on reflection

 	Consider the impact on serialization

 	Think about any impacts on native code components, such as Java Native Interface (JNI).

This isn’t a small amount of work, and that’s after the impact of the change across the whole language spec has been considered!

 An area of particular hairiness, when it comes to making changes, is the type system. That isn’t because Java’s type system
 is bad. Instead, languages with rich static type systems are likely to have a lot of possible interaction points between different
 bits of those type systems. Making changes to them is prone to creating unexpected surprises.

 Project Coin took the very sensible route of suggesting to contributors that they mostly stay away from the type system when
 proposing changes. Given the amount of work that has gone into even the smallest of these small changes, this has proved a
 pragmatic approach.

 With that bit of the background on Project Coin covered, it’s time to start looking at the features chosen for inclusion.

1.3. The changes in Project Coin

 Project Coin brought six main new features to Java 7. These are Strings in switch, new numeric literal forms, improved exception handling, try-with-resources, diamond syntax, and fixes for varargs warnings.

 We’re going to talk in some detail about these changes from Project Coin—we’ll discuss the syntax and the meaning of the new
 features, and also try to explain the motivations behind the features whenever possible. We won’t resort to the full formal
 details of the proposals, but all that material is available from the archives of the coin-dev mailing list, so if you’re
 a budding language designer, you can read the full proposals and discussion there.

 Without further ado, let’s kick off with our very first new Java 7 feature—String values in a switch statement.

 1.3.1. Strings in switch

 The Java switch statement allows you to write an efficient multiple-branch statement without lots and lots of ugly nested ifs—like this:

 public void printDay(int dayOfWeek) {
 switch (dayOfWeek) {
 case 0: System.out.println("Sunday"); break;
 case 1: System.out.println("Monday"); break;
 case 2: System.out.println("Tuesday"); break;
 case 3: System.out.println("Wednesday"); break;
 case 4: System.out.println("Thursday"); break;
 case 5: System.out.println("Friday"); break;
 case 6: System.out.println("Saturday"); break;
 default: System.err.println("Error!"); break;
 }
}

 In Java 6 and before, the values for the cases could only be constants of type byte, char, short, int (or, technically, their reference-type equivalents Byte, Character, Short, Integer) or enum constants. With Java 7, the spec has been extended to allow for the String type to be used as well. They’re constants after all.

 public void printDay(String dayOfWeek) {
 switch (dayOfWeek) {
 case "Sunday": System.out.println("Dimanche"); break;
 case "Monday": System.out.println("Lundi"); break;
 case "Tuesday": System.out.println("Mardi"); break;
 case "Wednesday": System.out.println("Mercredi"); break;
 case "Thursday": System.out.println("Jeudi"); break;
 case "Friday": System.out.println("Vendredi"); break;
 case "Saturday": System.out.println("Samedi"); break;
 default: System.out.println("Error: '"+ dayOfWeek
 [image:] +"' is not a day of the week"); break;
 }
}

 In all other respects, the switch statement remains the same. Like many Project Coin enhancements, this is really a very simple change to make life in Java
 7 a little bit easier.

 1.3.2. Enhanced syntax for numeric literals

 There were several separate proposals around new syntax for the integral types. The following aspects were eventually chosen:

	Numeric constants (that is, one of the integer primitive types) may now be expressed as binary literals.

 	Underscores may be used in integer constants to improve readability

Neither of these is, at first sight, particularly earth-shattering, but both have been minor annoyances to Java programmers.

 These are both of special interest to the low-level programmer—the sort of person who works with raw network protocols, encryption,
 or other pursuits, where a certain amount of bit twiddling is involved. Let’s begin with a look at binary literals.

Binary literals

 Before Java 7, if you wanted to manipulate a binary value, you’d have had to either engage in awkward (and error-prone) base
 conversion or utilize parseX methods. For example, if you wanted to ensure that an int x represented the bit pattern for the decimal value 102 correctly, you’d write an expression like:

 int x = Integer.parseInt("1100110", 2);

 This is a lot of code just to ensure that x ends up with the correct bit pattern. There’s worse to come though. Despite looking fine, there are a number of problems
 with this approach:

	It’s really verbose.

 	There is a performance hit for that method call.

 	You’d have to know about the two-argument form of parseInt().

 	You need to remember the details of how parseInt() behaves when it has two arguments.

 	It makes life hard for the JIT compiler.

 	It represents a compile-time constant as a runtime expression, which means the constant can’t be used as a value in a switch statement.

 	It will give you a RuntimeException (but no compile-time exception) if you have a typo in the binary value.

Fortunately, with the advent of Java 7, we can now write this:

 int x = 0b1100110;

 No one’s saying that this is doing anything that couldn’t be done before, but it has none of the problems we listed.

 If you’ve got a reason to work with binary, you’ll be glad to have this small feature. For example, when doing low-level handling
 of bytes, you can now have bit patterns as binary constants in switch statements.

 Another small, yet useful, new feature for representing groups of bits or other long numeric representations is underscores
 in numbers.

Underscores in numbers

 You’ve probably noticed that the human mind is radically different from a computer’s CPU. One specific example of this is
 in the way that our minds handle numbers. Humans aren’t, in general, very comfortable with long strings of numbers. That’s
 one reason we invented hexadecimal—because our minds find it easier to deal with shorter strings that contain more information,
 rather than long strings containing not much information per character.

 That is, we find 1c372ba3 easier to deal with than 00011100001101110010101110100011, even though a CPU would only ever see
 the second form. One way that we humans deal with long strings of numbers is to break them up. A U.S. phone number is usually
 represented like this: 404-555-0122.

	

Note

 If you’re like the (European) authors and have ever wondered why US phone numbers in films or books always start with 555,
 it’s because the numbers 555-01xx are reserved for fictional use—precisely to prevent real people getting calls from people
 who take their Hollywood movies a little too seriously.

	

Other long strings of numbers have separators too:

	$100,000,000 (large sums of money)

 	08-92-96 (UK banking sort codes)

Unfortunately, both the comma (,) and hyphen (-) have too many possible meanings within the realm of handling numbers in programming, so we can’t use either as a separator.
 Instead, the Project Coin proposal borrowed an idea from Ruby, and introduced the underscore (_) as a separator. Note that this is just a bit of easy-on-the-eyes compile-time syntax. The compiler strips out those underscores
 and stores the usual digits.

 This means that you can write 100_000_000 and hopefully not confuse it with 10_000_000, whereas 100000000 is easily confused
 with 10000000. Let’s look at a couple of examples, at least one of which should be familiar:

 long anotherLong = 2_147_483_648L;
int bitPattern = 0b0001_1100__0011_0111__0010_1011__1010_0011;

 Notice how much easier it is to read the value being assigned to anotherLong.

	

Warning

 In Java, it’s still legal to use the lowercase l character to denote a long. For example 1010100l. Make sure you always use an uppercase L so that maintainers don’t get confused between the number 1 and the letter l: 1010100L is much clearer!

	

By now, you should be convinced of the benefit of these tweaks to the handling of integers, so let’s move on to looking at
 Java 7’s improved exception handling.

 1.3.3. Improved exception handling

 There are two parts to this improvement—multicatch and final rethrow. To see why they’re a help, consider the following Java
 6 code, which tries to find, open, and parse a config file and handle a number of different possible exceptions.

 Listing 1.1. Handling several different exceptions in Java 6

 public Configuration getConfig(String fileName) {
 Configuration cfg = null;
 try {
 String fileText = getFile(fileName);
 cfg = verifyConfig(parseConfig(fileText));
 } catch (FileNotFoundException fnfx) {
 System.err.println("Config file '" + fileName + "' is missing");
 } catch (IOException e) {
 System.err.println("Error while processing file '" + fileName + "'");
 } catch (ConfigurationException e) {
 System.err.println("Config file '" + fileName + "' is not consistent");
 } catch (ParseException e) {
 System.err.println("Config file '" + fileName + "' is malformed");
 }
 return cfg;
}

 This method can encounter a number of different exceptional conditions:

	The config file may not exist.

 	The config file may disappear while you’re trying to read from it.

 	The config file may be malformed syntactically.

 	The config file may have invalid information in it.

These conditions fit into two distinct functional groups. Either the file is missing or bad in some way, or the file is present
 and correct but couldn’t be retrieved properly (perhaps because of a hardware failure or network outage).

 It would be nice to compress this down to just these two cases, and handle all the “file is missing or bad in some way” exceptions
 in one catch clause. Java 7 allows you to do this.

 Listing 1.2. Handling several different exceptions in Java 7

 public Configuration getConfig(String fileName) {
 Configuration cfg = null;
 try {
 String fileText = getFile(fileName);
 cfg = verifyConfig(parseConfig(fileText));
 } catch (FileNotFoundException|ParseException|ConfigurationException e) {
 System.err.println("Config file '" + fileName +
 "' is missing or malformed");
 } catch (IOException iox) {
 System.err.println("Error while processing file '" + fileName + "'");
 }
 return cfg;
}

 The exception e has a type that isn’t precisely knowable at compile time. This means that it has to be handled in the catch block as the common supertype of the exceptions that it could be (which will often be Exception or Throwable, in practice).

 An additional bit of new syntax helps with rethrowing exceptions. In many cases, developers may want to manipulate a thrown
 exception before rethrowing it. The problem is that in previous versions of Java you’ll often see code like this:

 try {
 doSomethingWhichMightThrowIOException();
 doSomethingElseWhichMightThrowSQLException();
} catch (Exception e) {
 ...
 throw e;
}

 This forces you to declare the exception signature of this code as Exception—the real dynamic type of the exception has been swallowed.

 Nevertheless, it’s relatively easy to see that the exception can only be an IOException or a SQLException, and if you can see it, so can the compiler. This snippet changes a single word change to use the Java 7 syntax:

 try {
 doSomethingWhichMightThrowIOException();
 doSomethingElseWhichMightThrowSQLException();
} catch (final Exception e) {
 ...
 throw e;
}

 The appearance of the final keyword indicates that the type that’s actually thrown is the runtime type of the exception that was encountered—in this
 example, that would be either IOException or SQLException. This is referred to as final rethrow, and it can protect against throwing an overly general type, which then has to be caught by a very general catch in a higher scope.

