

 inside front cover

 [image:]

 The structure of the Azure resource manager and the available Azure native tools to call into it

 [image:]

 Azure Infrastructure as Code

 With ARM templates and Bicep

 Henry Been, Eduard Keilholz, and Erwin Staal

 Forewords by Scott Guthrie and Alex Frankel

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical development editor:

 	
 Alain Couniot

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Aleksandar Nikolić

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299421

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Introduction

 1 Infrastructure as Code

 1.1 Working with infrastructure

 DevOps

 Preventing configuration drift

 1.2 The benefits of Infrastructure as Code

 IaC allows for automation

 IaC allows for a declarative approach

 IaC provides a human-readable format

 1.3 The Azure Resource Manager

 Control plane and data plane

 ARM templates

 The Bicep language

 Azure Service Management (ASM is not ARM)

 1.4 Other tools

 AWS CloudFormation

 Google Cloud Deployment Manager

 Terraform

 Pulumi

 Choosing between cloud-specific and multi-cloud solutions

 2 Writing your first ARM template

 2.1 Working with JSON files

 Installing the ARM templates extension in VS Code

 2.2 Writing ARM templates in VS Code

 Adding a resource

 Leveraging IntelliSense in VS Code

 2.3 Deploying an ARM template

 2.4 Monitoring template deployments

 2.5 Finding example templates

 2.6 Visualizing templates

 Part 2. Taking it up a notch

 3 Writing ARM templates

 3.1 Resources

 Child resources

 3.2 Parameters

 Parameter types

 Limiting and describing parameter values

 Specifying parameter values

 3.3 Variables

 3.4 Outputs

 3.5 Functions

 Expressions

 Built-in functions

 User-defined functions

 4 Deploying ARM templates

 4.1 An overview of the deployment process

 4.2 Submitting a deployment

 Choosing a deployment scope

 Submitting a template using different tools

 4.3 The execution phase

 Role-based access control

 Azure Policy

 Resource locks

 Resource provisioning

 4.4 The clean-up phase

 Incremental deployment mode

 Complete deployment mode

 Combining deployment modes

 4.5 Template validation and what-if deployments

 Validating an ARM template

 What-if deployments

 4.6 Troubleshooting template deployments

 5 Writing advanced ARM templates

 5.1 Deploying to multiple scopes using nested templates

 Nested templates on a management group

 Evaluation scope

 Outputs

 5.2 How to structure solutions

 Small to medium solutions

 Large solutions

 5.3 Modularizing templates with linked templates

 Using a URI

 Using a relative path

 5.4 Deploying resources in order

 Explicit deployment ordering

 Implicit deployment ordering

 5.5 Conditionally deploying resources

 Applying conditions to output

 5.6 Using loops to create multiple resources

 Using copy on variables

 Using copy on properties

 Using copy on output

 Waiting for a loop to finish, using dependsOn

 5.7 Deployment scripts

 5.8 Reverse engineering a template

 Exporting templates

 Using Resource Explorer

 Using the JSON view

 For a new resource

 6 Simplifying ARM templates using the Bicep DSL

 6.1 Bicep: A transpiler

 Deploying

 Transpiling

 Decompiling

 6.2 Bicep syntax differences

 Parameters

 Variables

 Outputs

 Conditions

 Loops

 Targeting different scopes

 Known limitations

 6.3 Other improvements with Bicep

 Referencing resources, parameters, and variables

 Using references in variables and outputs

 Referencing existing resources

 Dependency management

 String interpolation

 No mandatory grouping

 Comments

 Using the contents of other files

 6.4 Modules

 Deploying to another scope

 Debugging Bicep deployments

 6.5 A larger Bicep example

 AppConfiguration.bicep

 ApplicationInsights.bicep

 Configuration.bicep

 7 Complex deployments using Azure DevOps

 7.1 Meet Toma Toe Pizzas

 7.2 Crafting the Bicep files

 Describing the App Service plan

 Describing the App Service

 Finalizing the template

 7.3 Storing templates in source control

 7.4 Automated build and release pipelines

 Using triggers

 Creating tasks

 Grouping tasks in a job

 Creating service connections

 Configuring Azure DevOps to run your pipeline

 7.5 Adding logical phases to your pipeline

 Identifying the logical phases

 Accessing artifacts from different jobs

 Transpiling Bicep in a pipeline stage

 Deploying a template from a pipeline artifact

 7.6 Adding the Traffic Manager

 Deploying the Traffic Manager

 7.7 Creating a real-world example pipeline

 Completing the pipeline

 8 Complex deployments using GitHub Actions

 8.1 Forking a repository

 8.2 Getting to know GitHub Actions

 Workflow events

 Runners

 Jobs

 Steps

 Actions

 8.3 Building a GitHub Actions workflow

 Adding a job to a GitHub Actions workflow

 8.4 The deployment phase in GitHub Actions

 Connecting to Azure from your GitHub workflow

 Generating a service principal using the Azure CLI

 8.5 Deploying ARM templates from GitHub Actions

 Completing the deployment

 9 Testing ARM templates

 9.1 Static analysis and validation

 Visual Studio Code extensions

 Validation using PowerShell or Azure CLI

 ARM template test toolkit

 Custom tests using Pester

 9.2 Unit tests

 9.3 Integration tests

 9.4 End-to-end tests

 9.5 Pester in CI/CD

 Part 3. Advanced topics

 10 Template specs and Bicep registries: Building a repository of templates

 10.1 Use case: A repository of compliant resources

 10.2 Creating a template spec

 Listing template specs

 Template spec versions

 Creating a template spec from multiple ARM templates

 Deploying a template spec using IaC is impractical

 10.3 Deploying a template spec

 Deploying template specs from an ARM or Bicep template

 Upgrading to a newer version of the template spec

 10.4 An alternative: A Bicep registry

 10.5 Sharing templates using a package manager

 Publishing an ARM template as a package

 Deploying an ARM template that is in a package

 Yet another approach

 10.6 Design considerations

 Choosing an approach

 Pros and cons of template specs

 Pros and cons of using a Bicep registry

 Pros and cons of using a package manager

 11 Using deployment stacks for grouping resources

 11.1 Grouping resources by their lifetime

 Complete deployment mode is not good enough

 Deployment stacks to the rescue!

 Creating a deployment stack

 Updating a deployment stack

 Removing a deployment stack

 11.2 Provisioning resources for others, but disallowing updates

 Azure Blueprints: A first solution

 11.3 The future of deployment stacks

 12 Governing your subscriptions using Azure Policy

 12.1 Azure Policy

 Policy definitions

 Initiatives or policy sets

 Assignment

 12.2 Examining the built-in policies and initiatives

 12.3 Using custom policies

 Creating a custom policy

 Testing a policy

 12.4 Using the different effects

 Append effect

 Audit effect

 AuditIfNotExists effect

 DeployIfNotExists effect

 Disabled effect

 Modify effect

 12.5 Creating your own initiative

 12.6 Assigning a policy or initiative

 12.7 Reviewing compliance status

 Remediating noncompliant resources

 Creating an exemption

 13 Case studies

 13.1 Building an Azure foundation

 The management group layout

 Assigning a policy initiative

 Creating a management subscription

 Creating workload subscriptions

 13.2 Subscription level deployments

 Configuring budgets

 Configuring Microsoft Defender for Cloud

 Creating resource groups and providing access

 13.3 Creating a highly-available microservice architecture

 Resources organized in resource groups

 Networking with Bicep

 Using the existing keyword to set access to a Key Vault

 index

 front matter

foreword

 As an engineer, I know how important it can be to find a solid introduction to a new topic. Blogs, documentation, and Q&A platforms can be a great source of information, but they almost always assume basic knowledge of a topic. A good book is unique in the sense that it can provide you with that basic knowledge.

 A good book is designed to take you on a well-thought-out journey along one subject after another to help you build a fundamental understanding of the topic. Once you have completed that journey, other sources can augment your knowledge and help you overcome specific problems. Without that fundamental understanding, other sources can help you overcome problems, but you might have difficulty connecting these smaller nuggets of knowledge to what you already know.

 This book, Azure Infrastructure as Code, is such a book that takes you on a learning journey. First, you will learn the basics of IaC and how the Azure Resource Manager works. From there, it takes you on a journey past ARM template syntax, to an understanding of the deployment process, up to Azure Bicep or BicepLang, the latest IaC language for Azure.

 Once you have the syntax down and are able to work with Bicep, the remainder of the book takes you past many other capabilities of the Azure Resource Manager that will help you to scale your use of IaC to multiple teams or even complete organizations.

 I hope you will join Henry, Erwin, and Eduard on a journey to learn all about Azure Infrastructure as Code!

 —Scott Guthrie, Executive Vice President at Microsoft

 Henry, Erwin, and Eduard are all deeply involved in the Azure, ARM template, Bicep, and DevOps communities. As a result, all three are experts in this field, and it is no surprise that this book is an immensely valuable resource when it comes to learning about Infrastructure as Code (IaC) on Azure.

 What I particularly like about this book is its focus on the fundamentals—first focusing on Infrastructure as Code as a general concept, then spending lots of time on ARM templates, all before teaching Bicep itself. This foundation is something we always try to teach Azure users, as it allows you to learn not just what Azure is today, but how to keep up with Azure as it evolves.

 Finally, the last third of the book covers how you use IaC in practice by teaching you how to integrate your code with CI/CD tooling, Azure Policy, testing strategies, and deployment stacks. This next level of depth is what supercharges your already valuable infra code.

 This book is exactly what you need to go from 0 to 100 with Azure Infra-as-code. Enjoy!

 —Alex Frankel, Program Manager

 on the Azure Resource Manager team at Microsoft

preface

 Well over a year ago, the three of us set out to write a book to teach people how to manage Azure Infrastructure as Code (IaC) with native Azure tools. Since then, we have written a total of thirteen chapters that we believe will take you from “zero to hero!”

 IaC is an important topic, as not a single line of code can run on its own. Everything has to run on top of something. An OS runs on top of the hardware, a program on top of the OS, and most modern applications on top of a runtime. As engineers, we consider most of these things our programs “run on top of ” to be infrastructure.

 The cloud has changed the way we look at infrastructure. It is no longer bought and nurtured for two to five years. Instead, it is created when we need it and disregarded when we no longer need it. To fully exploit this flexibility that cloud offerings like Microsoft Azure bring, we need a way to quickly and reliably create our infrastructure. And for engineers, is there a better way than through code?

 There are many resources already available about these topics—many blogs written by experienced engineers, and a body of MS Learn and MS docs materials and write-ups about individual features. Yet, there was still one thing missing: a single body of knowledge that captures all you need to get you fully up to speed. A single comprehensive body of knowledge, organized so that you can read it front to back. We hope that is changed by this book.

 In this book, we have chosen to take a bottom-up approach, where you will first learn about the basics that will directly help you in your job and also help you understand the topics that follow. A deep understanding of these basics will help you throughout your career, not only when you’re working with the current technologies, but also with what the future will bring.

 However, that doesn’t mean that this book doesn’t contain the latest and greatest. Quite the opposite. After the foundational part, you will find more advanced topics that you can use to take your IaC practices to the next level, such as Azure Policy and testing templates. We’ve also added sections about recently released features like template specs and the Bicep registry.

 Whether you are just getting started with Azure IaC or are an experienced engineer who wants to keep learning, we believe that there is value in this book for everyone!

acknowledgments

 Writing a book is a great undertaking, and it’s not possible without the help of a great many people. We’d like to thank our wives and girlfriend Marjoleine, Gerja, and Marloes for their support when we were on yet another call in the evening, or when we needed another afternoon to write just one more section. We also want to thank the Azure Resource Manager product group, Alex Frankel and Brian Moore in particular, for their support and for reviewing parts of this book.

 Also, no book sees the light without reviewers and a whole team of editors who help steer the direction of the book. Thanks to our reviewers: Aleksandar Nikolic, Alexey Vyskubov, Amado Gramajo, Amanda Debler, Aron Trauring, Bikalpa Timilsina, Casey Burnett, Chris Heneghan, Conor Redmond, Daniel Berecz, Danilo Tiago, Darrin Bishop, Edin Kapić, George Chang, Giuliano Latini, James Black, Kamesh Ganesan, Karthikeyarajan Rajendra, Lachman Dhalliwal, Lakshminarayanan A.S, Maciej Jurkowski, Michael Bright, Michael Langdon, Nasir Naeem, Quentin Fortier, Radhakrishna M.V., Renato Gentile, Richard Vaughan, Robin Coe, Ronald Cranston, Sebastian Rogers, Stephen Goodman, Steve Atchue, Steven Oxley, Sylvain Groulx, Vishal Singh, Vivek Dhami, and Vivek Lakhanpal, for your invaluable feedback and tips for improvement. And finally, to Doug Rudder, the development editor; Mihaela Batinić, the reviewing editor; Deirdre Hiam, the project manager; Andy Carroll, the copyeditor; and Jason Everett, the proofreader, thank you for reviewing, commenting, rewriting, redrawing, and crafting it into the work it is now.

about this book

 Azure Infrastructure as Code teaches you to use Azure’s native Infrastructure as Code (IaC) tools, like ARM templates and Bicep, to build, manage, and scale infrastructure with just a few lines of code. You’ll discover ARM templates, deployment stacks, and the powerful new programming language Bicep. You’ll see how easy they make it to create new test environments, safely make infrastructure changes, and prevent configuration drift. Loaded with in-depth coverage of syntax and lots of illustrative examples, this hands-on guide is a must-read for anyone looking to expand their knowledge of provisioning.

Who should read this book

 This book is for anyone who has been provisioning or managing cloud infrastructure for three months or more. You could be any of the following:

 	
A software engineer who writes software for Azure and also contributes to managing the infrastructure your software runs on

 	
An IT professional who is responsible for operating any workload that runs in the Microsoft Azure cloud

 	
A cloud engineer who deploys and maintains applications in the cloud, be it on virtual machines or container platforms

 	
A network engineer who manages software-defined networks for Azure

 To work with and test the examples in this book, you will need at least one Azure subscription.

How this book is organized: A roadmap

 This book has three parts consisting of 13 chapters.

 Part 1 explains Infrastructure as Code, talks about its benefits, introduces ARM templates, and walks you through writing and deploying a first template.

 	
Chapter 1 covers the basics of Infrastructure as Code and talks about its benefits. It also gives a preliminary introduction to ARM templates, Bicep, and the Azure Resource Manager. Lastly, it identifies a few other tools that you could use to manage infrastructure that are not created by Microsoft.

 	
Chapter 2 introduces ARM templates and walks you through creating a first one. It also explains how to deploy the template to Azure.

 Part 2 goes deep into ARM templates and Bicep, explains the deployment process in detail, and talks about testing templates.

 	
Chapter 3 discusses ARM templates in more detail. It explains all the parts that make up an ARM template, like resources, parameters, variables, functions, and outputs.

 	
Chapter 4 describes the deployment of a template in detail. It talks about different deployment scopes, different tools for initiating a deployment, the different phases within the deployment, and the validation steps you can use during the deployment.

 	
Chapter 5 goes deep into ARM templates and touches on the more advanced topics like modularization, loops, deployment scripts, and nested templates.

 	
Chapter 6 introduces Bicep and explains how to use your knowledge of ARM templates to write Bicep templates.

 	
Chapter 7 gives a detailed overview into deploying your Infrastructure as Code using Azure DevOps. The different parts that make up a deployment pipeline are discussed and used to deploy your infrastructure into multiple environments and regions.

 	
Chapter 8 is also about deploying your infrastructure, but this time using GitHub Actions.

 	
Chapter 9 discusses how to analyze and test your templates and infrastructure using different tools and techniques.

 Part 3 discusses a few advanced topics to help you take your infrastructure to a higher level.

 	
Chapter 10 explains how you can share your templates across your organization for optimal reuse and compliant-by-default infrastructure. It lists various methods and talks about their pros and cons.

 	
Chapter 11 talks about deployment stacks, which are used to deploy your resources into logical groups.

 	
Chapter 12 discusses Azure Policy, which allows you to govern your Azure resources. This chapter explains how to create and apply the policies across your environment using Bicep templates.

 	
Chapter 13 contains a few case studies that will show you larger examples of how to build infrastructure using the practices you’ve seen throughout the book.

 In general, you should be sure to read the first six chapters. These cover the basics of both ARM templates and Bicep that you should know. The next two chapters, 7 and 8, discuss how to deploy Infrastructure as Code using either Azure DevOps or GitHub Actions. You can pick neither or read one or both depending on your situation or preference. The rest of the book contains chapters on topics like testing templates, sharing templates, or using policies, and these can be read out of order, based on your particular needs or interests.

About the code

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/azure-infrastructure-as-code. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/azure-infrastructure-as-code, and from GitHub at https://github.com/AzureIaCBook.

liveBook discussion forum

 Purchase of Azure Infrastructure as Code includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/azure-infrastructure-as-code/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Need additional help?

 	
ARM overview—https://docs.microsoft.com/en-us/azure/azure-resource-manager

 	
ARM template specs—https://docs.microsoft.com/en-us/azure/templates

 	
QuickStart templates—https://github.com/Azure/azure-quickstart-templates

about the authors

 Henry Been is an independent DevOps & Azure Architect from the Netherlands. He has been active in software development for over 15 years, of which close to 10 years have involved working with Microsoft Azure. He enjoys working with and within DevOps teams to design, write, and deliver great software. He believes in cross-functional teams that own the full delivery process, from inception to delivery and operations, of the software they write. Next to his work, he is active in the community writing blogs, creating videos, hosting MeetUps, and speaking at international conferences. For his community activities, he has been awarded the Microsoft MVP Award since 2019.

 Eduard Keilholz is an Azure Architect at 4DotNet (Meppel, the Netherlands). He likes to help customers with their journey to the cloud and build highly performant, scalable cloud solutions. He enjoys lifting team members to a higher level as software engineers and as team members. His focus is on the Microsoft development stack, mainly C# and the Microsoft Azure Cloud. He also has a strong affinity for Angular.

 Erwin Staal is an Azure Architect and DevOps Consultant at Xpirit (Hilversum, the Netherlands). He has more than 10 years of experience with both small and large organizations. He likes to immerse himself in the latest technologies. Currently he is working a lot with ASP.NET Core, Docker, and Kubernetes. As a DevOps Consultant, he helps companies with the implementation of DevOps and Continuous Delivery.

about the cover illustration

 The figure on the cover of Azure Infrastructure as Code is “Ingrienne,” or “A Woman from the Ingria,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. Introduction

 In this part of the book, we’ll explain what Infrastructure as Code (IaC) is and why you will want to consider using it for your cloud environment. The anatomy of the Azure Resource Manager (ARM, the system responsible for provisioning cloud resources in Azure) is explained, and you will learn how deployments on the Microsoft Azure Cloud work. Finally, you will learn how to write a basic ARM template. These templates drive the Azure Resource Manager and are fundamental to working with Infrastructure as Code for Azure.

1 Infrastructure as Code

 This chapter covers

 	
Working with infrastructure

 	
The benefits of Infrastructure as Code

 	
The difference between Azure Service Management and Azure Resource Manager

 	
Other Infrastructure as Code tools available for Azure

 If you have worked with Microsoft Azure before, you may have managed infrastructure in one way or another. In Azure, just as in any cloud platform, infrastructure can be created and altered quickly and easily. Using one or more of the Azure portal, PowerShell cmdlets, RESTful HTTP calls, SDKs, or ARM templates, you can create servers or PaaS and SaaS services in minutes or even seconds. This is in contrast to how infrastructure was managed in the past, or often still is on-premises.

 The unique proposition of the cloud has transformed the way we create and operate software in the last decade. In particular, the way we manage infrastructure that runs applications has changed. Creating cloud infrastructure on demand and discarding it hours or days later has become a common approach, especially for test environments.

 Two characteristics of the cloud, in particular, have accelerated this change:

 	
 Elasticity

 	
 Self-service

 Elasticity is a characteristic of cloud computing. In the context of the cloud, elasticity is the capability to quickly add or remove resources from your infrastructure. Unlike traditional server deployments, clouds allow you to pay for infrastructure by the hour, minute, or even second, which allows for flexibility and encourages different approaches to provisioning infrastructure.

 Self-service is a second characteristic. All of the major cloud vendors provide their users with graphical user interfaces (GUIs), command-line interfaces (CLIs), and APIs that they can use to create, update, and remove instances of the services they make available. Nowadays, all cloud providers use an API-first strategy, and one outcome of this is that every operation is also available through their management APIs, not just through the user interface or other tools.

 The combination of these characteristics causes us to treat cloud infrastructure differently than traditional on-premises infrastructure. Spinning up complete configurations spanning tens of services can now be done in a matter of minutes. You can do this either using the major cloud providers’ portals or by using scripts in your deployment pipelines.

 However, using portals or CLIs to do this does present downsides—it is challenging to manage your cloud infrastructure reliably over time. Examples include changes being incompletely tracked, developers needing to access production environments with personal accounts, and many more. For this reason, another approach to managing infrastructure has become the go-to option for most teams: Infrastructure as Code (IaC.)

 In this chapter, you’ll learn more about managing cloud infrastructure in general and about the benefits of using IaC over manual and scripted approaches. Then we’ll look at the Azure Resource Manager (ARM), the service that you interact with to manage your infrastructure in Azure, and at a few other tools for managing Azure infrastructure.

1.1 Working with infrastructure

 Infrastructure as Code (IaC) is a modern approach for managing infrastructure. Instead of creating and configuring infrastructure manually, using graphical interfaces, all infrastructure is described in configuration files that are then used to create the infrastructure automatically. For Azure, IaC is written in Azure Resource Manager (ARM) templates or Bicep files, which are submitted to ARM for processing.

 When we talk about infrastructure in the context of Azure, we are referring to all Azure resources that you can use as part of your solution architecture. An obvious example would be a virtual machine or storage account, but infrastructure in the context of IaC also includes service bus messaging queues, dashboards, app services, and any other deployable Azure resource.

 Before we dive into the background of ARM and the benefits of IaC, let’s look at an example. Figure 1.1 shows a small snippet of an ARM template and how it can be used to create Azure resources, like an Azure storage account.

 [image:]

 Figure 1.1 From ARM template to Azure infrastructure

 ARM templates (at the left of figure 1.1) are formal descriptions of what infrastructure needs to exist and how it is configured. These templates are then applied to an Azure environment, creating the infrastructure described (at the right of figure 1.1). If a resource with the specified name and type already exists, its configuration is updated instead.

 As you have already seen, the characteristics of the public cloud encourage the use of IaC, but that’s not the only reason for using IaC. Two other drivers are the DevOps culture and the desire to prevent configuration drift. The next sections discuss these two topics in detail.

1.1.1 DevOps

 DevOps is a cultural movement that aims at breaking down the traditional barriers between development and operations teams. In a traditional organization with operations and development teams, the two types of teams have clear responsibilities.

 	
 Development or application teams are mainly responsible for implementing new requirements. They are concerned with introducing as many changes as possible, as that is how they implement new user requirements.

 	
 Operations teams are responsible for managing the infrastructure and often any applications deployed to it. The operations team is mainly concerned with keeping things running, which, in general, works best when there are as few changes as possible.

 Figure 1.2 shows what this looks like. Here you see a dedicated operations team that manages infrastructure and other runtime components. A separate development team writes updates and hands them over to operations for deployment. If such an update requires a change in the infrastructure, this has to be requested beforehand, often well in advance. These infrastructure changes have to be coordinated between teams and are often slow to complete.

 [image:]

 Figure 1.2 Development and operations teams coordinating on infrastructure changes

 In many organizations, the opposing goals of these teams or even of complete departments lead to unhealthy situations, such as these:

 	
 Operations teams can become resistant to change because changes introduce new risks into the environments they have to manage. The introduction of validation procedures, quality controls, approvals, or any other type of gatekeeping behavior limits the flow of change.

 	
 Development teams push changes of insufficient quality because they receive praise for the amount of change they create. At the same time, operations teams are impacted by any downtime that results from bugs or issues in the software that is released.

 Of course, this causes problems for the organization as a whole, which is served best by controlled, well-coordinated changes that implement new requirements while the existing infrastructure and applications keep running smoothly.

 The DevOps movement advocates that developers and operators should work together in a single team toward this shared goal: the continuous delivery of high-quality software that creates business value. The subgoals of stability and change should be committed to by this single team that combines operations and development expertise. While doing this, a DevOps team often adopts development practices to perform operational duties.

 In practice, this means that a new, now-combined, DevOps team is responsible for creating their own infrastructure (see figure 1.3). Often this also means that IT professionals start to apply development techniques to their day-to-day work. They transition from the user interface and manual application and the verification of changes to adopting advanced text editors, automated installation scripts, and IaC. IaC allows developers and operators to work together to describe and configure any infrastructure needed by their application deployment. Together they can promote the infrastructure changes and the application artifacts to a test environment, and after verification to a production environment.

 [image:]

 Figure 1.3 A DevOps team is aligned with the applications and infrastructure it is responsible for managing.

1.1.2 Preventing configuration drift

 Next to self-service APIs and DevOps, another driver for the adoption of IaC is the prevention of a problem called configuration drift. Configuration drift is a phenomenon observed on infrastructure that is managed manually. It doesn’t matter if it is managed through the command line or a graphical interface—configuration drift can happen in both cases.

 Configuration drift refers to differences that develop over time on either of two dimensions:

 	
 A difference between environments, such as between test and production

 	
 A difference within an environment, such as between two virtual machines that should be configured exactly the same and host two instances of the same application

 To see how this configuration drift can occur, imagine an infrastructure configuration of two identical virtual machines (VMs), with one being a test and the other a production environment. The two environments should be configured in precisely the same way, because the test environment is also used for load and stress testing.

 Figure 1.4 illustrates two types of configuration drift. First, there is an unintended difference between the test and the production environment, as the production VMs have more memory allocated than the test VMs. Second, there is a drift within the production environment, as one of the VMs has four cores instead of the desired two.

 [image:]

 Figure 1.4 Two types of configuration drift: between environments and within an environment

 Configuration drift is often the result of an unexpected, incomplete, or incorrectly executed change. When a change is required to the configuration of any infrastructure component, that change must be applied to each instance of the infrastructure, one by one. But other things can happen as well:

 	
 A change is made to the development, test, acceptance, and production environments, after which an issue with the change is found at night: a bug. The change can easily be reverted, so it is reverted in the production environment. There is a lot of user feedback to deal with the next day, and reverting the change in the other environments is forgotten.

 	
 During a major outage, all non-production environments go down and have to be restored manually. Accidentally, a more recent build of the operating system is used on the virtual machines, making them behave differently than the virtual machines in production.

 Differences between environments like these can cause future problems. For example, test results from the test environment will no longer be representative of how a particular change will affect the production environment. Given enough time, configuration drift will affect any environment and result in unpredictable behavior. IaC can help remediate configuration drift by re-applying the infrastructure specification regularly. Because all settings are stored in source control and applied automatically, all changes are detected and corrected automatically.

 We’ve mentioned three main drivers for using IaC—namely the cloud, DevOps, and the prevention of configuration drift—but there are still other benefits of IaC. Let’s take some time to explore the benefits IaC offers over managing infrastructure manually or through scripts.

1.2 The benefits of Infrastructure as Code

 Once a team moves to IaC, often because of one of the drivers we’ve already discussed, they will also start observing other benefits. As with many developments in our field, this change will not only help to overcome existing problems but will also inspire new ways of working.

 These are three common benefits:

 	
 IaC allows for automation, which saves time if you are often creating new environments.

 	
 IaC allows for a declarative approach, which allows you to focus on the desired state and not on how to get there.

 	
 IaC provides a human-readable format, which allows developers to reason about the state of the infrastructure.

 The next three subsections discuss these benefits in turn.

1.2.1 IaC allows for automation

 As you may have guessed by now, IaC is applied using tools, and tools imply automation. This delivers two additional benefits, besides saving time: guaranteed outcomes and environment reproducibility.

 Guaranteed outcomes

 Automatically creating and configuring environments not only saves time, it also provides guaranteed outcomes. When creating and configuring an Azure virtual machine manually, there are tens if not hundreds of configuration options that have to be checked. In practice, this is very error-prone work, and mistakes are very likely to happen. Asking five different people to create an Azure VM with 4 CPU cores, 8 GB of memory, and running Windows Datacenter 2019, will most likely result in five virtual machines all configured differently.

 With IaC, this is not the case. After you write the desired infrastructure in a code file, the same file can be applied repeatedly, and the IaC tools guarantee that the outcome is the same every time. Verifying configuration or testing outcomes is no longer necessary when working with IaC. It not only saves a lot of time; it also improves quality.

 Environment reproducibility

 Once an IaC file is written, the cost of creating the described infrastructure is almost zero. It is just a matter of starting the tool, and the required infrastructure resources are created and available a few minutes later. This unlocks all kinds of new approaches to testing, deploying, and running infrastructure.

 Just the ability to automatically remove development and test environments at 6 P.M. and re-create them automatically at 7 A.M. on working days can save organizations anywhere between 30% and 60% of their infrastructure costs, compared to keeping infrastructure running 24/7.

 Also, if you have ever been responsible for test infrastructure, you’ll know how hard it is to keep test infrastructure usable. Every test failure can pollute the infrastructure and trigger false test failures in the future, due to the inconsistent state of the previous run. Just imagine the possibility of creating new infrastructure, in a guaranteed state, before each test run starts. And all of this at no additional cost. The reduction in false test failures will save a lot of time, money, and negative energy spent by you and your team.

1.2.2 IaC allows for a declarative approach

 IaC can be written in two different styles: declarative and imperative. With the declarative style, the source files describe the desired state of the infrastructure. The execution engine is then responsible for comparing the desired state with the actual state, determining the differences, and identifying and executing a series of commands to make the actual state correspond to the desired state.

 This approach is similar to Structured Query Language (SQL). You can use SQL to describe which records should or should not be in your result, rather than having to specify the commands to execute. The database engine is then responsible for determining which commands should be executed to reach that desired result.

 With the imperative style, you do not describe the intended end result but instead describe the series of commands, steps, or program code to execute.

 Note The term Infrastructure as Code is also used for approaches where scripts are stored in source control. While this is a correct use of the term, most IaC approaches, including ARM templates, use a declarative approach.

 The first benefit of a declarative approach is that it enhances both the ease of writing and the ease of reading. Writing in a declarative style is easier, because the writer does not have to worry about how the infrastructure is created. They just need to describe what is needed in the end, and the tool translates this into the how. This applies both to when infrastructure is created the first time and when infrastructure configuration is updated. In an imperative approach, this would result in a lot of if-then-else coding; in a declarative approach, if-then-else is not necessary. As an example, see these declarative statements:

 There should be a car
The car should be green
The car should have four wheels

 Compare that with these imperative statements:

 If there is no car
 Create a car
If the car is not green
 Make the car green
While the car has more than four wheels
 Remove a wheel from the car
While the car has fewer than four wheels
 Add a wheel to the car

 As this example shows, the declarative style improves the ease of writing and also enhances reading ease, as it focuses solely on the desired state.

 The second benefit of a declarative approach is that the execution engine can be optimized without impacting the IaC declarations. In the similar case of SQL statements, SQL database engines have seen significant changes and optimizations over the last few decades, but most SQL statements written years ago still execute without any changes.

1.2.3 IaC provides a human-readable format

 The third benefit of IaC is that it leverages human-readable formats. Some IaC tools use JSON or YAML, and others use a custom domain-specific language (DSL) or existing programming language. Azure Resource Manager templates use JSON, which stands for JavaScript Object Notation. This human-readable format provides us with a version-controllable, auditable, and reviewable definition of application infrastructure. On top of ARM templates, an easier, more approachable, DSL has been introduced, called Bicep.

 Version controllable

 Human-readable, non-binary files can be stored in a source control system, just like source code for an application. Source control systems provide users with a centralized, single source for the latest version of a file, along with a full history of all changes. Gone are the days when you had to record all the infrastructure changes manually to go back and find out which changes were made when, by who, and why. With source control, you automatically have the complete change history readily available. Another consequence of this is that if there is ever the need to roll back a change, the previous configuration can quickly be restored.

 Auditable

 IaC files are readable and all changes are recorded in source control, which makes them instantly auditable by security reviewers, external auditors, and any other party interested in the changes you are making. Source control provides a full audit log of all the changes made and by whom.

 Reviewable

 Source control systems allow you to automatically enforce standards before any change is made final. This can include automated formatting checks, automated build checks, or even enforced peer reviews—this functionality is built into most source control systems.

 Now that you know about the extra benefits you can get with IaC, let’s turn to the Azure Resource Manager. Azure Resource Manager is Azure’s service for working with IaC.

1.3 The Azure Resource Manager

 We’ve discussed the drivers and benefits for IaC, so it’s now time to dive a bit deeper into the IaC system for Azure. The first thing to understand here is that all Azure infrastructure management is done using the Azure Resource Manager (ARM). ARM is a RESTful HTTP API that you can call to list, create, update, and delete all resources in your Azure subscriptions. If you interact with Azure through the portal, the CLI, or Azure PowerShell, you are also using ARM under the hood.

 ARM is the basis for the Azure IaC capabilities provided via ARM templates. ARM is the execution engine for IaC. But before we dive into ARM templates, it is important to know what the control plane and data plane are, how they differ, and what you can and can’t do with ARM templates.

1.3.1 Control plane and data plane

 Each interaction you have with Azure is either a control plane or a data plane operation. Simply put, you use the control plane to manage resources in your subscription, and you use the data plane to employ the capabilities exposed by your instances of specific resource types. In Azure, there is a single, unified control plane: the Azure Resource Manager.

 To make the difference between the control plane and data plane clearer, here are a few examples:

 	
 You create an Azure SQL database through the control plane. Once it’s created, you use the data plane to connect to it and perform SQL queries.

 	
 You create a Linux virtual machine through the control plane. Then you use the data plane to interact with it over the SSH protocol.

 Requests sent to the control plane are all sent to the Azure Resource Manager URL; for the global cloud, that is https://management.azure.com. From this URL, it is possible to build complete URLs that identify any Azure resource. For example, the following pseudo URL points to a virtual machine:

 GET https:/ /management.azure.com/subscriptions/{subscriptionId}/resourceGroups/
 ➥ {resourceGroupName}/providers/Microsoft.Compute/virtualMachines/
 ➥ {virtualMachineName}?api-version=2021-04-01

 Suppose you are logged into the Azure portal and you copy this URL into your browser with valid values for subscriptionId, resourceGroupName, and virtualMachineName. The response would be a JSON description of the virtual machine. If you study the response in detail and compare it to an ARM template for virtual machines, you’ll quickly notice that they are the same (with only a few default properties omitted).

 Interactions with a resource on the data plane always happen on an endpoint specific to that resource. This means that data plane operations are not limited to REST but could use HTTPS, FTP, or any other protocol. Interactions with the control plane happen through the ARM APIs or through ARM templates.

1.3.2 ARM templates

 The ARM APIs can be used to manage infrastructure in an imperative style, using provisioning scripts. If you prefer a declarative style, ARM templates are available.

 ARM templates are written in JSON or Bicep and are used for any of the following purposes:

 	
 A resource group template is used to deploy one or more resources into an Azure resource group.

 	
 Subscription templates are used to deploy resource groups, policies, and authorizations to an Azure subscription.

 	
 Management group templates are used to deploy subscriptions, nested management groups, policies, and authorizations into a management group.

 	
 Tenant-level templates are used to deploy nested management groups, policies, and authorizations into the Azure Active Directory.

 If you already have a basic understanding of the Azure hierarchy, the preceding list will show that you can completely manage Azure using ARM templates. If you don’t understand all the terms mentioned here, don’t worry—all these concepts will be explained in more detail in chapter 3.

 While ARM templates are compelling and they allow you to manage all of Azure, an often-heard complaint is that they can be challenging to write and pretty verbose to read. To provide a solution to this, Microsoft recently launched project Bicep.

1.3.3 The Bicep language

 ARM templates are written as JSON files, but one of the disadvantages of JSON is that it can become quite lengthy when expressing complex structures. This lengthiness can make files difficult to maintain or read. Another downside of JSON is that there is no out-of-the-box support for control structures like loops or conditions. While ARM provides workarounds for this, ARM templates do take a while to master.

 To provide a solution to these problems, Microsoft has introduced a new domain-specific language (DSL) as an alternative way to write ARM templates. This DSL is called Bicep, a play on the name ARM. Chapter 6 discusses Bicep in depth.

1.3.4 Azure Service Management (ASM is not ARM)

 Before the existence of the Azure Resource Manager, another system was available for managing resources within Azure: Azure Service Management (ASM). ASM is no longer in use, but it is good to know of its existence and how it differs from ARM. Even if you only use that knowledge to detect and discard outdated online content, it is worth it.

 Microsoft introduced Azure Service Manager (ASM) as part of the Azure cloud (then still named Windows Azure) around 2009. ASM was the first HTTP interface provided for managing Azure resources. Before that, while Azure was still in preview, the management of resources was only possible using a web interface now called the classic portal. Looking back, ASM was the first iteration of an interface for managing Azure resources.

 ASM has no built-in support for IaC and is rarely ever used in production nowadays. Still, it is good to know what ASM is and to stay away from anything related to it. While the names Azure Resource Manager and Azure Service Management may look similar at first sight, they are nothing alike.

 Drawbacks of Azure Service Management

 The lack of support for IaC was not the only reason Microsoft replaced ASM. Other drawbacks include the lack of grouping options for resources, no options for managing authorizations at the individual resource level, the lack of a fine-grained permission set, and many more.

 Azure Resource Manager and its ARM templates are the built-in approach for managing infrastructure within Azure. But there are also other tools available for IaC both on Azure or in other public clouds. The next section describes some of them to help you build a broader understanding of IaC.

1.4 Other tools

 ARM templates are just one of many IaC approaches available. This section will explore a few other well-known tools to help you understand which tools are available and which one makes sense in which situations.

 Note Our focus here is on tools that can be used for IaC in cloud environments. There are other tools available for managing state within virtual machines, such as PowerShell DSC, Puppet, Chef, and Ansible. We won’t be discussing those here.

 When considering IaC tools for the cloud, one characteristic is the most important: is the tool single-cloud or multi-cloud? When you’re working in only one cloud, you can consider using the IaC tool specifically intended for that cloud. For Azure, you can use ARM templates; for Amazon Web Services (AWS), you can use CloudFormation; and for Google Cloud Platform, there is the Google Deployment manager. Alternatively, there are multi-cloud options like Terraform or Pulumi. While these tools allow you to manage multiple environments or clouds from a single IaC script, it is also possible to use them when you’re only working with Azure.

 Multi-cloud or single-cloud

 There is much debate around the topic of multi-cloud strategies. There are both pros and cons for working with only a single cloud provider or working with more than one vendor. This discussion is out of scope for this book, but when weighing your options and determining your strategy, you should consider your IaC options.

 We’ll look at all these tools in the next few sections.

1.4.1 AWS CloudFormation

 CloudFormation is an AWS service for managing infrastructure. Each deployment of a group of resources is called a stack. A stack is a persistent grouping of resources that can span multiple AWS regions or accounts. When you redeploy a template to the same stack, all existing resources in the stack are updated. CloudFormation also deletes resources that are part of the stack but no longer part of the template. Overall, CloudFormation templates are very comparable to ARM templates when it comes to their layout and capabilities.

1.4.2 Google Cloud Deployment Manager

 Google Deployment Manager is the built-in approach to IaC for the Google Cloud Platform (GCP). To deploy a simple set of resources, YAML is used in a very similar layout and style to CloudFormation or ARM templates. However, the Deployment Manager’s YAML configuration is more limited, as it does not allow for parameters, variables, and outputs, like CloudFormation and ARM templates do.

 For more advanced features, Deployment Manager allows you to write reusable templates using Python (preferred) or Jinja2. When using Python, the Python language’s full power can be used, including loops, conditionals, and external libraries, to build and return an array of resources. Note that doing so removes the declarative nature from templates. These templates are then imported into the YAML files and deployed from there.

1.4.3 Terraform

 HashiCorp has developed an IaC tool called Terraform. Terraform is open source and is based upon a split between the DSL used for declaring resources and the so-called providers that specify which resources are available for use. The DSL used by Terraform is called HashiCorp Configuration Language (HCL), which defines its structure, syntax, and semantics.

 Terraform providers are available for all major cloud providers and other target platforms and tools, including VMware, Azure DevOps, GitLab, Grafana, and many more. Another thing that differs between ARM templates and Terraform is that Terraform uses a state file.

 A state file or cache

 What ARM, CloudFormation, and Deployment Manager have in common is that they operate on the difference between the desired state (the template) and the actual state of the resources. The changes they make to the cloud environment are determined by comparing these two.

 Another group of IaC tools operates on the difference between the desired state and a state file. A state file is a file or cache that captures what the tool believes the cloud environment’s state is after the previous deployments. The changes it makes to the cloud environment are determined by comparing these two.

 IaC tools use a state file to quickly decide which changes should be made without querying the complete actual state from the cloud environment. The risk of this approach is that there might be mismatches between the state file and the actual state, resulting in an incorrect execution. To counter this, tools that use a state file often allow for updating the state file from the actual state.

 For Azure, there is a Terraform provider developed by Microsoft. This Terraform provider is almost as feature-complete as ARM templates, but it can sometimes still lag in functionality. The reason for this is straightforward: ARM templates use built-in functionality, while functionality needs to be explicitly added to the Terraform provider.

1.4.4 Pulumi

 Pulumi differs from most other IaC tools in that it doesn’t use YAML, JSON, or a DSL, but actual program code for managing IaC. Pulumi has language support for Node.js, Python, .NET Core, and Go. Cloud-wise, there is support for Azure, AWS, and GCP. Using one of the supported languages, a model is constructed that represents the desired infrastructure stack. The outcome of the program code, the declaration, is this model that starts the Pulumi engine’s execution.

 One of the significant advantages of using an existing programming language for defining infrastructure is that all of the tools and technologies surrounding that programming language are also available for your infrastructure definition. The most prominent example of this is the ability to run unit tests against the infrastructure definition.

 Besides supporting all Azure resources, including Azure policies, Pulumi also has a built-in policy engine. This engine allows the use of a single policy engine for more than one cloud. The advantage of this is that you have a single entry point for all policy evaluations. The disadvantage is that the policies are only executed during deployment and not continuously in a deployed environment. Azure Policy, which is the topic of chapter 12, does allow for this continuous evaluation.

1.4.5 Choosing between cloud-specific and multi-cloud solutions

 When you are consistently working across more than one cloud, you have to choose between using two or more cloud-specific solutions or a single multi-cloud IaC solution.

 Cloud-specific solutions often have deeper integration with the underlying platform and provide unique benefits that multi-cloud solutions might not. The downside of using more than one solution is the increased number of tools. On the other hand, multi-cloud solutions can offer specific options that cloud-specific options do not. As an example, look at the policy engine that Pulumi offers. In the end, it is up to you to weigh both alternatives’ pros and cons and make the best decision for your context.

Summary

 	
 Almost everyone who works with Microsoft Azure has been managing cloud resources one way or another. Typical management of cloud resources includes creating, configuring, and removing resources in Azure. Examples of resources are virtual machines, App Service plans, and storage accounts.

 	
 Manually managing cloud infrastructure at scale is tedious, repetitive work that can introduce errors. The elasticity and self-service characteristics of public clouds, the DevOps culture, and the prevention of configuration drift are three drivers toward IaC.

 	
 The benefits of IaC for Azure are automation, its declarative approach, and its human-readable nature. These characteristics provide you with repeatable and guaranteed outcomes, ease of understanding, and an auditable and reviewable history of infrastructure changes.

 	
 Azure Resource Manager (ARM) is the API or application used for managing Azure resources since 2015. ARM templates are written in JSON, which can be lengthy to write and read. Bicep, a new DSL, has been introduced by Microsoft to overcome this.

2 Writing your first ARM template

 This chapter covers

 	
Writing your first ARM template

 	
Using VS Code to write and validate templates

 	
Deploying a template using the Azure portal

 	
Creating a visual representation of your template

 With the theory covered, it’s time to write your first ARM template. While writing ARM templates may seem like a tough job at first, you’ll get the hang of it soon enough. Experience shows that it takes most people one or two days of practice to get familiar with the syntax.

 Getting started is easier when you use the right tools for the job. ARM templates are written as JSON documents, so a powerful text editor is recommended. For ARM templates specifically, Visual Studio Code (VS Code) is the best choice. VS Code is not only a powerful text editor, but there is an extension that supports writing ARM templates. This chapter will help you set up VS Code and the extension.

OEBPS/OEBPS/Images/IFC.png
|

]

i

Portal

Azure CLI

PowerShell

SDKs

ARM/Bicep
template

Azure Resource Manager

Resource provider

Resource provider

Resource provider

Resource

Resource

Resource

Resource

Resource

Resource

OEBPS/OEBPS/Images/01-02.png
Creates
infrastructure.

@
Ops team

-

Requests
infrastructure

@
Dev team

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/cover.jpeg
With ARM templates and Bicep

Henry Been
Eduard Keilholz
Erwin Staal

Forewords by Scott Guthrie
and Alex Frankel

/ll MANNING

OEBPS/OEBPS/Images/01-03.png
Creates
infrastructure

DevOps team

OEBPS/OEBPS/Images/01-01.png
“"name": "myStorageAccount",

"type": "Microsoft.Storage/storageAccount",

"apiVersion": "2021-02-01",

location": "westeurope", Create deployment s
kind": "storage", =
nskur: {

"name": "Premium LRS"

}

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/01-04.png
Test environment Production environment

2 cores 4 cores
8 GB RAM 8 GB RAM

2 cores 2 cores
4 GB RAM 4 GB RAM

