

 [image:]

 Math and Architectures of Deep Learning

 Krishnendu Chaudhury with Ananya H. Ashok, Sujay Narumanchi, and Devashish Shankar

 Foreword by Prith Banerjee

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Christina Taylor

 	
 Technical development editor:

 	
 Mike Shepard

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Lucian Mircea Sasu

 	
 Typesetter:

 	
 Westchester Publishing Services

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296482

 contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 1 An overview of machine learning and deep learning

 1.1 A first look at machine/deep learning: A paradigm shift in computation

 1.2 A function approximation view of machine learning: Models and their training

 1.3 A simple machine learning model: The cat brain

 Input features

 Output decisions

 Model estimation

 Model architecture selection

 Model training

 Inferencing

 1.4 Geometrical view of machine learning

 1.5 Regression vs. classification in machine learning

 1.6 Linear vs. nonlinear models

 1.7 Higher expressive power through multiple nonlinear layers: Deep neural networks

 2 Vectors, matrices, and tensors in machine learning

 2.1 Vectors and their role in machine learning

 The geometric view of vectors and its significance in machine learning

 2.2 PyTorch code for vector manipulations

 PyTorch code for the introduction to vectors

 2.3 Matrices and their role in machine learning

 Matrix representation of digital images

 2.4 Python code: Introducing matrices, tensors, and images via PyTorch

 2.5 Basic vector and matrix operations in machine learning

 Matrix and vector transpose

 Dot product of two vectors and its role in machine learning

 Matrix multiplication and machine learning

 Length of a vector (L2 norm): Model error

 Geometric intuitions for vector length

 Geometric intuitions for the dot product: Feature similarity

 2.6 Orthogonality of vectors and its physical significance

 2.7 Python code: Basic vector and matrix operations via PyTorch

 PyTorch code for a matrix transpose

 PyTorch code for a dot product

 PyTorch code for matrix vector multiplication

 PyTorch code for matrix-matrix multiplication

 PyTorch code for the transpose of a matrix product

 2.8 Multidimensional line and plane equations and machine learning

 Multidimensional line equation

 Multidimensional planes and their role in machine learning

 2.9 Linear combinations, vector spans, basis vectors, and collinearity preservation

 Linear dependence

 Span of a set of vectors

 Vector spaces, basis vectors, and closure

 2.10 Linear transforms: Geometric and algebraic interpretations

 Generic multidimensional definition of linear transforms

 All matrix-vector multiplications are linear transforms

 2.11 Multidimensional arrays, multilinear transforms, and tensors

 Array view: Multidimensional arrays of numbers

 2.12 Linear systems and matrix inverse

 Linear systems with zero or near-zero determinants, and ill-conditioned systems

 PyTorch code for inverse, determinant, and singularity testing of matrices

 Over- and under- determined linear systems in machine learning

 Moore Penrose pseudo-inverse of a matrix

 Pseudo-inverse of a matrix: A beautiful geometric intuition

 PyTorch code to solve overdetermined systems

 2.13 Eigenvalues and eigenvectors: Swiss Army knives of machine learning

 Eigenvectors and linear independence

 Symmetric matrices and orthogonal eigenvectors

 PyTorch code to compute eigenvectors and eigenvalues

 2.14 Orthogonal (rotation) matrices and their eigenvalues and eigenvectors

 Rotation matrices

 Orthogonality of rotation matrices

 PyTorch code for orthogonality of rotation matrices

 Eigenvalues and eigenvectors of a rotation matrix: Finding the axis of rotation

 PyTorch code for eigenvalues and vectors of rotation matrices

 2.15 Matrix diagonalization

 PyTorch code for matrix diagonalization

 Solving linear systems without inversion via diagonalization

 PyTorch code for solving linear systems via diagonalization

 Matrix powers using diagonalization

 2.16 Spectral decomposition of a symmetric matrix

 PyTorch code for the spectral decomposition of a matrix

 2.17 An application relevant to machine learning: Finding the axes of a hyperellipse

 PyTorch code for hyperellipses

 3 Classifiers and vector calculus

 3.1 Geometrical view of image classification

 Input representation

 Classifiers as decision boundaries

 Modeling in a nutshell

 Sign of the surface function in binary classification

 3.2 Error, aka loss function

 3.3 Minimizing loss functions: Gradient vectors

 Gradients: A machine learning-centric introduction

 Level surface representation and loss minimization

 3.4 Local approximation for the loss function

 1D Taylor series recap

 Multidimensional Taylor series and the Hessian matrix

 3.5 PyTorch code for gradient descent, error minimization, and model training

 PyTorch code for linear models

 Autograd: PyTorch automatic gradient computation

 Nonlinear Models in PyTorch

 A linear model for the cat brain in PyTorch

 3.6 Convex and nonconvex functions, and global and local minima

 3.7 Convex sets and functions

 Convex sets

 Convex curves and surfaces

 Convexity and the Taylor series

 Examples of convex functions

 4 Linear algebraic tools in machine learning

 4.1 Distribution of feature data points and true dimensionality

 4.2 Quadratic forms and their minimization

 Minimizing quadratic forms

 Symmetric positive (semi)definite matrices

 4.3 Spectral and Frobenius norms of a matrix

 Spectral norms

 Frobenius norms

 4.4 Principal component analysis

 Direction of maximum spread

 PCA and dimensionality

 PyTorch code: PCA and dimensionality reduction

 Limitations of PCA

 PCA and data compression

 4.5 Singular value decomposition

 Informal proof of the SVD theorem

 Proof of the SVD theorem

 Applying SVD: PCA computation

 Applying SVD: Solving arbitrary linear systems

 Rank of a matrix

 PyTorch code for solving linear systems with SVD

 PyTorch code for PCA computation via SVD

 Applying SVD: Best low-rank approximation of a matrix

 4.6 Machine learning application: Document retrieval

 Using TF-IDF and cosine similarity

 Latent semantic analysis

 PyTorch code to perform LSA

 PyTorch code to compute LSA and SVD on a large dataset

 5 Probability distributions in machine learning

 5.1 Probability: The classical frequentist view

 Random variables

 Population histograms

 5.2 Probability distributions

 5.3 Basic concepts of probability theory

 Probabilities of impossible and certain events

 Exhaustive and mutually exclusive events

 Independent events

 5.4 Joint probabilities and their distributions

 Marginal probabilities

 Dependent events and their joint probability distribution

 5.5 Geometrical view: Sample point distributions for dependent and independent variables

 5.6 Continuous random variables and probability density

 5.7 Properties of distributions: Expected value, variance, and covariance

 Expected value (aka mean)

 Variance, covariance, and standard deviation

 5.8 Sampling from a distribution

 5.9 Some famous probability distributions

 Uniform random distributions

 Gaussian (normal) distribution

 Binomial distribution

 Multinomial distribution

 Bernoulli distribution

 Categorical distribution and one-hot vectors

 6 Bayesian tools for machine learning

 6.1 Conditional probability and Bayes’ theorem

 Joint and marginal probability revisited

 Conditional probability

 Bayes’ theorem

 6.2 Entropy

 Geometrical intuition for entropy

 Entropy of Gaussians

 6.3 Cross-entropy

 6.4 KL divergence

 KLD between Gaussians

 6.5 Conditional entropy

 Chain rule of conditional entropy

 6.6 Model parameter estimation

 Likelihood, evidence, and posterior and prior probabilities

 Maximum likelihood parameter estimation (MLE)

 Maximum a posteriori (MAP) parameter estimation and regularization

 6.7 Latent variables and evidence maximization

 6.8 Maximum likelihood parameter estimation for Gaussians

 Python PyTorch code for maximum likelihood estimation

 Python PyTorch code for maximum likelihood estimation using gradient descent

 6.9 Gaussian mixture models

 Probability density function of the GMM

 Latent variables for class selection

 Classification via GMM

 Maximum likelihood estimation of GMM parameters (GMM fit)

 7 Function approximation: How neural networks model the world

 7.1 Neural networks: A 10,000-foot view

 7.2 Expressing real-world problems: Target functions

 Logical functions in real-world problems

 Classifier functions in real-world problems

 General functions in real-world problems

 7.3 The basic building block or neuron: The perceptron

 The Heaviside step function

 Hyperplanes

 Perceptrons and classification

 Modeling common logic gates with perceptrons

 7.4 Toward more expressive power: Multilayer perceptrons (MLPs)

 MLP for logical XOR

 7.5 Layered networks of perceptrons: MLPs or neural networks

 Layering

 Modeling logical functions with MLPs

 Cybenko’s universal approximation theorem

 MLPs for polygonal decision boundaries

 8 Training neural networks: Forward propagation and backpropagation

 8.1 Differentiable step-like functions

 Sigmoid function

 Tanh function

 8.2 Why layering?

 8.3 Linear layers

 Linear layers expressed as matrix-vector multiplication

 Forward propagation and grand output functions for an MLP of linear layers

 8.4 Training and backpropagation

 Loss and its minimization: Goal of training

 Loss surface and gradient descent

 Why a gradient provides the best direction for descent

 Gradient descent and local minima

 The backpropagation algorithm

 Putting it all together: Overall training algorithm

 8.5 Training a neural network in PyTorch

 9 Loss, optimization, and regularization

 9.1 Loss functions

 Quantification and geometrical view of loss

 Regression loss

 Cross-entropy loss

 Binary cross-entropy loss for image and vector mismatches

 Softmax

 Softmax cross-entropy loss

 Focal loss

 Hinge loss

 9.2 Optimization

 Geometrical view of optimization

 Stochastic gradient descent and minibatches

 PyTorch code for SGD

 Momentum

 Geometric view: Constant loss contours, gradient descent, and momentum

 Nesterov accelerated gradients

 AdaGrad

 Root-mean-squared propagation

 Adam optimizer

 9.3 Regularization

 Minimum descriptor length: An Occam’s razor view of optimization

 L2 regularization

 L1 regularization

 Sparsity: L1 vs. L regularization

 Bayes’ theorem and the stochastic view of optimization

 Dropout

 10 Convolutions in neural networks

 10.1 One-dimensional convolution: Graphical and algebraical view

 Curve smoothing via 1D convolution

 Curve edge detection via 1D convolution

 One-dimensional convolution as matrix multiplication

 PyTorch: One-dimensional convolution with custom weights

 10.2 Convolution output size

 10.3 Two-dimensional convolution: Graphical and algebraic view

 Image smoothing via 2D convolution

 Image edge detection via 2D convolution

 PyTorch: 2D convolution with custom weights

 Two-dimensional convolution as matrix multiplication

 10.4 Three-dimensional convolution

 Video motion detection via 3D convolution

 PyTorch: Three-dimensional convolution with custom weights

 10.5 Transposed convolution or fractionally strided convolution

 Application of transposed convolution: Autoencoders and embeddings

 Transposed convolution output size

 Upsampling via transpose convolution

 10.6 Adding convolution layers to a neural network

 PyTorch: Adding convolution layers to a neural network

 10.7 Pooling

 11 Neural networks for image classification and object detection

 11.1 CNNs for image classification: LeNet

 PyTorch: Implementing LeNet for image classification on MNIST

 11.2 Toward deeper neural networks

 VGG (Visual Geometry Group) Net

 Inception: Network-in-network paradigm

 ResNet: Why stacking layers to add depth does not scale

 PyTorch Lightning

 11.3 Object detection: A brief history

 R-CNN

 Fast R-CNN

 Faster R-CNN

 11.4 Faster R-CNN: A deep dive

 Convolutional backbone

 Region proposal network

 Fast R-CNN

 Training the Faster R-CNN

 Other object-detection paradigms

 12 Manifolds, homeomorphism, and neural networks

 12.1 Manifolds

 Hausdorff property

 Second countable property

 12.2 Homeomorphism

 12.3 Neural networks and homeomorphism between manifolds

 13 Fully Bayes model parameter estimation

 13.1 Fully Bayes estimation: An informal introduction

 Parameter estimation and belief injection

 13.2 MLE for Gaussian parameter values (recap)

 13.3 Fully Bayes parameter estimation: Gaussian, unknown mean, known precision

 13.4 Small and large volumes of training data, and strong and weak priors

 13.5 Conjugate priors

 13.6 Fully Bayes parameter estimation: Gaussian, unknown precision, known mean

 Estimating the precision parameter

 13.7 Fully Bayes parameter estimation: Gaussian, unknown mean, unknown precision

 Normal-gamma distribution

 Estimating the mean and precision parameters

 13.8 Example: Fully Bayesian inferencing

 Maximum likelihood estimation

 Bayesian inference

 13.9 Fully Bayes parameter estimation: Multivariate Gaussian, unknown mean, known precision

 13.10 Fully Bayes parameter estimation: Multivariate, unknown precision, known mean

 Wishart distribution

 Estimating precision

 14 Latent space and generative modeling, autoencoders, and variational autoencoders

 14.1 Geometric view of latent spaces

 14.2 Generative classifiers

 14.3 Benefits and applications of latent-space modeling

 14.4 Linear latent space manifolds and PCA

 PyTorch code for dimensionality reduction using PCA

 14.5 Autoencoders

 Autoencoders and PCA

 14.6 Smoothness, continuity, and regularization of latent spaces

 14.7 Variational autoencoders

 Geometric overview of VAEs

 VAE training, losses, and inferencing

 VAEs and Bayes’ theorem

 Stochastic mapping leads to latent-space smoothness

 Direct minimization of the posterior requires prohibitively expensive normalization

 ELBO and VAEs

 Choice of prior: Zero-mean, unit-covariance Gaussian

 Reparameterization trick

 appendix

 notations

 index

 front matter

 foreword

 As a lifelong student of the business of technological innovation, I have often wondered: what sets apart an expert from regular practitioners in any area of technology? An expert tends to have many micro-insights into the subject that often elude the ordinary practitioner. This enables them to come up with solutions that are not visible to others. The primary appeal of this book is to generate that kind of micro-intuitions into the complex subject of machine learning. For all their ubiquitousness, episodic internet recipes do not build such intuitions in a systematic, connected way. This book does.

 I also agree with the author’s position that such intuitions are impossible to build without a firm grasp of the mathematical understanding of the core principles of machine learning. Of course, all this has to be combined with programming knowledge, without which it becomes idle theory. I like the way this book attends to both theory and practice of machine learning by presenting the mathematics alongside PyTorch code snippets.

 At present, deep learning is indeed shaping human history. Machine learning and data science jobs are consistently rated as the best. If you are looking for a rewarding career in technology, this may be the area for you. And if you are looking for a book that gives you expert-level understanding but only assumes fairly basic knowledge of mathematics and programming, this is your book. With its joint, side-by-side treatment of math and PyTorch programming, it is perfect for professionals who want to become serious practitioners of the art and science of machine learning. Machine learning lies at the confluence of linear algebra, multivariate statistics, and Python programming, and this book combines them into a single coherent narrative—starting from the basics but rapidly moving into advanced topics.

 A particularly delightful aspect of the book is how it creates geometric intuitions behind complex mathematical concepts. Symbols may be forgotten, but the picture remains in the head.

 —Prith Banerjee, Chief Technology Officer ANSYS, Inc., ex Senior Vice President of Research and Director, HP Labs, formerly Professor and Director of Computational Science and Engineering, University of Illinois at Urbana-Champaign

 preface

 Artificial intelligence (machine learning or deep learning to insiders) is quite the rage at this point of time. Media is full of eager and/or paranoid predictions about a world governed by this new technology and quite justifiably so. It’s a knowledge revolution happening in front of our very eyes.

 Working on computer vision and image processing problems for decades for my PhD, then at Adobe Systems, then at Google, and then at Drishti Technologies (the Silicon Valley start-up that I co-founded), I have been at the bleeding edge of this revolution for a long time. I’ve seen not only what works, but also—perhaps more importantly—what does not work and what almost works. This gives me a unique perspective. Often when trying to solve practical problems, none of the textbook theories will work directly. We must mix various ideas to create a winning concoction. This requires a feel for what works and why and what doesn’t work and why. Itis this feel, this understanding of the inner workings of the machine/deep learning theory, along with the insights and intuitions that I hope to transmit to myreaders.

 This brings me to another point. Because of the popularity of the subject, a large volume of “deep-learning-made-easy”-type material exists in print and/or online. These articles don’t do justice to the subject. My reaction to them is “everything should be made as simple as possible, but not simpler.” Deep learning can’t be learned by going through a small fragmented set of simplified recipes from which all math has been scrubbed out. This is a mathematical topic and mastery requires understanding the math along with the programming. What is needed is a resource which presents this topic with the requisite amount of math—no more and no less—with the connection between the deep learning and math explicitly spelled out. This is exactly what this book strives to provide with its dual presentation of the math and corresponding PyTorch code snippets.

 acknowledgments

 The authors would collectively like to thank all their colleagues at Drishti Technologies, especially Etienne Dejoie and Soumya Dipta Biswas, who actively engaged in many lively discussions of the topics covered in the book; Pinakpani Mukherjee, who created some of the early diagrams; and all the MEAP reviewers whose anonymous contributions made the book possible. They would also like to thank the Manning team for their professionalism and competence, in particular Tiffany Taylor for her sharp and deep reviews.

 To all the reviewers: Al Krinker, Atul Saurav, Bobby Filar, Chris Giblin, Ekkehard Schnoor, Erik Hansson, Gaurav Bhardwaj, Grigory Sapunov, Ian Graves, James J. Byleckie, Jeff Neumann, Jehad Nasser, Juan Jose Rubio Guillamon, Julien Pohie, Kevin Cheung, Krzysztof Kamyczek, Lucian Mircea Sasu, Matthias Busch, Mike Wall, Mortaza Doulaty, Morteza Kiadi, Nelson González, Nicole Königstein, Ninoslav $\check{\rm C}$erkez, Obiamaka Agbaneje, Pejvak Moghimi, Peter Morgan, Rauhsan Jha, Sean T. Booker, Sebastián Palma Mardones, Stefano Ongarello, Tony Holdroyd, Vishwesh Ravi Shrimali, and Wiebe de Jong, your suggestions helped make this a better book.

 From Krish Chaudhury: First and foremost, I would like to thank my family:

 	
 Devyani (my wife), for covering my back for all these years despite an abundance of reasons not to, and for teaching me the value of pursuing excellence in whatever I do.

 	
 Anwesa (my daughter), who fills my life with indescribable joy with her love, positive attitude, and empathy.

 	
 Gouri (my mother), for her unquestioning faith in me.

 	
 (Late) Dr. Sujit Chaudhury (my father), for teaching me the value of insights, sincerity, and a life of letters as a goal in itself.

 	
 I would also like to thank Dr. Vineet Gupta (my former colleague from Google) and Dr. Srayanta Mukherjee (my former colleague from Flipkart), for their valuable comments and encouragement.

 From Ananya Honnedevasthana Ashok: Writing this book has been much harder than I initially expected. It has been a massive learning experience that wouldn’t have been possible without the unwavering support of my family. In particular, I’d like to thank:

 	
 Dr. Ashok (my father), for being a perennial role model and always being there for me.

 	
 Jayanthi (my mother), for her unequivocal belief in me.

 	
 Susheela (my grandmother), for her unconditional love despite chiding me for spending long hours on the book during weekends.

 	
 I would also like to thank all my teachers, especially Dr. Viraj Kumar and Prof. N.S. Kumar, for inspiring and indoctrinating a love of learning within me.

 From Sujay Narumanchi: This book has been a labor of love, requiring more effort than I anticipated but giving me a truly fulfilling learning experience that I will forever cherish. My family and friends have been my pillars of strength throughout this journey. I’d like to thank:

 	
 Sivakumar (my father), for always believing in me and encouraging me to pursue my dreams.

 	
 Vinitha (my mother), for being my rock and providing unwavering support throughout my life.

 	
 Prabhu (my brother), for being a constant source of fun and wisdom.

 	
 (Late) Ramachandran (my grandfather), for instilling in me a love of mathematics and teaching me the value of learning from first principles.

 	
 My friends Ambika, Anoop, Bharat, Neel, Pranav, and Sanjana, for providing a listening ear and a shoulder to lean on.

 From Devashish Shankar: I would like to begin by thanking my parents, Dr. Shiv Shanker and Dr. Sadhana Shanker, for their unwavering support, love, and guidance. Additionally, I would like to honor the memory of my late grandfather, Dr. Ajai Shanker, who instilled in me a deep sense of curiosity and a passion for scientific thinking that has guided me throughout my life. I am also deeply grateful to my mentors and colleagues for their guidance and support.

 about this book

 Are you the type of person who wants to know why and how things work? Instead of feeling satisfied, even grateful, that a tool solves the problem at hand, do you try to understand what the tool is really doing, why it behaves a certain way, and whether it will work under different circumstances? If yes, you have our sympathy—life won’t be peaceful for you. You also have our best wishes—these pages are dedicated to you.

 The internet abounds with prebuilt deep learning models and training systems that hardly require you to understand the underlying principles. But practical problems often do not fit any of the publicly available models. These situations call for the development of a custom model architecture. Developing such an architecture requires understanding the mathematical underpinnings of optimization and machine learning.

 Deep learning and computer vision are very practical subjects, so these questions are relevant: “Is the math necessary? Shouldn’t we spend the time learning, say, the Python nuances of deep learning?” Well, yes and no. Programming skills (in particular, Python) are mandatory. But without an intuitive understanding of the mathematics, the how and why and the answer to “Can I repurpose this model?” will not be visible to you. Mathematics allows you to see the abstractions behind the implementation.

 In many ways, the ability to form abstractions is the essence of higher intelligence. Abstraction enabled early humans to divine a digging and defending tool from what was merely a sharply pointed stone to other animals. The abstraction of the description of where something is with respect to another thing fixed in the environment (aka coordinate systems and vectors) has done wonders for human civilization. Mathematics is the language for abstractions: the most precise, succinct, and unambiguous known to humankind. Hence, mathematics is absolutely necessary as a tool to study deep learning. But we must remember that it is a tool—no more and no less. The ultimate purpose of all the math in the book is to bring out the intuitions and insights that are necessary to gain expertise in the complex world of machine learning.

 Another equally important tool is the programming language—we have chosen PyTorch—without which all the wisdom cannot be put to practical use. This book connects the two pillars of machine learning—mathematics and programming—via numerous code snippets typically presented together with the math. The book is accompanied by fully functional code in the GitHub repository. We expect readers to work out the math with paper and pencil and then run the code on a computer to understand the results. This book is not bedtime reading.

 Having (hopefully) made a case for studying the underlying mathematical principles of deep learning and computer vision, we hasten to add that mathematical rigor is not the goal of this book. Rather, the goal is to provide mathematical (in particular, geometrical) insights that make the subject more intuitive and less like black magic. At the same time, we provide Python coding exercises and visualization aids throughout. Thus, reading this book can be regarded as learning the mathematical foundations of deep learning via geometrical examples and Python exercises.

 Mastery over the material presented in this book will enable you to

 	
 Understand state-of-the-art deep learning research papers. The book provides in-depth, intuitive explanations of some of today’s seminal papers.

 	
 Study and understand a deep learning code base.

 	
 Use code snippets from the book in your tasks.

 	
 Prepare for an interview for a role as a machine learning engineer/scientist.

 	
 Determine whether a real-life problem is amenable to machine/deep learning.

 	
 Troubleshoot neural network quality issues.

 	
 Identify the right neural network architecture to solve a real-life problem.

 	
 Quickly implement a prototype architecture and train a deep learning model for a real-life problem.

 A word of caution: we often start with the basics but quickly go deeper. It’s important to read individual chapters from beginning to end, even if you’re familiar with the material presented at the start.

 Finally, the ultimate justification for an intellectual endeavor is to have fun pursuing it. So, the authors will consider themselves successful if you enjoy reading this book.

 Who should read this book?

 This book is aimed toward the reader with a basic understanding of engineering mathematics and Python programming, with a serious intent to learn deep learning. For maximum benefit, the math should be worked out with paper and pencil and the PyTorch programs executed on a computer. Here are some possible reader profiles:

 	
 A person with a degree in engineering, science, or math, possibly acquired a while ago, who is considering a career switch to deep learning. No prior knowledge of machine learning or deep learning is required.

 	
 An entry- or mid-level machine learning practitioner who wants to gain deeper insights into the workings of various techniques and graduate from downloading models from the internet and trying them out to developing custom deep learning solutions for real problems, and/or develop the ability to read and understand research publications on the topic.

 	
 A college student embarking on a career of deep learning.

 How this book is organized: A road map

 This book consists of 14 chapters and an appendix. In general, all mathematical concepts are examined from a machine learning point of view. Geometric insights are brought out and PyTorch code is provided wherever appropriate.

 	
 Chapter 1 is an overview of machine learning and deep learning. Its purpose is to establish the big picture context in the reader’s mind and familiarize the reader with some machine learning concepts like input space, feature space, model training, architecture, loss, and so on.

 	
 Chapter 2 covers the core concepts of vectors and matrices which form the building blocks for machine learning. It introduces the notions of dot product, vector length, orthogonality, linear systems, eigenvalues and eigenvectors, Moore-Penrose pseudo inverse, matrix diagonalization, spectral decomposition, and so on.

 	
 Chapter 3 provides an overview of vector calculus concepts needed for understanding deep learning. We introduce gradients, local approximation of multi-dimensional functions via Taylor expansion in arbitrary dimensional spaces, Hessian matrices, gradient descent, convexity, and the connection of all these with the idea of loss minimization in machine learning. This chapter provides the first taste of PyTorch model building.

 	
 Chapter 4 introduces principal component analysis (PCA) and singular value decomposition (SVD)—key linear algebraic tools for machine learning. We provide end-to-end PyTorch implementation of a SVD-based document retrieval system.

 	
 Chapter 5 explains the basic concepts of probability distributions from a deep learning point of view. We look at the important properties of distributions like expected value, variance and covariance, and we also cover some of the most popular probability distributions like Gaussian, Bernoulli, binomial, multinomial, categorical, and so on. We also introduce the PyTorch distributions package.

 	
 Chapter 6 explores Bayesian tools for machine learning. We study the Bayes theorem, understand model parameter estimation techniques like maximum likelihood estimation (MLE) and maximum a posteriori (MAP) estimation. We also look at latent variables, regularization, MLE for Gaussian distributions, entropy, cross entropy, conditional entropy, and KL divergence. We finally look at Gaussian mixture models (GMMs) and how to model and estimate the parameters of a GMM.

 	
 Chapter 7 deep dives into neural networks. We study perceptrons, the basic building block of neural networks and how multilayered perceptrons can model arbitrary polygonal decision boundaries as well as common logic gate operations.This enables them to perform classification. We discuss Cybenko’s universalapproximation theorem.

 	
 Chapter 8 covers activation functions for neural networks, the importance and intuition behind layers. We look at forward propagation and backpropagation (with mathematical proofs) and implement a simple neural network with PyTorch. We study how to train a neural network end to end.

 	
 Chapter 9 provides an in-depth look into various loss functions which are crucial for effective learning of neural networks. We study the math and the intuitions behind popular loss functions like cross entropy loss, regression loss, focal loss, and so on, implementing them via PyTorch. We look at geometrical insights underlying various optimization techniques like SGD, Nesterov, Adagrad, Adam, and others. Additionally, we understand why regularization is important and its relationship with MLE and MAP.

 	
 Chapter 10 introduces convolutions, a core operator for computer vision models. We study 1D, 2D, and 3D convolution, as well as transposed convolutions and their intuitive interpretations. We also implement a simple convolutional neural network via PyTorch.

 	
 Chapter 11 introduces various neural network architectures for image classification and object detection in images. We look at several image classification architectures in detail like LeNet, VGG, Inception, and Resnet. We also provide an in-depth study of Faster R-CNN for object detection.

 	
 Chapter 12 explores the manifolds, the properties of manifolds like homeomorphism, Haussdorf property, and second countable property, and also how manifolds tie in with neural networks.

 	
 Chapter 13 provides an introduction to Bayesian parameter estimation. We look at injection of prior belief into parameter estimation and how it can be used in unsupervised/semi-supervised settings. Additionally, we understand conjugate priors and the estimation of Gaussian likelihood parameters under conditions of known/unknown mean and variances.

 	
 Chapter 14 explores latent spaces and generative modeling. We understand the geometric view of latent spaces and the benefits of latent space modeling. We take another look at PCA with this new lens, along with studying autoencoders and variational autoencoders. We study how variational autoencoders regularize the latent space and hence exhibit superior properties to autoencoders.

 	
 The appendix covers mathematical proofs and derivations for some of the mathematical properties introduced in the chapters.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/math-and-architectures-of-deep-learning. Fully functional code backing the theory discussed in the book can be found on GitHub at https://github.com/krishnonwork/mathematical-methods-in-deep-learning-ipython and from the Manning website at www.manning.com. The code is presented in the form of Jupyter notebooks (organized by chapter) that can be executed independently. The code is written in Python and uses the popular PyTorch library. Important code snippets are presented as code listings throughout the book, and key concepts are highlighted using code annotations. To get started with the code, clone the repository and follow the steps described in the README.

 liveBook discussion forum

 Purchase of Math and Architectures of Deep Learning includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/math-and-architectures-of-deep-learning/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

 about the authors

 Krishnendu Chaudhury is the CTO and a co-founder of Drishti Technologies in Palo Alto, California, which applies AI to manufacturing. He has been a technology leader and inventor in the field of deep learning and computer vision for decades. Before starting Drishti, Krishnendu spent over 20 years at premier organizations, including Google (2004–2015) and Adobe Systems (1996–2004). He was with Flipkart as head of image sciences from 2015 to 2017. In 2017, he left Flipkart to start Drishti. Krishnendu earned his PhD in computer science from the University of Kentucky in Lexington. He has several dozen patents and publications in leading journals and global conferences to his credit.

 Ananya Honnedevasthana Ashok, Sujay Narumanchi, and Devashish Shankar are practicing machine learning engineers with multiple patents in the deep learning and computer vision area. They are all members of the founding engineering team at Drishti.

 about the cover illustration

 The figure on the cover of Math and Architectures of Deep Learning is “Femme Wotyak,” or “Wotyak Woman,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 1 An overview of machine learning and deep learning

 This chapter covers

 	A first look at machine learning and deep learning

 	A simple machine learning model: The cat brain

 	Understanding deep neural networks

 Deep learning has transformed computer vision, natural language and speech processing in particular, and artificial intelligence in general. From a bag of semi-discordant tricks, none of which worked satisfactorily on real-life problems, artificial intelligence has become a formidable tool to solve real problems faced by industry, at scale. This is nothing short of a revolution going on under our very noses. To lead the curve of this revolution, it is imperative to understand the underlying principles and abstractions rather than simply memorizing the “how-to” steps of some hands-on guide. This is where mathematics comes in.

 In this first chapter, we present an overview of deep learning. This will require us to use some concepts explained in subsequent chapters. Don’t worry if there are some open questions at the end of this chapter: it is aimed at orienting your mind toward this difficult subject. As individual concepts become clearer in subsequent chapters, you should consider coming back and re-reading this chapter.

 1.1 A first look at machine/deep learning: A paradigm shift in computation

 Making decisions and/or predictions is a central requirement of life. Doing so essentially involves taking in a set of sensory or knowledge inputs and processing them to generate decisions or estimates.

 For instance, a cat’s brain is often trying to choose between the following options:

 	
 run away from the object in front of it

 	
 ignore the object in front of it

 	
 approach the object in front of it and purr.

 The cat’s brain makes that decision by processing sensory inputs like the perceived hardness of the object in front of it, the perceived sharpness of the object in front of it, and so on. This is an instance of a classification problem, where the output is one of a set of possible classes.

 Some other examples of classification problems in life are as follows:

 	
 Buy vs. hold vs. sell a certain stock, from inputs like the price history of this stock and the change in price of the stock in recent times

 	
 Object recognition (from an image):

 	
 Is this a car or a giraffe?

 	
 Is this a human or a non-human?

 	
 Is this an inanimate object or a living object?

 	
 Face recognition—is this Tom or Dick or Mary or Einstein or Messi?

 	
 Action recognition from a video:

 	
 Is this person running or not running?

 	
 Is this person picking something up or not?

 	
 Is this person doing something violent or not?

 	
 Natural language processing (NLP) from digital documents:

 	
 Does this news article belong to the realm of politics or sports?

 	
 Does this query phrase match a particular article in the archive?

 Sometimes life requires a quantitative estimation instead of a classification. A lion’s brain needs to estimate how far to jump so as to land on top of its prey, by processing inputs like

 Another instance of quantitative estimation is estimating a house’s price based on inputs like current income of the house’s owner, crime statistics for the neighborhood, and so on. Machines that make such quantitative estimators are called regressors.

 Here are some other examples of quantitative estimations required in daily life:

 	
 Object localization from an image: identifying the rectangle bounding the location of an object

 	
 Stock price prediction from historical stock prices and other world events

 	
 Similarity score between a pair of documents

 Sometimes a classification output can be generated from a quantitative estimate. For instance, the cat brain described earlier can combine the inputs (hardness, sharpness, and so on) to generate a quantitative threat score. If that threat score is high, the cat runs away. If the threat score is near zero, the cat ignores the object in front of it. If the threat score is negative, the cat approaches the object and purrs.

 Many of these examples are shown in figure 1.1. In each instance, a machine—that is, a brain—transforms sensory or knowledge inputs into decisions or quantitative estimates. The goal of machine learning is to emulate that machine.

 Note that machine learning has a long way to go before it can catch up with the human brain. The human brain can single-handedly deal with thousands, if not millions, of such problems. On the other hand, at its present state of development, machine learning can hardly create a single general-purpose machine that makes a wide variety of decisions and estimates. We are mostly trying to make separate machines to solve individual tasks (such as a stock picker or a car recognizer).

 [image:]

 Figure 1.1 Examples of decision making and quantitative estimations in life

 At this point, you may ask, “Wait: converting inputs to outputs—isn’t that exactly what computers have been doing for the last 30 or more ears? What is this paradigm shift I am hearing about?” The answer is that it is a paradigm shift because we do not provide a step-by-step instruction set—that is, a program—to the machine to convert the input to output. Instead, we develop a mathematical model for the problem.

 Let’s illustrate the idea with an example. For the sake of simplicity and concreteness, we will consider a hypothetical cat brain that needs to make only one decision in life: whether to run away from the object in front of it or ignore the object or approach and purr. This decision, then, is the output of the model we will discuss. And in this toy example, the decision is made based on only two quantitative inputs (aka features): the perceived hardness and sharpness of the object (as depicted in figure 1.1). We do not provide any step-by-step instructions such as “if sharpness greater than some threshold, then run away.” Instead, we try to identify a parameterized function that takes the input and converts it to the desired decision or estimate. The simplest such function is a weighted sum of inputs:

 y(hardness, sharpness) = w0 × hardness + w1 × sharpness + b

 The weights w0, w1 and the bias b are the parameters of the function. The output y can be interpreted as a threat score. If the threat score exceeds a threshold, the cat runs away. If it is close to 0, the cat ignores the object. If the threat score is negative, the cat approaches and purrs. For more complex tasks, we will use more sophisticated functions.

 Note that the weights are not known at first; we need to estimate them. This is done through a process called model training.

 Overall, solving a problem via machine learning has the following stages:

 	
 We design a parameterized model function (e.g., weighted sum) with unknown parameters (weights). This constitutes the model architecture. Choosing the right model architecture is where the expertise of the machine learning engineer comes into play.

 	
 Then we estimate the weights via model training.

 	
 Once the weights are estimated, we have a complete model. This model can take arbitrary inputs not necessarily seen before and generate outputs. The process in which a trained model processes an arbitrary real-life input and emits an output is called inferencing.

 In the most popular variety of machine learning, called supervised learning, we prepare the training data before we commence training. Training data comprises example input items, each with its corresponding desired output. 1 Training data is often created manually: a human goes over every single input item and produces the desired output (aka target output). This is usually the most arduous part of doing machine learning.

 For instance, in our hypothetical cat brain example, some possible training data items are as follows

 input: hardness = 0.01, sharpness = 0.02 → threat = —0.90 → decision: “approach and purr”

 input: hardness = 0.50, sharpness = 0.60 → threat = 0.01 → decision: “ignore”

 input: hardness = 0.99, sharpness = 0.97 → threat = 0.90 → decision: “run away”

 where the input values of hardness and sharpness are assumed to lie between 0 and 1.

 What exactly happens during training? Answer: we iteratively process the input training data items. For each input item, we know the desired aka target) output. On each iteration, we adjust the model weight values in a way that the output of the model function on that specific input item gets at least a little closer to the corresponding target output. For instance, suppose at a given iteration, the weight values are w0 = 20 and w1 = 10, and b = 50. On the input (hardness = 0.01, sharpness = 0.02), we get an output threat score y = 50.3, which is quite different from the desired y = −0.9. We will adjust the weights: for instance, reducing the bias so w0 = 20, w1 = 10, and b = 40. The corresponding threat score y = 40.3 is still nowhere near the desired value, but it has moved closer. After we do this on many training data items, the weights will start approaching their ideal values. Note that how to identify the adjustments to the weight values is not discussed here; it requires somewhat deeper math and will be discussed later.

 As stated earlier, this process of iteratively tuning weights is called training or learning. At the beginning of learning, the weights have random values, so the machine outputs often do not match desired outputs. But with time, more training iterations happen, and the machine “learns” to generate the correct output. That is when the model is ready for deployment in the real world. Given arbitrary input, the model will (hopefully) emit something close to the desired output during inferencing.

 Come to think of it, that is probably how living brains work. They contain equivalents of mathematical models for various tasks. Here, the weights are the strengths of the connections (aka synapses) between the different neurons in the brain. In the beginning, the parameters are untuned; the brain repeatedly makes mistakes. For example, a baby’s brain often makes mistakes in identifying edible objects—anybody who has had a child will know what we are talking about. But each example tunes the parameters (eating green and white rectangular things with a $ sign on them invites much scolding—should not eat them in the future, etc.). Eventually, this machine tunes its parameters to yield better results.

 One subtle point should be noted here. During training, the machine is tuning its parameters so that it produces the desired outcome—on the training data input only. Of course, it sees only a small fraction of all possible inputs during training—we are not building a lookup table from known inputs to known outputs. Hence, when this machine is released in the world, it mostly runs on input data it has never seen before. What guarantee do we have that it will generate the right outcome on never-before-seen data? Frankly, there is no guarantee. Only, in most real-life problems, the inputs are not really random. They have a pattern. Hopefully, the machine will see enough during training to capture that pattern. Then its output on unseen input will be close to the desired value. The closer the distribution of the training data is to real life, the more likely that becomes.

 1.2 A function approximation view of machine learning:Models and their training

 As stated in section 1.1, to create a brain-like machine that makes classifications or estimations, we have to find a mathematical function (model) that transforms inputs into corresponding desired outputs. Sadly, however, in typical real-life situations, we do not know that transformation function. For instance, we do not know the function that takes in past prices, world events, and so on and estimates the future price of a stock—something that stops us from building a stock price estimator and getting rich. All we have is the training data—a set of inputs on which the output is known. How do we proceed, then? Answer: we will try to model the unknown function. This means we will create a function that will be a proxy or surrogate to the unknown function. Viewed this way, machine learning is nothing but function approximation—we are simply trying to approximate the unknown classification or estimation function.

 Let’s briefly recap the main ideas from the previous section. In machine learning, we try to solve problems that can be abstractly viewed as transforming a set of inputs to an output. The output is either a class or an estimated value. Since we do not know the true transformation function, we try to come up with a model function. We start by designing—using our physical understanding of the problem—a model function with tunable parameter values that can serve as a proxy for the true function. This is the model architecture, and the tunable parameters are also known as weights. The simplest model architecture is one where the output is a weighted sum of the input values. Determining the model architecture does not fully determine the model—we still need to determine the actual parameter values (weights). That is where training comes in. During training, we find an optimal set of weights that transform the training inputs to outputs that match the corresponding training outputs as closely as possible. Then we deploy this machine in the world: its weights are estimated and the function is fully determined, so on any input, it simply applies the function and generates an output. This is called inferencing. Of course, training inputs are only a fraction of all possible inputs, so there is no guarantee that inferencing will yield a desired result on all real inputs. The success of the model depends on the appropriateness of the chosen model architecture and the quality and quantity of training data.

 Obtaining training data

 After mastering machine learning, the biggest struggle turns out to be the procurement of training data. When practitioners can afford it, it is common practice to use humans to hand-generate the outputs corresponding to the training data inputs (these target outputs are sometimes referred to as ground truth). This process, known as human labeling or human curation, involves an army of human beings looking at a substantial number of training data inputs and producing the corresponding ground truth outputs. For some well-researched problems, we may be lucky enough to get training data on the internet; otherwise it becomes a daunting challenge. More on this later.

 Now, let’s study the process of model building with a concrete example: the cat brain machine shown in figure 1.1.

 1.3 A simple machine learning model: The cat brain

 For the sake of simplicity and concreteness, we will deal with a hypothetical cat that needs to make only one decision in life: whether to run away from the object in front of it, ignore it, or approach and purr. And it makes this decision based on only two quantitative inputs pertaining to the object in front of it (shown in figure 1.1).

 NOTE This chapter is a lightweight overview of machine/deep learning. As such, it relies some on mathematical concepts that we will introduce later. You are encouraged to read this chapter now, nonetheless, and perhaps re-read it after digesting the chapters on vectors and matrices.

 1.3.1 Input features

 The input features are x0, signifying hardness, and x1, signifying sharpness. Without loss of generality, we can normalize the inputs. This is a pretty popular trick whereby the input values ranging between a minimum possible value vmin and a maximum possible value vmax are transformed to values between 0 and 1. To transform an arbitrary input value v to a normalized value vnorm, we use the formula

 [image:]

 Equation 1.1

 In mathematical parlance, transformation via equation 1.1, v ∈ [vmin, vmax] → vnorm ∈ [0,1] maps the values v from the input domain [vmin, vmax] to the output values vnorm in the range [0,1].

 A two-element vector [image:] represents a single input instance succinctly.

 1.3.2 Output decisions

 The final output is multiclass and can take one of three possible values: 0, implying running away from the object in front of the cat; 1, implying ignoring the object; and 2, implying approaching the object and purring. It is possible in machine learning to compute the class directly. However, in this example, we will have our model estimate a threat score. It is interpreted as follows: threat high positive = run away, threat near zero = ignore, and threat high negative = approach and purr (negative threat is attractive).

 We can make a final multiclass run/ignore/approach decision based on threat score by comparing the threat score y against a threshold δ, as follows:

 [image:]

 Equation 1.2

 1.3.3 Model estimation

 Now for the all-important step: we need to estimate the function that transforms the input vector to the output. With slight abuse of terms, we will denote this function as well as the output by y. In mathematical notation, we want to estimate y([image:]).

 Of course, we do not know the ideal function. We will try to estimate this unknown function from the training data. This is accomplished in two steps:

 	
 Model architecture selection—Designing a parameterized function that we expect is a good proxy or surrogate for the unknown ideal function

 	
 Training—Estimating the parameters of that chosen function such that the outputs on training inputs match corresponding outputs as closely as possible

 1.3.4 Model architecture selection

 This is the step where various machine learning approaches differ from one another. In this toy cat brain example, we will use the simplest possible model. Our model has three parameters, w0, w1, b. They can be represented compactly with a single two-element vector [image:] and a constant bias b ∈ ℝ (here, ℝ denotes the set of all real numbers, ℝ2 denotes the set of 2D vectors with both elements real, and so on). It emits the threat score, y, which is computed as

 [image:]

 Equation 1.3

 Note that b is a slightly special parameter. It is a constant that does not get multiplied by any of the inputs. It is common practice in machine learning to refer to it as bias; the other parameters are multiplied by inputs as weights.

 1.3.5 Model training

 Once the model architecture is chosen, we know the exact parametric function we are going to use to model the unknown function y([image:]) that transforms inputs to outputs. We still need to estimate the function’s parameters. Thus, we have a function with unknown parameters, and the parameters are to be estimated from a set of inputs with known outputs (training data). We will choose the parameters so that the outputs on the training data inputs match the corresponding outputs as closely as possible.

 Iterative training

 This problem has been studied by mathematicians and is known as a function-fitting problem in mathematics. What changed with the advent of machine learning, however, is the sheer scale. In machine learning, we deal with training data comprising millions and millions of items. This altered the philosophy of the solution. Mathematicians use a closed-form solution, where the parameters are estimated by directly solving equations involving all the training data items together. In machine learning, we go for iterative solutions, dealing with a few training data items (or perhaps only one) at a time. In the iterative solution, there is no need to hold all the training data in the computer’s memory. We simply load small portions of it at a time and deal with only that portion. We will exemplify this with our cat brain example.

 Concretely, the goal of the training process is to estimate the parameters w0, w1, b or, equivalently, the vector [image:] along with constant b from equation 1.3 in such a way that the output y(x0, x1) on the training data input (x0, x1) matches the corresponding known training data outputs (aka ground truth [GT]) as much as possible.

 Let the training data consist of N + 1 inputs [image:](0), [image:](1), ⋯ [image:](N). Here, each [image:](i) is a 2 × 1 vector denoting a single training data input instance. The corresponding desired threat values (outputs) are ygt(0), ygt(1), ⋯ ygt(N), say (here, the subscript gt denotes ground truth). Equivalently, we can say that the training data consists of N + 1 (input, output) pairs:

 ([image:](0), ygt(0)), ([image:](1), ygt(1))⋯([image:](N), ygt(N))

 Suppose [image:] denotes the (as-yet-unknown) optimal parameters for the model. Then, given an arbitrary input [image:], the machine will estimate a threat value of ypredicted = [image:]T[image:] + b. On the ith training data pair, ([image:](i), ygt(i)) the machine will estimate

 ypredicted(i) = [image:]T[image:](i) + b

 while the desired output is ygt(i). Thus the squared error (aka loss) made by the machine on the ith training data instance is 2

 ei2 = (ypredicted(i)−ygt(i))2

 The overall loss on the entire training data set is obtained by adding the loss from each individual training data instance:

 [image:]

 The goal of training is to find the set of model parameters (aka weights), [image:], that minimizes the total error E. Exactly how we do this will be described later.

 In most cases, it is not possible to come up with a closed-form solution for the optimal [image:], b. Instead, we take an iterative approach depicted in algorithm 1.1.

 Algorithm 1.1 Training a supervised model

 Initialize parameters [image:], b with random values

 ⊳ iterate while error not small enough

 while (E2 = Σi = 0i=N ([image:]T[image:]i ¸ b — ygt(i))2 > threshold) do

 ⊳ iterate over all training data instances

 for ∀i ∈ 2 [0, N] do

 ⊳ details provided in section 3.3 after gradients are introduced

 Adjust [image:], b so that E2 is reduced

 end for

 end while

 ⊳ remember the final parameter values as optimal

 [image:]*← [image:], b*← b

 In this algorithm, we start with random parameter values and keep tuning the parameters so the total error goes down at least a little. We keep doing this until the error becomes sufficiently small.

 In a purely mathematical sense, we continue the iterations until the error is minimal. But in practice, we often stop when the results are accurate enough for the problem being solved. It is worth re-emphasizing that error here refers only to error on training data.

 1.3.6 Inferencing

 Finally, a trained machine (with optimal parameters [image:]*, b* is deployed in the world. It will receive new inputs [image:] and will infer ypredicted([image:]) = [image:]*T[image:] + b*. Classification will happen by thresholding ypredicted, as shown in equation 1.2.

 1.4 Geometrical view of machine learning

 Each input to the cat brain model is an array of two numbers: x0 (signifying hardness of the object), x1 signifying sharpness of the object) or, equivalently, a 2 × 1 vector [image:]. A good mental picture is to think of the input as a point in a high-dimensional space. The input space is often called the feature space—a space where all the characteristic features to be examined by the model are represented. The feature space dimension is two in this case, but in real-life problems it will be in the hundreds or thousands or more. The exact dimensionality of the input changes from problem to problem, but the intuition that it is a point remains.

 The output y should also be viewed as a point in another high-dimensional space. In this toy problem, the dimensionality of the output space is one, but in real problems, it will be higher. Typically, however, the number of output dimensions is much smaller than the number of input dimensions.

 Geometrically speaking, a machine learning model essentially maps a point in the feature space to a point in the output space. It is expected that the classification or estimation job to be performed by the model is easier in the output space than in the feature space. In particular, for a classification job, input points belonging to separate classes are expected to map to separate clusters in output space.

 Let’s continue with our example cat brain model to illustrate the idea. As stated earlier, our feature space is 2D, with two coordinate axes X0 signifying hardness and X1 signifying sharpness.3 Individual points in this 2D space are denoted by coordinate values (x0, x1) in lowercase (see figure 1.2). As shown in the diagram, a good way to model the threat score is to measure the distance from line x0 + x1 = 1.

 [image:]

 Figure 1.2 2D input point space for the cat brain model. The bottom-left corner shows objects with low hardness and low sharpness objects (–), while the top-right corner shows objects with high hardness and high sharpness (+). Intermediate values are near the diagonal ($).

 From coordinate geometry, in a 2D space with coordinate axes X0 and X1, the signed distance of a point (a, b) from the line x0 + x1 = 1 is y = (a+b–1)/√2. Examining the sign of y, we can determine which side of the separator line the input point belongs to. In the simple situation depicted in figure 1.2, observation tells us that the threat score can be proxied by the signed distance, y, from the diagonal line x0 + x1 – 1 = 0. We can make the run/ignore/approach decision by thresholding y. Values close to zero imply ignore, positive values imply run away, and negative values imply approach and purr. From high school geometry, the distance of an arbitrary input point (x0=a, x1=b) from line x0 + x1 – 1 = 0 is (a+b–1)/√2. Thus, the function y(x0, x1) = (x0 + x1–1)/√2 is a possible model for the cat brain threat estimator function. Training should converge to w0 = 1/√2, w1 = 1/√2 and b = –1/√2.

 Thus, our simplified cat brain threat score model is

 [image:]

 Equation 1.4

 It maps the 2D input points, signifying the hardness and sharpness of the object in front of the cat, to a 1D value corresponding to the signed distance from a separator line. This distance, physically interpretable as a threat score, makes it possible to separate the classes (negative threat, neutral, positive threat) via thresholding, as shown in equation 1.2. The separate classes form distinct clusters in the output space, depicted by +, –, and $ signs in the output space. Low values of inputs produce negative threats (the cat will approach and purr): for example, y(0, 0) = –1/√2. High values of inputs produce high threats (the cat will run away): for example, y(1, 1) = 1/√2. Medium values of inputs produce near-zero threats (the cat will ignore the object): for example, y(0.5, 0.5) = 0. Of course, because the problem is so simple, we could come up with the model parameters via simple observation. In real-life situations, this will need training.

 The geometric view holds in higher dimensions, too. In general, an n-dimensional input vector [image:] is mapped to an m-dimensional output vector (usually m < n) in such a way that the problem becomes much simpler in the output space. An example with 3D feature space is shown in figure 1.3.

 [image:]

 Figure 1.3 A model maps the points from input (feature) space to an output space where it is easier to separate the classes. For instance, in this figure, input feature points belonging to two classes, red (+) and green (–) are distributed over the volume of a cylinder in a 3D feature space. The model unfurls the cylinder into a rectangle. The feature points are mapped onto a 2D planar output space where the two classes can be discriminated with a simple linear separator.

 [image:]

 Figure 1.4 The two classes (indicated by light and dark shades) cannot be separated by a line. A curved separator is needed. In 3D, this is equivalent to saying that no plane can separate the surfaces; a curved surface is necessary. In still higher-dimensional spaces, this is equivalent to saying that no hyperplane can separate the classes; a curved is needed.

 1.5 Regression vs. classification in machine learning

 As briefly outlined in section 1.1, there are two types of machine learning models: regressors and classifiers.

 In a regressor, the model tries to emit a desired value given a specific input. For instance, the first stage (threat-score estimator) of the cat brain model in section 1.3 is a regressor model.

 Classifiers, on the other hand, have a set of prespecified classes. Given a specific input, they try to emit the class to which the input belongs. For instance, the full cat brain model has three classes: 1) run away, (2) ignore, and (3) approach and purr. Thus, it takes an input (hardness and sharpness values) and emits an output decision (aka class).

 In this example, we convert a regressor into a classifier by thresholding the output of the regressor (see equation 1.2). It is also possible to create models that directly output the class without having an intervening regressor.

 1.6 Linear vs. nonlinear models

 In figure 1.2 we faced a rather simple situation where the classes could be separated by a line (a hyperplane in higher-dimensional surfaces). This does not happen often in real life. What if the points belonging to different classes are as shown in figure 1.4? In such cases, our model architecture should no longer be a simple weighted combination. It is a nonlinear function. For instance, check the curved separator in figure 1.4. Nonlinear models make sense from the function approximation point of view as well. Ultimately, our goal is to approximate very complex and highly nonlinear functions that model the classification or estimation processes demanded by life. Intuitively, it seems better to use nonlinear functions to model them.

 A very popular nonlinear function in machine learning is the sigmoid function, so named because it looks like the letter S. The sigmoid function is typically symbolized by the Greek letter σ. It is defined as

 [image:]

 Equation 1.5

 The graph of the sigmoid function is shown in figure 1.5. Thus we can use the following popular model architecture (still kind of simple) that takes the sigmoid without parameters) of the weighted sum of the inputs:

 [image:]

 Equation 1.6

 [image:]

 Figure 1.5 The sigmoid graph

 The sigmoid imparts the nonlinearity. This architecture can handle relatively more complex classification tasks than the weighted sum alone. In fact, equation 1.6 depicts the basic building block of a neural network.

 1.7 Higher expressive power through multiple nonlinear layers: Deep neural networks

 In section 1.6 we stated that adding nonlinearity to the basic weighted sum yielded a model architecture that is able to handle more complex tasks. In machine learning parlance, the nonlinear model has more expressive power.

 Now consider a real-life problem: say, building a dog recognizer. The input space comprises pixel locations and pixel colors (x, y, r, g, b, where r, g, b denote the red, green, and blue components of a pixel color). The input dimensionality is large (proportional to the number of pixels in the image). Figure 1.6 gives a small glimpse of the possible variations in background and foreground that a typical deep learning system (such as a dog image recognizer) has to deal with.

 [image:]

 Figure 1.6 A glimpse into background and foreground variations that a typical deep learning system (here, a dog image recognizer) has to deal with

 We need a machine with really high expressive power here. How do we create such a machine in a principled way?

 Instead of generating the output from input in a single step, how about taking a cascaded approach? We will generate a set of intermediate or hidden outputs from the inputs, where each hidden output is essentially a single logistic regression unit. Then we add another layer that takes the output of the previous layer as input, and so on. Finally, we combine the outermost hidden layer outputs into the grand output.

 We describe the system in the following equations. Note that we have added a superscript to the weights to identify the layer (layer 0 is closest to the input; layer L is the last layer, furthest from the input). We have also made the subscripts twodimensional (so the weights for a given layer become a matrix). The first subscript identifies the destination node, and the second subscript identifies the source node (see figure 1.7).

 [image:]

 Figure 1.7 Multilayered neural network

 The astute reader may notice that the following equations do not have an explicit bias term. That is because, for simplicity of notation, we have rolled it into the set of weights and assumed that one of the inputs (say, x0 = 1) and the corresponding weight (such as w0) is the bias.

 Layer 0: generates n0 hidden outputs from n + 1 inputs

 [image:]

 Equation 1.7

 Layer 1: generates n1 hidden outputs from n0 hidden outputs from layer

 [image:]

 Equation 1.8

 Final layer (L): generates m + 1 visible outputs from nL − 1 previous layer hidden outputs

 [image:]

 Equation 1.9

 These equations are shown in figure 1.7. The machine depicted in figure 1.7 can be incredibly powerful, with huge expressive power. We can adjust its expressive power systematically to fit the problem at hand. It then is a neural network. We will devote the rest of the book to studying this.

 Summary

 In this chapter, we gave an overview of machine learning, leading all the way up to deep learning. The ideas were illustrated with a toy cat brain example. Some mathematical notions (e.g., vectors) were used in this chapter without proper introduction, and you are encouraged to revisit this chapter after vectors and matrices have been introduced.

 We would like to leave you with the following mental pictures from this chapter:

 	
 Machine learning is a fundamentally different paradigm of computing. In traditional computing, we provide a step-by-step instruction sequence to the computer, telling it what to do. In machine learning, we build a mathematical model that tries to approximate the unknown function that generates a classification or estimation from inputs.

 	
 The mathematical nature of the model function is stipulated from the physical nature and complexity of the classification or estimation task. Models have parameters. Parameter values are estimated from training data—inputs with known outputs. The parameter values are optimized so that the model output is as close as possible to training outputs on training inputs.

 	
 An alternative geometric view of a machine is a transformation that maps points in the multidimensional input space to a point in the output space.

 	
 The more complex the classification/estimation task, the more complex the approximating function. In machine learning parlance, complex tasks need machines with greater expressive power. Higher expressive power comes from nonlinearity (e.g., the sigmoid function; see equation 1.5) and a layered combination of simpler machines. This takes us to deep learning, which is nothing but a multilayered nonlinear machine.

 	
 Complex model functions are often built by combining simpler basis functions.

 Tighten your seat belts: the fun is about to get more intense.

 1 If you have some experience with machine learning, you will realize that we are talking about “supervised” learning here. There are also machines that do not need known outputs to learn—so-called “unsupervised” machines—and we will talk about them later. ↩

 2 In this context, note that it is a common practice to square the error/loss to make it sign independent. If we desire an output of, say, 10, we are equally happy/unhappy if the output is 9.5 or 10.5. Thus, an error of + 5 or −5 is effectively the same; hence we make the error sign independent. ↩

 3 We use X0, X1 as coordinate symbols instead of the more familiar X, Y so as not to run out of symbols when going to higher-dimensional spaces. ↩

 4 In mathematics, vectors can have an infinite number of elements. Such vectors cannot be expressed as arrays—but we will mostly ignore them in this book. ↩

 2 Vectors, matrices, and tensors in machine learning

 This chapter covers

 	Vectors and matrices and their role in datascience

 	Working with eigenvalues and eigenvectors

 	Finding the axes of a hyper-ellipse

 At its core, machine learning, and indeed all computer software, is about number crunching. We input a set of numbers into the machine and get back a different set of numbers as output. However, this cannot be done randomly. It is important to organize these numbers appropriately and group them into meaningful objects that go into and come out of the machine. This is where vectors and matrices come in. These are concepts that mathematicians have been using for centuries—we are simply reusing them in machine learning.

 In this chapter, we will study vectors and matrices, primarily from a machine learning point of view. Starting from the basics, we will quickly graduate to advanced concepts, restricting ourselves to topics relevant to machine learning.

 We provide Jupyter Notebook-based Python implementations for most of the concepts discussed in this and other chapters. Complete, fully functional code that can be downloaded and executed (after installing Python and Jupyter Notebook) can be found at http://mng.bz/KMQ4. The code relevant to this chapter can be found at http://mng.bz/d4nz.

 2.1 Vectors and their role in machine learning

 Let’s revisit the machine learning model for a cat brain introduced in section 1.3. It takes two numbers as input, representing the hardness and sharpness of the object in front of the cat. The cat brain processes the input and generates an output threat score that leads to a decision to run away or ignore or approach and purr. The two input numbers usually appear together, and it will be handy to group them into a single object. This object will be an ordered sequence of two numbers, the first representing hardness and the second representing sharpness. Such an object is a perfect example of a vector.

 Thus, a vector can be thought of as an ordered sequence of two or more numbers, also known as an array of numbers.1 Vectors constitute a compact way of denoting a set of numbers that together represent some entity. In this book, vectors are represented by lowercase letters with an overhead arrow and arrays by square brackets. For instance, the input to the cat brain model in section 1.3 was a vector [image:], where x0 represented hardness and x1 represented sharpness.

 Outputs to machine learning models are also often represented as vectors. For instance, consider an object recognition model that takes an image as input and emits a set of numbers indicating the probabilities that the image contains a dog, human, or cat, respectively. The output of such a model is a three element vector [image:], where the number y0 denotes the probability that the image contains a dog, y1 denotes the probability that the image contains a human, and y2 denotes the probability that the image contains a cat. Figure 2.1 shows some possible input images and corresponding output vectors.

 [image:]

 Figure 2.1 Input images and corresponding output vectors denoting probabilities that the image contains a dog and/or human and/or cat, respectively. Example output vectors are shown.

 In multilayered machines like neural networks, the input and output to a layer can be vectors. We also typically represent the parameters of the model function (see section 1.3) as vectors. This is illustrated in section 2.3.

 Table 2.1 Toy documents and corresponding feature vectors describing them. Words eligible for the feature vector are bold. The first element of the feature vector indicates the number of occurrences of the word gun and the second violence.

 	
 Docid

 	
 Document

 	
 Feature vector

 	
 d0

 	
 Roses are lovely. Nobody hates roses.

 	
 [0 0]

 	
 d1

 	
 Gun violence has reached an epidemic proportion in America.

 	
 [1 1]

 	
 d2

 	
 The issue of gun violence is really over-hyped. One can find many instances of violence, where no guns were involved.

 	
 [2 2]

 	
 d3

 	
 Guns are for violence prone people. Violence begets guns. Guns beget violence.

 	
 [3 3]

 	
 d4

 	
 I like guns but I hate violence. I have never been involved in violence. But I own many guns. Gun violence is incomprehensible to me. I do believe gun owners are the most anti violence people on the planet. He who never uses a gun will be prone to senseless violence.

 	
 [5 5]

 	
 d5

 	
 Guns were used in a armed robbery in San Francisco last night.

 	
 [1 0]

 	
 d6

 	
 Acts of violence usually involves a weapon.

 	
 [0 1]

 One particularly significant notion in machine learning and data science is the idea of a feature vector. This is essentially a vector that describes various properties of the object being dealt with in a particular machine learning problem. We will illustrate the idea with an example from the world of natural language processing (NLP). Suppose we have a set of documents. We want to create a document retrieval system where, given a new document, we have to retrieve similar documents in the system. This essentially boils down to estimating the similarity between documents in a quantitative fashion. We will study this problem in detail later, but for now, we want to note that the most natural way to approach this is to create feature vectors for each document that quantitatively describe the document. In section 2.5.6, we will see how to measure the similarity between these vectors; here, let’s focus on simply creating descriptor vectors for the documents. A popular way to do this is to choose a set of interesting words (we typically exclude words like “and,” “if,” and “to” that are present in all documents from this list), count the number of occurrences of those interesting words in each document, and make a vector of those values. Table 2.1 shows a toy example with six documents and corresponding feature vectors. For simplicity, we have considered only two of the possible set of words: gun and violence, plural or singular, uppercase or lowercase.

 As a different example, the sequence of pixels in an image can also be viewed as a feature vector. Neural networks in computer vision tasks usually expect this feature vector.

 2.1.1 The geometric view of vectors and its significance in machine learning

 Vectors can also be viewed geometrically. The simplest example is a two-element vector [image:]. Its two elements can be taken to be x and y, Cartesian coordinates in a two-dimensional space, in which case the vector corresponds to a point in that space. Vectors with n elements represent points in an n-dimensional space. The ability to see inputs and outputs of a machine learning model as points allows us to view the model itself as a geometric transformation that maps input points to output points in some high-dimensional space. We have already seen this in section 1.4. It is an enormously powerful concept we will use throughout the book.

 A vector represents a point in space. Also, an array of coordinate values like [image:] describes the position of one point in a given coordinate system. Hence, an array (of coordinate values) can be viewed as the quantitative representation of a vector. See figure 2.2 to get an intuitive understanding of this.

 [image:]

 Figure 2.2 A vector describing the position of point P with respect to point O. The basic mental picture is an arrowed line. This agrees with the definition of a vector that you may have learned in high school: a vector has a magnitude (length of the arrowed line) and direction (indicated by the arrow). On a plane, this is equivalent to the ordered pair of numbers x, y, where the geometric interpretations of x and y are as shown in the figure. In this context, it is worthwhile to note that only the relative positions of the points O and P matter. If both the points are moved, keeping their relationship intact, the vector does not change.

 For a real life example, consider the plane of a page of this book. Suppose we want to reach the top-right corner point of the page from the bottom-left corner. Let’s call the bottom-left corner O and the top-right corner P. We can travel the width (8.5 inches) to the right to reach the bottom-left corner and then travel the height (11 inches) upward to reach the top-right corner. Thus, if we choose a coordinate system with the bottom-left corner as the origin and the X-axis along the width, and the Y-axis along the height, point P corresponds to the array representation [image:]. But we could also travel along the diagonal from the bottom-left to the top-right corner to reach P from O. Either way, we end up at the same point P.

 This leads to a conundrum. The vector [image:] represents the abstract geometric notion “position of P with respect to O” independent of our choice of coordinate axes. On the other hand, the array representation depends on the choice of a coordinate system. For example, the array [image:] represents the top-right corner point P only under a specific choice of coordinate axes (parallel to the sides of the page) and a reference point (bottom-left corner). Ideally, to be unambiguous, we should specify the coordinate system along with the array representation. Why don’t we ever do this in machine learning? Because in machine learning, it doesn’t exactly matter what the coordinate system is as long as we stick to any fixed coordinate system. Machine learning is about minimizing loss functions (which we will study later). As such, absolute positions of point are immaterial, only relative positions matter.

 There are explicit rules (which we will study later) that state how the vector transforms when the coordinate system changes. We will invoke them when necessary. All vectors used in a machine learning computation must consistently use the same coordinate system or be transformed appropriately.

 One other point: planar spaces, such as the plane of the paper on which this book is written, are two-dimensional (2D). The mechanical world we live in is three-dimensional (3D). Human imagination usually fails to see higher dimensions. In machine learning and data science, we often talk of spaces with thousands of dimensions. You may not be able to see those spaces in your mind, but that is not a crippling limitation. You can use 3D analogues in your head. They work in a surprisingly large variety of cases. However, it is important to bear in mind that this is not always true. Some examples where the lower-dimensional intuitions fail at higher dimensions will be shown later.

 2.2 PyTorch code for vector manipulations

 PyTorch is an open source machine learning library developed by Facebook’s artificial intelligence group. It is one of the most elegant practical tools for developing deep learning applications at present. In this book, we aim to familiarize you with PyTorch and similar programming paradigms alongside the relevant mathematics. Knowledge of Python basics will be assumed. You are strongly encouraged to try out all the code snippets in this book (after installing the appropriate packages like PyTorch, that is).

 All the Python code in this book is produced via Jupyter Notebook. A summary of the theoretical material presented in the code is provided before the code snippet.

 2.2.1 PyTorch code for the introduction to vectors

 Listing 2.1 shows how to create and access vectors and subvectors and slice and dice vectors using PyTorch.

 NOTE Fully functional code demonstrating how to create a vector and access its elements, executable via Jupyter Notebook, can be found at http://mng.bz/xm8q.

 Listing 2.1 Introduction to vectors via PyTorch

 v = torch.tensor([0.11, 0.01, 0.98, 0.12, 0.98, ①
 ,0.85, 0.03, 0.55, 0.49, 0.99,
 0.02, 0.31, 0.55, 0.87, 0.63],
 dtype=torch.float64) ②

first_element = v[0]
third_element = v[2] ③

last_element = v[-1]
second_last_element = v[-2] ④

second_to_fifth_elements = v[1:4] ⑤

first_to_third_elements = v[:2]
last_two_elements = v[-2:] ⑥

num_elements_in_v = len(v)

u = np.array([0.11, 0.01, 0.98, 0.12, 0.98, 0.85, 0.03,
 0.55, 0.49, 0.99, 0.02, 0.31, 0.55, 0.87,
 0.63])

u = torch.from_numpy(u) ⑦

diff = v.sub(u) ⑧

u1 = u.numpy() ⑨

 ① torch.tensor represents a multidimensional array. The vector is a 1D tensor that can be initialized by directly specifying values.

 ② Tensor elements are floats by default. We can force tensors to be other types such as float64 (double).

 ③ The square bracket operator lets us access individual vector elements.

 ④ Negative indices count from the end of the array. –1 denotes the last element. -2 denotes the second-to-last element.

 ⑤ The colon operator slices off a range of elements from the vector.

 ⑥ Nothing before a colon denotes the beginning of~the~array. Nothing after a colon denotes the end~of~the array.

 ⑦ Torch tensors can be initialized from NumPy arrays.

 ⑧ The difference between the Torch tensor and its NumPy version is zero.

 ⑨ Torch tensors can be converted to NumPy arrays.

 2.3 Matrices and their role in machine learning

 Sometimes it is not sufficient to group a set of numbers into a vector. We have to collect several vectors into another group. For instance, consider the input to training a machine learning model. Here we have several input instances, each consisting of a sequence of numbers. As seen in section 2.1, the sequence of numbers belonging to a single input instance can be grouped into a vector. How do we represent the entire collection of input instances? This is where the concept of matrices comes in handy from the world of mathematics. A matrix can be viewed as a rectangular array of numbers arranged in a fixed count of rows and columns. Each row of a matrix is a vector, and so is each column. Thus a matrix can be thought of as a collection of row vectors. It can also be viewed as a collection of column vectors. We can represent the entire set of numbers that constitute the training input to a machine learning model as a matrix, with each row vector corresponding to a single training instance.

 Consider our familiar cat-brain problem again. As stated earlier, a single input instance to the machine is a vector [image:], where x0 describes the hardness of the object in front of the cat. Now consider a training dataset with many such input instances, each with a known output threat score. You might recall from section 1.1 that the goal in machine learning is to create a function that maps these inputs to their respective outputs with as little overall error as possible. Our training data may look as shown in table 2.2 (note that in real-life problems, the training dataset is usually large—often millions of input-output pairs—but in this toy problem, we will have 8 training data instances).

 Table 2.2 Example training dataset for our toy machine learning–based cat brain

 	

 	
 Input value: Hardness

 	
 Input value: Sharpness

 	
 Output: Threat score

 	
 0

 	
 0.11

 	
 0.09

 	
 −0.8

 	
 1

 	
 0.01

 	
 0.02

 	
 −0.97

 	
 2

 	
 0.98

 	
 0.91

 	
 0.89

 	
 3

 	
 0.12

 	
 0.21

 	
 −0.68

 	
 4

 	
 0.98

 	
 0.99

 	
 0.95

 	
 5

 	
 0.85

 	
 0.87

 	
 0.74

 	
 6

 	
 0.03

 	
 0.14

 	
 −0.88

 	
 7

 	
 0.55

 	
 0.45

 	
 0.00

 From table 2.2, we can collect the columns corresponding to hardness and sharpness into a matrix, as shown in equation 2.1—this is a compact representation of the training dataset for this problem. 2

 [image:]

 Equation 2.1

 Each row of matrix X is a particular input instance. Different rows represent different input instances. On the other hand, different columns represent different feature elements. For example, the 0th row of matrix X is the vector [x00 x01] representing the 0th input instance. Its elements, x00 and x01 represent different feature elements, hardness and sharpness respectively of the 0th training input instance.

 2.3.1 Matrix representation of digital images

 Digital images are also often represented as matrices. Here, each element represents the brightness at a specific pixel position (x, y coordinate) of the image. Typically, the brightness value is normalized to an integer in the range 0 to 255. 0 is black, 255 is white, and 128 is gray.3 Following is an example of a tiny image, 9 pixels wide and 4 pixels high:

 [image:]

 Equation 2.2

 The brightness increases gradually from left to right and also from top to bottom. I00 represents the top-left pixel, which is black. I3, 8 represents the bottom-right pixel, which is white. The intermediate pixels are various shades of gray between black and white. The actual image is shown in figure 2.2.

 [image:]

 Figure 2.3 Image corresponding to matrix I4, 9 in equation 2.2

 2.4 Python code: Introducing matrices, tensors, and images via PyTorch

 For programming purposes, you can think of tensors as multidimensional arrays. Scalars are zero-dimensional tensors. Vectors are one-dimensional tensors. Matrices are two-dimensional tensors. RGB images are three-dimensional tensors (colorchannels × height × width). A batch of 64 images is a four-dimensional tensor (64 × colorchannels × height × width).

 Listing 2.2 Introducing matrices via PyTorch

 X = torch.tensor(①
 [
 [0.11, 0.09], [0.01, 0.02], [0.98, 0.91],
 [0.12, 0.21], [0.98, 0.99], [0.85, 0.87],
 [0.03, 0.14], [0.55, 0.45] ②
]
)

print("Shape of the matrix is: {}".format(X.shape)) ③

first_element = X[0, 0] ④

row_0 = X[0, :] ⑤
row_1 = X[1, 0:2] ⑥

column_0 = X[:, 0] ⑦
column_1 = X[:, 1] ⑧

 ① A matrix is a 2D array of numbers: i.e., a 2D tensor. The entire training data input set for a machine-learning model can be viewed as a matrix. Each input instance is one row. Row count ≡ number of training examples, column count ≡ training instance size

 ② Cat-brain training data input: 8 examples, each with two values (hardness, sharpness). An 8 × 2 tensor is created by specifying values.

 ③ The shape of a tensor is a list. For a matrix, the first list element is num rows; the second list element is num columns.

 ④ Square brackets extract individual matrix elements.

 ⑤ A standalone colon operator denotes all possible indices.

 ⑥ The colon operator denotes the range of indices.

 ⑦ 0th column

 ⑧ 1st column

 Listing 2.3 Slicing and dicing matrices

 first_3_training_examples = X[:3,] ①
 ②
print("Sharpness of 5-7 training examples is: {}"
 .format(X[5:8, 1])) ③

 ① Ranges of rows and columns can be specified via the colon operator to slice off (extract) submatrices.

 ② Extracts the first three training examples (rows)

 ③ Extracts the sharpness feature for the 5th to 7th training examples

 Listing 2.4 Tensors and images in PyTorch

 tensor = torch.rand((5, 5, 3)) ①
 ②
I49 = torch.tensor([[0, 8, 16, 24, 32, 40, 48, 56, 64], ③
 [64, 72, 80, 88, 96, 104, 112, 120, 128],
 [128, 136, 144, 152, 160, 168, 176, 184, 192],
 [192, 200, 208, 216, 224, 232, 240, 248, 255]],
) ④

img = torch.tensor(cv2.imread('../../Figures/dog3.jpg')) ⑤
img_b = img[:, :, 0] ⑥
img_g = img[:, :, 1] ⑥
img_r = img[:, :, 2] ⑥
img_cropped = img[0:100, 0:100, :] ⑦

 ① PyTorch tensors can be used to represent tensors. A vector is a 1-tensor, a matrix is a 2-tensor, and a scalar is a 0-tensor.

 ② Creates a random tensor of specified dimensions

 ③ All images are tensors. An RGB image of height H, width W is a 3-tensor of shape [3, H, W].

 ④ 4 × 9 single-channel image shown in figure 2.3

 ⑤ Reads a 199 × 256 × 3 image from disk

 ⑥ Usual slicing dicing operators work. Extracts the red, green, and blue channels of the image as shown in figure 2.4.

 ⑦ Crops out a 100 × 100 subimage as shown in figure 2.5

 [image:]

 Figure 2.4 Tensors and images in PyTorch

 [image:]

 Figure 2.5 Cropped image of dog

 2.5 Basic vector and matrix operations in machine learning

 In this section, we introduce several basic vector and matrix operations along with examples to demonstrate their significance in image processing, computer vision, and machine learning. It is meant to be an application-centric introduction to linear algebra. But it is not meant to be a comprehensive review of matrix and vector operations, for which you are referred to a textbook on linear algebra.

 [image:]

 Figure 2.6 Image corresponding to the transpose of matrix I4, 9 shown in equation 2.3. This is equivalent to rotating the image by 90°.

 2.5.1 Matrix and vector transpose

 In equation 2.2, we encountered the matrix I4, 9 depicting a tiny image. Suppose we want to rotate the image by 90° so it looks like figure 2.5. The original matrix I4, 9 and its transpose I4,T9 = I9, 4 are shown here:

 [image:]

 Equation 2.3

 By comparing equation 2.2 and equation 2.3, you can easily see that one can be obtained from the other by interchanging the row and column indices. This operation is generally known as matrix transposition.

 Formally, the transpose of a matrix Am, n with m rows and n columns is another matrix with n rows and m columns. This transposed matrix, denoted An,Tm, is such that AT[i, j] = A[j, i]. For instance, the value at row 0 column 6 in matrix I4, 9 is 48; in the transposed matrix, the same value appears in row 6 and column 0. In matrix parlance, I4, 9[0,6] = I9,T4[6,0] = 48.

 Vector transposition is a special case of matrix transposition (since all vectors are matrices—a column vector with n elements is an n × 1 matrix). For instance, an arbitrary vector and its transpose are shown next:

 [image:]

 Equation 2.4

 [image:]

 Equation 2.5

 2.5.2 Dot product of two vectors and its role in machine learning

 In section 1.3, we saw the simplest of machine learning models where the output is generated by taking a weighted sum of the inputs (and then adding a constant bias value). This model/machine is characterized by the weights w0, w1, and bias b. Take the rows of table 2.2. For example, for row 0, the input values are the hardness of the approaching object = 0.11 and softness = 0.09. The corresponding model output will be y = w0 × 0.11 + w1 × 0.09 + b. In fact, the goal of training is to choose w0, w1, and b such that model outputs are as close as possible to the known outputs; that is, y = w0 × 0.11 + w1 × 0.09 + b should be as close to −0.8 as possible, y = w0 × 0.01 + w1 × 0.02 + b should be as close to −0.97 as possible, that is, in general, given an input instance [image:], the model output is y = x0w0 + x1w1 + b.

 We will keep returning to this model throughout the chapter. But first, let’s consider a different question. In this toy example, we have only three model parameters: two weights, w0, w1, and one bias b. Hence it is not very messy to write the model output flat out as y = x0w0 + x1w1 + b. But, with longer feature vectors (that is, more weights) it will become unwieldy. Is there a compact way to represent the model output for a specific input instance, irrespective of the size of the input?

 Turns out the answer is yes—we can use an operation called dot product from the world of mathematics. We have already seen in section 2.1 that an individual instance of model input can be compactly represented by a vector, say [image:] (it can have any number of input values). We can also represent the set of weights as vector [image:]—it will have the same number of items as the input vector. The dot product is simply the element-wise multiplication of the two vectors [image:] and [image:]. Formally, given two vectors and [image:] and [image:], the dot product of the two vectors is defined as

 [image:]

 Equation 2.6

 In other words, the sum of the products of corresponding elements of the two vectors is the dot product of the two vectors, denoted [image:] ⋅ [image:].

 NOTE The dot product notation can compactly represent the model output as y = [image:] ⋅ [image:] + b. The representation does not increase in size even when the number of inputs and weights is large.

 Consider our (by now familiar) cat-brain example again. Suppose the weight vector is [image:] and the bias value b = 5. Then the model output for the 0th input instance from table 2.2 will be [image:]. It is another matter that these are bad choices for weight and bias parameters, since the model output 5.51 is a far cry from the desired output −0.89. We will soon see how to obtain better parameter values. For now, we just need to note that the dot product offers a neat way to represent the simple weighted sum model output.

 NOTE The dot product is defined only if the vectors have the same dimensions.

 Sometimes the dot product is also referred to as inner product, denoted ⟨[image:], [image:]⟩. Strictly speaking, the phrase inner product is a bit more general; it applies to infinite-dimensional vectors as well. In this book, we will often use the terms interchangeably, sacrificing mathematical rigor for enhanced understanding.

 2.5.3 Matrix multiplication and machine learning

 Vectors are special cases of matrices. Hence, matrix-vector multiplication is a special case of matrix-matrix multiplication. We will start with that.

 Matrix-vector multiplication

 In section 2.5.2, we saw that given a weight vector, say [image:], and the bias value b = 5, the weighted sum model output upon a single input instance, say [image:], can be represented using a vector-vector dot product [image:]. As depicted in equation 2.1, during training, we are dealing with many training data instances at the same time. In real life, we typically deal with hundreds of thousands of input instances, each having hundreds of values. Is there a way to represent the model output for the entire training dataset compactly, such that it is independent of the count of input instances and their sizes?

 The answer turns out to be yes. We can use the idea of matrix-vector multiplication from the world of mathematics. The product of a matrix X and column vector [image:] is another vector, denoted X[image:]. Its elements are the dot products between the row vectors of X and the column vector [image:]. For example, given the model weight vector [image:] and the bias value b = 5, the outputs on the toy training dataset of our familiar cat-brain model (equation 2.1) can be obtained via the following steps:

 [image:]

 Equation 2.7

 Adding the bias value of 5, the model output on the toy training dataset is

 [image:]

 Equation 2.8

 In general, the output of our simple model (biased weighted sum of input elements) can be expressed compactly as [image:] = X[image:] + [image:].

 Matrix-matrix multiplication

 Generalizing the notion of matrix times vector, we can define matrix times matrix. A matrix with m rows and p columns, say Am, p, can be multiplied with another matrix with p rows and n columns, say Bp, n, to generate a matrix with m rows and n columns, say Cm, n: for example, Cm, n = Am, p Bp, n. Note that the number of columns in the left matrix must match the number of rows in the right matrix. Element i, j of the result matrix, Ci, j, is obtained by point-wise multiplication of the elements of the ith row vector of A and the jth column vector of B. The following example illustrates the idea:

 [image:]

 The computation for C2, 1 is shown via bolding by way of example.

 NOTE Matrix multiplication is not commutative. In general, AB ≠ BA.

 At this point, the astute reader may already have noted that the dot product is a special case of matrix multiplication. For instance, the dot product between two vectors [image:] and [image:] is equivalent to transposing either of the two vectors and then doing a matrix multiplication with the other. In other words,

 [image:]

 The idea works in higher dimensions, too. In general, given two vectors [image:] and [image:], the dot product of the two vectors is defined as

 [image:]

 Equation 2.9

 Another special case of matrix multiplication is row-vector matrix multiplication. For example, [image:]TA = [image:] or

 [image:]

 Transpose of matrix products

 Given two matrices A and B, where the number of columns in A matches the number of rows in B (that is, it is possible to multiply them), the transpose of the product is the product of the individual transposes, in reversed order. The rule also applies to matrix-vector multiplication. The following equations capture this rule:

 [image:]

 Equation 2.10

 2.5.4 Length of a vector (L2 norm): Model error

 Imagine that a machine learning model is supposed to output a target value ȳ, but it outputs y instead. We are interested in the error made by the model. The error is the difference between the target and the actual outputs.

OEBPS/OEBPS/Images/CH02_F06_Chaudhury.png

OEBPS/OEBPS/Images/eq_02-06-e2.png
ol *

OEBPS/OEBPS/Images/eq_02-07.png
0.11
0.01
0.98
0.12
0.98
0.85
0.03
0.55

0.09
0.02
0.91
0.21
0.99
0.87
0.14
0.45

0.11x3+0.09x2=0.51
0.01x3+0.02x2=0.07
0.98x3+0.91x
0.12x3+0.21x2=0.78
0.98x 3+0.99x2=4.92
0.85x3+0.87x2=4.29
0.03x3+0.14x2=0.37
0.55x 3+0.45x 2=2.55

OEBPS/OEBPS/Images/eq_01-03-a.png
i=N i=N @ @ 9 i=N ® 9
2=N 2= i _,m) 2 ST= (0
E=) 6= (ypndi(lﬂi Vet) = ("’ Fi+b—yy)
i=0 i=0 i=0

OEBPS/OEBPS/Images/eq_01-02-a2.png
=

wo

w)

OEBPS/OEBPS/Images/eq_02-09-a.png
a2
Ibn by bs] a1 a| = |c=anbi+anby+asibs co=ashy +assbs+asbs

asy asy

OEBPS/OEBPS/Images/AR_y.png

OEBPS/OEBPS/Images/eq_02-08-d.png
£ U B o
Iwn) I =TT W=WeTo + W1 Ty
E3

k3l

OEBPS/OEBPS/Images/eq_01-07.png
O =0 (el - az)

L e R)

1 = (rosa 4wl

OEBPS/OEBPS/Images/eq_02-08-e2.png

OEBPS/OEBPS/Images/CH02_F01_Chaudhury.png
¥ S

(a) Output vector
09 001 0.1]

(c) Output vector
0.01 0.99 0.01]

(b) Output vector
[09 001 09

o

(d) Output vector
[0.88 09. 0.001]

OEBPS/cover.jpeg
Krishnendu Chaudhury

with Ananya H. Ashok
Sujay Narumanchi
Devashish Shankar

Foreword by Prith Banerjee

M MANNING

OEBPS/OEBPS/Images/AR_x.png

OEBPS/OEBPS/Images/CH01_F01_Chaudhury.png
Run away

Hardness ~ F-—-- - - -2 ---—-—-—-—-—-—-- o
0? obr}zzts :_ Cat brain (positive threat)
in front 1| Threat
| fimat _»Threat Threshold Ignore
Sharpness | esm'g:;r’r score resholder (near zero threat)
of object —,_"
in front oo o ____ Approach and purr
(negative threat)
Speed T lonbrain 3
of prey | 1
Jump length estimator ! Jump
| model I — length
! estimate
Distance | ! !
to prey | |
Image —» | Object recognition model Object
class
Object class
Image Object recognition and + object
9 localization model bounding
Past
prices
. Stock
Stock price model :
price

World

events

OEBPS/OEBPS/Images/eq_02-00-e2.png

OEBPS/OEBPS/Images/eq_01-06.png
y=o (n‘/’i+b)

OEBPS/OEBPS/Images/eq_02-06.png
T =Towp +T 1wy +-

OEBPS/OEBPS/Images/eq_02-06-d2.png
0.11
0.09

OEBPS/OEBPS/Images/eq_02-00-a2.png

OEBPS/OEBPS/Images/eq_01-05.png
T+eT

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/eq_02-09.png
-
.-
I=|wy w

Wy
-y
+-
w)

+1
=xowo

OEBPS/OEBPS/Images/CH02_F02_Chaudhury.png

OEBPS/OEBPS/Images/AR_w.png

OEBPS/OEBPS/Images/CH01_F07_Chaudhury.png
&
ol 7
MRAL S = Sl

ole)
\»%M'&m\
TR S

: /‘:" O 7

OEBPS/OEBPS/Images/CH02_F03_Chaudhury.png

OEBPS/OEBPS/Images/AR_OP.png

OEBPS/OEBPS/Images/eq_01-01-a.png
0
kal

] €[0,1]%

OEBPS/OEBPS/Images/eq_02-05-a.png

OEBPS/OEBPS/Images/eq_01-04.png
1+1I 1
= R
v

L
V2

¥ (20, 1)

OEBPS/OEBPS/Images/eq_02-06-c2.png

OEBPS/OEBPS/Images/eq_02-00-f2.png

OEBPS/OEBPS/Images/eq_02-08-c2.png

OEBPS/OEBPS/Images/eq_02-08-f2.png

OEBPS/OEBPS/Images/eq_02-00-c2.png
= |
vector =

kil

OEBPS/OEBPS/Images/CH01_F02_Chaudhury.png
X4 (sharpness)

Hard and sharp objects

0.1

Soft and roundish objects

AN
+ For
<. oty
-t
0x+ P :
s
2N y(p)/
7 s
s
&&,X‘/
y iz
AN
@,7 "% X
s & "?J.
s & r
&
-t (1,0)
Xo
(hardness)

OEBPS/OEBPS/Images/eq_02-06-f2.png

OEBPS/OEBPS/Images/eq_02-08.png
5+0.51=5.51
5+0.07=5.07
5+4.76=9.76
5+0.78=5.78
5+4.92=9.92
5+4.29=9.29
5+0.37=5.37
5+2.55

OEBPS/OEBPS/Images/eq_02-08-a.png
an a2

ag az
asy asy
b by
bar by
an a2
b b2
an as
b bao
asy as

e =anbu +aghy
cg1=agbi +aggba

31011 + aspboy

€31

criz=anbiz+aighse
o2 =agibig + agobsr

csg =asibig +agoboy

OEBPS/OEBPS/Images/eq_02-08-b2.png

OEBPS/OEBPS/Images/eq_02-02.png
0 8 16 24 32 40 48 56 64
Lio= 64 72 80 88 96 104 112 120 128
o 128 136 144 152 160 168 176 184 192

192 200 208 216 224 232 240 248 255

OEBPS/OEBPS/Images/eq_01-02.png
>5— high threat, run away
¥ >=-¢ and <=6 — threat close to zero, ignore

<—6— negative threat, approach and purr

OEBPS/OEBPS/Images/eq_01-03.png
20
y (20, 21) = woxg + w121 +b= [wo wl] [

+b=w"F+b
1

OEBPS/OEBPS/Images/CH01_F05_Chaudhury.jpg
0.5

OEBPS/OEBPS/Images/eq_02-05-b2.png

OEBPS/OEBPS/Images/eq_02-06-b2.png
[0.11

13 =0.11x3+0.09x2+5=5.51
0.09 |2

OEBPS/OEBPS/Images/CH01_F06abcd_Chaudhury.jpg

OEBPS/OEBPS/Images/eq_01-01.png
(0= Vmin)

R P —

OEBPS/OEBPS/Images/eq_02-01.png
0.11 0.09
0.01 0.02
0.98 0.91
Example cat-brain dataset matrix X = 012021
0.98 0.99
0.85 0.87
0.03 0.14

0.55 0.45

OEBPS/OEBPS/Images/eq_02-06-a2.png

OEBPS/OEBPS/Images/eq_02-10.png
AB)T =BTA"
(z) " =7"A"
(A7)

OEBPS/OEBPS/Images/CH01_F03_Chaudhury.png
Y

Feature space

Model
_

Transform

Output space

OEBPS/OEBPS/Images/CH02_F04_Chaudhury.png
100 150 100 150

(a) Original image (b) Red channel

50 100 150 200 100 150

(c) Green channel (d) Blue channel

OEBPS/OEBPS/Images/CH01_F04_Chaudhury.png

OEBPS/OEBPS/Images/eq_02-00-d2.png

OEBPS/OEBPS/Images/eq_02-05.png
i’ |1 2 %I

OEBPS/OEBPS/Images/eq_01-09.png
(L) (L)) (L-1) (L) L=1) (L) L-1
15 hED s)

=7 ("’no gy

o)y _ (L) p (L=1) (L) (L-1) (L) (L-1)
by "r("’m hy T iRy) BT)

(L] L) (L-1 (L) (L-1 L) (L-1
el :0("',(,0]’13 D 4GB gl))

Wany,_,

OEBPS/OEBPS/Images/eq_02-00-b2.png

OEBPS/OEBPS/Images/eq_02-05-c2.png

OEBPS/OEBPS/Images/eq_02-03.png
0 8 16 24{ 32 40 48 56 64
64 72 80 88 96 104 112 120 128
128 136 144 152 160 168 176 184 192
192 200 208 216 224 232 240 248 255

64 128 192

72 136 200
16 80 144 208
24 88 152 216
32 96 160 224
104 168 232
112 176 240
120 184 248
64 128 192 255

%5

&

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/AR_a.png

OEBPS/OEBPS/Images/eq_01-08.png
- (1)1 (0) (1)1 (0) (1) (0)
=0 (g h” +wPhO + S

(1)1 (0) (1) (0) (1) (0)
("’m hy Hwi Y wg ey)

- (1) (0) (1) (0) (1) 5 (0)
-”(wma}'o +0y 1hy +"'"’nm»hm»)

OEBPS/OEBPS/Images/eq_02-04.png

OEBPS/OEBPS/Images/AR_b.png
=l |

OEBPS/OEBPS/Images/AR_c.png

OEBPS/OEBPS/Images/CH02_F05_Chaudhury.png

