

 [image: cover]

Windows Store App Development: C# and XAML

 Pete Brown

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Jeff Bleiel
Copyeditor: Linda Recktenwald
Technical proofreader: Thomas McKearney
Proofreader: Elizabeth Martin
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781617290947

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Hello, Modern Windows

 Chapter 2. The Modern UI

 Chapter 3. The Windows Runtime and .NET

 Chapter 4. XAML

 Chapter 5. Layout

 Chapter 6. Panels

 Chapter 7. Brushes, graphics, styles, and resources

 Chapter 8. Displaying beautiful text

 Chapter 9. Controls, binding, and MVVM

 Chapter 10. View controls, Semantic Zoom, and navigation

 Chapter 11. The app bar

 Chapter 12. The splash screen, app tile, and notifications

 Chapter 13. View states

 Chapter 14. Contracts: playing nicely with others

 Chapter 15. Working with files

 Chapter 16. Asynchronous everywhere

 Chapter 17. Networking with SOAP and RESTful services

 Chapter 18. A chat app using sockets

 Chapter 19. A little UI work: user controls and Blend

 Chapter 20. Networking player location

 Chapter 21. Keyboards, mice, touch, accelerometers, and gamepads

 Chapter 22. App settings and suspend/resume

 Chapter 23. Deploying and selling your app

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Hello, Modern Windows

 1.1. Setting up the development environment

 1.2. Configuring the project

 1.2.1. The device pane

 1.2.2. Template solution items

 1.3. Create the first Hello World UI

 1.4. Integrating with Twitter

 1.4.1. The Tweet class

 1.4.2. Updated UI

 1.4.3. Code-behind

 1.5. Testing on different devices and resolutions

 1.5.1. Debugging on the Simulator

 1.5.2. Debugging on a remote device

 1.6. Summary

 Chapter 2. The Modern UI

 2.1. Design inspiration

 2.1.1. Direct influences

 2.1.2. Finding your way

 2.2. Governing principles

 2.3. Typography

 2.4. The importance of the layout grid

 2.5. Design for touch but not only for touch

 2.6. Modern apps on Windows 8

 2.6.1. Consumer and enterprise apps

 2.6.2. Key Windows 8 UI elements and states

 2.7. Device considerations

 2.7.1. Desktop or laptop

 2.7.2. Tablet and smaller devices

 2.7.3. Hybrid devices

 2.8. Summary

 Chapter 3. The Windows Runtime and .NET

 3.1. Windows Store app system architecture

 3.1.1. The sandbox

 3.1.2. Deployment and the Windows Store

 3.1.3. The driver model

 3.2. COM + .NET metadata = WinRT

 3.2.1. COM: back to the future

 3.2.2. Metadata

 3.2.3. Projections

 3.3. Client technologies and languages

 3.4. A brief tour of WinRT and .NET 4.5

 3.5. Summary

 Chapter 4. XAML

 4.1. Elements and namespaces

 4.1.1. Objects as elements

 4.1.2. Namespaces

 4.2. Properties

 4.2.1. Property syntax

 4.2.2. Dependency properties

 4.2.3. Attached properties

 4.2.4. Property paths

 4.3. Object trees and namescope

 4.3.1. Object trees

 4.3.2. Namescope

 4.4. Summary

 Chapter 5. Layout

 5.1. Multipass layout—measuring and arranging

 5.1.1. The measure pass

 5.1.2. The arrange pass

 5.1.3. The LayoutInformation class

 5.2. UIElement layout properties

 5.2.1. Width and Height, plus ActualWidth and ActualHeight

 5.2.2. Horizontal and vertical alignment

 5.2.3. Padding

 5.2.4. Margins

 5.3. Layout rounding

 5.4. Performance considerations

 5.4.1. Keeping the tree shallow

 5.4.2. Caching

 5.4.3. Virtualization

 5.4.4. Sizing and positioning

 5.5. Summary

 Chapter 6. Panels

 6.1. Canvas

 6.1.1. Positioning in X,Y space

 6.1.2. Controlling the Z position using ZIndex

 6.1.3. Sizing child elements

 6.2. StackPanel and VirtualizingStackPanel

 6.2.1. Setting the orientation

 6.2.2. Sizing children

 6.2.3. Virtualizing for performance

 6.3. Grid

 6.3.1. Defining rows and columns

 6.3.2. Adding and positioning elements in rows and columns

 6.3.3. Using alignment and margins for sizing and positioning

 6.4. Creating a custom panel

 6.4.1. Project setup

 6.4.2. The OrbitPanel class

 6.4.3. Orbits dependency property

 6.4.4. Orbit attached property

 6.4.5. Custom layout

 6.5. Summary

 Chapter 7. Brushes, graphics, styles, and resources

 7.1. Brushes

 7.1.1. Solid-color brushes

 7.1.2. Gradient brushes

 7.1.3. Image brushes

 7.2. Resources

 7.2.1. Local and page resources

 7.2.2. Application resources

 7.2.3. Resource dictionaries

 7.3. Styles

 7.3.1. Explicit or keyed styles

 7.3.2. Style inheritance

 7.3.3. Implicit styles

 7.4. Vector graphics

 7.4.1. Line

 7.4.2. Polyline

 7.4.3. Paths

 7.4.4. Rectangles and ellipses

 7.5. Bitmap images

 7.6. Summary

 Chapter 8. Displaying beautiful text

 8.1. Text basics

 8.1.1. TextBlock

 8.1.2. Inlines

 8.1.3. Wrapping, ellipsis, and alignment

 8.1.4. Character spacing

 8.1.5. Line spacing

 8.2. Rich and multicolumn text

 8.2.1. Rich text

 8.2.2. Multicolumn and linked text

 8.3. OpenType text

 8.3.1. Ligatures

 8.3.2. Stylistic sets

 8.3.3. Font capitals

 8.3.4. Fractions and numbers

 8.3.5. Variants, superscript, and subscript

 8.4. Embedding fonts

 8.5. Summary

 Chapter 9. Controls, binding, and MVVM

 9.1. The Model-View-ViewModel pattern

 9.1.1. Using an MVVM toolkit like MVVM Light

 9.1.2. The model

 9.1.3. The chat data service

 9.1.4. The MainViewModel and CameraViewModel classes

 9.1.5. The view

 9.2. Binding primer

 9.2.1. The source and target

 9.2.2. Binding mode

 9.2.3. Change notification

 9.2.4. DataContext

 9.3. Entering and displaying text

 9.3.1. Working with the TextBox

 9.3.2. Experimenting with the PasswordBox

 9.3.3. Spell checking and autocorrect

 9.4. UI element binding using sliders

 9.5. Working with lists

 9.5.1. Observable collections

 9.5.2. Items controls

 9.5.3. Data templates

 9.6. Making things happen with buttons and commands

 9.6.1. Button and commands

 9.6.2. HyperlinkButton

 9.6.3. RadioButton and CheckBox

 9.7. Converting data with value converters

 9.8. Summary

 Chapter 10. View controls, Semantic Zoom, and navigation

 10.1. PhotoBrowser demonstration app setup

 10.1.1. Creating the project

 10.1.2. Creating the Photo model class

 10.1.3. Loading pictures using a service class

 10.1.4. Creating the MainViewModel

 10.1.5. Skeleton UI XAML and code-behind

 10.2. ListView and GridView

 10.2.1. Vertical lists

 10.2.2. Horizontal lists and grids

 10.3. Grouping with the GridView

 10.3.1. Grouping in the model and viewmodel

 10.3.2. Grouping at the UI layer

 10.4. FlipView and navigation

 10.4.1. Viewmodel

 10.4.2. Category browser page

 10.4.3. Updated MainPage

 10.5. Semantic Zoom

 10.6. Summary

 Chapter 11. The app bar

 11.1. Project updates

 11.2. Controls on the bottom app bar

 11.2.1. Adding and styling buttons

 11.2.2. Wiring with commands

 11.2.3. Visibility and pinning

 11.3. Top app bar for navigation

 11.4. App bar popups and menus

 11.5. Summary

 Chapter 12. The splash screen, app tile, and notifications

 12.1. Splash screens

 12.1.1. The static splash screen

 12.1.2. Extended splash screens

 12.2. Default tiles on the start page

 12.3. Secondary or pinned tiles

 12.3.1. Creating the tile

 12.3.2. Activating the app with the secondary tile

 12.4. Tile notifications or live tiles

 12.4.1. Simple text notifications

 12.4.2. Images in notifications

 12.4.3. Queuing multiple tile notifications

 12.5. Toast notifications

 12.5.1. Creating the notification service

 12.5.2. Enabling toast

 12.6. Summary

 Chapter 13. View states

 13.1. Full, filled, and snapped views

 13.2. The LayoutAwarePage

 13.3. The snapped view for the main page

 13.4. Visual states for view management

 13.5. Detail pages and app bars

 13.5.1. Creating an appropriate presentation

 13.5.2. Fixing up the app bar

 13.6. Summary

 Chapter 14. Contracts: playing nicely with others

 14.1. Sharing

 14.1.1. Sharing your data

 14.1.2. Letting others share with you

 14.2. Letting others search your data

 14.2.1. Declaring your intentions

 14.2.2. The results page and viewmodel

 14.2.3. Responding to in-app search requests

 14.2.4. Responding to external search requests

 14.3. Summary

 Chapter 15. Working with files

 15.1. Loading files programmatically

 15.1.1. New demonstration project

 15.1.2. File access permissions

 15.1.3. Storage files and folders

 15.1.4. Using a data template selector

 15.1.5. Using file queries

 15.1.6. Creating files and folders

 15.2. URI formats

 15.3. Working with file pickers

 15.3.1. Using the file open picker

 15.3.2. Implementing the file picker source contract

 15.4. Summary

 Chapter 16. Asynchronous everywhere

 16.1. Why asynchronous is important

 16.2. Working with IAsync* WinRT methods

 16.2.1. async and await: the simplest approach

 16.2.2. Long-form asynchronous operations

 16.2.3. Getting progress updates

 16.2.4. Canceling the operation

 16.3. Working with tasks

 16.3.1. Basic task operations

 16.3.2. Canceling the task

 16.3.3. Converting between WinRT IAsync* and Tasks

 16.4. Summary

 Chapter 17. Networking with SOAP and RESTful services

 17.1. Networking basics

 17.1.1. Solution setup

 17.1.2. Downloading a file with HttpClient

 17.2. Sharing your model

 17.2.1. Create the source class library

 17.2.2. Create the Modern app–compatible class library

 17.3. Consuming SOAP services

 17.3.1. Creating the service

 17.3.2. Referencing and using the service

 17.4. Structuring your client code using MVVM

 17.4.1. Creating the viewmodel

 17.4.2. Creating and wiring up the user interface

 17.5. Consuming data from RESTful services

 17.5.1. Creating the RESTful service

 17.5.2. Getting data from the service using the viewmodel

 17.5.3. Specifying the acceptable data type

 17.6. Deserializing JSON and XML data

 17.6.1. XML deserialization using XmlSerializer

 17.6.2. JSON deserialization

 17.7. Updating data using PUT, POST, DELETE, and more

 Updating the Message Service

 Calling the New Functions From the Client

 17.8. Summary

 Chapter 18. A chat app using sockets

 18.1. Chat app viewmodel

 18.1.1. The MainViewModel class

 18.1.2. ChatMessage model class

 18.2. The user interface

 18.2.1. XAML skeleton

 18.2.2. Styles and resources

 18.2.3. App bar buttons

 18.2.4. Chat app content

 18.3. Listening for connections

 18.4. Connecting to the server and sending data

 18.4.1. Connecting to an endpoint

 18.4.2. Sending data

 18.5. Refactoring for better structure and flexibility

 18.5.1. The updated ChatMessage class

 18.5.2. The IMessageService interface

 18.5.3. The TcpStreamMessageService class

 18.5.4. Updated MainViewModel

 18.6. Trying out UDP sockets

 18.6.1. Creating the UdpMessageService class

 18.6.2. Listening for connections

 18.6.3. Connecting to another machine

 18.6.4. Receiving and parsing messages

 18.7. Summary

 Chapter 19. A little UI work: user controls and Blend

 19.1. Updated game UI

 19.1.1. Basic changes

 19.1.2. Play field area

 19.1.3. Orientation and view states

 19.2. Designing the ship UI

 19.2.1. Creating the UserControl

 19.2.2. Creating the ship shape in Blend

 19.2.3. Adding a label

 19.3. Building out the ship user control properties

 19.3.1. Enabling rotation

 19.3.2. Setting the color

 19.3.3. Temporarily testing the Ship control

 19.4. Summary

 Chapter 20. Networking player location

 20.1. Updating the Player model

 20.1.1. The PlayerLocation class

 20.1.2. The updated Player class

 20.2. The collection of players

 20.2.1. Initializing the collection

 20.2.2. Displaying players with an ItemsControl

 20.2.3. Testing the collection

 20.2.4. Wiring up the collection to service events

 20.3. Updating the TCP stream message service

 20.3.1. Updated message service interface

 20.3.2. Sending location information

 20.3.3. Reading location information

 20.4. Testing everything

 20.5. Summary

 Chapter 21. Keyboards, mice, touch, accelerometers, and gamepads

 21.1. Making input generic

 21.1.1. The IInputService interface

 21.1.2. A little math help

 21.1.3. Wiring up the viewmodel

 21.2. Keyboard input

 21.2.1. The KeyboardInputService

 21.2.2. Virtual keys

 21.2.3. Adding from the code-behind

 21.3. Pointer input: mouse, touch, and pen

 21.3.1. Some more math

 21.3.2. A minor modification to the ship user control

 21.3.3. The PointerInputService class

 21.3.4. Adding from the code-behind

 21.4. Accelerometer input

 21.4.1. Making sense of the input

 21.4.2. Implementing the AccelerometerInputService

 21.4.3. Adding from the code-behind

 21.4.4. Accelerometer events

 21.4.5. Dealing with screen autorotation

 21.5. Xbox 360 gamepad input and a little C++

 21.5.1. Creating the C++ project

 21.5.2. Implementing the Controller class

 21.5.3. Creating the IInputService wrapper

 21.5.4. Adding from the code-behind

 21.5.5. Compiling and deploying

 21.6. Summary

 Chapter 22. App settings and suspend/resume

 22.1. App settings UI and architecture

 22.1.1. Creating the settings infrastructure

 22.1.2. Creating a settings UI

 22.2. Persisting and using settings

 22.2.1. Loading and saving settings values

 22.2.2. Acting on the options

 22.3. Suspend and resume

 22.3.1. Suspending your app

 22.3.2. Resuming activity

 22.4. Summary

 Chapter 23. Deploying and selling your app

 23.1. Testing for certification

 23.2. Sideloading for testing purposes

 23.2.1. Packaging an app for sideloading

 23.2.2. Getting a developer license without Visual Studio

 23.2.3. Installing the sideload app package

 23.3. Enabling trial mode

 23.3.1. Creating the mock license data for testing

 23.3.2. Checking the license state

 23.4. Listing your app in the Windows Store

 23.4.1. Getting a Windows Store account

 23.4.2. Reserving an app name

 23.4.3. Submitting the app for review and approval

 23.5. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 I’ve been programming for fun since seventh grade in 1984 and professionally since around 1991/1992. During that time, I’ve
 see a lot of change. In the ’80s, as the personal computer industry was trying to settle, there were dozens of completely
 incompatible (both software- and hardware-wise) computers available to the public. In my small group of friends, some owned
 Commodore 64s, some Commodore VIC-20s, a couple of Apple II variants, a TRS-80 or two, and a couple of others I can’t recall.
 My middle school (properly called a junior high school in Massachusetts) was equipped with some DEC VT-102 Robins, a handful
 of Commodore VIC-20s (with their disk drive on a serial A/B switch to share between different computers), and a number of
 Commodore 64 computers. My high school had an Apple IIgs, a couple of Apple IIe computers, and several Apple II computers.
 Later, they got an Apple IIc and several knock-off Apple clones as well as a lone black-and-white Macintosh. The few computer-literate
 teachers had access to a handful of IBM PCs to do the serious work of tracking student grades and whatnot. The computer camp
 I attended in tenth grade used DEC Rainbows and Commodore PETs. The computer competition I attended in tenth grade required
 knowing Unix and C.

 Over the span of four years (seventh grade to tenth grade), I had to learn how to program in multiple incompatible dialects
 of BASIC and become proficient in multiple different operating systems just to be able to sit down at any given machine and
 do something useful. (One very interesting trait of these computers, as has been pointed out by others, is that you used to
 have to choose not to program. Programming was the default. More on that some other time.) Later, as a professional just a couple of years out
 of high school, at a single job I had for a bit under four years, I had to know how to use dBase, FoxPro, Borland Delphi,
 Borland C++, PowerBuilder, Visual Basic 3, QBasic, QuickBasic, and much more. Oh, and I had to be able to set up the Novel
 Netware 4 network at the office and convert everyone from dumb terminals to DOS and Windows 3.x PCs. The languages were different,
 the UI layers were different. There was little to no compatibility between any of these packages.

 Change was the norm. It was expected.

 Fast-forward to today. As developers, we’ve never had more pressure on us to be productive, but at the same time, we’ve never
 had the longevity of tools, platforms, and languages that we have today. If you started with .NET 1.0 or the alphas/betas
 (as I did), you’ve been able to use the same programming language and core runtime for almost 13 years. If you’ve been a Java
 programmer, you can claim an even longer run. The only people who had those kinds of runs in the past were FORTRAN and COBOL
 programmers.

 Lately, things have begun to change a bit more. To keep up with the demands of users and the heavy competition in the mobile
 space, we’re seeing programming languages and underlying platforms rev more frequently. A natural consequence of this is deprecation
 or sunsetting of platforms that don’t fit the new interaction models and the emergence of newer API sets, compilers, and more.
 The JavaScript space has arguably had the most rapid innovation, with new tools and libraries emerging seemingly daily. Many
 of those have, over the years, completely altered the language in ways that would make modern JavaScript completely foreign
 to programmers who learned it 10 or even 5 years ago.

 On the Windows side, we’ve seen some amazing work in the .NET and XAML space. Interestingly, despite the changes of underlying
 platforms and the names of the products, .NET and XAML have remained far more compatible than many other platforms over the
 years. If you started learning XAML with WPF (or a year later with Silverlight), modern Windows Store XAML will easily become
 familiar, much like learning BASIC on the Commodore 64 and then learning to program the Apple II. Sure, the PEEK and POKE
 locations may be different, and there are a few other syntax differences, but there’s far more that’s compatible than incompatible.

 As someone who has made a career of .NET since the first time I gave the two-day .NET 1.0 seminars in the .NET 1.0 alpha days,
 it’s heartening to see that my C# skills are still just as valid today as they were 13 years ago. I’m also happy to see that
 my investment in XAML starting back in 2006 has served me well across every client platform Microsoft has created. By combining
 XAML and C#, I can code for the Windows Phone, Windows Store, and the desktop. If I stick to just C#, I can code for everything
 from tiny ARM microcontrollers on Netduino and Gadgeteer all the way up to massive servers. Through all of this, I’m staying
 within a tightly focused sphere of development that centers on Visual Studio and C# (or VB, if you prefer).

 That’s a solid return on investment.

 As developers, we tend to focus on the differences in the Microsoft platforms. It’s just natural, because it’s those differences
 that give us headaches and make us take up hobbies that involve close encounters with our mortality. But the very fact that
 we can focus on those differences shows how compatible these platforms are.

 For fun, I like to code on microcontrollers. To varying degrees, I’ve learned ARM with C, AVR with C and C++, PIC with C,
 NETMF with C#, and a little Arduino. Each of these used completely different IDEs; each uses completely different toolchains.
 Each time I try to learn another microcontroller, there’s very little practical knowledge I can port from one to the other.
 The registers are all different, the libraries are completely different, and, of course, the IDEs are completely different.
 This means I’ve not been able to ramp up on any one platform (with the exception of NETMF because of C#) in a short amount
 of time; each has been a huge investment in after-the-kids-go-to-sleep time. Few of the IDEs have usable IntelliSense, and
 help files are almost never in sync with the APIs. It’s a lot of trial and error—just getting LEDs to blink on a board feels
 like a huge accomplishment.

 When it came time for me to learn how to write Windows Store apps, I found I had far less to learn than I would have had I
 been a developer using another platform. Despite WinRT replacing some of the features of .NET, it all felt very familiar.
 C# worked just as it has all along. Visual Studio was instantly familiar. I can use most of .NET, and the parts that have
 been replaced by WinRT feel just like .NET.

 I’m glad I made the decision, all those years ago, to invest in learning VB3-6 and then C#. I’m also glad I moved from Windows
 Forms to XAML (WPF and then Silver-light) back in the mid-2000s. Both of these decisions have served me well and will continue
 to serve me well as Microsoft advances the platforms to better meet the needs of users and to better compete in the marketplace.
 As a developer, you too should feel confident that although individual products fall out of favor from time to time, your
 investment in core programming skills, and the higher-level .NET skills beyond that, continues to be just as useful, relevant,
 and marketable today as it has been over the past decade.

 Viva la C#!

 Viva la XAML!

 Viva el desarrollador!

Acknowledgments

 My name is on the cover, but technical books like this require a whole team to complete and publish. I’d like to thank the
 following:

 	The various Windows and Developer Division product teams who helped with clarifying just how things work under the covers
 and who were open to my rather detailed questions.

 	Tom McKearney, who has managed to tech review another entire book, and who has provided me with someone to blame if there
 are any problems with the code listings.

 	My friends at Manning Publications: people like Mary Piergies, Linda Recktenwald, Elizabeth Martin, and Jeff Bleiel, who all
 helped ensure this book is as good as possible and written in one grammatically correct voice.

 	The reviewers of the manuscript at various stages of its developent. Your feedback was much appreciated: Brian T. Young, Daniel
 Martin, Dave Arkell, Dave Campbell, Gordon Mackie (aka Joan Miró), Ian Randall, Krishna Chaitanya Anipindi, Paschal Leloup,
 Patrick Hastings, Patrick Toohey, Richard Scott-Robinson, Roland Civet, Rupert Wood, and Todd Miranda.

 Unique in these thanks is my editor, Jeff Bleiel. This is the third book I’ve worked on with Jeff. He is my editorial interface
 with Manning and my continued mentor as an author. Jeff made a positive contribution to this book and to my writing in general.

 As with my other books, I’d like to thank my mum for making sure that I knew the difference between “you’re” and “your” and
 that spelling always counts.

 Most importantly, I’d like to acknowledge the contribution of my wife, Melissa, and my children, Ben and Abby. Writing a book
 takes an enormous amount of time, during which I’m not helping around the house, entertaining my children, or otherwise being
 good company. Thank you to my family for continuing to support me through another book when all my friends are telling me,
 “Dude, you should be writing apps. You’ll make a lot more money.”

 Finally, thanks to you, my readers. I wrote this and continue to support you in the hopes that I can help you succeed and
 create awesome apps.

About this Book

 The goal of this book is to take you, the developer who is at least a little familiar with C# and .NET, and help you become
 an awesome Windows Store app developer, regardless of which version of Windows you use for building Windows Store apps. If
 you’re already an awesome Windows developer familiar with Windows Store apps, WPF, or Silverlight, I’ve included deep topics
 to help you learn more about the platform and how things work under the covers.

 After you’ve read this book, you should be able to confidently design, develop, and deliver Windows Store apps. To facilitate
 the learning process, I’ve structured the book to get you developing as soon as possible, while providing quality, in-depth
 content and several functional apps you can learn from or build on.

 Within each chapter, I’ve included a collection of devices to help you build a firm understanding of the XAML UI platform
 for Windows. The following list explains how each device helps along the journey:

 	
Figures— Visual depictions that summarize data and help with the connection of complex concepts. Most of these are annotated to call
 out important details.

 	
Code snippets— Small, concise pieces of code primarily used for showing syntactical formats. You’re usually not expected to type these in
 and compile, because they’re incomplete.

 	
Code listings— Code that you can type into your project in Visual Studio. In many cases, it will take multiple code listings to build a working
 example.

 	
Tables— Easy-to-read summaries.

 In addition to these learning devices, my personal site, http://10rem.net, complements the information in this book and often goes into deep detail in specific areas.

Audience

 This book is intended for developers who want to create great apps for the Windows Store or for sideloading within an enterprise.

 Though XAML provides numerous avenues for interactions with designers, this book primarily targets people who live and breathe
 inside Visual Studio. With the deeper integration of Blend with Visual Studio, I’ve included some developer-focused material
 on working with Blend later in this book.

 In addition, and more important, this book assumes you have a background using the .NET Framework and Microsoft Visual Studio.
 Although we’ll be using C# as the primary development language, we won’t be reviewing the C# language or explaining basic
 programming constructs such as classes, methods, and variables.

 Experience with Silverlight or WPF will help speed you through the XAML concepts but isn’t a prerequisite for this book.

The bits: what you need

 This book provides ample opportunity for hands-on learning. But it also provides a great deal of flexibility by allowing you
 to learn the material without using the hands-on content or optional tools. You’ll find it equally valuable to read this book
 at the computer, on the train, or wherever else you happen to read.

 If you want to get the greatest value out of this book and sit down and code or design, here’s what you’ll need:

 	A PC with Windows 8 or higher installed. The examples in this book were originally developed on Windows 8 but will also work
 with later versions of Windows. You must develop for Windows on Windows. Although it can work, I don’t recommend doing this
 inside a virtual machine because you will run into issues with the Simulator (which is a remote desktop connection to the
 same machine), and on lower-end machines, performance will suffer.

 	You can use the latest recommended version of Visual Studio that will compile for the version of Windows you are using. For
 Windows 8, here are the recommended versions:

 	Microsoft Visual Studio 2012 Pro or better for both Windows Store and web development, or the free Microsoft Visual Studio
 2012 Express for Windows Store apps and, for the networking examples, the free Microsoft Visual Studio 2012 Express for Web.

 	Blend for Visual Studio 2012 or higher. Use the version that’s shipped with the version of Visual Studio you’re using.

 You’ll find links to all of these tools, as well as any information on updates, at http://dev.windows.com.

 Above and beyond your development PC, you may also find the following optional items useful:

 	A Microsoft Surface with Windows Runtime (WinRT) or other ARM-based touch tablet to test compiling and deploying to other
 architectures.

 	Any tablet or other PC with a Windows-recognized accelerometer for testing accelerometer input. If you have a Microsoft Surface,
 it will serve you well here.

 	A wired Xbox controller for Windows for the C++ integration example.

 	A device with a Windows-recognized touch screen. This will help, of course, with the touch screen examples. If you have a
 Microsoft Surface, it will also fill this requirement.

 	A second PC for testing the peer-to-peer networking examples. If you have a Microsoft Surface or other tablet running Windows
 8+, you can use that.

 	

 A note on versions
 You’ll note a lot of “or the latest version” comments in the software requirements for this book.

 The days of waiting three years for an update to Windows and the related development tools have passed. Microsoft recognizes
 that agility in delivery is as important as individual features. These days, Windows and Visual Studio often update too fast
 for any publication (or developer, for that matter) to keep up.

 For those reasons, the source code for this book will be kept as up to date as much as possible with the latest versions of
 Windows and tools until the next major revision of this book has been made available. As part of that, if there are any breaking
 changes in the next version of Windows after Windows 8.1, these will be called out with information made freely available
 to the purchasers of this book.

 With the ongoing Windows commitment to backward compatibility, you can feel safe that the code and techniques you learn for
 Windows 8 will be applicable to future versions of Windows as well.

 	

Roadmap

 WinRT XAML is a brand-new platform but with strong roots in the XAML + .NET platforms that preceded it. I’ve endeavored to
 arrange the topics in this book in such a way as to start with a simple example, cover all the basics and theory, and then
 build out some apps while exploring the more complex topics.

 There are no formal sections in this book, but if you squint your eyes a little, you can logically group the chapters as follows:

Windows

 It’s important to cover the basics up front. Not only are these the technical basics, but they’re also the overall themes
 of the platform and the reasons we made certain decisions. Starting with Windows 8, we have a brand-new set of APIs and design
 approaches to become familiar with. Chapter 1 introduces Windows and the concepts behind it. Chapter 2 discusses the modern UI, along with its standards and history. Finally, chapter 3 covers the Windows Runtime, what it is, how it has been designed, and why it’s so important for Windows Store apps.

XAML and Basic Controls

 Next, we dive right into XAML. Chapter 4 covers all the basics of XAML, plus a number of topics of interest to advanced developers. Chapter 5 goes into detail on the layout process. This is an important topic for both beginners and advanced developers because so
 much performance and functionality are affected by the layout engine. Building on that information, chapter 6 covers the commonly used panels, such as the Grid and Canvas. Chapter 7 deals with graphics, images, and resource management.

 One thing you’ll learn early on is the importance of text in Windows Store apps. Chapter 8 goes into depth on text, showing how to create beautiful content using text.

 Finally, this group wraps up with coverage of binding and controls in chapter 9. I decided to go right into MVVM (Model-View-ViewModel) at this point as well, because it’s a good pattern to get used to.

Windows 8 UI Specifics

 Although XAML is common and highly compatible across many platforms, Windows Store apps have access to some controls, layouts,
 and interaction patterns that are unique to the platform. Chapter 10 covers the most important of these controls and how they fit in with navigation. I also cover the Semantic Zoom pattern and
 control. Chapter 11 covers the modern analog to the toolbar: the app bar. Chapter 12 covers the app’s tile and the notification system built into Windows. Chapter 13 covers the important view states all apps must support (snapped view, portrait, landscape, and filled mode).

 Throughout all of these chapters, we’ll build a PhotoBrowser app that showcases the features.

Integration with the OS, Services, and Other Apps

 Windows Store apps have a set of standardized, user-driven mechanisms for integrating with each other. Collectively, these
 are called contracts and are what are invoked when you use charms such as Search and Share. Chapter 14 specifically covers how to use searching and sharing in the context of the Photo Viewer app.

 Chapter 15 then shows how to work with files and file pickers. Files access is the one area that’s perhaps the most different from all
 other XAML and .NET implementations. Throw out everything you’ve learned about file access in the past, and learn the new
 (and arguably much better) approach introduced with Windows 8.

Networking and the Chat/Game Peer-To-Peer App

 Connected apps are the norm, so several chapters in this book are dedicated to networking. Before jumping into networking,
 chapter 16 covers the important async patterns used in Windows Store apps. Chapter 17 then starts the coverage of networking by showing how to work with SOAP and RESTful services. This is the type of bread-and-butter
 stuff any connected app will need. Chapter 18 gets into the more advanced topic of socket communication. As part of the coverage of sockets, we’ll start the second app
 of this book: a chat and peer-to-peer game app involving spaceships.

 Chapter 19 helps flesh out the socket app by showing how to create a player control using Blend for Visual Studio. Chapter 20 helps glue the ship and sockets together by showing how to send meaningful information across the socket connection.

 Then, because games with just one type of input are a bit boring, we’ll implement all the major types of human and device
 input. In chapter 21, starting with the basics of keyboard input, we’ll make the ship move around on the screen and across the network. We’ll
 get into mice and touch-based interaction. Then, we’ll make the app accelerometer-aware so you can tilt the device to move
 the ship around. Finally, we’ll implement a C++ WinRT extension library to make use of an Xbox gamepad. Lots of fun stuff
 here!

Wrapping Up

 To wrap up this book and put a nice bow on what you’ve learned, I cover the app lifetime, including suspend and resume, and
 the related app settings in chapter 22. At this point, you’ll have a great foundation for building your own apps.

 Then, moving out of the source code and into the Store, in chapter 23 I cover how to prepare your app for Windows Store submission and how to get it into the Windows Store.

Code conventions and downloads

 You can find the source code for all the examples in the book at www.manning.com/WindowsStoreAppDevelopment.

 The following conventions are used throughout the book:

 	Italic typeface is used to introduce new terms.

 	Courier typeface is used to denote code samples, as well as elements and attributes, method names, classes, interfaces, and
 other identifiers.

 	Code annotations accompany many segments of code.

 	Code line continuations use the [image:] symbol.

Author Online

 The purchase of Windows Store App Development includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/WindowsStoreAppDevelopment. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray!

 The author online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 Pete Brown works for Microsoft as a Technical Evangelist on the Client and Devices team in John Shewchuk’s “deep tech” (http://bit.ly/DeepTech) Developer Platform Evangelism group. His role is helping developers create high-quality apps for all clients, using Microsoft
 tools and technologies.

 Prior to joining Microsoft in 2009, Pete was an architect, engagement manager, and user experience designer at a consulting
 company in the Washington, DC, area, where he focused on Silverlight and WPF development. During that time he was also an
 INETA speaker, a Microsoft WPF MVP, and a Microsoft Silverlight MVP.

 As one of only a few remote workers in corporate Microsoft, Pete has a lot of Lync/ Skype webcam meetings and enjoys the stunned
 look he gets whenever people see his home office in the background. If a nuclear submarine and a radio station had a child
 near an anime convention staffed by modular synth addicts working on Commodore 64s, it would be only slightly less geeky.

 Pete enjoys playing with synthesizers, writing, woodworking, electronics, programming (PC apps as well programs for ARM microcontrollers),
 making things with no practical use, acquiring huge monitors, cooking processors, and of course, spending time with his wife
 and two children at their home in Maryland.

About the Cover Illustration

 The figure on the cover of Windows Store App Development is captioned “A Traveler.” The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
 compendium of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich
 variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years
 ago. Isolated from each other, people spoke different dialects and languages. On the streets or in the countryside, it was
 easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Chapter 1. Hello, Modern Windows

 This chapter covers

 	Building your first Windows 8 app

 	Getting a developer license

 	Using the Simulator

 	Remotely debugging apps

 Welcome to the brave new world of Windows Store app development! Getting into a new platform as it first emerges is always
 exciting. I love learning new things and targeting new platforms. I like being an early adopter. Sure, not everything is quite
 as fleshed out as you may want when you get in early, and it sometimes feels like the Wild West, but the satisfaction you
 get from that head start almost always makes it worth it.

 Plus, quite frankly, it’s much easier to learn something new while it’s still small enough to be digestible. Looking back
 at Silverlight, I learned it at version 1.1a when it was just a baby. Had I picked it up at version 4 or 5 when the API surface
 area was 10 times as large, it would have taken me forever to learn all its ins and outs. Platforms invariably grow in scope
 and capability. The earlier you learn them, the less you have to take in all at once.

 Because XAML and C# are one of the combinations of technologies you can use to develop for the Windows Store, if you’ve developed
 applications for the Windows Phone or desktop using Silverlight, you’ll find yourself well positioned to quickly learn Windows
 app development. The Windows Runtime XAML stack and C#/.NET side of things were both developed by many of the same people
 who worked on Silverlight and Windows Presentation Foundation (WPF).

 Getting into Windows Store app development now will give you that same head start. Using XAML and C# allows you to lean on
 past experience if you have it and tons of preexisting XAML and C#/.NET content if you don’t.

 Microsoft is making a serious attempt at capturing the tablet market currently dominated by the iPad and Android devices.
 If those platforms have taught app developers anything, it’s that getting in early with a good app can help spell success
 for an individual or company.

 You picked up this book, so I’m going to assume you’re already interested in Windows 8 and don’t need encouragement in your
 selection. Instead, I’d like to take this first chapter and build something right away—just throw you right into the fire.
 By the end of this chapter, you’ll know how to create a simple app and have a working development environment you can use
 as we dive more deeply into the features in the remainder of this book.

 In this chapter, you’ll build your very first Windows 8 app using C# and XAML. Neither the application nor the code will be
 complex. The point here is to acquaint you with a new development and runtime environment and platform rather than produce
 the mother of all samples.

 I’ll start by helping you set up your development environment. Once that’s complete, you’ll create a new project and look
 at the various configuration settings, property pages, and stock files that are important. Then, I’ll show you how to create
 a very simple Hello World! application. All that application will do is display “Hello World!” on the screen.

 From there, you’ll modify the application to pull data from Twitter and display it onscreen. When run, the completed application
 will look like figure 1.1. Despite not being very pretty, this app follows the new design aesthetic, runs full screen, and supports touch. It uses the new WrapGrid layout control and, to many, familiar XAML concepts. If you don’t know XAML yourself, don’t worry; you will by the end of
 this book.

 Figure 1.1. The completed Hello World! application.

 [image:]

1.1. Setting up the development environment

 Windows 8 Modern apps can only be developed on Windows 8, so the first thing you’ll need to do is install Windows 8. Hardware
 selection is too large a topic for this book, but you’ll want to make sure the screen width is at least 1366 x 768 or larger
 so you can use snapped views for apps. The machine will need to be based on an x86-compatible processor because Windows RT
 (ARM) devices can’t run Visual Studio.

 The ideal situation is to install on the metal or set up a bootable VHD on a typical developer-class machine. Running in a
 virtual machine is okay, but you’ll find the experience frustrating at times, especially when it comes to swiping from the
 edges or activating elements using the hot corners.

 	

 Your Microsoft Account

 When installing Windows, unless you’re using a domain account, make sure you set up a Microsoft account rather than a local
 account. Microsoft accounts have much better integration with online services, and you’ll need one to obtain a developer key.
 Microsoft account is a new name for Windows Live ID (or Passport, if you can remember back that far)—something almost every .NET developer
 already has.

 	

 To develop Windows apps, you’ll need to have a version of Visual Studio 2012. You can use the free Visual Studio Express for
 Windows 8 apps, or you can install a higher level and more feature-rich version such as Professional. You can find links to
 all the important bits at http://dev.windows.com. All the required SDKs and templates are installed automatically with Visual Studio 2012; even .NET 4.5 and the Windows Runtime
 are already installed on the Windows 8 machine. No additional downloads are required.

 You don’t need a Windows Store account just yet, but you’ll eventually want one of those as well (more on the Windows Store
 in chapter 23). You can obtain a free developer key automatically the first time you create a Modern Style app in Visual Studio, as you’ll
 see in a moment.

1.2. Configuring the project

 In keeping with the spirit of Hello World, your first Windows app will be a simple one designed to let you see the construction
 and build process from front to back. Don’t worry about understanding all the parts of the project just yet; that’ll come
 in the subsequent chapters.

 In Visual Studio, select the Start page link (or File menu option) to create a new project. This will be a Visual C# project,
 a Windows Store app, using the Blank App (XAML) template. The .NET framework version used is 4.5—the only version currently
 supported for Windows app development. I named it HelloWorld, as shown in figure 1.2.

 Figure 1.2. Creating the Windows XAML app using the Blank App template

 [image:]

 Notice the other project templates: Grid App (XAML) and Split App (XAML) in particular. Those are feature-rich templates,
 much like the business application templates and navigation templates in Silverlight. I’ll skip these templates for now, because
 we’ll dive into them later in this book, and there’s a lot more to them than we want to get into in chapter 1.

 Click OK to create the project. If this is the first time you’ve created a Windows 8 app on your machine, you’ll be prompted
 to create a developer license, as shown in figures 1.3 and 1.4.

 Figure 1.3. Prompt to obtain a developer license

 [image:]

 Figure 1.4. You’ll need to be online when you go to obtain the developer license. If not, you’ll be unable to continue creating the Windows
 8 app. Don’t wait until you’re off the grid (in a taxi or one of those planes without Wi-Fi) before obtaining or renewing
 your license.

 [image:]

 When you first run Visual Studio and try to build a Windows 8 app, you’ll have to register for a developer license. This is
 free and is granted for 30 days for non-store use and 90 days if you have a Windows Store account (these durations are subject
 to change). Renewing is painless as long as you have an internet connection. It may be a bit annoying to renew every 30 days,
 but it’s a necessary step to make sure that people creating malware or otherwise trying to cause havoc can have their keys
 turned off.

 You can renew your developer license through the command prompt or through Visual Studio at any time should you know you’re
 going to be disconnected from the internet for a bit. You can find the instructions at http://bit.ly/Win8DevLicense. You may consider automating the renewal to happen every 29 days or some other time period by scheduling a job to do it for
 you.

 	

 Tip

 I speak at a lot of events. I assume many of you also give demos to potential clients, managers, and others. If it has been
 a few weeks since you renewed your developer license, do so before you give that important demo. Nothing will tank your presentation
 faster than being prompted to renew your developer license when there’s no available internet connection. This happened to
 me on one of the few plane trips I took that didn’t have working Wi-Fi. I read a book instead.

 	

 If you want to keep things simple, use a single ID for your machine login and your developer license. This isn’t always possible,
 especially in the case of domain-joined machines, so consider it a recommendation and not a hard rule.

 Once you have the developer license, you’ll be tossed into the IDE with your project loaded.

 1.2.1. The device pane

 Once the application template is loaded, you’ll be presented with the solution. Open MainPage.xaml and you’ll see the design
 surface and the usual developer window panes. One pane, the Device window panel, shown in figure 1.5, stands out as new, however.

 Figure 1.5. Visual Studio 2012 with the blank project template loaded in the Hello World project. The Device window on the left is new
 to Windows app development and is a real convenience for screen layout.

 [image:]

 	

 Tip

 Your design surface will likely be black. If not, compile the solution so the design surface can update.

 	

 The Device pane (windows are generally referred to as panes when docked) to the left of the design surface has a number of buttons to let you try out different views for your application:
 Full, Filled, Snapped, and Portrait. Under the View buttons, there’s the Display selector. This lets you select from common
 display resolutions. Finally, there are options that control other aspects of the simulated tablet (or touch screen) on the
 design surface.

 	

 Tip

 If the Device window/pane isn’t visible, go to the DESIGN menu and select Device Window. It’s not on the VIEW menu, unlike
 most other dockable windows. Yes, the menus are in all caps. Embrace the case.

 	

 All of these options are external to your application code and markup; they don’t change anything. They simply let you test
 your UI layout under a number of different configurations without actually deploying it to a machine of that resolution. Nice!

 Feel free to play with the options a bit, but then return them to their defaults when finished. I’m using a test resolution
 of 1366 x 768 (at 148 dpi), the minimum full-featured Windows 8 resolution, and have the view configured to the full view.

 1.2.2. Template solution items

 To the right of the design surface, you’ll see the Solution Explorer. As a .NET developer, you’re almost certainly familiar
 with this by now. Notice, however, that there are a few more files and folders there than you may be used to.

 If you’re a Silverlight or WPF developer, App.xaml should be familiar to you. For those new to the platform, this is where
 the startup code exists and where you can keep styles, templates, and other resources that are shared throughout the entire
 application.

 The Common folder contains the very important StandardStyles.xaml file. You’ll use this file, or more correctly, the resources
 in it, when creating the UI for the applications throughout this book. This file is where the Windows 8 Modern app styles
 reside.

 	

 Don’t mess with the standard styles...at first
 I mentioned that the StandardStyles.xaml file is important. The note at the top of the file says it all:

 “This file contains XAML styles that simplify application development.”

 These are not merely convenient but are required by most Visual Studio project and item templates. Removing, renaming, or
 otherwise modifying the content of these files may result in a project that doesn’t build or that won’t build once additional
 pages are added. If variations on these styles are desired, it is recommended that you copy the content under a new name and
 modify your private copy.

 So treat this file like you would autogenerated files, and leave it alone until you have more experience in app development.
 Experienced developers will want to pare down this file before deployment, because the additional styles do add a small amount
 of load time.

 	

 The Assets folder contains the application images. In it, you’ll find the app’s main and small logo as used in the tiles,
 the splash screen logo, and the logo to be used in the Windows Store.

 Right-click the Hello World project (not the solution) and choose Properties. Most of the options here are familiar, but click
 the Debug tab on the left. In there you’ll see a number of start options. By default, you’ll run on the local machine. But
 there’s also an option to start the application on a remote machine. This is key if you want to actively test and debug on
 a sub-developer-class machine or a machine that simply can’t run Visual Studio, like a Windows on ARM tablet. Additionally,
 there’s the option to start the app in the Simulator, which we’ll explore shortly.

 Next, double-click the Package.appxmanifest file. This is where you’ll specify the runtime configuration for your application,
 including the logos, supported orientations, background color, capabilities (such as needing access to the pictures library),
 and declarations (such as registering as a picture provider or as a file save picker).

 This is also where you can specify your start page’s tile background and foreground colors and logos. In short, this is the
 place where many of the important packaging and deployment details are kept.

1.3. Create the first Hello World UI

 The next step is to create a very simple Hello World UI. Open up MainPage.xaml if it isn’t already open. Before you do any
 real work, turn on Show Grid (this is the 20-pixel grid we’ll cover in chapter 2) and turn on Snap to Grid. Both controls are at the bottom of the design window, as shown in figure 1.6.

 Figure 1.6. The Show Grid and Snap to Grid controls (the six-box grids) on the XAML design surface. If you plan to drag controls onto
 the design surface, turn on both Show Grid and Snap to Grid by clicking the buttons shown here. These buttons can be found
 at the bottom of the design surface or between the design surface and the XAML view if you’re using the default IDE layout.

 [image:]

 Next, you can either drag a TextBlock from the Toolbox (pane on the left—you may need to click it or hover over it if it’s not already open) onto the design surface
 and visually align its left and text baseline with one of the major grid lines, or you can simply paste inside the Grid element the following XAML:

 <TextBlock Text="Hello World!"
 Height="42" Width="270"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 FontSize="42" Margin="80,40,0,0" />

 If you run the application at this point, you should see a nice “Hello World!” message. If you’re running the default themes,
 it will be white text on a black background. You may be wondering how to get out of the application and back to Visual Studio.
 You have a few options:

 	On a single-display system, use Alt-Tab to get back to Visual Studio and keep the app running (you’ll use this often during
 debugging).

 	Press Alt-F4 to close the app and then hit the Windows key to get back to Visual Studio.

 	Move the mouse to the top of the app until it turns into a hand, and then drag down to close it. This gesture also works with
 touch, of course.

 By design, Windows 8 apps don’t have dedicated close buttons; the user uses one of the aforementioned approaches to get out
 of the app.

 	

 Where did the background color come from?
 You may have noticed that the root Grid has its background color bound to a static resource named ApplicationPageBackgroundThemeBrush. If you go hunting around, you won’t find that brush defined anywhere. Where is it, then?

 This is one of the standard SDK resources, loaded as part of the platform. You don’t have to use it, but if you want to have
 a well-behaved Modern Style Windows 8 app, you probably will want to stick with the default resources. Why? They respond to
 themes picked by the user, including high-contrast and standard themes.

 If you create your own controls, you’ll definitely want to support these resources in your default template.

 Of course, if you know what you’re doing, by all means, just ignore it and don’t use it or the other stock resources. There
 are a number of them, but they’re highly optimized so you don’t take a performance hit from unused resources at runtime. If
 you want to see them, a copy of the resources can be found in \Program Files (x86)\Windows Kits\8.0\Include\winrt\xaml\design.

 	

 If all you want is a simple Hello World, you can stop here. But if you want to kick it up just a tiny notch and add something
 meaningful to your Hello World app, read on. It’ll still be simple, but rather than just the “Hello World!” text, we’ll add
 a little data from our friends at Twitter. I just can’t help myself.

1.4. Integrating with Twitter

 Networking is almost always part of a modern application. Windows 8 apps are usually online and always connected (or often
 connected). Networking in Windows 8 is, therefore, suitably feature rich and central to the platform.

 This code is going to call out to Twitter to get a list of Tweets that contain the hashtag[1] “#win8” or “#windows8.” It will then deserialize the results into a set of Tweet objects, which will then be bound to a ListView in the UI. If you’ve read any of my other books, you’ll know this is a consistent example I follow. It’ll also be interesting
 for you to see the differences in how the networking code here compares with the code in my Silverlight books. If you haven’t
 read my Silverlight books, no worries; everything here will be explained.

 1 I wonder if the child named Hashtag will have a hard time doing an ego search on the internet? Will they sign things #lastname?
 Yes, someone named their child “Hashtag.”

 In this section, you’ll start by creating the Tweet class to hold the key information about the Tweet. Next, you’ll update the UI using a ListView, a WrapGrid, and an item template to display the Tweets. This is a common approach for displaying data in a XAML app. Finally, you’ll
 throw some code in the code-behind to make the networking calls and parse the data that’s returned.

 1.4.1. The Tweet class

 First, you’ll need to create a class to hold the data that will be returned from your Twitter search. Create a folder named
 Model, and in it create a new class named Tweet. The first listing shows the Tweet class code.

 Listing 1.1. Code for the Tweet class in the Model folder

 using System;
namespace HelloWorld.Model
{
 class Tweet
 {
 public string Message { get; set; }
 public string Image { get; set; }
 }
}

 A Twitter search returns much more information for each Tweet, but the Message and Image are all you’ll use in this example. They are auto-properties (properties with auto-generated get and set accessors) in order to make binding possible. You’ll learn more about binding in chapter 9.

 1.4.2. Updated UI

 The next step is to update the UI to provide a nice way to list the Tweets. You’ll use a WrapGrid as shown in the following listing. Silverlight and WPF developers may remember this as the WrapPanel. They’re conceptually the same, but the WrapGrid only works inside items controls.

 Listing 1.2. Updated UI with the ListBox of Tweets

 [image:]

 [image:]

 In MainPage.xaml, replace everything inside and including the main Grid with what you see in this listing, but leave the Page declarations and namespaces alone. This listing sets up the UI so that it lays out all elements on a wrapped grid. Each element
 is a simple rectangular grid with a blue background, a photo to the left, and text on the right.

 The final step is to wire everything in the code-behind.

 	

 Why a Listview Instead of a Listbox?

 WPF and Silverlight developers know that you can do just about anything with a ListBox. In Windows 8 apps, due to plumbing changes for animation and virtualization, the replacement for the ListBox is the ListView. You can still use the ListBox for some scenarios, but you’ll find it no longer works with all the layout grids. When in doubt, reach for the new ListView control instead.

 	

 1.4.3. Code-behind

 Later in this book you’ll learn best practices for separating code using ViewModels and varying degrees of the MVVM pattern. For this first example, all the code will remain in the code-behind as shown in
 the following listing. This code goes in the code-behind of the main page (MainPage.xaml.cs).

 Listing 1.3. Code-behind for the application’s main page

 [image:]

 [image:]

 If you haven’t used .NET 4.5 yet (or Silverlight 5 with Visual Studio 2012 and the async targeting pack), the async and await keywords will be new to you. These two keywords help remove a lot of the asynchronous handler code you had to write in the
 past. Because the Windows Runtime relies so heavily on asynchronous methods, this is a huge boon to Windows 8 developers.
 What used to take a convoluted set of callbacks can now be reduced to a single await statement. Nice!

 Other than that, everything there should look familiar to Silverlight developers. The XML parsing works just as it would in
 any other .NET project. The navigation page method OnNavigatedTo looks like those in the navigation templates in Silver-light. The good-old ObservableCollection is there and more. Your knowledge and skills port well.

 But don’t worry if you have no Silverlight experience. Although I’ll bring up differences from time to time to further inform
 readers coming from similar languages and platforms, I don’t assume any XAML experience in this book.

 Run the application, and you should see a list of Tweets complete with text and images similar to those shown in figure 1.1 at the start of this chapter.

1.5. Testing on different devices and resolutions

 So far, we’ve run everything directly on the development PC. As you know, developer machines aren’t representative of the
 typical end-user machine. In a world of touch devices, hybrid laptops, and tablets, this is even truer.

 Because the devices can vary so much in capability, and because installing Visual Studio on every device is both impractical
 and impossible, there has to be a good way to deploy and debug remotely. One of my favorite things about .NET Micro Framework
 development is the ability to deploy code to an external device and step through breakpoints on my development PC. Windows
 Phone developers and developers who remotely debugged apps on the Mac will also be familiar with this Visual Studio capability.

 Sometimes all you need to do is try out different resolutions or simulate touch on your non-touch Windows development machine.
 For those scenarios, the built-in Simulator is the way to go. The Simulator makes it simple to deploy and debug inside a simulated
 machine, where you control resolution and other parameters.

 In this section we’ll look at a few different ways to debug the app. First, you’ll run it on the Simulator and then move to
 debugging on a remote machine. If you don’t have a second Windows 8 machine handy, that’s okay.

 1.5.1. Debugging on the Simulator

 Visual Studio 2012 comes with a Windows 8 Simulator. The Simulator is actually a remote desktop into the same machine Visual
 Studio is running on, but it abstracts this and provides another layer of UI interaction. This enables you to simulate touch,
 gestures, rotation, different screen resolutions, orientations, and more.

 Continuing from where we left off, exit the app and change the Debug target to be the Simulator rather than the local machine.
 You can do this from the project properties or, more easily, through the toolbar, as figure 1.7 shows.

 Figure 1.7. The menu option to debug from the Simulator rather than from the local machine. This is great for testing out different resolutions
 or simulating touch on a non-touch device.

 [image:]

 Now when you debug the app, it will open up in the Simulator. Figure 1.8 shows the app running in the Simulator and explains the different Simulator controls.

 Figure 1.8. The Twitter app running in the device Simulator. The controls on the right provide a number of options for changing the shape
 of the device and for interacting with it.

 [image:]

 The Simulator is excellent when it comes to testing different resolutions or simulating touch on a non-touch device. That
 will get you very far for the majority of the apps out there. For the more performance- or feature-dependent apps, you’ll
 want to debug on the actual target device.

 1.5.2. Debugging on a remote device

 Windows 8 supports both the x86/64 and ARM architectures. Visual Studio will run only on x86/64. Because of that, and because
 even many x86 tablets simply aren’t appropriate for running Visual Studio, Visual Studio 2012 supports remote debugging on
 x86, 64-bit, and ARM devices.

 It may seem like an “in the weeds” topic for a first chapter, but many of you have Windows 8 ARM devices and may want to remotely
 debug the examples in this book using them. For that reason, I’ll point you to the right resources here and also tell you
 what’s possible with the tools.

 Before you can remotely debug on a machine, you have to install the remote components. Setting up remote debugging uses architecture-specific
 debugging components for the target machine. The remote debugging products are included with the DVDs for Visual Studio. But,
 because hardly anyone uses or keeps installation media, you can also download them from the Microsoft Download Center here: http://bit.ly/VS2012RemoteDebugInstall.

 The setup and configuration have several steps that are machine-dependent. The ARM steps in particular are subject to change.
 Therefore, let me point you to the official source of information regarding the setup: http://bit.ly/Win8RemoteDebug.

 You can debug only over a private network (home, work) or over a point-to-point Ethernet connection in public hard-wired between
 two machines. Debugging over the internet is not supported. Admittedly, it would be really cool to debug a machine halfway
 around the world across the public internet, like hackers do in movies (“This is Windows. I know Windows!”), but there may
 be one or two security concerns there. The connection also needs to be wired or wireless Ethernet, not USB, Serial, or another
 communications type.

 You don’t need to do this for the Simulator, or any other machine that already has Visual Studio 2012 on it (just run msvsmon
 directly from the Start screen), but the process for otherwise non-developer machines is as follows:

 	Install the remote components on the remote machine. You must do this as the administrator. Figure 1.9 shows the installer download page and install dialog running on the remote target machine.
 Figure 1.9. Installing the remote debugger on the remote target machine

 [image:]

 	Run the remote debugger on the remote machine. You must be an administrator to run this for the first time. Also, you’ll need
 to obtain a developer license for the machine, just as you did for the main developer machine. After that, any regular user
 can start it as long as they’re configured in the security dialog. Figure 1.10 shows where the remote debugger may be found on the target machine.
 Figure 1.10. Here’s where you’ll find the remote debugger. It’s on the Start page. This machine happens to also have Visual Studio, but
 you’ll find it on the Start page of any regular device.

 [image:]

 	Configure the remote debugging so that it works through the firewall on the type of network you’re using (domain network,
 private network, ad hoc). Figure 1.11 shows the dialog where you make these settings. Be sure you’ve checked all of the options or the correct ones for your specific
 network. Sometimes what you think of as a private network is actually configured in Windows as a public network (turn on sharing
 to change this).
 Figure 1.11. Make sure you correctly set the network settings on the target device. If your network isn’t correctly recognized as private,
 but it is, click the network icon in the taskbar and right-click the connection and enable sharing.

 [image:]

 	
Once the debugger is running, set the security method. You can turn off authentication if you’re in a safe spot, but normally
 you’d keep the authentication at regular Windows authentication. This is done through the Options menu in the remote debugging
 monitor.

 	Set the Visual Studio debug target to be a remote machine. You’ll be prompted for the machine to connect to. Make sure the
 debugger is running remotely before you do this. Figure 1.12 shows the Visual Studio dialog on the development machine.
 Figure 1.12. Configuring the remote debug target. If you need to reconfigure the debug target, you can find the info in the Debug tab of
 the project properties.

 [image:]

 	Start debugging as you normally would. If you get deployment errors where the device can’t be connected, check your network
 settings. Depending on the configuration of the device, you may need to make the current connection a private network, or
 you may have authentication problems.

 You can see a few things in figure 1.13 that were specific to my setup. One, I had it set to Authentication, but the domain server could not be contacted, so that
 failed. Then I changed it to No Authentication, but I forgot to check Allow Any User to Debug in the options dialog. Finally,
 I checked that option in the Tools > Options menu of the remote debugging monitor, and it worked.

 Figure 1.13. The Remote Debugging Monitor showing my debugging session

 [image:]

 	

 Note

 If you don’t already have one, you will be prompted to get a developer license on the remote machine.

 	

 For ARM devices and other low-power tablets, remote debugging is essential; you can’t run Visual Studio on everything. But
 even if you have two developer-class machines with only one display each (two laptops, for example), you may find debugging
 remotely to be more convenient than debugging on a lone single-display machine. Doing it this way avoids the context switching
 you have when bouncing between Visual Studio and the Windows app.

 For scenarios where you just need to check different resolutions or simulate touch, using the Simulator is usually the best
 way to go. Be sure to try all three approaches—local, Simulator, and remote—to see which one best fits your workflow.

1.6. Summary

 Before getting into the details of design and APIs, I wanted to start the book off with getting your hands dirty. In this
 very first app, you learned how to create a Windows 8 app from scratch using the Blank Application template.

 Perhaps without realizing it, you used the layout grid to conform to the Windows 8 Modern design guidelines covered in the
 next chapter. You then used the application to connect to a service, download XML, and display it using a ListView with a Wrap-Grid and custom items templates. Not bad for a Hello World application!

 For the majority of us, this was all run on the local machine. I prefer to debug on the main machine whenever possible, but
 when working with my ARM device, I need to use remote debugging, and when testing how the app will look at different resolutions,
 I use the Simulator. All of these together make it possible to test a large number of different configurations, all from your
 main development PC.

 One of my favorite things about developing for Windows 8 is how it is so similar to other technologies I’ve written for in
 the past. Windows 8 XAML apps are written very much like Silverlight apps. If you have experience in the latter, you’ll find
 yourself well equipped to move forward. If you don’t, Silverlight was proven to be very easy to learn by anyone with basic
 C# skills, and I expect Windows 8 XAML to be just as easy and just as fun.

 Personally, I’m looking forward to putting some apps out there. I hope you are too. In the next chapter, we’ll take a look
 at the new Windows 8 design aesthetic and the UI conventions to give you a baseline to use when building your own apps.

Chapter 2. The Modern UI

 This chapter covers

 	The Windows Modern Style

 	Design principles for Windows 8 apps

 	Typography and grid layout

 	Device considerations

 I’m not a designer. Like many, I can tell good design when I see it, but my promising art skills were tossed out the window
 and never really developed once I sat down at my first computer and started programming. Had I known then how well computers
 and art would coexist, I’d have kept pursuing them together.

 Regardless, like many of you, I find myself designing UIs for applications on a fairly regular basis. In the days of rigid
 battleship-gray apps, this was relatively easy to do. As those fell out of favor and we started getting more creative, it
 became harder to keep up. Part of the reason it was hard to keep up was that there were few working constraints. There was
 no commonality to design, no framework to work within. Unlimited possibilities can be pretty daunting when you’re not sure
 where to start.

 With Windows Phone and Windows 8, Microsoft has attempted to bring us all back into the fold of a visual framework we can
 all understand. Those with design talent will still be able to create applications that outshine what the rest of us do, but
 all of us can now more effectively learn from each other and use the same tools and patterns to create applications. That
 framework is the Windows Modern Style.

 	

 Metro?

 Metro was the code name for the design language. At Microsoft, we don’t refer to apps as Metro-style apps but instead as Windows
 8 apps or Modern apps. The aesthetic is simply referred to as the Windows design aesthetic, Windows Modern Style, Windows
 Store app design, or, more succinctly, the Windows style. In general, apps are referred to as Windows x and desktop applications
 and features are referred to as Windows desktop x.

 	

 The Windows Modern Style has many parts. First, I’ll cover a bit of the inspiration for the language and its roots in past
 products. Then, I’ll discuss the principles that govern the decisions about what makes something fit the aesthetic and whether
 or not to go a particular route in the design of your own application. These guiding principles will be a great help to designers
 everywhere. Next, I’ll get into some of the more concrete aspects of Windows 8 app design: specifically, the importance of
 typography and its correct use and the idea of the layout grid. We’ll wrap up this section with one of the main drivers for
 the new style: touch interaction. This entire chapter will be about the visual design for Windows 8 apps, what drives them,
 and how to fit into it. We’re not going to discuss how to put a UI element on the page but rather why that UI element should
 even be there and how it should look.

2.1. Design inspiration

 Although you can see elements of the Windows Modern Style in even earlier work such as Encarta and MSN, the design language
 has its closest implementation roots in the Zune client software for Windows. This client, written using the same pre-WPF
 presentation APIs as Media Center, introduced Windows users to the clean typography-centric design and borderless, chromeless
 windows. Figure 2.1 shows the Zune client, because I know it may be unfamiliar to many of you.

 Figure 2.1. I like my Zune client, and I’ve always liked its UI style; it implements an early version of what evolved to be the Windows
 Modern Style. You can clearly see the elements that continued forward into the design language used on Windows Phone and Windows
 8.

 [image:]

 Silverlight for the desktop even had downloadable Zune-inspired navigation templates that followed the principles of its design
 at an application-level. Later, key elements of this design aesthetic, such as the tile approach to application launching
 and the use of text and case to distinguish purpose, were refined in Windows Phone 7. Now, this design aesthetic is an important
 part of Windows 8, Xbox 360, Windows Phone, and more.

 At first, the Windows Modern Style may seem to be a radical new design that just popped out of the designers’ brains at Microsoft.
 It appears fresh and interesting, yes, but like many great designs, it does it by borrowing very heavily from the excellent
 real-world design work that preceded it.

 2.1.1. Direct influences

 The Windows Modern Style has three key design influences: modern (Bauhaus) design, the International Typographic Style also
 known as Swiss Design, and motion design as used in cinema. Each of those contributed key stylistic elements or concepts to
 complete the Windows 8 Modern design language.

 	
Modern design taught us to cut our designs down to the minimum required to meet the purpose while still being beautiful. Much like the
 American Craftsman movement in furniture was a reaction to the frilliness of Victorian design, modern design was about further
 removing excess adornment and simplifying design to its bare essentials, removing even the construction details that Craftsman
 showcased. In a house, some may see modern design as cold or hard, but in a computer interface, it’s entirely appropriate
 and welcoming.

 	
Swiss Design taught us the importance of clean, crisp typography to convey information quickly. It showcased grid layout and bold, flat
 color. It was about conveying information quickly without requiring the mental effort of deciphering complex multicolor icons.
 It’s beautifully stark, modern, and direct. The best examples of this approach in the real world include the typography-centric way-finding signs commonly used for public transportation
 systems, such as airports, bus terminals, and subways. The Seattle-Tacoma International Airport, which services the Microsoft
 main campus, is full of examples of this design. In those situations, simple, easily understood symbols and easily read text
 rule. Next time you’re at an airport or in a subway, especially those in Europe or in large metro areas, look at the official
 signs and the approach used in their design. You’ll see a little bit of the Windows 8 design aesthetic right there.

 	
Motion design taught us the importance of movement. It helps connect with our emotions as users. Some of the best examples of motion design
 include some movie opening credits, news story transitions and openers on TV, most video car ads, and more.[1] Certainly, however, motion design has been used in our world as well, in 3D graphics and animation; in Flash, Silverlight,
 and WPF; and more.

 1 One of my favorite blogs is “The Art of the Title” (www.artofthetitle.com/). Once you wrap up this chapter, pay them a visit and check out some of the introductory clips. Pretty much anything by Saul
 Bass is a great example.

 So the Windows Modern Style is as much an evolution as it is a revolution. It provides a new, modern UI approach but standardizes
 it so that everyone can once again be on board with using the same elements and styles across their applications. It takes
 its inspiration from real-world elements but makes them authentically digital.

 2.1.2. Finding your way

 Windows 8 ships with a number of apps, and many more are available in the app store. One of the built-in apps is the Photos
 app. This very simple app, shown in figure 2.2 with the app bar open at the bottom after going into the pictures library and selecting a picture, shows many of the elements
 common to Windows 8 Modern apps.

 Figure 2.2. The Windows 8 Photos Browser showing a couple of my favorite meme images. Notice the navigation arrow at the top left, the
 simple iconography, and the prominent use of typography in the title.

 [image:]

 On the top left, you can see the navigation arrow, and to its right, the application title. Below those, occupying the majority
 of the screen space, is the content. At the very bottom, you see the app bar. This isn’t always visible; on a non-touch device,
 you right-click the space at the bottom to view it. On a touch screen, you swipe upward to make it visible.

 The icons on the bottom are very simple with just two colors: the shape color and the background color. This simplicity, the
 navigation arrows, and the use of large text can be seen in airports and metro stations around the world. Figure 2.3 shows a photo I took at Seattle-Tacoma International Airport—the airport most local to Microsoft’s headquarters in Redmond,
 Washington.

 Figure 2.3. One of the inspirations for the Windows 8 aesthetic: way-finding signs at the Seattle-Tacoma International Airport. Notice
 the bold colors, simple icons, large type, and clear arrows. It’s designed for quick scanning while you’re moving from one
 area to another.

 [image:]

 The similarities between the way-finding signs at the airport and the UI elements in Windows apps are, as you’d expect, quite
 numerous. It’s all about quickly finding your way without having to spend the mental effort deciphering cryptic navigation
 elements.

 Now that you know what the design looks like, you may be tempted to jump right into creating apps. But before using the style
 in your own applications, you’ll need to understand the principles behind it.

2.2. Governing principles

 In technical work, understanding the “why” of something is at least as important as understanding the “how.” Similarly, when
 considering a new approach to visual design, it helps to understand the guiding or governing principles. These are the reasons
 the design is the way it is. In the case of the Windows Modern Style, there are five governing principles of design:

 	
Take pride in craftsmanship.
 Quality comes in at the beginning. Beautiful code, beautiful design. Sweat the details and do it the best you can from the
 very start. Do it well and be awesome. You want your apps to stand out in the store and bubble up as useful, well written,
 and well designed.

 	
Be fast and fluid.
 Be intuitive with motion, and delight the user. Be immersive and, perhaps most important, be responsive. You’ve heard “be
 fast and fluid” from Microsoft a million times,[2] but there’s good reason for that. A choppy or slow UI hurts not just your application but the perception of the entire platform.
 I have a tablet that runs another tablet OS and found the stuttering in the UI, lag when dragging, and other lack of smoothness
 really get in the way of the experience. It’s very obvious and viscerally disturbing when you drag something with your finger
 and it doesn’t respond.

 2 It was a drinking game at //build 2011, even.

 	
Be authentically digital.
 Be connected to the rest of the world, to the cloud. Expect your user to be connected. Be dynamic and alive in your interaction.
 Use bold, vibrant colors. Use typography beautifully. Use motion to convey meaning. Don’t pretend to be something you’re not.
 Don’t put a bookshelf in your app; don’t make something look like the real-world version. This is exactly the opposite of
 the iPad design aesthetic, which goes for skeuomorphism,[3] or simulating real-world analogs. That simply doesn’t fit the Windows aesthetic and will look as out of place as cheap veneer
 furniture in a gallery full of solid wood creations.

 3 See “Skeuomorph,” http://en.wikipedia.org/wiki/Skeuomorph. No, it’s not that beast from Aliens—that was a xenomorph.

 	
Do more with less.
 Be focused and direct. Put content before chrome, information before extraneous design. Inspire confidence in your users.
 This is why the app bar, charms, and other chrome are normally hidden: You want to focus the user on the content of the app.
 They should be completely immersed in the goal they’re trying to accomplish and not distracted by toolbars, icons, menus,
 and more.

 	
Win as one.
 Take advantage of the user’s knowledge of the Windows 8 platform and work with the UI model, not against it. Work with other
 applications using contracts; don’t feel that you need to invent everything yourself. Try not to invent new interaction patterns,
 but instead use those already present in the platform. When in doubt, use the tools and templates built into the design and
 development tools.

 These principles should serve as guidelines when creating your Windows apps. When in doubt about a UI element, go back and
 see if it meets these principles. If it violates one or more of them, consider looking at another way to accomplish the same
 functionality. The Build videos at http://buildwindows.com are great references here, as is the design-focused http://design.windows.comsite.

 Also, although I encourage you to use designers for every application you develop, the simplicity of the Windows Modern Style
 design language makes it approachable for design-aware developers to create great-looking and -performing, fast and fluid,
 authentically digital applications for Windows 8. Typography is a big part of the design and its simplicity.

2.3. Typography

 The Windows Modern Style is typography-centric. That is, it uses text for emphasis where we often used lines and other chrome
 elements in the past. In order for this to work, your type must show a clear hierarchy with significant point size differences
 between the different levels. For example, main headings should be in a very large font, and subheadings should be in a font
 size roughly half the size of the main heading. The next level down is roughly half of that size. The final text size is normal
 reading size.

 For any given application, Windows apps generally use just four font sizes to establish the type hierarchy. The recommended
 font sizes are as shown in table 2.1.

 Table 2.1. Recommended font sizes for Windows apps

 	
 Level

 	
 Point size

 	Level 1: Page headers (do not wrap this text)
 	42

 	Level 2: Subheaders and content headers
 	20

 	Level 3: Navigation, body copy, links, and more
 	11

 	Level 4: Tertiary information, field labels, and more
 	9

 For each level, I’ve shown one point size that may apply. This is not a hard-and-fast rule; there’s room to innovate and be
 creative. The primary rule is that there should be a very clear hierarchy so that the screen is easily parsed by the user
 and so that they can focus on the task you want them to perform. When in doubt, sticking with the established sizes will make
 your app look more natural, make it easier for you to work with the included templates, and take the guesswork out of setting
 up your hierarchy.

 Figure 2.4 shows the default type hierarchy. Notice how there’s no ambiguity between levels one through three; the font sizes are significantly
 different.

