
[image: Cover: The Advanced Roblox Coding Book: An Unofficial Guide, Updated Edition, by Heath Haskins]


Includes updated Code, Scripts, and Instructions for Creating with New Game Features!

The Advanced Roblox Coding Book

An Unofficial Guide

Updated Edition

Learn How to Script Games, Code Objects and Settings, and Create Your Own World!

Heath Haskins (a.k.a. CodePrime8)






Thank you for downloading this Simon & Schuster ebook.

Get a FREE ebook when you join our mailing list. Plus, get updates on new releases, deals, recommended reads, and more from Simon & Schuster. Click below to sign up and see terms and conditions.




CLICK HERE TO SIGN UP




Already a subscriber? Provide your email again so we can register this ebook and send you more of what you like to read. You will continue to receive exclusive offers in your inbox.








[image: The Advanced Roblox Coding Book: An Unofficial Guide, Updated Edition, by Heath Haskins, Adams Media]







INTRODUCTION

You’re already pretty good at playing Roblox games, but have you ever wondered how the game maker created the sword you have or the pets that follow you? Maybe you have a little bit of knowledge about the development environment in Roblox Studio, but do you want to know how to:


	Teleport a character?

	Keep track of a player’s inventory?

	Make a customized leaderboard that matches up with your specific game?

	Write your own code when Roblox doesn’t have a specific script you want?



You’ll learn all that, and a bunch more, in The Advanced Roblox Coding Book: An Unofficial Guide, Updated Edition. We’ll make it all happen using Roblox’s version of the Lua coding language. (Don’t worry, writing code is actually not that hard!) I’ll break down the basics of coding in easy-to-understand examples that you can use right away in your games. After you see how my examples work, you’ll be able to use your imagination to add your own style to them. Before you know it, your games will be so much fun that people will want to play them again and again!

In this book, you’ll learn:


	
The basics of Lua scripting: You’ll become familiar with code itself and will learn what the basic structure of code looks like.

	
The power of coding with variables and loops: These are simple Lua features that can help your game execute tons of commands.

	
Tricks for managing player health: You have many options for player health, from giving a character more power to taking it all away.

	
Moving characters around within your game: You’ll learn different techniques for teleporting players.

	
How to save player data: I’ll show you how to set up a scoreboard and save information from one playing session to the next.

	
The steps for creating a game, from start to finish: You’ll learn how to brainstorm your game concept, identify what codes you’ll need, and use programming to accomplish your goals.

	
Important security measures: It’s essential to protect your games as you create them.



The great thing about making games for Roblox is that it gives you the freedom to create almost any game or experience you can imagine. Once you understand coding, nothing will hold you back. Whether you just want to fool around with Roblox Studio on the weekends or start a career as a professional video game creator, The Advanced Roblox Coding Book: An Unofficial Guide, Updated Edition will start you off on the right foot. Let’s get coding!


START WITH THE BASICS

FOR BEGINNER INFORMATION ON HOW TO GET STARTED PLAYING ROBLOX, CHECK THE ULTIMATE ROBLOX BOOK: AN UNOFFICIAL GUIDE, UPDATED EDITION BY DAVID JAGNEAUX AND HEATH HASKINS. THIS BOOK CONTAINS A LOT OF INFORMATION ABOUT ROBLOX, BUT IT’S NOT A DEFINITIVE GUIDE ON ABSOLUTELY EVERY NOOK AND CRANNY OF THE ENTIRE GAME. LIKE ANY GOOD GAME MAKER, THE FOLKS WHO MAKE ROBLOX ARE ALWAYS ADDING NEW FEATURES AND WAYS TO PLAY, SO IT’S IMPOSSIBLE FOR A SINGLE BOOK TO COVER EVERYTHING.

THIS BOOK WILL ALSO NOT INCLUDE ANY “GET RICH QUICK” SCHEMES FOR MAKING LOTS OF MONEY (ROBUX) QUICKLY OR FOR HOW TO BECOME RICH OFF OF CREATING AND SELLING THINGS IN ROBLOX. NO MATTER WHAT YOU READ OR SEE ON THE INTERNET, THE ONLY WAY TO MAKE MONEY IN ROBLOX IS THROUGH HARD WORK, CREATIVITY, AND DEDICATION. THAT’S IT.








[image: Image]







[image: Image]





This chapter will go over how to use the Roblox Studio program to manage scripts, and how to recognize and write some very basic coding. I know, I know, this beginner information is not always the most exciting, but we gotta get it under our belts before we can move on to the fun stuff.

A quick note about Experiences. Roblox officially changed the word “Game” to “Experience.” I will use both “Game” and “Experience” when referencing what we develop in Roblox Studio. You can refer to what you create in Roblox as either one. The main reason Roblox removed the word “Game” is because not all of the Experiences that are created inside Roblox follow the definition of what a game is.


LOADING STUDIO

I’m going to assume that you already have a Roblox account. (If you need a rundown of how to set one up, grab The Ultimate Roblox Book: An Unofficial Guide, Updated Edition.) Log in, and let’s get step 1 out of the way: Open Studio.


[image: Image]
Roblox Corporation

LOOK FOR THE NEW BLUE ICON TO OPEN STUDIO.



There are two ways you can open Studio:


	From Windows go to Start, then Roblox. You should see two or three icons, depending on if you have the Windows Store version of Roblox installed. Click on the blue icon labeled Roblox Studio.

	Go to www.roblox.com, log in, and head to the Create tab. Click on Create New Experience and select either a template or baseplate option, then click Create Experience.




[image: Image]
Roblox Corporation

THE CREATE NEW EXPERIENCE SCREEN.



(You can also open Studio by selecting Edit from a game you have already created.)


KNOW YOUR GAMESETTINGS

BY DEFAULT YOUR GAMESETTINGS ARE PRIVATE, MEANING THE GENERAL PUBLIC CAN’T SEE THEM UNLESS YOU INVITE THEM. YOU CAN CHANGE THESE SETTINGS LATER.




[image: Image]
Roblox Corporation

EXPERIENCE’S LIST WITH EDIT BUTTONS.



Now that the experience has been created, it will appear in your list of My Creations. Click on Edit to start up Studio.


[image: Image]
Roblox Corporation

THE STUDIO SETUP SHOULD LOOK SOMETHING LIKE THIS.



Your Studio may have a different layout. I have changed mine around to the way I like to use it. You can leave the windows in the default layout or customize the layout to make it easier for you to use. Most windows can be dragged around inside the Studio environment or pulled out completely. If you would like to hide or show a window, you can do so from the View tab at the top.

WHAT IS A SCRIPT?

A script is a set of instructions to perform specific tasks in a certain way. For example, you may want your character to drink a potion that makes them regain hit points or hit a dragon with a sword so the dragon loses hit points. Those things happen thanks to a script that the Roblox creators wrote and embedded in the program. Before I explain more, here are a couple of terms you should know:


	
Server: A server is the central place an online game is stored and runs from.

	
Client: A client is the program that allows you to connect to the server. Through it, you can see and interact with the server and other players.



When you play a Roblox game, a server at Roblox is responsible for running the game. When you connect to the game server, your computer opens up a client to show you what is actually a copy of the game. The server and each client talk to each other to keep the game running smoothly for everyone.


SCRIPT LOCATIONS

There are three kinds of script:


	A local script will run on a user’s client (meaning, on their computer).

	A server script (usually just called a script) will run on the Roblox server that is running the game (meaning, in a remote location).

	A ModuleScript works more like a “class” and can be initiated by either a client or server script, depending on its use.



The script location is important because where the script is located will determine what the script can change. All games in Roblox used to be required to enforce something that used to be called Filtering Enabled or Experimental Mode. This is no longer the case, as it would lead to many problems. Instead, all games require filters now.

STARTING A SCRIPT

First, let’s add a script into your Workspace, which is the first object you’ll see in the Explorer window on the right side of the screen. For example, say we have a door that we want to open and close when someone clicks on the handle. We would place the script directly into the Part we create to represent the door, using it as a container for our script. But what if we wanted to make the sun move across the sky and set in the evening, and then add the moon? To control the time of day like that, we could place a script directly into the Workspace. However, it is more common practice to place your server-side scripts into the ServerScriptService. That’s because the ServerScriptService cannot be accessed directly from the client. The process is the same for all scripts. (We will work with a server script to get used to the basics for now, and revisit local scripts later on in the book.) To begin a script, click on the Plus symbol next to ServerScriptService.


[image: Image]
Roblox Corporation

CLICK ON THIS PLUS ICON TO START TO CREATE SCRIPTS.



Type “script” into the search box.


[image: Image]
Roblox Corporation

SEARCH FOR SCRIPT.



Select the Script object, which is shown with a blank scroll icon.


[image: Image]
Roblox Corporation

BE SURE YOU CHOOSE SCRIPT, NOT LOCALSCRIPT OR MODULESCRIPT.



Note: Make sure you do not add the LocalScript or ModuleScript. We will work with those later.

After adding the script, your Studio layout should look similar to this:


[image: Image]
Roblox Corporation

HERE’S WHAT YOU’LL SEE WITH A SCRIPT WINDOW OPEN.



If the text in the scripting window is too small, hold down CTRL (Command on Mac) and use your scroll wheel to zoom in.


WRITING SOME CODE

These famous words will appear by default:


print("Hello, world!")



“Hello, world!” is the simplest script in most programming languages—that’s why it is famous and the reason it appears here. Go ahead and press F5 to run the program, or you can click on the Play button from the Test menu at the top of the screen. You will see “Hello, world!” in the output box at the bottom of your screen.




[image: Image]





The “Hello, world!” script might be easy to write, but it’s not very useful or exciting. What we need to make scripts much more interesting is a variable. We’ll use variables to store, change, and manage data in your scripts.

Note: When the dimensions of this book cause a line of code to break onto another line, we have placed a red underscore. You should NOT place those underscores in your code when you are writing it.


WHAT IS A VARIABLE?

A variable is a container for some kind of data that is relevant to your game. The data represented by a variable is called its value. Values are often called arguments. There are several types of data that you can use in your scripts.


LUA IS SMART WITH DATA TYPES

OTHER COMPUTER PROGRAMMING LANGUAGES (SUCH AS C# OR JAVA) REQUIRE THAT YOU FIRST TELL THE PROGRAM WHAT TYPE OF DATA A VARIABLE WILL BE HOLDING. FOR EXAMPLE, YOU HAVE TO TELL THE PROGRAM THAT A PARTICULAR VARIABLE WILL BE HOLDING A NUMBER, OR A STRING, OR MAYBE A VECTOR. LUA IS REALLY GOOD ABOUT KNOWING WHAT KIND OF DATA YOU WANT TO STORE, SO IT’S NOT A SEPARATE STEP IN THE PROCESS.



DATA TYPES

What kind of information you store inside a variable is called its data type. Even though we don’t have to tell Lua what kind of data type our variable is going to be, it’s important to know what kinds of data types you can use. The following table lists some of the data types available, an example of that data type, a description of what can be stored, and common ways you’ll use that particular data type.



	DATA TYPE

	EXAMPLES

	DESCRIPTION

	COMMON USES IN ROBLOX GAMES




	String

	“Hello, world!”

	Strings represent text, such as words or sentences, including letters, numbers, and punctuation. String values are surrounded by quotation marks.

	To make characters “talk.”




	Number

	
42

3.14159

-3.0


	Numbers represent numerical values, which can be used to hold counts, perform mathematical equations, and represent units of measure.

	Hit points for health, amounts of money, timers.




	Table

	{apple = “red”, banana = “yellow”, pear = “green”}

	Tables represent pairs of items. The first item in a pair is called the “index” or “key.” The second item in a pair is called its “value.” In our example, the keys are types of fruit variables, and the values are their colors as a string. Tables are declared with brackets, like these: {}.

	A complex object, like a vehicle, or a list of items and their properties.




	Userdata

	game.Workspace

	Userdata is a pointer, or reference to an object. The Userdata doesn’t contain information itself, but rather points to an object that contains data.

	Working with special objects, like the Workspace or players.




	Boolean

	true, false

	A single value of 1 or 0. True or false. Used in logic.

	Whether or not a player has defeated a boss.




	Nil

	nil

	A special type that indicates that no value has been assigned.

	Creating variables in advance, before you know what they will contain.




	Function

	print(), tostring(), tonumber()

	A function is a set of instructions that have been grouped together and given a name. Instead of writing the same instructions multiple times, you can group them into a function, then “call” the function to execute those instructions whenever you want. There is a special kind of function called a “method.” Methods perform an action on a variable.

	Printing things, defining how an object behaves, simplifying a set of instructions into a single word or phrase that can be called directly.






NAMING VARIABLES

You’ll want to name your variables in a way you can remember what information is being stored there. You can name a variable almost anything you like, but there are some rules to follow.

Here are some examples of naming a variable:


NAME of variable = VALUE of that variable

LifeAnswer = 42

DogSound = "Bork Bork"

smallTable = {1,2,3}

WSpace = game.Workspace

CanRun = true

mixedTable = {42,"Bork Bork",{1,2,3},game.Workspace,true,_

print}



Here are some guidelines for how to name a variable (the left side of the equation):


	You cannot start a variable with a number, like 1cat or 3dog. You can use a number after a name is given, like Cat1 or Dog3.

	Do not name a variable the same as a function name, such as print, type, or error. For example, you could type print = "13". Print is a reserved word and cannot be used as a variable. If you assign something to a reserved word like print, the next time you type print("Hello, world!") your script will crash.

	Don’t be afraid to use long names. In the past, programmers would shorten their code by shortening the variable names. Let’s say a programmer had a variable like The Smallest Book Title Cover. He or she might have made a variable named smBKTCov. This is confusing, especially if you are working with a group of programmers, or if you have to revisit the code after not looking at it for a long time. Make your variables mean something. There is no harm in having a longer name.



PLAYING WITH STRINGS

Strings are very useful when you’re writing code—they will provide dialog, names, and item descriptions.

Let’s go back to our sample script from the end of Chapter 1. Let’s delete print("Hello, world!") and instead create a variable called MyFirstName and give it the string value of our name. Then, let’s create a second variable and call it MyLastName.


MyFirstName = "Heath"



Now let’s create a second variable and call it MyLastName.


MyLastName = "Haskins"



Let’s use the print function to make our script show us our new variables along with some text. We’ll put the text in quotes to make it a string. We will use commas to separate the string from the variables we just created (MyFirstName and MyLastName).


print("Good Evening", MyFirstName, MyLastName)



Double-check the spelling of your text. When you are ready, press F5 to run your game.


The output at the bottom of the screen should read: Good Evening Heath Haskins




[image: Image]
Roblox Corporation

THE OUTPUT WINDOW.



PUTTING STRINGS TOGETHER

Instead of using commas in the print function, you can combine (or “concatenate,” in computer programming language) strings by using two periods. Let’s add another variable called FullProperName by concatenating the two variables and some separation string (the space and comma are in quotes).


FullProperName = MyLastName .. ", " .. MyFirstName

print(FullProperName)




The output should read: Haskins, Heath




STRING OPERATIONS

String variables have several built-in methods attached to them, such as:


	Making all the letters uppercase.

	Making all the letters lowercase.

	Getting the length of the string.

	Pulling out a specific part of the string.



Type in the following code. Lines 2–6 each use the built-in string function, known as a method, by calling them directly on the variable.



	CODE

	WHAT IT DOES




	
myString = "Im a _

programmer"


	This line creates a variable called myString. Because myString is a string data type, it inherits special methods for working with its value.




	myString:upper()

	This is the :upper() method. This will convert all the characters in the string from lowercase to uppercase.




	myString:lower()

	This is the :lower() method, which is just the opposite of :upper(). It makes all of the characters lowercase.




	myString:sub(6,15)

	:sub() stands for “substring.” It will return a part of the string, and it takes two arguments when called as a method. The first argument is what position in the string to start, and the second argument is what position to end. If we were to count our string’s characters, then “I” would be 1, “m” would be 2, the first space would be 3, and so on. We start at position 6 “p” and go to position 15 “r.” If you are using the string.sub() method, it will take three arguments. The first is for the variable you want to assign the results in, second is start position, and third is end position.




	myString:reverse()

	This reverses the string value so that it is backward.




	myString:len()

	This line will make the script print out the length of the string (e.g., how many characters are in the string).





There are two ways to call a type’s methods in Lua: via a variable (by using a “:”) or via the type itself (by using a “.”). Say we had a string variable defined like this:


dog_name = "Buster"



These two lines would print the same thing:


print(dog_name:upper())

print(string.upper(dog_name))



This applies to all of the type’s methods, such as lower, reverse, and len, in the case of the string type. Calling via the variable, as in the first case we discussed, is more concise, so you may find it easier to read. This table shows both ways of calling these methods.



	CALL VIA VARIABLE

	CALL VIA TYPE




	myString:upper()

	string.upper(myString)




	myString:lower()

	string.lower(myString)




	myString:sub(6,15)

	string.sub(myString,6,15)




	myString:reverse()

	string.reverse(myString)




	myString:len()

	string.len(myString)





PLAYING WITH NUMBERS

Let’s move on to numbers. Addition, Subtraction, Multiplication, and Division are the basics. However, these are not the only things we can do. The math in Lua can get really complicated, really quick, and these operations will cover most of the scenarios you’ll run into when coding. We use different symbols to represent the different operations we want to perform. The table that follows shows what symbols to use.

OEBPS/e9781507217894/images/f0017-02.jpg


OEBPS/e9781507217894/images/ch01.jpg


OEBPS/e9781507217894/images/f0013-01.jpg


OEBPS/e9781507217894/fonts/Quantico-BoldItalic.ttf


OEBPS/e9781507217894/fonts/Quantico-Bold.ttf


OEBPS/e9781507217894/fonts/ZillaSlab-Regular.ttf


OEBPS/e9781507217894/images/f0017-01.jpg


OEBPS/e9781507217894/images/title.jpg


OEBPS/e9781507217894/images/f0011-01.jpg


OEBPS/e9781507217894/images/f0013-02.jpg


OEBPS/e9781507217894/images/ch02.jpg


OEBPS/e9781507217894/fonts/Lato-Black.ttf


OEBPS/e9781507217894/fonts/Lato-Italic.ttf


OEBPS/e9781507217894/fonts/Lato-Regular.ttf


OEBPS/e9781507217894/images/f0016-02.jpg


OEBPS/e9781507217894/images/f0016-01.jpg


OEBPS/e9781507217894/xhtml/nav.xhtml


Contents



		Cover


		Title Page


		Introduction


		Part 1: Noob

		Chapter 1: The Very Basic


		Chapter 2: Variables


		Chapter 3: Ifs, Loops, and More


		Chapter 4: Functions







		Part 2: Lead by Example

		Chapter 5: Power-Ups and Power-Downs


		Chapter 6: Beam Me Up


		Chapter 7: The Data Keeper







		Part 3: Expert Mode

		Chapter 8: Game On


		Chapter 9: Let’s Make a Game


		Chapter 10: Protecting Your Games







		Conclusion


		Appendix: Infinite Knowledge


		About the Author


		Glossary


		Index


		Copyright







Guide



		Cover


		Start of Content


		Title Page


		Introduction


		Appendix: Infinite Knowledge


		About the Author


		Glossary


		Index


		Copyright








		1


		3


		4


		5


		6


		7


		8


		9


		10


		11


		12


		13


		14


		15


		16


		17


		18


		19


		20


		21


		22


		23


		24


		25


		26


		27


		28


		29


		30


		31


		32


		33


		34


		35


		36


		37


		38


		39


		40


		41


		42


		43


		44


		45


		46


		47


		48


		49


		50


		51


		52


		53


		54


		55


		56


		57


		58


		59


		60


		61


		62


		63


		64


		65


		66


		67


		68


		69


		70


		71


		72


		73


		74


		75


		76


		77


		78


		79


		80


		81


		82


		83


		84


		85


		86


		87


		88


		89


		90


		91


		92


		93


		94


		95


		96


		97


		98


		99


		100


		101


		102


		103


		104


		105


		106


		107


		108


		109


		110


		111


		112


		113


		114


		115


		116


		117


		118


		119


		120


		121


		122


		123


		124


		125


		126


		127


		128


		129


		130


		131


		132


		133


		134


		135


		136


		137


		138


		139


		140


		141


		142


		143


		144


		145


		146


		147


		148


		149


		150


		151


		152


		153


		154


		155


		156


		157


		158


		159


		160


		161


		162


		163


		164


		165


		166


		167


		168


		169


		170


		171


		172


		173


		174


		175


		176


		177


		178


		179


		180


		181


		182


		183


		184


		185


		186


		187


		188


		189


		190


		191


		192


		193


		194


		195


		196


		197


		198


		199


		200


		201


		202


		203


		204


		205


		206


		207


		208


		209


		210


		211


		212


		213


		214


		215


		216


		217


		218


		219


		220


		221


		222


		223


		224


		225


		226


		227


		228


		229


		230


		231


		232


		233


		234


		235


		236


		237


		241


		242


		243


		244


		245


		246


		247


		248


		249


		250


		251


		252


		253


		254


		255








OEBPS/e9781507217894/fonts/Lato-BoldItalic.ttf


OEBPS/e9781507217894/images/f0012-01.jpg


OEBPS/e9781507217894/fonts/ZillaSlab-Bold.ttf


OEBPS/e9781507217894/images/part01.jpg


OEBPS/e9781507217894/images/9781507217894.jpg


OEBPS/e9781507217894/images/f0026-01.jpg


OEBPS/e9781507217894/fonts/Lato-BlackItalic.ttf


OEBPS/e9781507217894/fonts/Lato-Light.ttf


OEBPS/e9781507217894/fonts/Lato-Bold.ttf


OEBPS/e9781507217894/fonts/Lato-LightItalic.ttf


