

 inside front cover

 [image:]

 Log file cleanup process

 [image:]

 Practical Automation with PowerShell

 Effective scripting from the console to the cloud

 Matthew Dowst

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Connor O’Brien

 	
 Technical development editor:

 	
 Michael Lund

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Alisa Larson

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Gonzalo Huerta-Canepa

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299551

 dedication

 This book is dedicated to my wife, Leslie, who has supported me every step of the way—not just during the writing process, but my entire career.

brief contents

 Part 1.

 1 PowerShell automation

 2 Get started automating

 Part 2.

 3 Scheduling automation scripts

 4 Handling sensitive data

 5 PowerShell remote execution

 6 Making adaptable automations

 7 Working with SQL

 8 Cloud-based automation

 9 Working outside of PowerShell

 10 Automation coding best practices

 Part 3.

 11 End-user scripts and forms

 12 Sharing scripts among a team

 13 Testing your scripts

 14 Maintaining your code

 Appendix. Development environment set up

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1.

 1 PowerShell automation

 1.1 What you’ll learn in this book

 1.2 Practical automation

 Automation goal

 Triggers

 Actions

 Maintainability

 1.3 The automation process

 Building blocks

 Phases

 Combining building blocks and phases

 1.4 Choosing the right tool for the job

 Automation decision tree

 No need to reinvent the wheel

 Supplemental tools

 1.5 What you need to get started today

 2 Get started automating

 2.1 Cleaning up old files (your first building blocks)

 Your first function

 Returning data from functions

 Testing your functions

 Problems to avoid when adding functions to scripts

 Brevity versus efficiency

 Careful what you automate

 Putting it all together

 2.2 The anatomy of PowerShell automation

 When to add functions to a module

 Creating a script module

 Module creation tips

 Part 2.

 3 Scheduling automation scripts

 3.1 Scheduled scripts

 Know your dependencies and address them beforehand

 Know where your script needs to execute

 Know what context the script needs to execute under

 3.2 Scheduling your scripts

 Task Scheduler

 Create scheduled tasks via PowerShell

 Cron scheduler

 Jenkins scheduler

 3.3 Watcher scripts

 Designing watcher scripts

 Invoking action scripts

 Graceful terminations

 Folder watcher

 Action scripts

 3.4 Running watchers

 Testing watcher execution

 Scheduling watchers

 4 Handling sensitive data

 4.1 Principles of automation security

 Do not store sensitive information in scripts

 Principle of least privilege

 Consider the context

 Create role-based service accounts

 Use logging and alerting

 Do not rely on security through obscurity

 Secure your scripts

 4.2 Credentials and secure strings in PowerShell

 Secure strings

 Credential objects

 4.3 Storing credentials and secure strings in PowerShell

 The SecretManagement module

 Set up the SecretStore vault

 Set up a KeePass vault

 Choosing the right vault

 Adding secrets to a vault

 4.4 Using credentials and secure strings in your automations

 SecretManagement module

 Using Jenkins credentials

 4.5 Know your risks

 5 PowerShell remote execution

 5.1 PowerShell remoting

 Remote context

 Remote protocols

 Persistent sessions

 5.2 Script considerations for remote execution

 Remote execution scripts

 Remote execution control scripts

 5.3 PowerShell remoting over WSMan

 Enable WSMan PowerShell remoting

 Permissions for WSMan PowerShell remoting

 Execute commands with WSMan PowerShell remoting

 Connect to the desired version of PowerShell

 5.4 PowerShell remoting over SSH

 Enable SSH PowerShell remoting

 Authenticating with PowerShell and SSH

 SSH environment considerations

 Execute commands with SSH PowerShell remoting

 5.5 Hypervisor-based remoting

 5.6 Agent-based remoting

 5.7 Setting yourself up for success with PowerShell remoting

 6 Making adaptable automations

 6.1 Event handling

 Using try/catch blocks for event handling

 Creating custom event handles

 6.2 Building data-driven functions

 Determining your data structure

 Storing your data

 Updating your data structure

 Creating classes

 Building the function

 6.3 Controlling scripts with configuration data

 Organizing your data

 Using your configuration data

 Storing your configuration data

 Do not put cmdlets into your configuration data

 7 Working with SQL

 7.1 Setting your schema

 Data types

 7.2 Connecting to SQL

 Permissions

 7.3 Adding data to a table

 String validation

 Inserting data to a table

 7.4 Getting data from a table

 SQL where clause

 7.5 Updating records

 Passing pipeline data

 7.6 Keeping data in sync

 Getting server data

 7.7 Setting a solid foundation

 8 Cloud-based automation

 8.1 Chapter resources

 8.2 Setting up Azure Automation

 Azure Automation

 Log Analytics

 Creating Azure resources

 Authentication from Automation runbooks

 Resource keys

 8.3 Creating a hybrid runbook worker

 PowerShell modules on hybrid runbook workers

 8.4 Creating a PowerShell runbook

 Automation assets

 Runbook Editor

 Runbook output

 Interactive Cmdlets

 8.5 Security considerations

 9 Working outside of PowerShell

 9.1 Using COM objects and .NET Framework

 Importing Word objects

 Creating a Word document

 Writing to a Word document

 Adding tables to a Word document

 9.2 Building tables from a PowerShell object

 Converting PowerShell objects to tables

 Converting PowerShell arrays to tables

 9.3 Getting web data

 API keys

 9.4 Using external applications

 Calling an external executable

 Monitoring execution

 Getting the output

 Creating Start-Process wrapper function

 9.5 Putting it all together

 10 Automation coding best practices

 10.1 Defining the full automation

 Structuring your automation

 10.2 Converting a manual task to an automated one

 10.3 Updating structured data

 10.4 Using external tools

 Finding installed applications

 Call operators

 10.5 Defining parameters

 10.6 Making resumable automations

 Determining code logic and functions

 10.7 Waiting for automations

 10.8 Think of the next person

 Do not overcomplicate it

 Comment, comment, comment

 Include help and examples on all scripts and functions

 Have a backup plan

 10.9 Do not forget about the presentation

 Part 3.

 11 End-user scripts and forms

 11.1 Script frontends

 SharePoint trial tenant

 11.2 Creating a request form

 Gathering data

 Creating a SharePoint form

 11.3 Processing requests

 Permissions

 Monitoring for new requests

 Processing the request

 11.4 Running PowerShell script on end-user devices

 Custom Git install

 Running as system versus the user

 Using Active Setup with PowerShell

 12 Sharing scripts among a team

 12.1 Sharing a script

 Creating a gist

 Editing a gist

 Sharing a gist

 Executing a gist

 12.2 Creating a shared module

 Uploading the module to a GitHub repository

 Giving access to the shared module

 Installing the shared module

 12.3 Updating a shared module

 Make the module self-update

 Creating a pull request

 Testing the self-update

 13 Testing your scripts

 13.1 Introduction to Pester

 13.2 Unit testing

 BeforeAll

 Creating tests

 Mocks

 13.3 Advanced unit testing

 Web scraping

 Testing your results

 Mocking with parameters

 Unit vs. integration tests

 13.4 Integration testing

 Integration testing with external data

 13.5 Invoking Pester tests

 14 Maintaining your code

 14.1 Revisiting old code

 Test before changing

 Updating the function

 Post update test

 14.2 Automating your testing

 Creating a GitHub workflow

 14.3 Avoiding breaking changes

 Parameter changes

 Output changes

 Appendix. Development environment set up

 index

 front matter

preface

 While most people know PowerShell as a command-line tool, it is truly much more than that. If you look at Microsoft’s description of PowerShell, it says that it is an automation and configuration tool/framework. PowerShell was written to be a plain text language that is easy to pick up and get started with but also a very powerful tool that you can use to automate an untold number of tasks in your environment and daily life.

 However, I’m not here to sell you on PowerShell. The fact that you are reading this book shows you know what PowerShell is capable of. Instead, this book is designed to help you learn from my over-a-decade’s worth of experiences in creating PowerShell-based automations and apply those lessons to your own automation needs.

 Like many people in the information technology space, I started my career on the help desk and moved into a systems administrator role. No matter what position I was in, if there was a repetitive task I needed to do, I scripted it—first in VBS and then eventually in PowerShell. I was in a unique position because my background was in infrastructure, but I ultimately landed at a company that does custom application development. I learned many skills from those I worked with along the way who helped me build bigger and better automations.

 Working as a consultant, I have repeatedly seen companies that are afraid of automation—not necessarily fear of automating yourself out of a job, but fear of becoming beholden to the automation. I can’t tell you the number of times I’ve heard that some process cannot be changed because nobody knows how to update some esoteric automation that someone made years ago.

 My goal in writing this book is to help others avoid that situation by creating robust, easy-to-maintain automations that will be supported for years to come.

acknowledgments

 This book has taken up many evenings and weekends, so first and foremost, I would like to thank my family. I thank my wife Leslie, whose love of reading really inspired me to start down this path, not to mention her endless support along the way, and my two kids, Jason and Abigail, who spent many Saturdays and Sundays waiting for Dad to come out of the office and play.

 I would also like to acknowledge Cameron Fuller, whose mentorship and support have been paramount in getting me where I am today, and the rest of my colleagues at Quisitive, who have inspired and supported me throughout this process. This includes, but is not limited to, Greg Tate and David Stein, who provided invaluable feedback during the MEAP process.

 Also, this book would not have been possible without the help of my editors, Connor O’Brien and Michael Lund. Thank you, Connor, for working with me and teaching me the best ways to communicate my message for others to learn. I thought I knew a lot about writing before, but your patience and commitment to my vision helped me make the book even better than I ever imagined. Also, thanks to Michael for his technical feedback and guidance, which helped me tremendously throughout the writing process.

 I’d also like to thank the reviewers and those who provided feedback through MEAP. Your feedback has been invaluable in helping me write this book for a wider audience. To all the reviewers—Aleksandar Nikolic, Alice Chang, Andreas Schabus, Anne Epstein, Anton Herzog, Bruno Sonnino, Charles Mike Shelton, Chuck Coon, Eric Dickey, Fredric Ragnar, Giuliano Latini, Glen Thompson, Glenn Swonk, Gonzalo Huerta Cánepa, Håvard Wall, Jan Vinterberg, Jeremiah Griswold, Jérôme Bezet-Torres, Jiri Pik, Kent Spillner, Mike Haller, Milan Sarenac, Muralidharan T R, Mustafa Özçetin, Nik Rimington, Orlando Méndez Morales, Przemysław Chmielecki, Ranjit S. Sahai, Roman Levchenko, Sander Zegveld, Satej Kumar Sahu, Shawn Bolan, Sylvain Martel, Wayne A Boaz, Werner Nindl, and Zoheb Ainapore—your suggestions helped make this a better book.

 Finally, I’d like to thank the PowerShell team at Microsoft and, especially, the wider PowerShell community. This book would not have been possible without all the work they do.

about this book

 While the lessons in this book are written with PowerShell, the concepts taught can apply to any automation language or platform. This is done by taking you beyond how to do something and leaning more into the why. My goal is to help you take these concepts and apply them directly to your needs by showing you how to think through the automation and what needs to be accomplished so you can create efficient and maintainable automations that you can continue to use for years to come.

Who should read this book?

 This book is for anyone familiar with PowerShell who would like to create enterprise-ready automations. While the concepts of this book apply to everyone, from beginners to experts, to get the most out of this book you should have some familiarity with PowerShell. You should know how to install modules, understand the basics of creating PowerShell script (.ps1), and know some core basics of the language, such as if/else conditional statements, splatting, and loops.

How this book is organized: A roadmap

 This book consists of 14 chapters, broken down into three parts. Each part covers a core concept of the automation process.

 Part 1 covers getting started with your automation journey:

 	
 Chapter 1 discusses the best uses of PowerShell from an automation point of view and how to ensure you are using the correct tools for the job.

 	
 Chapter 2 shows you how to organize your scripts and modules to make reusable tools.

 Part 2 is the heart of the book, covering many different automation concepts:

 	
 Chapter 3 covers scheduling automations and how to think about your code when it is going to be run on a schedule.

 	
 Chapter 4 shows you how to handle secure data in your automations, including the use of password vaults.

 	
 Chapter 5 demonstrates multiple ways you can use PowerShell for remote execution and how to apply these to real-world situations.

 	
 Chapter 6 starts by showing you how to use logic in your code to make your automations adaptable. It then takes that concept a step further by showing you how to use external data to control the execution of an automation script.

 	
 Chapter 7 goes in-depth into using PowerShell with a database backend, freeing you from the Excel and CSV files many companies use to store important data.

 	
 Chapter 8 shows you how to use Azure to manage and execute your automations by combining many of the concepts from previous chapters into a single platform.

 	
 Chapter 9 demonstrates how you can use PowerShell to interact with different solutions. These include generating a Word document from within PowerShell, communicating with a web API, and even invoking Python and passing data between the two scripts.

 	
 Chapter 10 covers some best practices when it comes to writing PowerShell specifically for automation purposes.

 Part 3 shows you how you can share and maintain your automation scripts:

 	
 Chapter 11 covers how you can use SharePoint as a front-end for a PowerShell script and how to design scripts that need to run on end-user devices.

 	
 Chapter 12 shows you how to use GitHub for source control and for sharing scripts with your colleagues.

 	
 Chapter 13 teaches you the basics of using Pester to create unit and integration tests that will help ensure your scripts meet all the scenarios you designed them for.

 	
 Chapter 14 demonstrates how to go back to a previous script and make changes to it. This includes what you need to consider beforehand and incorporating automated testing into your source control.

About the code

 Unless otherwise stated, all code in this book is written to use PowerShell 7.2 or newer. Some sections still require Windows PowerShell 5.1, but these are clearly called out. In trying to write this book to be as conclusive as possible, I tried to keep the dependence on third-party platforms to a minimum. Any platform or external tools used in this book are either free or have a free trial long enough for you to complete the exercises. There is no dependence on things like Active Directory.

 To accommodate the spacing requirements for a printed book, splatting is used throughout this book. If you are not familiar with splatting, it is a way to pass a collection of parameters to a command using a hashtable. This allows you to break up the parameters into individual lines, making it more readable.

 To show the difference between a command and the output from the command, anytime output is shown, the code will be in a separate block immediately following the command and indented. Also, the output may be shortened to only show relevant data:

 Code example
Output example

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/practical-automation-with-powershell. The complete code for the examples in the book is available for download from the Manning website at www.manning.com, and from GitHub at https://github.com/mdowst/Practical-Automation-with-PowerShell.

 Helper scripts are also provided in some chapters. These are typically used to help you set up your development environment to support the lessons in that chapter. Their use will be called out in the individual chapters.

liveBook discussion forum

 Purchase of Practical Automation with PowerShell includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/practical-automation-with-powershell/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image:]

 Matthew Dowst is a Managing Consultant for Quisitive (formerly Catapult Systems) and the lead architect for their managed automation team. He has spent the last 10 years working extensively with PowerShell to help clients of all sizes automate their production workloads. In addition, Matthew is very involved in the PowerShell community, writing blogs, authoring modules, and participating in online forums. He is also the creator of the PowerShell Weekly newsletter, a weekly roundup of that week’s PowerShell news.

about the cover illustration

 The figure on the cover of Practical Automation with PowerShell is captioned “Habitante de Frascati,” or “Resident of Frascati,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1.

 If you go to any conference, read any trade publications, or just talk to others, you will hear that the future is in automation. However, automation is much more than just taking an existing manual process and writing some code to do it for you. To be genuinely successful in your automation endeavors, your automations must save you time and money. However, calculating that is more than just taking into consideration the time it takes you to do the task versus a machine. You also need to calculate in the time it takes to create and maintain the automation.

 In this section, you will learn not only how to calculate the cost of automation but also how to minimize the cost of creation and maintenance. In addition, you will see how properly planning your projects and creating reusable code will save you time now and in the future.

1 PowerShell automation

 This chapter covers

 	
How to conceptualize your automation needs

 	
Why you should automate with PowerShell

 	
How to know when PowerShell is the right tool for the job

 	
How you can get started automating your workloads today

 Every day, across all industries, IT professionals are tasked to do more with less, and the best way to achieve that is through automation. However, many companies do not see IT automation as an asset. More often than not, automations are cobbled together by some sysadmin in their spare time. This often leads to situations where the automation becomes less efficient than doing the task manually, or even worse, it becomes a blocker for change.

 I am sure at some point you have tried using one of the codeless automation platforms such as IFTTT, Flow, or Zapier, among others. If you are like me, you probably found the features a little too basic. They are great for personal one-off–type automations, but to really get what you need out of them and ensure they can support enterprise-level automations, they require customization beyond what their simple GUIs can provide.

 This is where PowerShell can shine. PowerShell is a task automation framework with a simple and intuitive scripting language. PowerShell includes command-lets (cmdlets) that allow you to do similar tasks available in admin consoles and provides a framework in which tasks can be chained together to execute a series of logical steps. Cmdlets allow you to manage and automate the entire Microsoft ecosystem (Azure, Office 365, Microsoft Dynamics, etc.) and other platforms such as Linux and Amazon Web Services. By harnessing the potential of PowerShell and learning a few fundamental principles of automation, any IT professional can become an automation guru.

 In addition to asking IT professionals to do more with less, the IT industry is moving to an infrastructure as code model. I have the unique experience of working for a company that specializes in infrastructure consulting and custom application development. This has given me the opportunity to work on automation projects within both specialties, and I have learned that anyone can become an automation guru with a bit of knowledge from each side.

 If you are a systems administrator or other IT specialist, you are probably already familiar with working in command-line interfaces (CLIs), using batch/shell files, and running PowerShell scripts. Therefore, the leap to writing code specifically for automations is not that significant. However, you may not be as familiar with some of the supporting skills around issues such as source control and unit testing, and this book aims to help with that.

 At the same time, someone with a strong development background may not be as familiar with all the idiosyncrasies of system administration. This is where PowerShell can shine because it does not rely on enterprise architecture. You can just as easily run a script on your local machine as you can on a server. This book demonstrates how you can leverage PowerShell in an organization of any size to create robust, maintainable, and secure automations.

1.1 What you’ll learn in this book

 This book does not simply show you how to write PowerShell scripts. There are already hundreds of resources out there on just writing code. Instead, the goal is to show you how you can use PowerShell as an automation tool by understanding

 	
 How you can leverage PowerShell to automate repeatable tasks

 	
 How to avoid common automation pitfalls with PowerShell

 	
 How to share and maintain scripts for your team

 	
 How to frontend your scripts for end users

 We will achieve this goal by using real-world examples that IT professionals run into every day. You will work through the technical side of writing the code, the conceptual side of why the code is structured the way it is, and how you can apply that to your automation needs.

1.2 Practical automation

 If you are reading this book, then it is probably safe to assume you have asked yourself, “What should I automate?” While the answer you most likely want to hear is “Everything!” the generic answer is “Any repetitive task that takes you less time to automate than perform.” However, like many things in the IT field, the answer is not always so simple. You need to consider multiple factors to determine whether something is worth automating, and as you will see, it may not always be a straight return on time invested.

 It is easy to say if it takes you less time to automate it than it takes to do it manually, then it is worth automating, but that is not the complete story. You need to take into consideration the following:

 	
 Time—How long does it take to perform the task?

 	
 Frequency—How often is the task performed?

 	
 Relevancy—How long will the task/automation be needed?

 	
 Implementation—How long will it take to automate?

 	
 Upkeep—How much long-term maintenance and upkeep will it require?

 The first two items, how long and how often, are usually the most straightforward numbers to figure out, along with the business side of things such as how long the task will be relevant. For example, if you automate a task that will go away after the next system upgrade, then you may not recoup your time invested.

 The implementation time and upkeep costs can be a little more challenging to calculate. These are things you will begin to get a feel for the more you automate. Just remember to factor in the cost of the tools, platforms, licenses, etc. To determine upkeep costs, you need to consider technology-based maintenance tasks such as platform maintenance, API changes, and system upgrades.

 Once you have answers to these questions, you can calculate the amount of time you can spend automating the task to determine whether it is worth your time. You can get the cost by multiplying the time by the frequency and the relevancy. Then, add your implementation plus the upkeep over the relevancy period. If your current cost exceeds your automation cost, then the task is worth automating.

 Time × Frequency × Relevancy > Implementation + (Upkeep × Relevancy)

 Current cost > Automation cost

 At the beginning of your automation journey, estimating the implementation and upkeep costs can be challenging. However, this is something you will learn the more you do it. Until you become more comfortable with these estimates, a good rule of thumb is that if you think you can automate it in half the time saved, then you will be almost guaranteed a good return on your investment.

 Besides the benefit of simplifying a repetitive task, there are other factors to consider when determining what to automate. Anything prone to a high degree of human error is a great candidate for automation. Working with a large data set and data transcription is a great example of two tasks that are ripe for automation. People make mistakes when typing. Those mistakes are amplified when they are dealing with lots of data in front of them. If you have ever created a complex Excel formula to manipulate some data, then you have already made a simple automation.

 Even if the task at hand is not something you need to do repeatedly, creating a one-off automation may save you time. Plus, if you keep that automation, you can use it as a foundation if you have to perform a similar task in the future. An excellent example of this is string manipulation tasks. For example, say you have a text file with a bunch of poorly formatted text that you need to parse into columns and get into a spreadsheet. However, it is not that many rows, and you could transcribe it or copy/paste it in a few minutes. Or you can take it as an opportunity to hone your skills by using regular expressions, splits, substrings, indexes, replacements, or any other number of string manipulation methods. Learning to use these correctly will be an invaluable skill in your automation journey.

 Another place you can look for things to automate is in tasks that you may not need to do often but that are complex and time-consuming. If the task is complex enough that you made a checklist, then you also made an automation project plan. Start by automating one of the steps, then another, and another, and so on until you have a fully automated process. The next time this task comes up, you can click a button instead of referring to a checklist or trying to remember each step of the process.

 The best way to get started on your automation journey is to find a simple task that you repeatedly do and automate it. It doesn’t have to be a big task or anything fancy. Just think about something that will save you time.

 You can also use automation to help you overcome obstacles or handicaps that might prevent you from being as productive as you would like to be. For example, I will freely admit that I am not the most organized person when it comes to my inbox. I would like to be, but I cannot always keep on top of things. I don’t like to use Outlook rules because I want to ensure I don’t miss an alert, especially if I’m away from my desk. So, what ends up happening is that I quickly read through my emails, but I don’t always file them right then. As a result, I end up with thousands of emails in my inbox over time. To combat this, I wrote a script that will file my emails for me. It moves messages to specific folders based on email addresses and keywords. Not only does this automation save me time and help me be more productive, but it also makes me happy, and at the end of the day, that’s worth it to me.

 One last thing to remember is that you do not need to automate an entire process end to end. You may very well calculate that the cost of automating a task would be greater than performing it manually. However, you may be able to automate certain portions of it to save time and give you a positive return on investment. A perfect example of this is barcodes. Barcodes allow cashiers and warehouse workers to quickly scan items instead of hand-entering product codes. RFID tags would be even quicker, but the cost of implementing them has, so far, been higher than the cost of scanning a barcode.

 The more experience you get with automation, the better you will become at determining what is and what isn’t worth automating. Also, as you will see in the next section, by using a phased approach with reusable building blocks in your automation processes, you can set yourself up for creating bigger and better automations down the line.

 To help you get started, let’s look at the four key factors you need to consider when designing an automation. These are the automation’s

 	
 Goal

 	
 Triggers

 	
 Actions

 	
 Maintainability

 The automation goal is what that automation needs to accomplish. The trigger is what initiates the automation actions. The actions are the steps taken during the automation. Finally, maintainability is what it will take to maintain this automation as a whole and as individual building blocks.

 We can use a common real-world example to help illustrate each part of the anatomy of the automation. For example, imagine you have a web server that keeps going offline because the logs fill up the drives. These logs cannot be deleted because they are required for security audits. So, about once a week, you must find files over 30 days old, compress these old logs, and move them to long-term storage.

1.2.1 Automation goal

 The automation goal is what you are trying to achieve with a specific automation. While the goal of the automation may seem easy to define, you need to be sure that you consider all aspects of the automation.

 In our log file cleanup example, our obvious goal is to prevent the drives on the web server from filling up, but that just scratches the surface. If that were our only goal, we could simply delete the old logs. However, these logs are required for security audits. So, our goal is to create an automation process that will prevent the drives from filling up while ensuring no data is lost and that the data will be accessible on the rare occasions it is needed. This gives an overview of the automation and can be used to create a checklist when designing your actions.

 For example, if we change our goal to include regular access to the data, it could change our actions. In this case, compressing the files and moving them to long-term storage would not be the best option. You could instead move the files to a larger storage array. This would make them easier to access while still preventing your drives from filling up. Now that you know what you want your automation to achieve, you can start planning the steps needed to get there.

1.2.2 Triggers

 Triggers are what start your automation. Broadly speaking, there are two types of triggers, polling and event-based. Polling triggers check in with end points, and event triggers are initiated by an outside event. Understanding the difference between these two types of triggers and how they work will significantly impact your automation journey.

 Polling triggers routinely check in with a system for specific conditions. Two typical implementations—and ones we will use throughout this book—are monitors and schedules.

 A monitor checks in and waits for a specific condition to occur. This can be anything from watching an FTP site for file uploads to monitoring an inbox for emails or confirming a service is running, among many other tasks. Monitors can run continuously or on a recurring interval.

 The choice to use a continuous or interval-based monitor will depend on the balance between automations needs and costs. For example, let’s say you are monitoring a file share for a file to be written. If you know that the file only gets written once an hour, having your automation check every 60 seconds for it would be a waste of resources.

 While a monitor might run on a regularly recurring schedule, a scheduled automation is different in that the trigger itself doesn’t check for a condition before running subsequent steps. Instead, it will run every time it is scheduled. Common examples include cleaning files, data synchronization, and routine maintenance tasks. Like with a monitor, you need to carefully consider the needs of your automation when setting up your schedule.

 An event trigger occurs when an outside event initiates the automation. For example, a common event trigger is an http request such as a webhook. Event triggers can also include calls from other automations, and most service desk tools have a workflow engine that can trigger automations when a particular request is received. These are just a few examples of automated event triggers, but any external interaction can be considered an event trigger.

 A simple button or the execution of a command shell can be an event trigger. The critical thing to remember is that event triggers are initiated by any outside event, whereas polling triggers reach out to the end point.

 Let’s go back to the example of cleaning up the web server logs. You need to figure out what trigger would be best to use, polling or event. In this case, a polling trigger makes sense because the web server has no way to reach out. Now, you need to determine whether it should be a monitor or schedule. Usually, a monitor is used for issues that require immediate or near-future actions—for instance, a service has stopped or a network connection has dropped. Since cleaning up web server logs is a maintenance task, a schedule would make the most sense. Next, you need to determine your recurrence interval.

 You already know that you have to clean up these logs at least once a week. Logically, a trigger with a recurring interval of less than one week would be best. You also know that a new log file gets created after a certain number of lines. You see there are about three or four logs generated daily. Therefore, a once-daily job would be a good option because anything less would be overkill and anything more would run the risk of the logs growing too large. Once you determine your trigger, it is time to move on to the core part of your automation, the actions.

1.2.3 Actions

 Actions are what most people think of when they think of automation. The actions are the operations your automation performs to achieve the automation goal. Automations can consist of multiple different actions, sometimes referred to as steps. You can classify actions into three main categories: logic, tasks, and logging. Figure 1.1 shows the steps for the log cleanup automation.

 [image:]

 Figure 1.1 The steps for a file cleanup automation process separated by which steps are logic, tasks, and logging

 Logic actions are the actions that control the flow of your automation. They include conditional constructs (your typical if/else conditions), loops, waits, error catching/handling, and handling of variables or other runtime data. Tasks are the actions performed against the end points. In other words, if it is not a logic or logging action, it’s a task. The best way to think about it is that logic actions are the brain, and tasks are the hands.

 Logging, as the name implies, is the recording of your actions. Your logging can consist of output from both logic and task actions. While logging actions could be considered tasks, I prefer to think of them separately because they are not directly involved in completing the automation goal. However, they will be directly involved in the creation of successful and maintainable automations.

 Looking at our example of cleaning up log files, we can identify the actions we need to take and what type of actions they are:

 	
 Find logs over 30 days old (logic).

 	
 Create an archive file with timestamp name (task).

 	
 Add old files to the archive (task).

 	
 Remove the old files from the drive (task).

 	
 Record which files were removed and the name of the archive file (logging).

 	
 Copy the archive files to Azure Blob Storage for long-term storage (task).

 	
 Confirm that the copy was successful (logic). If not, stop the process, and send a notification.

 	
 Record the location of the new file (logging).

 	
 Remove the original archive file (task).

1.2.4 Maintainability

 A few years ago, I helped a customer automate their user provisioning processes. During the discovery phase, I was told users had to be created in a specific directory, left for one hour, and then moved to their proper directory. Of course, I asked why and was told it would allow the users to sync with an in-house application. It turns out the person whose job it was to add and remove users from this application decided that they would automate the process. At the time, all users existed in the same directory. So they built this automation, saving them 30 to 60 minutes of work a week. However, over time things changed.

 The company had expanded and needed to provide different policies to different users, so they created different directories. They then noticed that certain users were not being created in this in-house system. By this time, the person who wrote the automation was long gone, and no one else understood how it worked. So, they would add users into the directory, wait until the hourly sync ran, and then move them to the proper directory. What had initially saved one person 60 minutes of work a week was now costing others a couple of extra minutes for each user they created, which means in the long-term, this automation was costing them more than it ever saved. This is a classic example of not planning for the future.

 No one can predict the future, but you can certainly plan for it. No matter what step of the automation process you are working on, you need to ask yourself how difficult this will be to maintain. When you do this, think back on your experience and consider how the requirements might change over time.

 In our log cleanup scenario, we said our first action was to find log files over 30 days old. One of the first things that should have come to mind is what happens if the drive starts filling up faster and you need to clean up logs every 14 days. How difficult would it be to make this change? If you created the number of days as a variable, it would not be difficult at all. However, if you hardcoded the number of days in your scripts, you would need to go back and make multiple changes.

 Another scenario that might not be as straightforward is if a second log folder is deemed necessary. To begin, you need to ask, “How likely is this scenario?” If it is likely, you should consider whether it is worth writing the automation to handle multiple folder paths, or whether you could do something as simple as running it twice, once for each path.

 Another aspect to consider is if you have to change log cleanup from daily to hourly. Again, ask yourself if this is a likely scenario. If it is, determine what it would take to change the automation to hourly. It might seem like a simple answer, say, to change the filter from days to hours, but you also need to look at how this could affect other actions. For instance, when creating the archive file, are you adding a timestamp to the name? If so, does it include hours? If it doesn’t, you may create a situation in which you accidentally overwrite data.

 The answers to any of these questions will depend on your unique requirements. Of course, you will not be able to predict every possible situation, but if you keep these questions in mind and know how to address them using PowerShell, you will be more prepared when changes become necessary.

 You also need to be aware of getting caught in the weeds. If you noticed, my first response to any question is “How likely is this scenario?” You can get so bogged down in accounting for different scenarios that you’ll never accomplish anything, or you’ll make your logic so complex that no one else will understand it. It is a delicate balancing act that we will continually touch on throughout this book.

1.3 The automation process

 When looking at an automation project, it is easy to get overwhelmed. People will tell you to use things like the KISS principle (keep it short and simple). While that is easy to say, it is not always easy to do in practice. It may seem nearly impossible when you have multiple systems talking to each other, complex logic, and ever-changing requirements. This is where the concepts of building blocks and phases come in. By using building blocks and phases, you can break down your complex tasks into small, simple steps.

1.3.1 Building blocks

 No matter how complex the automation is, it can always be broken down into smaller, more simplified steps or building blocks. By breaking tasks down into smaller blocks, you can prevent yourself from becoming overwhelmed and provide clear goals that you can meet regularly. In addition, this concept will allow you to use portions of the automation as soon as day one and provide you with a framework to expand on your earlier work. The majority of this book will cover helping you create these different building blocks that you can use across your automations.

 Building blocks also allow you to build your skills over time. As you automate more and more, your skills will continue to grow. You will learn new techniques, not just in your coding but in the overall process. You may find a better way to perform a task using PowerShell. If you used building blocks, you can go back and update all your previous automations quickly and easily.

1.3.2 Phases

 The adage “You have to be able to walk before you can run” applies perfectly to the world of automation. Your first few automations you make will likely not be pretty—just like the first picture you ever drew or the first paper you wrote in school. It takes time and experience to build your skills. But that doesn’t mean you cannot start reaping the benefits of automation immediately.

 By breaking your automations into phases, you can create incremental benefits. Imagine you need to get from point A to point B. Sure, a car may be the fastest way to get there, but you have no idea how to build a car, let alone have the resources. So, start small and work your way up. Begin by building a skateboard. Then upgrade to a scooter, a bike, and a motorcycle and, finally, build that car. Figure 1.2 illustrates the benefits of a phased approach to automation. Each step of the way, you will make improvements and continue to improve your process. Plus, you will see benefits from the very start, unlike if you set out to build a car from the get-go. In that situation, you would be walking the entire time until you finally built the car.

 [image:]

 Figure 1.2 How a phased approach can allow you to start receiving benefits sooner

 During each phase, you will most likely be creating several building blocks. Furthermore, these building blocks that you create will often be used across the different phases and improved upon from one phase to the next. For example, in figure 1.2, you learned to make a wheel in phase 1. Then, in phase 2, you improved upon that knowledge and made an even better wheel.

 Phases also allow you to adapt and adjust the automation along the way. You can get feedback after each phase from the people using it. You may discover there are things you did not consider. In the scenario in figure 1.2, after you created the skateboard, people told you it was great for part of the trip but not for the really muddy parts. You can take this feedback and adjust phase 2 to include larger wheels. Contrast this with the nonphased approach of jumping right in and building the car and then finding out it gets stuck in the mud. If you didn’t build the suspension and wheel wells to fit bigger wheels, you would have a ton of rework to do.

1.3.3 Combining building blocks and phases

 To demonstrate the concept of building blocks and phases in a more IT-centric way, you can look at the common automation scenario of provisioning a virtual machine. While there can be a lot to this process, you can break it down into a few phases:

 	
 Create a virtual machine.

 	
 Install the operating system.

 	
 Configure the operating system.

 While it would be great to tackle all of this at once, it would be a massive undertaking, and you would not see any benefits until the very end. Instead, you can tackle one phase at a time, providing yourself with added benefits along the way. Start with phase 1, creating a virtual machine. The building blocks for this could consist of

 	
 Selecting a host machine

 	
 Creating a blank virtual machine

 	
 Allocating CPU and memory

 	
 Attaching a network interface card to the appropriate subnet

 	
 Creating and attaching virtual hard disks

 Once you’ve finished phase 1 (creating a virtual machine, shown in figure 1.3), you can move on to phase 2 while already reaping the benefits of phase 1.

 [image:]

 Figure 1.3 A virtual provisioning phased approach (phase 1)

 In phase 2, you are going to install the operating system. Here you have a couple of options. You can create a template virtual hard disk with the operating system already installed. However, this would mean you must maintain the template, including applying patches. Also, if you have multiple hosts in different regions, it could be a pain to make sure they all stay in sync. Instead, you decided to use your configuration management tools to install the operating system. This way, your image is consistent throughout your environment and always up to date.

 As you start building this part of the automation, you realize that your virtual machine needs to be on a specific subnet to receive the image. Your building blocks may be similar to this:

 	
 Attach to operating system deployment subnet.

 	
 Turn on the virtual machine.

 	
 Wait for the operating system to install.

 	
 Attach to production subnet.

 Since you created a block to assign the virtual machine to a subnet in phase 1, you can reuse that code for blocks 1 and 4 in this phase. Notice that I made attaching to a subnet a separate block. This is because I’ve automated this exact scenario before and have run into the situation multiple times. If you combine all the resources into one block—that is, you assign CPU and memory, attach the network, and allocate the virtual hard disk—you cannot reuse it. If you want to connect to a different network, you can reassign the CPU and memory, but allocating another virtual hard disk could cause significant issues. If you do something like this, don’t worry about it. Think of it as a learning experience. I still do it all the time myself. Plus, since you will have to create the building block to assign the subnet for this phase, there is no reason why you can’t go back and update blocks in the previous phase. Figure 1.4 shows these developments in phase 2.

 [image:]

 Figure 1.4 A virtual provisioning phased approach (phase 2) with shared components

 Now you have two phases in production, and users are starting to see real benefits. In addition, you are learning what would benefit them in the next phase, shown in figure 1.5. You can talk to the people using the automation and discover what they would like to see in phase 3. It could be assigning a static IP address, creating secondary data drives, or any other number of things you may not have considered. Also, you don’t have to stop after phase 3. You can add a phase 4 to install applications automatically.

 [image:]

 Figure 1.5 A virtual provisioning phased approach (phase 3) with shared components

 The most significant benefit of combining the concept of building blocks and phases is flexibility—not just during the creation process but also down the road. If your requirements or resources change, you only need to swap out the building blocks specific to that change. The process itself and the other building blocks will remain unchanged.

 Imagine if your company decided to switch to a new hypervisor or move to the cloud. In these cases, you would need to redo phase 1. In phase 2, you simply need to swap the network assignment blocks with the new ones you built. The rest of phase 2 stays the same. Alternatively, say your company decided to switch to a different operating system. There would be few to no changes in phase 1 and maybe some minor changes in phase 2. All the changes would focus on phase 3. If you’ve used a phased approach, no matter what gets thrown at you, you’ll be able to adjust rapidly.

1.4 Choosing the right tool for the job

 One of the biggest mistakes you can make when trying to automate a task is trying to make a tool do something it is not designed to do. Therefore, before you begin any PowerShell automation project, you need to determine whether it is the best tool for the job.

 For example, I would not recommend using Python if you are setting up resources in Azure, not because Python is a bad tool (far from it), but because Python does not have the same native support for Azure resources. You can do it by invoking the Azure CLI through Python, but this can lead to another set of issues. Now your Python script is dependent on having the Azure CLI installed. Since the Azure CLI is a stand-alone application and not a package for Python, you will need to build specific checks into your script to ensure that the files you need are available. Also, your script is now dependent on a platform that supports both Python and the Azure CLI. This dramatically increases the complexity of your automation and makes it much less portable.

 Now, if you choose PowerShell for this task, you can use the Azure PowerShell modules created and maintained by Microsoft to perform your tasks. All the functionality to check for and resolve dependency issues are built into PowerShell. With two or three lines of code, you can make your script completely portable to any other system running PowerShell.

 I am not saying PowerShell is the end-all, be-all, but for certain workloads, it just makes sense. Now, with PowerShell Core, the number of tasks you can automate with PowerShell is growing larger and larger, although it still does not cover everything. If you need to do technical analysis as part of your automation, such as calculating and plotting statistical charts, I would not recommend PowerShell. In this case, the panadas library in Python is leaps and bounds above anything available in PowerShell.

1.4.1 Automation decision tree

 How do you determine whether PowerShell is the right tool for the job? One way is by using the decision tree in figure 1.6.

 [image:]

 Figure 1.6 The PowerShell decision tree can be used to determine whether PowerShell is the right tool for the job.

 When using a decision tree, you need to look at all aspects of the automation process you are creating. For example, let’s return to our previous example of archiving old log files and add in the requirement to upload them to Azure Blob Storage. The first action was to find files over 30 days old. Running that through a decision tree would look something like this:

 	
 Does this tool have native support for all the tasks I need to accomplish? Yes, PowerShell has built-in functionality to work with file systems.

 There is no need to continue with the other questions because the first one is a definitive yes. The next few actions in the process will be similar. For instance, when creating the archive file, ask

 	
 Does this tool have native support for all the tasks I need to accomplish? Yes, the Compress-Archive cmdlet is native to PowerShell.

 However, not all actions will be so straightforward. Take, for example, the action to copy the files to Azure Blob Storage:

 	
 Does this tool have native support for all the tasks I need to accomplish? No.

 	
 Are there modules/add-ons from the company that can accomplish the tasks? Yes, Microsoft has an official Azure Blob Storage module.

 Again, this is pretty cut and dried because we know Microsoft creates official PowerShell modules to support all Azure functionality. But there will be instances, even within the Microsoft ecosystem, when the answer might not be so clear. For example, let’s say that for the action to log which files are removed, you need to write these files to a SQL table:

 	
 Does this tool have native support for all the tasks I need to accomplish? No.

 	
 Are there modules/add-ons from the company that can accomplish these tasks? There is a SqlServer module from Microsoft, but it does not support all the tasks I want to automate.

 	
 If not, are there modules/add-ons from the community that can accomplish the tasks? Yes. The module dbatools is available in the PowerShell Gallery.

 	
Is it maintained and updated? The GitHub repo has over 15,000 commits and 200 contributors and is updated regularly.

 	
 How difficult would it be to write custom functionality? It is possible to query SQL directly from PowerShell using the System.Data.SqlClient class that is native in .NET.

 	
Will it be difficult to maintain? There may be differences between .NET and .NET Core for the SqlClient class.

 As you can see, there is a multitude of ways that you can accomplish the task. It will be your job to make an informed decision on which tool or tools are best suited for the task at hand. Of course, you may find that no single tool can meet all your needs, and that is fine, too. When using PowerShell, you can easily switch between different solutions to accomplish your goals. After reading this book, you’ll be able to identify tasks for which you can utilize PowerShell.

1.4.2 No need to reinvent the wheel

 One of the great things about PowerShell is the large community that loves to share its knowledge. At the time of this writing, over 6,400 different PowerShell modules are available in the official PowerShell Gallery. There are also numerous websites, forums, and blogs dedicated to PowerShell. So, chances are, if there is something you are trying to do with PowerShell, someone has already done it or something similar.

 There is no need to write every single line of code in your scripts from scratch. I encourage you to go explore what other people have done. Learn from their mistakes and experiences. I cannot tell you how many times I’ve seen a block of code to do XYZ, and I think to myself, “Why did they do it that way?” Then I write it another way, run into a problem, and then realize, oh, that’s why the other script did that.

 At the same time, do not just copy and paste code from GitHub or StackOverflow into your script and expect everything to work. Instead, look at the code. Figure out what exactly it does and how it accomplishes its task. You can then implement it into your script with the confidence that it will work and, most important, that you will be able to maintain it.

1.4.3 Supplemental tools

 While PowerShell is capable of many things, there are a few things it cannot do. For example, it does not have a frontend that can provide forms that users can fill in. It is also not a job scheduler and does not have built-in triggers like webhooks. Although achieving some of this functionality through PowerShell is not technically impossible, it may not be practical. There are other tools out there that are built specifically for these tasks, and many of them support PowerShell.

 However, as you will see throughout this book, there is no reason why you cannot combine multiple tools. For instance, in chapter 3, you will learn how to use multiple tools to schedule jobs to run, and in chapter 11, you will see how to use tools like SharePoint to create frontend forms for your automations.

 Job scheduler

 PowerShell does not have a built-in job scheduler. You may be aware of the Register-ScheduledJob cmdlet, but that only created PowerShell jobs in the Windows Task Scheduler. To achieve true cross-platform support with PowerShell Core, this functionality was removed from version 6.0 and up. Of course, you can still use Task Scheduler to schedule and run your PowerShell scripts in Windows, just like you can use Cron in Linux, but there are other tools out there that are purpose-built to handle things like automation jobs.

 If you are already using tools such as Jenkins, Ansible, or Control-M, you can use PowerShell inside of these platforms to fulfill your automation requirements. The best part is that your automations will then be platform agnostic. For example, if you invested your efforts in a solution like IFTTT or System Center Orchestrator, you are now locked into those platforms. If that software is deprecated, changes its licensing, or takes away functionality, your only course of action is to recreate your entire automation. However, if you build your automations with PowerShell in Jenkins and your company decides to move to Ansible, you can easily transfer your automation scripts from one platform to another with minimal effort.

 Frontend

 The same can be said for things like frontend forms. A frontend is just a way to gather information for your automation. You can technically build forms in PowerShell, and there are instances where it makes sense to do so, but there are a lot of caveats to it. Like with job schedulers, there are numerous tools available that make creating and presenting forms simple and easy.

 You can build all the actions for your automations in PowerShell and then frontend it through any means you like. For instance, you can make a SharePoint list to collect the necessary information for your automation in a few minutes. Then, all you need to do is build a simple trigger that passes the required information to your automation. If you want to move to ServiceNow, no problem. You simply remap your trigger from SharePoint to ServiceNow, and your automation will continue to function as before.

1.5 What you need to get started today

 While PowerShell Core is a cross-platform tool, most examples in this book will be running in a Windows environment. I recommend using Windows 11 or Windows Server 2022, but you should be able to follow along using any version of Windows that supports Windows PowerShell 5.1 and PowerShell 7. Unless otherwise specified, you can assume that everything in this book is written for PowerShell 7.

 You will also need an integrated development environment to write your code. Although the built-in PowerShell ISE has been the go-to for many years, it does not support PowerShell 7. If you have not already done so, I highly recommend that you switch to Visual Studio Code (VS Code). Unlike the traditional Visual Studio, VS Code is a free, lightweight code editor that is open-sourced, cross-platform, and very community-driven. In addition, it supports most common programming and scripting languages, including Windows PowerShell and PowerShell, allowing you to work with both side by side.

 One thing that makes PowerShell so versatile is that it can be used across a multitude of platforms, including Windows, Linux, macOS, servers, containers, third-party platforms, and many cloud platforms. Not only can it be run on those platforms, but it can also be used to automate their management. At the time of writing, the big thing in the industry is containers. By next month or next year, who knows what it will be. This is why most of the examples in this book are designed to use your local resources.

 Because most cloud-native or PaaS services have different authentication protocols or minor differences in how they handle scripts, it would be impossible to write for every potential service. Instead, this book will teach you the fundamentals that will remain the same regardless of which platform you use or manage. It will teach you how to think about, identify, and work with your chosen platform.

 While some examples in this book utilize third-party platforms or cloud solutions, all platforms are either free or have a free trial you can use. These include Jenkins, Azure, SharePoint, and GitHub. You can refer to the appendix for complete details on the environments and tools used.

Summary

 	
 PowerShell is a powerful high-level language designed with IT automation in mind that is easy to pick up and start using.

 	
 You can use PowerShell to create reusable building blocks that can be shared between automations and among your team members.

 	
 To create successful automations, you need to be able to conceptualize the process and plan for the future.

 	
 PowerShell is an extensible and portable tool that makes it a perfect fit for most automation needs.

 	
 PowerShell can work hand in hand with other tools and platforms to meet most needs you have quickly and easily.

 	
 PowerShell has a large community and is backed by one of the largest tech companies in the world.

2 Get started automating

 This chapter covers

 	
Applying the concept of phased automations

 	
Examples of how to create reusable functions

 	
How to store your functions in a module

 In the last chapter, you read about how to make your automation project a success by using the concepts of phases and building blocks and how those apply to PowerShell. In this chapter, you will see how to take a simple script and turn it into a reusable building block you can use anywhere. You will do this by creating a script to clean up old log files and turn it into a building block by thinking like an automator.

 You will also learn how to store these building blocks for use across multiple automations. Whether you are writing a simple script to automate a repetitive task or working with a much more extensive script, knowing how to use a phased approach to your automation can save you a lot of time, money, and stress.

2.1 Cleaning up old files (your first building blocks)

 In this section, you are going to write a simple script (automation) to clean up old log files. In doing so, you will apply the concept of building blocks to your script creation.

 As always, you start with your requirements gathering. You know that you need to remove old logs to keep the drive from filling up. You also understand that the logs must be retained for at least seven years, but after 30 days, they can go into cold storage.

 With that information, you can start designing phase 1. In this phase, shown in figure 2.1, you will find the files to archive, add the old files to an archive file, and then remove the old files. Now that you have your basic design, you need to start thinking like an automator.

 [image:]

 Figure 2.1 Design the first phase of the file cleanup automation by defining the required parameters and the steps to perform, such as getting the files to archive, performing the archive, and then cleaning up the archived files.

 First, you need to consider what variables your automation will need. This will help you determine the parameters for your script. In this case, you are going to need to know

 	
 The folder containing the log file

 	
 Where to save the archive file

 	
 What to name the archive file

 	
 How old a file should be before being archived

 The first two tasks, getting the log folder and knowing where to save the archive, are reasonably straightforward. In both cases, the input will be a folder path. However, the next two tasks require some additional considerations.

 You know you need to filter the logs by date, so you only archive the files you want. Since you want to archive files over 30 days old, you can simply subtract 30 days from the current time. You can achieve this in PowerShell by using the AddDays method on a DateTime object and putting in a negative number. Since you want to make this reusable for other automations, you can make the date filter parameter a number value provided to the script. However, there are other things you will want to consider.

 Because the value of the date filter needs to be a negative number, you can either expect someone using this automation to know that and enter a negative value, or you can have the script automatically flip a positive number to a negative one. However, in either case, you may potentially end up setting the date to 30 days in the future, causing your script to archive files way too soon.

 Luckily, with PowerShell, there are several ways to handle this. For example, you can add logic to check whether the value is positive and have your script automatically convert it to a negative number. Alternatively, you can calculate the date using the AddDays method and confirm that the value returned is in the past. If it is not, you can throw an error message and exit the function or attempt to fix it by reversing the sign of the parameter. Both of these options can be reusable functions, but in this case, they might be overkill. Instead, a more straightforward approach is to use the parameter validation functionality, which is native in PowerShell, to ensure the value passed is within the range you want. Because positive numbers are easier for people to think about and enter, your script can require a positive number and then automatically flip it to a negative one.

 While any of the approaches mentioned would be valid, we used the simplest and, therefore, less error-prone process, following the KISS principle (keep it short and simple). If, down the line, you discover that even with the validation, people keep trying to send negative values, you can adjust your script to use one of the more complex solutions. The key here is the phased approach. You have the ability to continue to evolve your script as time goes on. While this problem is easily solved using parameter validation, the next one, setting the name of the archive file, is not so straightforward.

 When your automation runs, you will most likely want to create a new archive file instead of adding to an existing one. Adding to an existing archive file can be dangerous because if something goes wrong, it can affect multiple files going back days or even weeks. Also, a possible phase 2 could be to copy this archive to a cloud-based store. In this case, you would not want to recopy the same file repeatedly as it continues to grow larger. Instead, the safest bet is to create a new archive file every time the automation runs.

 Because the file name needs to be unique for every execution, it makes sense to add a timestamp to the file name. This means you need to consider how often the automation will run. If it runs once a day, make the timestamp for the day, month, and year. However, if it will run multiple times a day, you may need to add the hour, minutes, and seconds, or even milliseconds, to the name. Next, you need to consider what timestamp to use. You can use the current time, but that may make it difficult to find past logs without looking inside every archive. You can use the date of your filter, but this could get confusing if you ever change the number of days in the filter. Instead, the best option is to use the timestamp from the newest file you are archiving. Now, if you need to search the archives, you can quickly determine which files would be in which archive simply by the name.

 Given these needs, the archive filename cannot be a simple parameter. Instead, make a parameter for the archive filename prefix and create a building block (aka a PowerShell function) to append the timestamp value to it. The additional steps are shown in figure 2.2.

 [image:]

 Figure 2.2 Expand on the initial file cleanup design to include more details around the creation of the archive file.

 As this example shows, something as simple as what to name your file can have more variables than you may have initially considered. However, this serves as an excellent example of the mindset you need when creating your automations. You will see throughout this exercise examples of how to think like an automator.

2.1.1 Your first function

 The code to create the timestamp, append it to the filename and folder, and confirm it is a unique file is a perfect example of when to create a function. Not only will making it a function allow you to maintain and test just that portion of the script, but its functionality can also be useful in other automations.

 Just as with the larger overall automation, you start by determining your parameters. In this case, you need the archive path, the file prefix, and the date value to create the timestamp. Then you need to think about the tasks to perform.

 When you think in terms of automation, you should be asking yourself questions such as what should happen if the folder in the ZipPath variable does not exist or if a file with the same name is already in the folder. To address these concerns, use some if conditions along with the Test-Path cmdlet to test the path and the file. The logic behind these decisions is shown in figure 2.3.

 [image:]

 Figure 2.3 The automation process to ensure that you have a unique file name for the archive file each time the file cleanup automation runs

 Now that you have the logic, you can move on to creating the function. However, before diving right in, let’s cover a few best practices when creating a function.

 You should always include the [CmdletBinding()] attribute at the beginning of any function. It provides your function with support for the default parameters to manage things such as verbose output and error handling. After the [CmdletBinding()] line, you should always include [OutputType()]. It tells PowerShell what type of value the function will return. In this case, your function will return a string value for the archive file. So you’ll set the value to [OutputType([string])].

 Although neither the CmdletBinding nor the OutputType cmdlet is required to create a function, it is good practice to include them. As you get into more advanced functions, these will come into use, so it is good to start using them from the beginning.

 Next, you will define your parameters in a params block. For each parameter, you set whether it is mandatory and the type of value. Again, neither of these is required when writing PowerShell functions. However, when you are writing functions that will be used in automations or shared with others, it is good to include them so that people can quickly identify what values are required and what data type they should provide. Also, it helps to ensure that the proper values are passed, and if not, PowerShell’s built-in error handling will help prevent unforeseen consequences if the wrong value is sent.

 You should also always include the comment-based Help section. Although I leave this out in many of the examples in the book for brevity, I highly recommend you add it to all scripts and functions you create. Plus, if you are using Visual Studio Code (VS Code), there is no excuse not to add it because VS Code can autogenerate it. Just type ## on the first line inside your function, and VS Code will outline the Help section for you. Then, you simply fill in the details.

 Now let’s get into the actual execution of the function, which is shown in the following listing. The first thing you want to do is check whether the folder passed in exists. Use the Test-Path cmdlet inside an if condition to do this.

 Listing 2.1 Set-ArchiveFilePath function

 Function Set-ArchiveFilePath{ ①
 [CmdletBinding()] ②
 [OutputType([string])]
 param(③
 [Parameter(Mandatory = $true)]
 [string]$ZipPath,

 [Parameter(Mandatory = $true)]
 [string]$ZipPrefix,

 [Parameter(Mandatory = $true)]
 [datetime]$Date
)

 if(-not (Test-Path -Path $ZipPath)){ ④
 New-Item -Path $ZipPath -ItemType Directory | Out-Null
 Write-Verbose "Created folder '$ZipPath'" ⑤
 }

 $timeString = $Date.ToString('yyyyMMdd') ⑥
 $ZipName = "$($ZipPrefix)$($timeString).zip" ⑦
 $ZipFile = Join-Path $ZipPath $ZipName ⑧

 if(Test-Path -Path $ZipFile){ ⑨
 throw "The file '$ZipFile' already exists"
 }

 $ZipFile ⑩
}

 ① Declare the function and set the required parameters.

 ② Declare CmdletBinding and OutputType.

 ③ Define the parameters.

 ④ Check whether the folder path exists, and create it if it doesn’t.

 ⑤ Include verbose output for testing and troubleshooting.

 ⑥ Create the timestamp based on the date.

 ⑦ Create the file name.

 ⑧ Set the full path of the zip file.

 ⑨ Confirm the file doesn’t already exist. Throw a terminating error if it does.

 ⑩ Return the file path to the script.

 The Test-Path cmdlet returns True if the folder exists and False if it doesn’t. In this case of the archive folder, you want to know that it does not exist. Therefore, you need to reverse the logic by adding the -not keyword to the if statement, which causes the command inside the if block to execute when it returns False. However, instead of having your automation stop if the folder does not exist, you can create it using the New-Item cmdlet.

 Controlling function output

 If the New-Item cmdlet is not set to write to a variable, PowerShell will write it to the output stream. Anything written to the output stream of your script will be returned from your function. In this case, the function would return the output from this command and the zip file path at the end, causing all sorts of unknown issues later in the script.

 To prevent this from happening, add | Out-Null to the end of any PowerShell command to stop it from writing to the output stream. Out-Null does not block the error or verbose streams, so you can still use those with the command.

 If you added the [CmdletBinding()] to the beginning of the function, you can use the -Verbose switch when calling the function. Verbose output is not written to the output stream. Therefore, it is not returned to the script or any variables. However, when you include the -Verbose switch, the verbose stream will be written to the screen. This allows you to confirm that the if condition is working even though you need to block the output from any command.

