

 [image:]

 Bootstrapping Microservices with Docker, Kubernetes, and Terraform

 A project-based guide

 Ashley Davis

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Helen Stergius

 	
 Technical development editor:

 	
 Jeanne Boyarsky

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Lori Weidert

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Alain Couniot

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297212

brief contents

 1 Why microservices?

 2 Creating your first microservice

 3 Publishing your first microservice

 4 Data management for microservices

 5 Communication between microservices

 6 Creating your production environment

 7 Getting to continuous delivery

 8 Automated testing for microservices

 9 Exploring FlixTube

 10 Healthy microservices

 11 Pathways to scalability

 appendix A. Creating a development environment with Vagrant

 appendix B. Bootstrapping Microservices cheat sheet

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Why microservices?

 1.1 This book is practical

 1.2 What will I learn?

 1.3 What do I need to know?

 1.4 Managing complexity

 1.5 What is a microservice?

 1.6 What is a microservices application?

 1.7 What’s wrong with the monolith?

 1.8 Why are microservices popular now?

 1.9 Benefits of microservices

 1.10 Drawbacks of microservices

 1.11 Modern tooling for microservices

 1.12 Designing a microservices application

 1.13 An example application

 2 Creating your first microservice

 2.1 New tools

 2.2 Getting the code

 2.3 Why Node.js?

 2.4 Our philosophy of development

 2.5 Establishing our single-service development environment

 Installing Git

 Cloning the code repo

 Getting Visual Studio (VS) Code

 Installing Node.js

 2.6 Building an HTTP server for video streaming

 Creating a Node.js project

 Installing Express

 Creating the Express boilerplate

 Running our simple web server

 Adding streaming video

 Configuring our microservice

 Setting up for production

 Live reloading for fast iteration

 Running the finished code from this chapter

 2.7 Node.js review

 2.8 Continue your learning

 3 Publishing your first microservice

 3.1 New tools

 3.2 Getting the code

 3.3 What is a container?

 3.4 What is an image?

 3.5 Why Docker?

 3.6 What are we doing with Docker?

 3.7 Extending our development environment with Docker

 Installing Docker

 Checking your Docker installation

 3.8 Packaging our microservice

 Creating a Dockerfile

 Packaging and checking our Docker image

 Booting our microservice in a container

 3.9 Publishing our microservice

 Creating a private container registry

 Pushing our microservice to the registry

 Booting our microservice from the registry

 3.10 Docker review

 3.11 Continue your learning

 4 Data management for microservices

 4.1 New tools

 4.2 Getting the code

 4.3 Developing microservices with Docker Compose

 Why Docker Compose?

 Installing Docker Compose

 Creating our Docker Compose file

 Booting our microservices application

 Working with the application

 Shutting down the application

 Can we use Docker Compose for production?

 4.4 Adding file storage to our application

 Using Azure Storage

 Updating the video-streaming microservice

 Adding our new microservice to the Docker Compose file

 Testing the updated application

 Cloud storage vs. cluster storage

 What did we achieve?

 4.5 Adding a database to our application

 Why MongoDB?

 Adding a database server in development

 Adding a database server in production

 Database-per-microservice or database-per-application?

 What did we achieve?

 4.6 Docker Compose review

 4.7 Continue your learning

 5 Communication between microservices

 5.1 New and familiar tools

 5.2 Getting the code

 5.3 Getting our microservices talking

 5.4 Introducing the history microservice

 5.5 Live reload for fast iterations

 Creating a stub for the history microservice

 Augmenting the microservice for live reload

 Splitting our Dockerfile for development and production

 Updating the Docker Compose file for live reload

 Trying out live reload

 Testing production mode in development

 What have we achieved?

 5.6 Methods of communication for microservices

 Direct messaging

 Indirect messaging

 5.7 Direct messaging with HTTP

 Why HTTP?

 Directly targeting messages at particular microservices

 Sending a message with HTTP POST

 Receiving a message with HTTP POST

 Testing the updated application

 Sequencing direct messages

 What have we achieved?

 5.8 Indirect messaging with RabbitMQ

 Why RabbitMQ?

 Indirectly targeting messages to microservices

 Creating a RabbitMQ server

 Investigating the RabbitMQ dashboard

 Connecting our microservice to the message queue

 Single-recipient indirect messaging

 Multiple-recipient messages

 Sequencing indirect messages

 What have we achieved?

 5.9 Microservices communication review

 5.10 Continue your learning

 6 Creating your production environment

 6.1 New tools

 6.2 Getting the code

 6.3 Getting to production

 6.4 Infrastructure as code

 6.5 Hosting microservices on Kubernetes

 Why Kubernetes?

 How does Kubernetes work?

 6.6 Working with the Azure CLI

 Installing the Azure CLI

 Authenticating with Azure

 Which version of Kubernetes?

 What have we achieved?

 6.7 Creating infrastructure with Terraform

 Why Terraform?

 Installing Terraform

 Terraform project setup

 6.8 Creating an Azure resource group for your application

 Evolutionary architecture with Terraform

 Scripting infrastructure creation

 Initializing Terraform

 By-products of Terraform initialization

 Fixing provider version numbers

 Building your infrastructure

 Understanding Terraform state

 Destroying and recreating your infrastructure

 What have we achieved?

 6.9 Creating your container registry

 Continuing the evolution of our infrastructure

 Creating the container registry

 Terraform outputs

 What have we achieved?

 6.10 Refactoring to share configuration data

 Continuing the evolution of our infrastructure

 Introducing Terraform variables

 6.11 Creating our Kubernetes cluster

 Scripting creation of your cluster

 Cluster authentication with Azure

 Building your cluster

 What have we achieved?

 6.12 Interacting with Kubernetes

 Kubernetes authentication

 The Kubernetes CLI

 The Kubernetes dashboard

 What have we achieved?

 6.13 Terraform review

 6.14 Continue your learning

 7 Getting to continuous delivery

 7.1 New and familiar tools

 7.2 Getting the code

 7.3 Continuing to evolve our infrastructure

 7.4 Continuous delivery (CD)

 7.5 Deploying containers with Terraform

 Configuring the Kubernetes provider

 Deploying our database

 Preparing for continuous delivery

 Testing the new database server

 Deploying and testing RabbitMQ

 Tightening our security

 What have we achieved?

 7.6 Deploying our first microservice with Terraform

 Using local variables to compute configuration

 Building and publishing the Docker image

 Authentication with the container registry

 Deploying the video-streaming microservice

 Testing your microservice

 What have we achieved?

 7.7 Continuous delivery with Bitbucket Pipelines

 Why Bitbucket Pipelines?

 Importing the example code to Bitbucket

 Creating a deployment shell script

 Managing Terraform state

 The Bitbucket Pipelines script

 Configuring environment variables

 Testing your deployment pipeline

 Debugging your deployment pipeline

 What have we achieved?

 7.8 Continue your learning

 8 Automated testing for microservices

 8.1 New tools

 8.2 Getting the code

 8.3 Testing for microservices

 8.4 Automated testing

 8.5 Testing with Jest

 Why Jest?

 Setting up Jest

 The math library to test

 Your first Jest test

 Running your first test

 Live reload with Jest

 Interpreting test failures

 Invoking Jest with npm

 Populating your test suite

 Mocking with Jest

 What have we achieved?

 8.6 Unit testing

 The metadata microservice

 Creating unit tests with Jest

 Running the tests

 What have we achieved?

 8.7 Integration testing

 The code to test

 Running a MongoDB database

 Loading database fixtures

 Creating an integration test with Jest

 Running the test

 What have we achieved?

 8.8 End-to-end testing

 Why Cypress?

 Installing Cypress

 Starting the Cypress UI

 Setting up database fixtures

 Booting your application

 Creating an end-to-end test with Cypress

 Invoking Cypress with npm

 What have we achieved?

 8.9 Automated testing in the CD pipeline

 8.10 Review of testing

 8.11 Continue your learning

 9 Exploring FlixTube

 9.1 No new tools!

 9.2 Getting the code

 9.3 Revisiting essential skills

 9.4 Overview of FlixTube

 FlixTube microservices

 Microservice project structure

 FlixTube project structure

 9.5 Running FlixTube in development

 Booting a microservice

 Booting the application

 9.6 Testing FlixTube in development

 Testing a microservice with Jest

 Testing the application with Cypress

 9.7 FlixTube deep dive

 Database fixtures

 Mocking storage

 The gateway

 The user interface (UI)

 Video streaming

 Video upload

 9.8 Manually deploying FlixTube to production with Terraform

 The Terraform scripts structure

 Prerequisites

 Azure authentication

 Configuring storage

 Deploying the application

 Checking that it works

 Teardown

 Terraform modules

 9.9 Continuous delivery to production

 Prerequisites

 Setting up your code repository

 Preparing the backend

 The deployment shell script

 FlixTube’s CD configuration

 Testing the continuous delivery (CD) pipeline

 Adding automated testing

 9.10 Review

 9.11 FlixTube in the future

 9.12 Continue your learning

 10 Healthy microservices

 10.1 Maintaining healthy microservices

 10.2 Monitoring your microservices

 Logging in development

 Error handling

 Logging with Docker Compose

 Basic logging with Kubernetes

 Roll your own log aggregation for Kubernetes

 Enterprise logging, monitoring and alerts

 Automatic restarts with Kubernetes health checks

 Tracing across microservices

 10.3 Debugging microservices

 The debugging process

 Debugging production microservices

 10.4 Reliability and recovery

 Practice defensive programming

 Practice defensive testing

 Protect your data

 Replication and redundancy

 Fault isolation and graceful degradation

 Simple techniques for fault tolerance

 Advanced techniques for fault tolerance

 10.5 Continue your learning

 11 Pathways to scalability

 11.1 Our future is scalable

 11.2 Scaling the development process

 Multiple teams

 Independent microservices

 Splitting the code repository

 Splitting the continuous delivery (CD) pipeline

 The meta-repo

 Creating multiple environments

 Production workflow

 11.3 Scaling performance

 Vertically scaling the cluster

 Horizontally scaling the cluster

 Horizontally scaling an individual microservice

 Elastic scaling for the cluster

 Elastic scaling for an individual microservice

 Scaling the database

 Managing changes to infrastructure

 11.4 Security

 Trust models

 Sensitive configuration

 11.5 Refactoring to microservices

 11.6 Microservices on a budget

 11.7 From simple beginnings ...

 11.8 Continue your learning

 appendix A. Creating a development environment with Vagrant

 appendix B. Bootstrapping Microservices cheat sheet

 index

 front matter

preface

 I first tried building applications with microservices around 2013. That was the year Docker was initially released, but back then, I hadn’t heard about it. At that time, we built an application with each microservice running on a separate virtual machine. As you might expect, that was a really expensive way to run microservices.

 Because of the high running costs, we then opted to create fewer rather than more microservices, pushing more and more functionality into the existing microservices to the point where we couldn’t really call these microservices. It was still a distributed application of course, just not micro-sized in the way we had hoped.

 I already knew at that stage that microservices were a powerful idea, if only they were cheaper. I put microservices back on the shelf, but made a note that I should look at those again later.

 Over the years, I watched from the sideline as the tools and technology around microservices developed, powered by the rise (and rise) of open source coding. And I looked on as the cost of cloud computing continued to drop, spurred on by competition between vendors. Over time, it was clear that building and running a distributed application with micro-sized components was becoming more cost effective.

 After what seemed like a lifetime, in early 2018, I officially returned to the world of microservices. I had two opportunities for which I believed microservices were the right fit. Both were startups. The first was a contract job to bootstrap a new microservices application for a promising young company. The second was building a microservices application for my own startup.

 To be successful, I knew that I needed new tools. I needed an effective way to package microservices. I needed a computing platform on which I could deploy microservices. Crucially, I needed to be able to automate deployments.

 By then, Docker had already gained a big foothold in our industry, so I knew it was a safe bet as a way to package microservices. I also liked the look of Kubernetes as a computing platform for microservices, but early on, I was extremely uncertain about it. Kubernetes, however, promised a future of freedom from the tyranny of cloud vendor lockin-that was very appealing.

 At this point, I’d read quite a few books on microservices. These were all interesting, providing good value on a theoretical level. I do enjoy reading the theory, but these books lacked the practical examples that would have helped me smash through my own learning curve. Even as an experienced developer, I was struggling to know where to start! I knew from past experience that bad technical decisions made at the beginning of a project would haunt me to the end.

 Learning Kubernetes was especially difficult. From the outside, it seemed incredibly difficult to penetrate. But I had a job to do, and I needed a way to deliver software. So I pushed on. The going was tough, and I almost gave up on Kubernetes a few times.

 The situation changed when I discovered Terraform. This was the missing piece of the puzzle for me. It’s what made Kubernetes understandable and usable to the point where I could do nothing else but commit to using it.

 Terraform is the tool that allowed me to describe the structure of my application. Terraform could then live in my continuous delivery (CD) pipeline and automatically keep my application up to date! I began writing infrastructure as code, and it felt like I had moved to the big league.

 I forced my way through the learning curve, bolstered by my long-time experience of evaluating technology and learning quickly on the job, with a splash of trial and error mixed in for good measure. My efforts delivered software that is performant, flexible, reliable, scalable, extensible, and still running to this day. Through this time, my desire to write this book sparked and grew to the point where I had to take action.

 A new mission formed-I wanted to make microservices more accessible. I felt compelled to write this book; it’s the book I wanted but didn’t have. I knew I could help people, and the best way to do that was with a practical book, this book. A book that shows you, step by step, that microservices don’t have to be difficult or complex; it all depends on your approach and the perspective you take. You now have in your hands the fruits of that labor. I learned the hard way so that you don’t have to.

acknowledgments

 In Bootstrapping Microservices, I share my years of hard-won experience with you. Such experience wouldn’t be possible without being surrounded by people who supported and encouraged me.

 There are many who helped me get to where I am today. I wouldn’t be a developer without my parents, Garry and Jan, who bought me my first PC. My partner in life, Antonella, who has tirelessly supported me through two books now. My partner in business, Majella, who listens to all my rants about technology, and still pushes me forward. Thank you all!

 Of course, thank you to Manning for the opportunity and especially to Helen Stergius, who once again edited my book. Hopefully, I made your job easier this time, now that I’m a more experienced author. Thanks as well to the entire team at Manning for their efforts.

 A big thank you to the technical proof reader, Alain Couniot, and all the reviewers who have played such a huge part in taking this book to the next level: Angelo Simone Scotto, Anupam Sengupta, Barnaby Norman, Björn Neuhaus, Bonnie Malec, Chris Kolosiwsky, Chris Viner, Dan Sheikh, Dhruvesh Patel, Donald McLamb, Eric Platon, Ernesto Bossi Carranza, Giampiero Granatella, John Guthrie, Julien Pohie, Marcin Sęk, Michele Adduci, Miguel Montalvo, Rich Ward, Rinor Maloku, Ruben Vandeginste, and Weyert de Boer.

 Of course, Jeanne Boyarsky, the technical editor, deserves a special thank you. She did a wonderful job “nitpicking” (as she put it), and the book is so much better for her involvement.

 Finally, I’d like to thank the development community. Your feedback and encouragement made this book a joy to write. I wrote this book for you!

about this book

 Building applications with microservices-building distributed applications-can be a complicated process and can be difficult to learn. If you are plunged into a modern complex application, it can be difficult to see the trees from the forest. There’s so much more to consider than simply coding. And this is not an easy journey to take on your own.

 To use microservices, you must understand how to build a distributed application. But by itself, that’s not enough. You also have to learn the deep and complex tools that are necessary to develop, test, and deploy such an application. How do we assemble a robust toolkit for development? Where do we start?

 Along the way are many more questions. How do we package and deploy a microservice? How do we configure our development environment for local testing? How do we get our microservices communicating with each other, and how do we manage the data? Most importantly, how do we deploy our microservices to production? Then, once in production, how do we manage, monitor, and fix problems with potentially hundreds of microservices?

 This book, Bootstrapping Microservices, answers these questions and more! It’s your guide to building an application with microservices using the latest tools. We’ll start from nothing and go all the way to a working microservices application running in production.

 You won’t find much theory in this book. Bootstrapping Microservices is practical and project-based. Together, we’ll work through numerous examples of microservices, eventually getting to production, and covering everything you need to know to be a confident microservices developer.

 Each example in this book comes with working code that is available on GitHub. You can try it out for yourself and make your own experimental changes.

Who should read this book

 This book is aimed at anyone who wants to learn more about the practical aspects of working with microservices; those who need a clear guide on how to assemble their toolkit and take their application all the way to production. This book doesn’t teach coding, so basic coding skills are advisable.

 Note If you have some basic or entry-level experience with modern programming languages like C#, Java, Python, or JavaScript, you should be able to follow along with this book.

 The code examples are as simple as they can be, but this book isn’t about the code. It’s more about teaching you how to assemble the toolkit you need for building a microservices application.

 If you don’t have coding experience, but you are a fast learner, you can learn basic JavaScript (through another book, tutorials, videos, and so forth) while you read Bootstrapping Microservices. Like I said, the code examples are as simple as these can be, so you stand a good chance of being able to read the code and get the gist of it without much coding experience. Our coding adventure starts in chapter 2, where you learn how to build a simple microservice using JavaScript and Node.js.

How this book is organized: A roadmap

 In the 11 chapters of this book, we go from building a single microservice all the way to running multiple microservices in a production-ready Kubernetes cluster.

 	
 Chapter 1 is an introduction to microservices and explains why we want to use these.

 	
 Chapter 2 works through building a simple microservice using Node.js and JavaScript. We learn how to use live reload for a more streamlined development process.

 	
 Chapter 3 introduces Docker for packaging and publishing our microservice to get it ready for deployment.

 	
 Chapter 4 scales up to multiple microservices and introduces Docker Compose for simulating our microservices application on your development workstation during development. We then cover data management for microservices, including having a database and external file storage.

 	
 Chapter 5 upgrades our development environment for whole application live reload. We then cover communications among microservices, including HTTP for direct messaging and RabbitMQ for indirect messaging.

 	
 Chapter 6 introduces Terraform and Kubernetes. We use Terraform to create a private container register and a Kubernetes cluster on Microsoft Azure.

 	
 Chapter 7 uses Terraform to deploy microservices to our Kubernetes cluster. We deploy a database, a RabbitMQ server, and finally, a microservice. We also look at how to create a continuous delivery (CD) pipeline that automates the deployment of our application to production.

 	
 Chapter 8 shows how we can apply multiple levels of automated testing to microservices.

 	
 Chapter 9 is an overview of the example application and a review of the skills you learned thus far in the context of deploying the example application for yourself.

 	
 Chapter 10 explores the ways that we can build reliable and fault-tolerant microservices and then monitor those to maintain a healthy application.

 	
 Chapter 11 wraps up by showing practical ways that your microservices application can be scaled to support your growing business and organized to manage your growing development team. It also touches on security, refactoring a monolith, and how to build with microservices on a budget.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/bootstrapping-microservices-with-docker-kubernetes-and-terraform and from GitHub at https://github.com/bootstrapping-microservices.

 You can download a zip file to accompany each chapter (chapters 2-9), or you can use Git to clone the Git code repository for each chapter. Each example is designed to be as simple as possible, self-contained, and easy to run. As you progress through the book, you will run the code in different ways.

 We start by running code for a single microservice directly under Node.js (chapter 2), then under Docker (chapter 3). We then run multiple microservices under Docker Compose (chapters 4 and 5).

 Next, we run code under Terraform, first locally (chapter 6) and then within our continuous delivery pipeline (chapter 7). Also, in chapters 6 and 7, we’ll run our microservices on a Kubernetes cluster in the cloud. In chapter 8, we come back to Node.js to run automated tests under Jest and Cypress. And, finally, in chapter 9, we revise the skills learned thus far (from chapters 2-8). The example code for chapter 9 is a simple, yet complete, microservices application that you can get running for yourself both in development and production.

 Throughout the code examples, I aim to follow standard conventions and best practices. I ask that you provide feedback and report any issues through GitHub.

liveBook discussion forum

 Purchase of Bootstrapping Microservices with Docker, Kubernetes, and Terraform includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/bootstrapping-microservices-with-docker-kubernetes-and-terraform/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Ashley Davis is a software craftsman, entrepreneur, and author with over 20 years of experience in software development, from coding to managing teams, then to founding companies. He has worked for a range of companies, from the tiniest startups to the largest internationals. Along the way, he has contributed back to the community through his writing and open source coding.

 Ashley is the CTO of Sortal, a product that automatically sorts digital assets through the magic of machine learning. He is the creator of Data-Forge Notebook, a notebook-style desktop application for exploratory coding and data visualization using JavaScript and TypeScript. Ashley is also a keen algorithmic trader, actively trading and developing quantitative trading software.

 For updates on his book, his open source coding, and more, follow Ashley on Twitter @ashleydavis75, follow him on Facebook at The Data Wrangler, or visit his blog at http://www.the-data-wrangler.com.

 For more on Ashley’s background, see his personal web page (http://www.codecapers .com.au) or his Linkedin profile (https://www.linkedin.com/in/ashleydavis75).

about the cover illustration

 The figure on the cover of Bootstrapping Microservices with Docker, Kubernetes, and Terraform is captioned “Catalan” or a man from Catalonia, in northeast Spain. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes civils actuels de tous les peoples connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life-certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 Why microservices?

 This chapter covers

 	
The learning approach of this book

 	
The what and why of microservices

 	
The benefits and drawbacks of using microservices

 	
What’s wrong with the monolith?

 	
The basics of microservices design

 	
A quick overview of the application we build

 As software continues to become larger and more complicated, we need better ways of managing and mitigating its complexity. As it grows alongside our business, we need better ways of dividing it up so that multiple teams can participate in the construction effort.

 As our demanding customer base grows, we must also be able to expand our software. At the same time, our applications should be fault-tolerant and able to scale quickly to meet peak demand. How do we then meet the demands of modern business while evolving and developing our application?

 Microservices are an architectural pattern that plays a pivotal role in contemporary software development. A distributed application composed of microservices solves these problems and more, but typically it is more difficult, more complex, and more time-consuming to architect than a traditional monolithic application. If these terms are new-microservices, distributed application, and monolithic application-they will be explained soon.

 Conventional wisdom says that microservices are too difficult. We are told to start “monolith-first” and later restructure to microservices when necessary to scale. But I argue that this attitude doesn’t make the job of building an application any easier! Your application is always going to tend toward complexity and, eventually, you will need to scale it. When you do decide you need to change, you now have the extremely difficult job of safely converting your monolith to microservices when staff and customers already depend on it.

 Now is also the perfect time to be building microservices. The confluence of various factors-accessible and cheap cloud infrastructure, ever improving tools, and increasing opportunities for automation-is driving an industry-wide movement toward smaller and smaller services, aka microservices. Applications become more complex over time, but microservices offer us better ways to manage such complexity. There is no better time than now to go “microservices-first.”

 In this book, I will show you that a microservices-first approach is no longer as daunting as it once was. I believe the balance is firmly tipping toward microservices. The remaining problem is that learning microservices is difficult. The learning curve is steep and holds back many developers in their quest to build microservices. Together, we will break the learning curve. We will say “Boo” to the monolith, and we’ll build from the ground up a simple but complete video-streaming application using microservices.

1.1 This book is practical

 Why are you reading this book? You are reading this because you want or need to build a microservices application, which is an important skill set for modern developers, but it’s a difficult skill set to obtain, and you need some guidance. You may have read other books on microservices and been left wondering where do I begin? I understand your torment.

 Microservices are tough to learn. Not only do you have to learn deep and complicated tools, you must also learn to build a distributed application. This requires new design patterns, protocols, and methods of communication. That’s a lot to learn in anyone’s book.

 In this book, we cut through the seemingly impenetrable learning curve of building microservices applications. The learning curve you must endure can seem insurmountable when tackled by yourself, but, rather than that, we’ll undergo this development adventure together. We’ll start as simple as possible and, piece-by-piece, we’ll build up to deploying our application to production.

 This book is about busting through the learning curve and bootstrapping a working application that will last indefinitely, an application that we can continuously update and build on to satisfy the ongoing and changing needs of our customers and users. Figure 1.1 illustrates this idea of cutting through the learning curve. While our example application is small and simple, from the start, we will build-in pathways to scalability that will later allow it to be expanded out to a truly massive distributed application.

 [image:]

 Figure 1.1 Cutting through the learning curve. In this book, we’ll learn only the bare minimum, just enough to bootstrap our application.

 How is this book different from all the other books on microservices? Other books are notably theoretical. That’s a good approach for an experienced developer or architect looking to broaden their knowledge, but acquiring practical skills that way is challenging and doesn’t help you navigate the minefield of bootstrapping a new application. The technical choices you make at project inception can haunt you for a long time.

 This book is different; this book is not theoretical. We will take a practical approach to learning. There is a small amount of theory interspersed throughout, and we will actually build a substantial microservices application. We will start from nothing and work through bringing our application into existence and getting it into production. We’ll build and test the application on our development workstation (or personal computer), and ultimately, we’ll deploy it to the cloud.

 Together we’ll get our microservices application off the ground without having to learn the deepest details of any of the tools or technologies. An example of this book’s learning model is illustrated in figure 1.2.

 [image:]

 Figure 1.2 The learning model for this book. We will skim the surface of these deep and complicated technologies to only use what is necessary to bootstrap our application.

 This book is about building a microservices application, starting with nothing. Some people have already asked why I didn’t write this book to show how to convert a monolith to a microservices application? This is something that many people would like to learn.

 I wrote the book in this way because it’s much easier to learn how to write an application from scratch than it is to learn how to refactor an existing application. I also believe these skills are useful because, in time, more and more applications will be written microservices-first.

 In any case, refactoring an existing application is much more complicated than building a fresh application. It’s a process with many complex variables and depends heavily on the particulars of the legacy codebase. I make the presumption that it will be easier for you to figure out your own monolith conversion strategy once you know (indeed, once you have experienced) how to create a greenfield (new) microservices application.

 I can assure you that when you can build an application microservices-first, you will be much better equipped to clearly see a route from your existing monolith to microservices. That journey from monolith to microservices will no doubt still be demanding, so stay tuned. In chapter 11, we will discuss more on this topic.

 Throughout this book, you will learn concrete and practical techniques for getting a microservices application off the ground. Of course, there are many diverse ways to go about this and many different tools you can use. I am teaching you one single recipe and one set of tools (albeit a popular toolset). You will, no doubt, find many ways to improve on this recipe and enhance it for your own situation. Other experienced developers will, of course, already have their own recipes for doing this. What I’m trying to say is that this is my way, and it is just one of many ways that will work; however, I can attest that I have tried every technique in this book in production and found these to work well. So without further ado, let us commence our journey of learning and discovery.

1.2 What will I learn?

 Throughout the book, we will progress from easy to more difficult. We’ll start with the simplest task-creating a single microservice. Over 11 chapters, we’ll build up to a more complex application and infrastructure, but we’ll do it in incremental steps so that you never get lost. After reading this book and practicing the skills taught, you can expect to be able to

 	
 Create individual microservices

 	
 Package and publish microservices using Docker

 	
 Develop a microservices application on your development workstation using Docker Compose

 	
 Test your code, microservices, and application using Jest and Cypress

 	
 Integrate third-party servers into your application (like MongoDB and RabbitMQ, as examples)

 	
 Communicate between microservices using HTTP and RabbitMQ messages

 	
 Store the data and files your microservices need to operate

 	
 Create production infrastructure with Kubernetes using Terraform

 	
 Deploy your microservices to production using Terraform

 	
 Create a continuous delivery pipeline to automatically deploy your application as you update the code

1.3 What do I need to know?

 You might be wondering, what you need to know going into this book. I have made an effort to write this book with as few assumptions as possible about what you already know. We are going on a journey that takes you from absolute basics all the way through to some rather complicated concepts. I think there’s something here for everyone, no matter how much experience you might have already as a developer.

 It’s best coming into this book if you have some entry-level understanding of computer programming. I don’t think you’ll need much, so long as you can read code and get the gist of what it’s doing. But don’t worry; I’ll explain as much as possible about anything important that is happening in the code.

 If you have a background in programming, you’ll have no problem following along with the examples in this book. If you are learning programming while reading this book, you could find it to be quite a bit more challenging, but not impossible, and you might have to put in some extra work.

 This book uses Node.js for examples of microservices, but starting out, you don’t need to know JavaScript or Node.js. You’ll pick up enough along the way to follow along. This book also uses Microsoft Azure for examples of production deployment. Again, starting out, you don’t need to know anything about Azure either.

 Rest assured that this book isn’t about Node.js or Azure; it’s about building microservices applications using modern tooling like Docker, Kubernetes, and Terraform. Most of the skills you will take away from this book are transferable to other languages and other cloud providers. Because I had to pick a programming language and cloud vendor that I could use to demonstrate the techniques in this book, I chose Node.js and Azure. That’s mostly what I use in production these days.

 If Node.js and Azure aren’t your thing, with some extra research and experimentation on your part, you’ll be able to figure out how to replace Node.js and JavaScript with your favorite programming language and replace Azure with your preferred cloud vendor. In fact, the main reason I use Docker, Kubernetes, and Terraform in the first place is precisely because these tools offer freedom-freedom of choice for programming language and freedom from cloud vendor lock-in.

1.4 Managing complexity

 A microservice application, like any application, will become more complex over time. But it doesn’t need to start that way! This book takes the approach that we can begin from a simple starting point and that each iteration of development can also be just as simple. In addition, each microservice is small and simple. As you read this book, you’ll find that it isn’t as difficult as you might think to build applications with microservices (despite what some people say).

 Microservices give us a way to manage complexity at a granular level, and it’s the level we work at almost every day-the level of a single microservice. At that level, microservices are not complex. In fact, to earn the name microservice, they have to be small and simple. A single microservice is intended to be manageable by a single developer or a small team!

 It is true, though, that through continued development and evolution, a complex system will emerge. There’s no denying that a microservices application will become complex. But that doesn’t happen immediately; it takes time. Along the way, we’ll use microservices to manage the growing complexity of your application so that it doesn’t become a burden.

 A microservices application is a form of complex adaptive system, where complexity emerges naturally from the interactions of its constituent parts. Even though the system as a whole can become far too complex for any mere mortal to understand, each of its components remains small, manageable, and easy to understand. Don’t worry though; the example application we build in this book isn’t that complicated.

 Development with this microservices attitude (with help from our tools and automation) allows us to build extremely large and scalable applications without being overwhelmed by the complexity. And, after reading this book, you’ll be able to zoom in and look at any part of the most complex microservices application and find its components to be straightforward and understandable.

1.5 What is a microservice?

 Before we can understand a microservices application, we must first understand what it means to be a microservice.

 Definition A microservice is a tiny and independent software process that runs on its own deployment schedule and can be updated independently.

 Let’s break that definition down. A microservice is a small, independent software process that has its own separate deployment frequency. That is to say that it must be possible to update each microservice independently from other microservices.

 A microservice can be owned and operated either by a single developer or a team of developers. A developer or team might also manage multiple other microservices. Each developer/team has the responsibility for the microservice(s) they own. In the modern world of programming, this often includes development, testing, deployment, and operations. We might find, however, that when we work for a small company or a startup (as I do), or when we are learning (as we are in this book), we must manage multiple microservices or, indeed, even an entire microservices application on our own.

 An individual microservice might be exposed to the outside world so our customers can interact with it or it might be purely an internal service and not externally accessible. It typically has access to a database, file storage, or some other method of state persistence. Figure 1.3 illustrates these internal and external relationships.

 [image:]

 Figure 1.3 A single microservice can have connections to the outside world or other services, and it also can have a database and/or attached file storage.

 By itself, a single microservice doesn’t do much. A well-designed system, however, can be decomposed into such simple services. The services must collaborate with each other to provide the features and functionality of the greater application. This brings us to the topic of the microservices application.

1.6 What is a microservices application?

 A microservices application is traditionally known as a distributed application, a system composed of tiny components that live in separate processes and communicate via the network. Each service or component resides on a logically distinct (virtual) computer and sometimes even on a physically separate computer.

 Definition A microservices application is a distributed program composed of many tiny services that collaborate to achieve the features and functionality of the overall project.

 Typically, a microservices application has one or more services that are externally exposed to allow users to interact with the system. Figure 1.4 shows two such services acting as gateways for web-based and mobile phone users. You can also see in figure 1.4 that many services are working together within the cluster. It is called a cluster because it is a group of computers that are represented to us (the developers) as a single cohesive slab of computing power to be directed as we will. Somewhere close by we also have a database server. In figure 1.4, it is shown to be outside the cluster, but it could just as easily be hosted inside the cluster. We’ll talk more about this in chapter 4.

 [image:]

 Figure 1.4 A microservices application is composed of multiple, small independent services running in a cluster.

 The cluster is hosted on a cluster orchestration platform, and we use Kubernetes for this purpose. Orchestration is the automated management of our services. This is what Kubernetes does for us-it helps us to deploy and manage our services.

 The cluster itself, our database and other virtual infrastructure, are all hosted on our chosen cloud vendor. We will learn how to deploy this infrastructure on Microsoft Azure, but with some work on your own, you can change the examples in this book to deploy to Amazon Web Services (AWS) or Google Cloud Platform (GCP).

 A microservices application can take many forms, is very flexible, and can be arranged to suit many situations. Any particular application might have a familiar overall structure, but the services it contains will do different jobs, depending on the needs of our customers and the domain of our business.

1.7 What’s wrong with the monolith?

 What is a monolith and what is so wrong with it that we’d like to use microservices instead? Although distributed computing has been around for decades, applications were often built in the monolithic form. This is the way that the majority of software was developed before the cloud revolution and microservices. Figure 1.5 shows what the services in a simple video-streaming application might look like and compares the differences between a monolithic version of the application and a microservices version.

 Definition A monolith is an entire application that runs in a single process.

 [image:]

 Figure 1.5 Monolith vs. microservices. You can see that building with microservices offers many advantages over the traditional monolithic application.

 It is much easier to build a monolith than a microservices application. You need fewer technical and architectural skills. It’s a great starting point when building a new application, say for an early-stage product, and you want to test the validity of the business model before you commit to the higher technical investment required by a microservices application.

 A monolith is a great option for creating a throw-away prototype. It also might be all that you need for an application that has a small scope or an application that stabilizes quickly and does not need to evolve or grow over its lifetime. If your application will always be this small, it makes sense for it to be a monolith.

 Deciding whether to go monolith-first or microservices-first is a balancing act that has traditionally been won by the monolith. However, in this book, I’ll show you, given the improvements in modern tooling and with cheap and convenient cloud infrastructure, that it’s important that you at least consider building microservices-first.

 Most products generally need to grow and be evolved, and as your monolith grows bigger and has more useful features, it becomes more difficult to justify throwing away the throw-away prototype. So down the road, you could find yourself stuck with the monolith at a time when what you really need is the flexibility, security, and scalability of a microservices application.

 Monoliths come with a host of potential problems. These start out small, and we always have the best of intentions of keeping the code clean and well organized. A good team of developers can keep a monolith elegant and well organized for many years. But as time passes, the vision can be lost or sometimes there wasn’t a strong vision in the first place. All the code runs in the same process, so there are no barriers and nothing to stop us writing a huge mess of spaghetti code that will be near impossible to pick apart later.

 Staff turnover also has a big effect. As developers leave the team they take crucial knowledge with them, and they are replaced by new developers who will have to develop their own mental model of the application, which could easily be at odds with the original vision. Time passes, code changes hands many times, and these negative forces conspire to devolve the codebase into what is called a big ball of mud. This name denotes the messy state of the application when there is no longer a discernible architecture.

 Updating the code for a monolith is a risky affair. It’s all or nothing. When you push a code change that breaks the monolith, the entire application ceases operation, your customers are left high and dry, and your company bleeds money. We might only want to change a single line of code, but still, we must deploy the entire monolith and risk breaking it. This risk stokes deployment fear. Fear slows the pace of development.

 In addition, as the structure of the monolith degenerates, our risk of breaking it in unanticipated ways increases. Testing becomes harder and breeds yet more deployment fear. Have I convinced you that you should try microservices? Wait, there’s more!

 Due to the sheer size of an established monolith, testing is problematic, and because of its extremely low level of granularity, it is difficult to scale. Eventually, the monolith expands to consume the physical limits of the machine it runs on. As the aging monolith consumes more and more physical resources, it becomes more expensive to run. I have witnessed this! To be fair, this kind of eventuality might be a long way off for any monolith, but even after just a few years of growth, the monolith leads to a place that you would prefer not to be.

 Despite the eventual difficulties with the monolith, it remains the simplest way to bootstrap a new application. Shouldn’t we always start with a monolith and later restructure when we need to scale? My answer: it depends.

 Many applications will always be small. There are plenty of small monoliths in the wild that do their job well and don’t need to be scaled or evolved. Because these are not expanding, they do not suffer the problems of growth. If you believe your application will remain small and simple and doesn’t need to evolve, you should definitely build it as a monolith.

 There are many applications, however, that we can easily predict will benefit from a microservices-first approach. These are the kinds of applications we know will continually be evolved over many years. Other applications that can benefit are those that need to be flexible, scalable, or have security constraints from the start. Building these types of applications is much easier if you start with microservices because converting an existing monolith is difficult and risky.

 By all means, if you need to validate your business idea first, do so by initially building a monolith. However, even in this case, I would argue that with the right tooling, prototyping with microservices isn’t much more difficult than prototyping with a monolith. After all, what is a monolith if not a single large service?

 You might even consider using the techniques in this book to bootstrap your monolith as a single service within a Kubernetes cluster. Now you have the best of both worlds! When the time comes to decompose to microservices, you are already in the best possible position to do so and, at your leisure, you can start chipping microservices off the monolith. And with the ease of automated deployment that modern tooling offers, it is easy to tear down and recreate your application or create replica environments for development and testing. If you want or need to create a monolith first, you can still benefit from the techniques and technologies presented in this book.

 If you do start with a monolith, for your own sanity and as early as possible, either throw it away and replace it or incrementally restructure it into microservices. We’ll talk more about breaking up existing monoliths in chapter 11.

1.8 Why are microservices popular now?

 Why does it seem that right now microservices are exploding in popularity? Is this just a passing fad?

 No, it is not a passing fad. Distributed computing has been around for a long time and has always had many advantages over monolithic applications. Traditionally though, it has been more complex and more costly to build applications in this way. Developers only reached for these more powerful application architectures for the most demanding problems: those where the value of the solution would outweigh the cost of the implementation.

 In recent times, however, with the advent of cloud technology, virtualization, and the creation of automated tools for managing our virtual infrastructure, it has become much less expensive to build such distributed systems. As it became cheaper to replace monolithic applications with distributed applications, we naturally considered the ways this could improve the structure of our applications. In doing so, the components of our distributed systems have shrunk to the tiniest possible size so that now we call them microservices.

 That’s why microservices are popular now. Not only are they generally a worthwhile way to build complex modern applications, but they are also increasingly cost-effective. Distributed computing has become more accessible than ever before, so naturally more developers are using it. Right now, it appears to be nearing critical mass, and so it’s reaching the mainstream.

 But why are microservices so good? How do they improve the structure of our application? This question leads to the benefits of microservices.

1.9 Benefits of microservices

 Building distributed applications brings many advantages. Each service can potentially have its own dedicated CPU, memory, and other resources. Typically though, we share physical infrastructure between many services and that’s what makes microservices cost-effective. But we are also able to separate these out when necessary so that the services with the heaviest workloads can be allocated dedicated resources. We can say that each small service is independently scalable, and this gives us a fine-grained ability to tune the performance of our application. In this section, we look at these benefits:

 	
 Allows for fine-grained control-Microservices allow us to build an application with fine-grained control over scalability

 	
 Minimizes deployment risk-Microservices help us minimize deployment risk while maximizing the pace of development

 	
 Lets you choose your own tech stack-Microservices allow us to choose the right stack for the task at hand so that we aren’t constrained to a single tech stack

 Having a distributed application offers us the potential for better reliability and reduced deployment risk. When we update a particular service we can do so without the risk of breaking the entire application. Of course, we might still risk breaking a part of the application, but that is better and easier to recover from than bringing down the entire application. When problems occur, it’s easier to rollback just a small part of the system rather than the whole. Reduced deployment risk has the knock-on effect of promoting frequent deployments, and this is essential to agility and sustaining a fast pace of development.

 These benefits are nothing new. After all, we have built distributed applications for a long time, but such systems have become cheaper to build and the tools have improved. It is easier than ever before to build applications this way and to reap the rewards. As costs decreased and deployment convenience increased, our services tended towards the micro-level, and this brought its own complement of benefits.

 Smaller services are quicker to boot than larger services. This helps make our system easier to scale because we can quickly replicate any service that becomes overloaded. Smaller services are also easier to test and troubleshoot. Even though testing an overall system can still be difficult, we can more easily prove that each individual part of it is working as expected.

 Building applications with many small and independently upgradeable parts means we can have an application that is more amenable to being extended, evolved, and rearranged over its lifetime. The fact that we have enforced process boundaries between our components means that we will never be tempted to write spaghetti code. And, indeed, if we do write terrible code (we all have bad days, right?), the impact of bad code is controlled and isolated because every microservice (to earn the name) should be small enough that it can be thrown away and rewritten within a matter of weeks, if not days. In this sense, we are designing our code for disposability. We are designing it to be replaced over time. The ongoing and iterative replacement of our application is not only made possible, but it is actively encouraged, and this is what we need for our application architecture to survive the continuously evolving needs of the modern business.

 Another benefit that really excites developers using microservices is that we are no longer constrained to a single technology stack for our application. Each service in our application can potentially contain any tech stack. For larger companies, this means that different teams can choose their own tech stack; they can choose it based on their experience or based on the stack that is best for the job at hand. Various tech stacks can co-exist within our cluster and work together using shared protocols and communication mechanisms.

 Being able to change between tech stacks is important for the long-term health of the application. As the tech landscape evolves, as it always does, older tech stacks fall out of favor and must eventually be replaced by new ones. Microservices create a structure that can be progressively converted to newer tech stacks. As developers, we no longer need languish on out-of-date technologies.

 Technology (tech) stack

 Your technology stack is the combination of tools, software, and frameworks on which you build each microservice. You can think of it as the fundamental underlying elements needed by your application.

 Some stacks have names. For example, MEAN (Mongo, Express, Angular, Node.js) or LAMP (Linux, Apache, MySQL, PHP). But your stack is just the combination of tools you use, and it doesn’t need a name to be valid.

 When building a monolith, we have to choose a single tech stack, and we have to stay with that stack for as long as the monolith remains in operation. The microservices architecture is appealing because it gives us the potential to use multiple tech stacks within one application. This allows us to change our tech stack over time as we evolve our application.

1.10 Drawbacks of microservices

 This chapter would not be complete without addressing the two main problems that people have with microservices:

 	
 Microservices are more difficult

 	
 People often fear complexity

 The first problem is the steep learning curve. Learning how to build microservices requires you to learn not just a complicated arrangement of technologies, but also the principles and techniques for building distributed applications. Although learning how to build microservices is difficult, this book will help you shortcut the learning curve.

 Note I can understand if you feel daunted by what’s in front of you. But recently, huge progress has been made in the development of tooling for building distributed applications. Our tools are now more sophisticated, easier to use, and most importantly, more automatable than ever before.

 These days, a single experienced developer is now capable of bootstrapping a microservices application on their own without the support of a team. I know this because I have done this multiple times for startups. Still, it surprises me how much can be achieved on one’s own. We’ll talk more about how startups, small teams, and solo developers can work with microservices quickly and effectively in chapter 11.

 To be fair, the tools are still complicated. Ordinarily, it would take months or longer to conquer the learning curve on your own-mastering any of these tools takes significant time! But this book takes a different approach. Together we will only learn the bare minimum necessary to bootstrap our application and get it running in production. Together we will produce a simple but working microservices application. Along the way, we’ll also learn the basics of structuring distributed applications.

 As I mentioned, there are actually two problems facing microservices developers. The second is that building a microservices application, indeed any distributed application, is going to be more complicated than building the equivalent monolith. It is hard to argue with this. The first thing I would say is that yes, building a monolith is simpler in the beginning and in many cases it is the right decision. If your application is one of those that must later be converted or restructured to microservices however, then you should consider the eventual cost of unraveling your big ball of mud.

 Don’t be frightened by complexity; it happens whether you like it or not. Fortunately, microservices offer us tangible ways of managing complexity.

 If you think this through, you might concede that building microservices, at least in certain situations, is actually less complicated than building a monolith. If this discussion hasn’t convinced you, consider this: any significant application is going to become complex. If not at the start, it will grow more complex over time. You can’t hide from complexity in modern software development, it always catches up with you, eventually. Instead, let’s take control of this situation and meet the complexity head-on. What we want are better tools to help manage complexity. Microservices as an architectural pattern is one such tool.

 Think of microservices as a way to bring the pain forward, to a place where it’s more economical to deal with. What do we get in return for this pain? Microservices offer us tangible ways to manage complexity in our application. They provide hard boundaries that prevent us from writing spaghetti code. Microservices allow us to more easily rewire our application, scale it, and upgrade it over time. Microservices also force us to apply better design. We can’t prevent complexity, but we can manage it, and modern tooling for distributed applications is already here to help us.

1.11 Modern tooling for microservices

 This book is all about the tooling. Together, we will learn the basics of a number of dif-ferent tools. To start with, we must be able to create a microservice. We’ll use JavaScript and Node.js to do this, and the next chapter will teach you the basics of that.

 We are using Node.js because that’s my weapon of choice. However, as far as microservices are concerned, the technology stack within the service is not particularly important. We could just as easily build our microservices with Python, Ruby, Java, Go, or virtually any other language. We’ll encounter numerous tools along our journey, but these are the most important ones:

 	
 Docker —To package and deploy our services

 	
 Docker Compose —To test our microservices application on our development workstation

 	
 Kubernetes —To host our application in the cloud

 	
 Terraform —To build our cloud infrastructure, our Kubernetes cluster, and deploy our application

 The technological landscape is always changing and so are the tools. So why should we learn any particular toolset when the tools are constantly outdated and replaced? Well, it’s because we will always need good tools to work effectively. And with better tools, we can do a better job, or maybe we just get to do the same job but more effectively. Either way, this helps us to be more productive.

 I selected the tools for this book because these make the job of building microservices applications significantly easier and quicker. All technologies change in time, but I don’t think these particular tools are going anywhere soon. They are popular, are currently the best we have, and all fill useful positions in one’s toolkit.

 Of course, these tools will eventually be replaced, but hopefully, in the meantime, we’ll have extracted significant value from these and built many good applications. And when the tools do change, they will certainly be replaced by better tools that lift the bar of abstraction even higher, making our jobs easier and less frustrating.

 Docker is the one tool out of all the tools that is more or less ubiquitous. It seems to have almost come from nowhere and has taken over our industry. Kubernetes on the other hand is not quite as ubiquitous as Docker, although it does have a strong future because it allows us to transcend the boundaries of cloud vendors. This is good news if you ever felt trapped with your particular cloud provider. We can run our Kubernetes-based application on pretty much any cloud platform, and we have freedom of movement when needed.

 Terraform is a relative newcomer, but I think it’s a game-changer. It’s a declarative configuration language that allows us to script the creation of cloud resources and the deployment of our services. The important thing about Terraform is that it’s one language that can work with potentially any cloud vendor. No matter which cloud vendor you choose, now or in the future, chances are that Terraform will support it, and you won’t have to learn something new.

 Think about this for a moment: Terraform means we can easily code the creation of cloud infrastructure. This is something! In the past, we would laboriously and physically piece together infrastructure, but now we are able to create it with code. This concept is called infrastructure as code and it is a key enabler for continuous delivery, something important to modern software development that we’ll look at in chapter 7.

1.12 Designing a microservices application

 This isn’t a book about theory, but I do have to touch on some of the software design aspects before we get into the practical stuff. I promise this is just some foundational principles, and there are plenty of other books to help you get a better grounding in this space.

 At the outset, I’d like to say that designing a microservices application isn’t particularly different from designing any software. You can read any good book on software design and apply those same principles and techniques to microservices. There aren’t many hard and fast rules that I follow, but I feel these few are especially important:

 	
 Don’t over design or try and future proof your architecture. Start with a simple design for your application.

 	
 Apply continuous refactoring during development to keep it as simple as it can be.

 	
 Let a good design emerge naturally.

 I feel that the last rule is especially encouraged by microservices. You can’t conclusively preplan a big microservices application. The architecture has to emerge during development and over the lifetime of the application.

 I’m not saying that you shouldn’t do any planning. You definitely should be planning at every stage of development. What I am saying is that you should be planning for your plan to change! You should be able to respond quickly to changing circumstances, and that’s another thing that’s well supported by microservices. Rules aside, let’s briefly discuss three principles that seem particularly relevant to microservices:

 	
 Single responsibility principle

 	
 Loose coupling

 	
 High cohesion

 Generally, we’d like to have each microservice be as small and simple as possible. One individual service should cover only a single conceptual area of the business. That is to say that each service should have a single, well-defined area of responsibility. This is normally known as the single responsibility principle.

 Microservices should be loosely coupled and have high cohesion. Loosely coupled means that the connections between services are minimal and that they don’t share information unless necessary. When we reduce the connections and dependencies between microservices, we make it easier to upgrade individual services without having problems propagate through the application. Loose coupling helps us pull apart and rewire our application into new configurations. This makes our application more flexible and responsive to the changing needs of the business.

 The code contained within a microservice should be highly cohesive. This means that all the code in a microservice belongs together and contributes to solve the problem that is the service’s area of responsibility. If a microservice solves more than one problem or has a larger area of responsibility, then this is an indication that it is not highly cohesive.

 A design paradigm that works well for microservices is called domain driven design (DDD). Using DDD is a great way to understand the domain of a business and to model the business as software. The technique comes from the book, Domain Driven Design, by Eric Evans (2003). I have used it multiple times myself and find that it maps well to designing distributed applications. Specifically, the concept of the bounded context fits well to the boundary of a microservice as illustrated in figure 1.6.

 [image:]

 Figure 1.6 Bounded contexts from domain driven design (DDD) equate to the boundaries of microservices.

 This figure shows how the boundaries of concepts in our video-streaming domain might fit into microservices. Concepts such as User, Like, and Video live within our microservices, and some concepts (like Video) create the relationships between microservices. For example, in figure 1.6, the idea of a video is almost the same (but there can be differences) between the recommendations and the video-storage microservices.

 There is a coding principle that seems like it might be under attack by microservices. Many developers live by the motto don’t repeat yourself (DRY). But in the world of microservices, we are developing a higher tolerance for duplicated code than what was previously considered acceptable.

 The hard process boundaries in a microservices application certainly make it more difficult to share code, and the practice of DDD seems to encourage duplicating concepts, if not replicating code. Also, when microservices are owned by separate teams, we then encounter all the usual barriers to sharing code that already exists between teams.

 Be assured, there are good ways to share code between microservices, and we aren’t simply going to throw out DRY. We’d still like to share code between microservices when it makes sense to do so.

1.13 An example application

 By the end of this book, we’ll have built a simple but complete microservices application. In this section, we’ll develop an idea of what the final product looks like.

 The example product we will build is a video-streaming application. Every good product deserves a name, so after much brainstorming and throwing around various ideas, I’ve landed on the name FlixTube, the future king of the video-streaming world. Gotta start somewhere right?

 Why choose video streaming as the example? Simply because it’s a fun example and is surprisingly easy to create (at least in a simple form). It’s also a well-known use case for microservices, being the approach successfully taken to the extreme by Netflix. (Reports vary, but we know they run 100s if not 1,000s of microservices.)

 We’ll use the FlixTube example application to demonstrate the process of constructing a microservices application. It will only have a small number of microservices, but we will build-in the pathways we need for future scalability, including adding more virtual machines to the cluster, replicating services for scale and redundancy, and extracting services to separate code repositories so these can have separate deployment schedules and be managed by separate teams.

 Our application will have a browser-based front end so our users can view a list of videos. From there they can select a video and it will begin playing. During development, we’ll boot our application using Docker Compose, which we’ll cover in chapters 4 and 5. We’ll build and publish Docker images for our microservices in chapter 3. In chapters 6 and 7, we’ll deploy our application to production. In chapter 8, we’ll swing back to development for some automated testing.

 Our application will contain services for video streaming, storage, and upload, plus a gateway for the customer-facing front end. We’ll work up to deploying the full application in chapter 9, which figure 1.7 illustrates. In chapters 10 and 11, we’ll look at all the ways this architecture can help us scale in the future as our application grows. Are you ready to start building with microservices?

 [image:]

 Figure 1.7 Our example application running in production on Kubernetes.

Summary

 	
 We take a practical rather than a theoretical approach to learning how to build a microservices application.

 	
 Microservices are small and independent processes that each do one thing well.

 	
 A microservices application is composed of numerous small processes working together to create the application’s features.

 	
 A monolith is an application composed of a single massive service.

 	
 Although building a microservices application is more complicated than building a monolith, it’s not as difficult as you might think.

 	
 Applications built from microservices are more flexible, scalable, reliable, and fault-tolerant than monolithic applications.

 	
 The union of the modern tools like Docker, Kubernetes, and Terraform make building a microservices application much easier than previously possible.

 	
 Domain driven design (DDD) is an effective way to design a microservices application.

 	
 Bounded contexts from DDD map well to the boundaries of microservices.

 	
 We previewed the example application that we’ll build in this book.

2 Creating your first microservice

 This chapter covers

 	
Our philosophy of development

 	
Establishing a single-service development environment

 	
Building a microservice for video streaming

 	
Setting up for production and development

 	
Using Node.js to run our microservice

 Our goal for this book is to assemble an application that consists of multiple microservices. But before we can build multiple microservices, we must first learn how to build a single microservice.

 Because we have to start somewhere, in this chapter, we’ll create our first microservice. It’s a simple microservice, doing very little, but it illustrates the process so that you can understand it and repeat it. Indeed, it is the process we’ll use to create multiple microservices through the course of the book.

 This first microservice is a simple HTTP server that delivers streaming video to a user watching in a web browser. This is the first step on our road to building FlixTube, our video-streaming application. Video streaming might sound difficult, but the simple code we examine at this stage should not present much trouble.

 In this book, our microservices are programmed with JavaScript and run on Node.js. It’s important to note, though, that we could use any tech stack for our microservices. Building applications with microservices gives us a lot of freedom in the tech stack we use.

 You don’t have to use JavaScript to build microservices. You can just as easily build your microservices using Python, C#, Ruby, Java, Go, or whatever language is in vogue by the time you read this book. I had to make a choice, however, because this is a practical book, and we need to get down to the nitty-gritty of actual coding. But, keep in mind that you can just as easily use your own favorite programming language to build your microservices.

 We are about to embark on a whirlwind tour of Node.js. Of course, we can’t cover the full details, and as is the theme in this book, we are only going to skim the surface of what’s possible. At the end of the chapter, you’ll find references to other books on Node.js to drill down for a deeper knowledge.

 If you already know Node.js, then you’ll find much of this chapter to be familiar, and you might be tempted to skip it. But skim through it because there are some important notes on setting up your development environment, preparing for production deployment, and getting ready for fast iterative development that we’ll rely on throughout the book.

 Hold onto your hats! This book starts out simple, but in no time at all it turns into a pretty wild ride.

2.1 New tools

 Because this book is all about the tools, in most chapters we’ll start with the new tools you need to install to follow along with the examples in the chapter. Starting with our first microservice, table 2.1 shows the tools we need: Git, Node.js, and Visual Studio (VS) Code. We’ll use Git to get the code. We’ll use Node.js to run and test our first microservice, and we’ll use VS Code to edit our code and work on our Node.js project.

 Throughout the book, I’ll tell you the version numbers for each tool used to develop the examples in this book. This gives you a version number that you can use to follow along with the examples.

 Later versions of these tools should also work because good tools are usually backward compatible, but occasional major increments to versions can break old examples. If that happens, let me know by logging an issue in GitHub (see the next section).

 Table 2.1 Tools introduced in chapter 2

 	
 Tool

 	
 Version

 	
 Purpose

 	
 Git

 	
 2.27.0

 	
 Version control is an essential part of day-to-day development, in this chapter, we use Git to get a copy of the chapter 2 code.

 	
 Node.js

 	
 12.18.1

 	
 We use Node.js to run our microservices.

 	
 Visual Studio (VS) Code

 	
 1.46.1

 	
 We use VS Code for editing our code and other assets.

 Of course, you can use some other integrated development environment (IDE) or text editor for editing your code. I recommend VS Code because you can’t go wrong with it!

2.2 Getting the code

 Numerous working example projects accompany this book. The code for each project is available on GitHub. You can clone or download the code repositories there to follow along with the examples in the book. I strongly recommend that you run these examples as you work through the book. That’s the best way for you to get practical experience and the most out of your learning.

 Following standard conventions, these examples are easy to run and all have a similar setup. Once you understand the fundamentals (which we’ll cover), you’ll find it easy to run the examples. The examples become more complex as we progress, but still, I’ll keep these as accessible as possible, explain how they work, and help you get them up and running.

 To find the Bootstrapping Microservices organization on GitHub, point your web browser to https://github.com/bootstrapping-microservices. Here you will see a collection of code repositories organized by chapter, starting with the chapter-2 repository for this chapter.

 Each chapter has its own code repository, for example, https://github.com/ bootstrapping-microservices/chapter-2. Under each repository, you can find the code organized by the example project that is listed throughout that chapter. If you find any problems with the code, or you are having trouble getting it working, log an issue against the appropriate code repository on GitHub so that I can help you get it working.

2.3 Why Node.js?

 In this book, we use Node.js to build our microservices. Why is that? One of the advantages of building microservices is that we can choose the tech stack that we like. I happen to like Node.js, but I also have other reasons for choosing it.

 Building our microservices with Docker (which we look at in chapter 3) means we can actually compose applications from multiple tech stacks. That might sound like it just makes things more confusing, and it probably does, but it gives us the ability to mix and match technologies. We can use this to ensure we are using the most appropriate stack that each situation demands.

 Note Node.js is well suited to building microservices. It’s network orientated and high performance. We plan to build many services, so let’s be kind to ourselves and choose a platform that makes our work easier.

 Node.js is also popular and well known. That might not sound like much, but it’s important because it means there’s an ecosystem of people, tools, and resources around Node.js. Having a big community to fall back on when you need help is important. That makes it easier to find assistance while learning, and it’s also good to have the support during ongoing software development.

 Node.js is made for microservices. It’s all there in the name. Node implies it’s use for building nodes in distributed network-based applications. (JavaScript moved from the browser 11 years ago and has since established itself as an extremely competent server-side programming language.)

 Node.js is made for creating small, high-performance and lightweight services, and it forgoes the baggage that comes with many other platforms. Building an HTTP server in Node.js is trivial. This makes it easy for us to bootstrap new microservices quickly. That’s a good motivator because we are planning to create many small services. Node.js is also convenient for this book because it means that you don’t need to spend a lot of time learning how to code a basic microservice and, as you’ll soon see, that we can build a microservice with a small amount of code using Node.js.

 Using JavaScript promotes full-stack coding. These days there aren’t many places JavaScript doesn’t go. We can use it in our application’s backend to build microservices. We can use it in our web-based front end (that’s where JavaScript was born of course). Not only that, but we can also use JavaScript for desktop development (Electron), mobile development (Ionic), embedded development (IoT devices), and as I showed in my previous book, Data Wrangling with JavaScript, we can use JavaScript when working with data, a domain normally dominated by Python. Using JavaScript as much as possible means we can go anywhere in our application without triggering a mental context switch.

 The other big thing we get with Node.js is npm, the Node Package Manager, which is a command-line tool used to install Node.js code libraries. This isn’t specifically related to building microservices, but it is extraordinarily useful to have a fantastic package manager and a vast amount of open-source packages at our fingertips. My superpower as a developer is that I have over 350,000 code libraries (when it was reported in 2017) within easy access. Whatever I need to do it is often just a quick npm search away!

 Note Node.js is open source and you can find the code for it on GitHub at https://github.com/nodejs/node.

 What is npm?

 Npm is the Node Package Manager. It is a command-line application that talks to the npm repository online and allows you to manage third-party packages in your Node.js project. Installing a readily available package is a fast way to solve a problem you’d otherwise have to write more code to achieve! You can search for packages on the npm website at https://www.npmjs.com.

2.4 Our philosophy of development

 Before we get into the coding, I want to brief you on my philosophy of development, which we’ll use throughout this book. You will see this manifested time and again, so a quick explanation is in order. I’ll sum up my philosophy of development with the following three points:

 	
 Iterate

 	
 Keep it working

 	
 Move from simple to complex

 Iteration is a key ingredient. I’m talking about personal iterations of coding and not the larger iterations in agile that are commonly known as sprints. We build the code for our application through a series of personal iterations. We’ll add code, iteration by iteration, as shown in figure 2.1. Each iteration gives us feedback. Feedback allows us to discover when we are veering off track and to do immediate course corrections. Fast iteration allows us to align our work closely with our evolving goals.

OEBPS/OEBPS/Images/CH01_F06_Davis4.png
These boxes are Note how a concept in one service
business concepts. // can map to a concept in another.
(/ /
) Recommendations Video storage
Like Streaming
session
| Video Video
User User
i —F T
N o \
Each of these boxes is a bounded ‘When modeling a business, each
context from domain driven design. bounded context or service might
These boundaries map well model a physical department or

to microservices. group within the business.

OEBPS/OEBPS/Images/CH01_F01_Davis4.png
The normal learning
curve

In this book we aim to
cut through the
learning curve.

We'll learn only what
we need to get our
application up and
running.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F02_Davis4.png
Each of the technol
learn s deep, complicated, and————_
difficult to grasp (to varying
degrees).

We'll keep things simple, and
we'l only learn the thin crust of
what's possible.

We will only use what's
necessary to bootstrap our
microservices application from
scratch. That's what makes
this book possible.

Kubemetes

External references will help
you find more information on
each of these topics for when
you need to go deeper.

OEBPS/OEBPS/Images/CH01_F04_Davis4.png
Your microservices Typically, there will ~ We build a Application functionality

application lives be a backend for video-streaming is composed from many
inside a cluster. each front end application in small and independent
(also called an this book. services that collaborate.
AN “API gateway”). |
{ |
Web \ { | Each service has
Cloud vendor | its own database

,allocated within a
shared database
| server.

(| Cluster

Web Video upload
backend

Video storage
Mobile

backend

.............. Kubernetes is used
to orchestrate the

Mobile cluster.
Cluster orchestration -

The entire system
__is hosted on virtual
infrastructure
provided by a
cloud vendor.

The database can
 live outside the
cluster.

l Virtual infrastructure

OEBPS/cover.jpeg
with Docker, Kubq
and Terraform
A project-based quide

Ashley Davis

/'l MANNING

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F03_Davis4.png
Individual services Microservices are Each service may

may be exposed to typically small and do have a database or

the outside world. one thing really well. file storage attached.
2 \

v

. Front-end
> gateway Database
microservice |,

— front-end gateway.

‘ T Itis exposed to the
outside world and is

Each service interacts therefore a gateway

with other services to — * v : Micati

build lication features. —_ into our application.
uild application features. -

Other microservices may or may not be
exposed to the outside world, depending
on the needs of the application.

OEBPS/OEBPS/Images/CH01_F07_Davis4.png
The customer facing,
production version
of our application
ives in a Kubernetes

cluster. \

Browser
front end

Browser

front end

Browser
front end

Our microservices

_ application can be scaled

to support many

customers.
Load balancers
allow us to

~ replicate services

Kubemetes
cluster

Front end
load balancer

for redundancy
and throughput.

Replicating

individual

services allows — Admin front end

fine-grained

control over / \

scalabilty Video streamin V\dsolstcra e We can h:

\ Recommendations| (V|9 2724) | 12 bamn;rH"‘“” upload| di;;’g:g ave

front ends
for different
purposes.

Video storage

OEBPS/OEBPS/Images/CH01_F05_Davis4.png
. Single
The entire deployment
application canbe schedule

broken by a single

=

deployment!
Deployment
s risky!

Granular and
independent
deployment

schedules

Deployment is
more flexible,
more frequent,
and less risky.

N
—
—

Each service is a separate and
independently scalable process.
We now have many options for
scaling our application!

All the components
of our application
are baked into a

Monolith

single process.

Video upload —
Front-end Video storage Database
gateway
Video streaming | [*—
We only have one
thing we can scale!
Microservices
Video upload
Front-end
Pty Video storage
Database|

Video streaming

_ \
Each service is loosely coupled and
fairly disposable.

We can “throw away” a service and start
again without damaging the application

as a whole.

|
Each service typically
has its own database.

