

 [image: cover]

Modern Java in Action: Lambdas, streams, reactive and functional programming

 Raoul-Gabriel Urma, Mario Fusco, Alan Mycroft

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Kevin Harreld
Technical development editor: Dennis Sellinger
Review editor: Aleksandar Dragosavljević
Project manager: Deirdre Hiam
Copy editors: Heidi Ward and Kathy Simpson
Proofreader: Carol Shields
Technical proofreader: Jean-François Morin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617293566

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the previous edition, Java 8 in Action, by Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft.

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Fundamentals

 Chapter 1. Java 8, 9, 10, and 11: what’s happening?

 Chapter 2. Passing code with behavior parameterization

 Chapter 3. Lambda expressions

 2. Functional-style data processing with streams

 Chapter 4. Introducing streams

 Chapter 5. Working with streams

 Chapter 6. Collecting data with streams

 Chapter 7. Parallel data processing and performance

 3. Effective programming with streams and lambdas

 Chapter 8. Collection API enhancements

 Chapter 9. Refactoring, testing, and debugging

 Chapter 10. Domain-specific languages using lambdas

 4. Everyday Java

 Chapter 11. Using Optional as a better alternative to null

 Chapter 12. New Date and Time API

 Chapter 13. Default methods

 Chapter 14. The Java Module System

 5. Enhanced Java concurrency

 Chapter 15. Concepts behind CompletableFuture and reactive programming

 Chapter 16. CompletableFuture: composable asynchronous programming

 Chapter 17. Reactive programming

 6. Functional programming and future Java evolution

 Chapter 18. Thinking functionally

 Chapter 19. Functional programming techniques

 Chapter 20. Blending OOP and FP: Comparing Java and Scala

 Chapter 21. Conclusions and where next for Java

 A. Miscellaneous language updates

 B. Miscellaneous library updates

 C. Performing multiple operations in parallel on a stream

 D. Lambdas and JVM bytecode

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the previous edition, Java 8 in Action, by Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft.

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Fundamentals

 Chapter 1. Java 8, 9, 10, and 11: what’s happening?

 1.1. So, what’s the big story?

 1.2. Why is Java still changing?

 1.2.1. Java’s place in the programming language ecosystem

 1.2.2. Stream processing

 1.2.3. Passing code to methods with behavior parameterization

 1.2.4. Parallelism and shared mutable data

 1.2.5. Java needs to evolve

 1.3. Functions in Java

 1.3.1. Methods and lambdas as first-class citizens

 1.3.2. Passing code: an example

 1.3.3. From passing methods to lambdas

 1.4. Streams

 1.4.1. Multithreading is difficult

 1.5. Default methods and Java modules

 1.6. Other good ideas from functional programming

 Summary

 Chapter 2. Passing code with behavior parameterization

 2.1. Coping with changing requirements

 2.1.1. First attempt: filtering green apples

 2.1.2. Second attempt: parameterizing the color

 2.1.3. Third attempt: filtering with every attribute you can think of

 2.2. Behavior parameterization

 2.2.1. Fourth attempt: filtering by abstract criteria

 2.3. Tackling verbosity

 2.3.1. Anonymous classes

 2.3.2. Fifth attempt: using an anonymous class

 2.3.3. Sixth attempt: using a lambda expression

 2.3.4. Seventh attempt: abstracting over List type

 2.4. Real-world examples

 2.4.1. Sorting with a Comparator

 2.4.2. Executing a block of code with Runnable

 2.4.3. Returning a result using Callable

 2.4.4. GUI event handling

 Summary

 Chapter 3. Lambda expressions

 3.1. Lambdas in a nutshell

 3.2. Where and how to use lambdas

 3.2.1. Functional interface

 3.2.2. Function descriptor

 3.3. Putting lambdas into practice: the execute-around pattern

 3.3.1. Step 1: Remember behavior parameterization

 3.3.2. Step 2: Use a functional interface to pass behaviors

 3.3.3. Step 3: Execute a behavior!

 3.3.4. Step 4: Pass lambdas

 3.4. Using functional interfaces

 3.4.1. Predicate

 3.4.2. Consumer

 3.4.3. Function

 3.5. Type checking, type inference, and restrictions

 3.5.1. Type checking

 3.5.2. Same lambda, different functional interfaces

 3.5.3. Type inference

 3.5.4. Using local variables

 3.6. Method references

 3.6.1. In a nutshell

 3.6.2. Constructor references

 3.7. Putting lambdas and method references into practice

 3.7.1. Step 1: Pass code

 3.7.2. Step 2: Use an anonymous class

 3.7.3. Step 3: Use lambda expressions

 3.7.4. Step 4: Use method references

 3.8. Useful methods to compose lambda expressions

 3.8.1. Composing Comparators

 3.8.2. Composing Predicates

 3.8.3. Composing Functions

 3.9. Similar ideas from mathematics

 3.9.1. Integration

 3.9.2. Connecting to Java 8 lambdas

 Summary

 2. Functional-style data processing with streams

 Chapter 4. Introducing streams

 4.1. What are streams?

 4.2. Getting started with streams

 4.3. Streams vs. collections

 4.3.1. Traversable only once

 4.3.2. External vs. internal iteration

 4.4. Stream operations

 4.4.1. Intermediate operations

 4.4.2. Terminal operations

 4.4.3. Working with streams

 4.5. Road map

 Summary

 Chapter 5. Working with streams

 5.1. Filtering

 5.1.1. Filtering with a predicate

 5.1.2. Filtering unique elements

 5.2. Slicing a stream

 5.2.1. Slicing using a predicate

 5.2.2. Truncating a stream

 5.2.3. Skipping elements

 5.3. Mapping

 5.3.1. Applying a function to each element of a stream

 5.3.2. Flattening streams

 5.4. Finding and matching

 5.4.1. Checking to see if a predicate matches at least one element

 5.4.2. Checking to see if a predicate matches all elements

 5.4.3. Finding an element

 5.4.4. Finding the first element

 5.5. Reducing

 5.5.1. Summing the elements

 5.5.2. Maximum and minimum

 5.6. Putting it all into practice

 5.6.1. The domain: Traders and Transactions

 5.6.2. Solutions

 5.7. Numeric streams

 5.7.1. Primitive stream specializations

 5.7.2. Numeric ranges

 5.7.3. Putting numerical streams into practice: Pythagorean triples

 5.8. Building streams

 5.8.1. Streams from values

 5.8.2. Stream from nullable

 5.8.3. Streams from arrays

 5.8.4. Streams from files

 5.8.5. Streams from functions: creating infinite streams!

 5.9. Overview

 Summary

 Chapter 6. Collecting data with streams

 6.1. Collectors in a nutshell

 6.1.1. Collectors as advanced reductions

 6.1.2. Predefined collectors

 6.2. Reducing and summarizing

 6.2.1. Finding maximum and minimum in a stream of values

 6.2.2. Summarization

 6.2.3. Joining Strings

 6.2.4. Generalized summarization with reduction

 6.3. Grouping

 6.3.1. Manipulating grouped elements

 6.3.2. Multilevel grouping

 6.3.3. Collecting data in subgroups

 6.4. Partitioning

 6.4.1. Advantages of partitioning

 6.4.2. Partitioning numbers into prime and nonprime

 6.5. The Collector interface

 6.5.1. Making sense of the methods declared by Collector interface

 6.5.2. Putting them all together

 6.6. Developing your own collector for better performance

 6.6.1. Divide only by prime numbers

 6.6.2. Comparing collectors’ performances

 Summary

 Chapter 7. Parallel data processing and performance

 7.1. Parallel streams

 7.1.1. Turning a sequential stream into a parallel one

 7.1.2. Measuring stream performance

 7.1.3. Using parallel streams correctly

 7.1.4. Using parallel streams effectively

 7.2. The fork/join framework

 7.2.1. Working with RecursiveTask

 7.2.2. Best practices for using the fork/join framework

 7.2.3. Work stealing

 7.3. Spliterator

 7.3.1. The splitting process

 7.3.2. Implementing your own Spliterator

 Summary

 3. Effective programming with streams and lambdas

 Chapter 8. Collection API enhancements

 8.1. Collection factories

 8.1.1. List factory

 8.1.2. Set factory

 8.1.3. Map factories

 8.2. Working with List and Set

 8.2.1. removeIf

 8.2.2. replaceAll

 8.3. Working with Map

 8.3.1. forEach

 8.3.2. Sorting

 8.3.3. getOrDefault

 8.3.4. Compute patterns

 8.3.5. Remove patterns

 8.3.6. Replacement patterns

 8.3.7. Merge

 8.4. Improved ConcurrentHashMap

 8.4.1. Reduce and Search

 8.4.2. Counting

 8.4.3. Set views

 Summary

 Chapter 9. Refactoring, testing, and debugging

 9.1. Refactoring for improved readability and flexibility

 9.1.1. Improving code readability

 9.1.2. From anonymous classes to lambda expressions

 9.1.3. From lambda expressions to method references

 9.1.4. From imperative data processing to Streams

 9.1.5. Improving code flexibility

 9.2. Refactoring object-oriented design patterns with lambdas

 9.2.1. Strategy

 9.2.2. Template method

 9.2.3. Observer

 9.2.4. Chain of responsibility

 9.2.5. Factory

 9.3. Testing lambdas

 9.3.1. Testing the behavior of a visible lambda

 9.3.2. Focusing on the behavior of the method using a lambda

 9.3.3. Pulling complex lambdas into separate methods

 9.3.4. Testing high-order functions

 9.4. Debugging

 9.4.1. Examining the stack trace

 9.4.2. Logging information

 Summary

 Chapter 10. Domain-specific languages using lambdas

 10.1. A specific language for your domain

 10.1.1. Pros and cons of DSLs

 10.1.2. Different DSL solutions available on the JVM

 10.2. Small DSLs in modern Java APIs

 10.2.1. The Stream API seen as a DSL to manipulate collections

 10.2.2. Collectors as a DSL to aggregate data

 10.3. Patterns and techniques to create DSLs in Java

 10.3.1. Method chaining

 10.3.2. Using nested functions

 10.3.3. Function sequencing with lambda expressions

 10.3.4. Putting it all together

 10.3.5. Using method references in a DSL

 10.4. Real World Java 8 DSL

 10.4.1. jOOQ

 10.4.2. Cucumber

 10.4.3. Spring Integration

 Summary

 4. Everyday Java

 Chapter 11. Using Optional as a better alternative to null

 11.1. How do you model the absence of a value?

 11.1.1. Reducing NullPointerExceptions with defensive checking

 11.1.2. Problems with null

 11.1.3. What are the alternatives to null in other languages?

 11.2. Introducing the Optional class

 11.3. Patterns for adopting Optionals

 11.3.1. Creating Optional objects

 11.3.2. Extracting and transforming values from Optionals with map

 11.3.3. Chaining Optional objects with flatMap

 11.3.4. Manipulating a stream of optionals

 11.3.5. Default actions and unwrapping an Optional

 11.3.6. Combining two Optionals

 11.3.7. Rejecting certain values with filter

 11.4. Practical examples of using Optional

 11.4.1. Wrapping a potentially null value in an Optional

 11.4.2. Exceptions vs. Optional

 11.4.3. Primitive optionals and why you shouldn’t use them

 11.4.4. Putting it all together

 Summary

 Chapter 12. New Date and Time API

 12.1. LocalDate, LocalTime, LocalDateTime, Instant, Duration, and Period

 12.1.1. Working with LocalDate and LocalTime

 12.1.2. Combining a date and a time

 12.1.3. Instant: a date and time for machines

 12.1.4. Defining a Duration or a Period

 12.2. Manipulating, parsing, and formatting dates

 12.2.1. Working with TemporalAdjusters

 12.2.2. Printing and parsing date-time objects

 12.3. Working with different time zones and calendars

 12.3.1. Using time zones

 12.3.2. Fixed offset from UTC/Greenwich

 12.3.3. Using alternative calendar systems

 Summary

 Chapter 13. Default methods

 13.1. Evolving APIs

 13.1.1. API version 1

 13.1.2. API version 2

 13.2. Default methods in a nutshell

 13.3. Usage patterns for default methods

 13.3.1. Optional methods

 13.3.2. Multiple inheritance of behavior

 13.4. Resolution rules

 13.4.1. Three resolution rules to know

 13.4.2. Most specific default-providing interface wins

 13.4.3. Conflicts and explicit disambiguation

 13.4.4. Diamond problem

 Summary

 Chapter 14. The Java Module System

 14.1. The driving force: reasoning about software

 14.1.1. Separation of concerns

 14.1.2. Information hiding

 14.1.3. Java software

 14.2. Why the Java Module System was designed

 14.2.1. Modularity limitations

 14.2.2. Monolithic JDK

 14.2.3. Comparison with OSGi

 14.3. Java modules: the big picture

 14.4. Developing an application with the Java Module System

 14.4.1. Setting up an application

 14.4.2. Fine-grained and coarse-grained modularization

 14.4.3. Java Module System basics

 14.5. Working with several modules

 14.5.1. The exports clause

 14.5.2. The requires clause

 14.5.3. Naming

 14.6. Compiling and packaging

 14.7. Automatic modules

 14.8. Module declaration and clauses

 14.8.1. requires

 14.8.2. exports

 14.8.3. requires transitive

 14.8.4. exports to

 14.8.5. open and opens

 14.8.6. uses and provides

 14.9. A bigger example and where to learn more

 Summary

 5. Enhanced Java concurrency

 Chapter 15. Concepts behind CompletableFuture and reactive programming

 15.1. Evolving Java support for expressing concurrency

 15.1.1. Threads and higher-level abstractions

 15.1.2. Executors and thread pools

 15.1.3. Other abstractions of threads: non-nested with method calls

 15.1.4. What do you want from threads?

 15.2. Synchronous and asynchronous APIs

 15.2.1. Future-style API

 15.2.2. Reactive-style API

 15.2.3. Sleeping (and other blocking operations) considered harmful

 15.2.4. Reality check

 15.2.5. How do exceptions work with asynchronous APIs?

 15.3. The box-and-channel model

 15.4. CompletableFuture and combinators for concurrency

 15.5. Publish-subscribe and reactive programming

 15.5.1. Example use for summing two flows

 15.5.2. Backpressure

 15.5.3. A simple form of real backpressure

 15.6. Reactive systems vs. reactive programming

 15.7. Road map

 Summary

 Chapter 16. CompletableFuture: composable asynchronous programming

 16.1. Simple use of Futures

 16.1.1. Understanding Futures and their limitations

 16.1.2. Using CompletableFutures to build an asynchronous application

 16.2. Implementing an asynchronous API

 16.2.1. Converting a synchronous method into an asynchronous one

 16.2.2. Dealing with errors

 16.3. Making your code nonblocking

 16.3.1. Parallelizing requests using a parallel Stream

 16.3.2. Making asynchronous requests with CompletableFutures

 16.3.3. Looking for the solution that scales better

 16.3.4. Using a custom Executor

 16.4. Pipelining asynchronous tasks

 16.4.1. Implementing a discount service

 16.4.2. Using the Discount service

 16.4.3. Composing synchronous and asynchronous operations

 16.4.4. Combining two CompletableFutures: dependent and independent

 16.4.5. Reflecting on Future vs. CompletableFuture

 16.4.6. Using timeouts effectively

 16.5. Reacting to a CompletableFuture completion

 16.5.1. Refactoring the best-price-finder application

 16.5.2. Putting it all together

 16.6. Road map

 Summary

 Chapter 17. Reactive programming

 17.1. The Reactive Manifesto

 17.1.1. Reactive at application level

 17.1.2. Reactive at system level

 17.2. Reactive streams and the Flow API

 17.2.1. Introducing the Flow class

 17.2.2. Creating your first reactive application

 17.2.3. Transforming data with a Processor

 17.2.4. Why doesn’t Java provide an implementation of the Flow API?

 17.3. Using the reactive library RxJava

 17.3.1. Creating and using an Observable

 17.3.2. Transforming and combining Observables

 Summary

 6. Functional programming and future Java evolution

 Chapter 18. Thinking functionally

 18.1. Implementing and maintaining systems

 18.1.1. Shared mutable data

 18.1.2. Declarative programming

 18.1.3. Why functional programming?

 18.2. What’s functional programming?

 18.2.1. Functional-style Java

 18.2.2. Referential transparency

 18.2.3. Object-oriented vs. functional-style programming

 18.2.4. Functional style in practice

 18.3. Recursion vs. iteration

 Summary

 Chapter 19. Functional programming techniques

 19.1. Functions everywhere

 19.1.1. Higher-order functions

 19.1.2. Currying

 19.2. Persistent data structures

 19.2.1. Destructive updates vs. functional

 19.2.2. Another example with Trees

 19.2.3. Using a functional approach

 19.3. Lazy evaluation with streams

 19.3.1. Self-defining stream

 19.3.2. Your own lazy list

 19.4. Pattern matching

 19.4.1. Visitor design pattern

 19.4.2. Pattern matching to the rescue

 19.5. Miscellany

 19.5.1. Caching or memoization

 19.5.2. What does “Return the same object” mean?

 19.5.3. Combinators

 Summary

 Chapter 20. Blending OOP and FP: Comparing Java and Scala

 20.1. Introduction to Scala

 20.1.1. Hello beer

 20.1.2. Basic data structures: List, Set, Map, Tuple, Stream, Option

 20.2. Functions

 20.2.1. First-class functions in Scala

 20.2.2. Anonymous functions and closures

 20.2.3. Currying

 20.3. Classes and traits

 20.3.1. Less verbosity with Scala classes

 20.3.2. Scala traits vs. Java interfaces

 Summary

 Chapter 21. Conclusions and where next for Java

 21.1. Review of Java 8 features

 21.1.1. Behavior parameterization (lambdas and method references)

 21.1.2. Streams

 21.1.3. CompletableFuture

 21.1.4. Optional

 21.1.5. Flow API

 21.1.6. Default methods

 21.2. The Java 9 module system

 21.3. Java 10 local variable type inference

 21.4. What’s ahead for Java?

 21.4.1. Declaration-site variance

 21.4.2. Pattern matching

 21.4.3. Richer forms of generics

 21.4.4. Deeper support for immutability

 21.4.5. Value types

 21.5. Moving Java forward faster

 21.6. The final word

 A. Miscellaneous language updates

 A.1. Annotations

 A.1.1. Repeated annotations

 A.1.2. Type annotations

 A.2. Generalized target-type inference

 B. Miscellaneous library updates

 B.1. Collections

 B.1.1. Additional methods

 B.1.2. The Collections class

 B.1.3. Comparator

 B.2. Concurrency

 B.2.1. Atomic

 B.2.2. ConcurrentHashMap

 B.3. Arrays

 B.3.1. Using parallelSort

 B.3.2. Using setAll and parallelSetAll

 B.3.3. Using parallelPrefix

 B.4. Number and Math

 B.4.1. Number

 B.4.2. Math

 B.5. Files

 B.6. Reflection

 B.7. String

 C. Performing multiple operations in parallel on a stream

 C.1. Forking a stream

 C.1.1. Implementing the Results interface with the ForkingStreamConsumer

 C.1.2. Developing the ForkingStreamConsumer and the BlockingQueueSpliterator

 C.1.3. Putting the StreamForker to work

 C.2. Performance considerations

 D. Lambdas and JVM bytecode

 D.1. Anonymous classes

 D.2. Bytecode generation

 D.3. Invokedynamic to the rescue

 D.4. Code-generation strategies

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the previous edition, Java 8 in Action, by Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft.

 A great and concise guide to what’s new in Java 8, with plenty of examples to get you going in a hurry.

 Jason Lee, Oracle

 The best guide to Java 8 that will ever be written!

 William Wheeler, ProData Computer Systems

 The new Streams API and lambda examples are especially useful.

 Steve Rogers, CGTek, Inc.

 A must-have to get functional with Java 8.

 Mayur S. Patil, MIT Academy of Engineering

 Helpful as a concise, practice-oriented guide to the exciting new features of Java 8. Functional interfaces and spliterators,
 oh my!

 Will Hayworth, Developer, Atlassian

Preface

 Back in 1998 when I was eight years old, I picked up my first book on computing—on JavaScript and HTML. Little did I know
 that opening that book would transform my life by exposing me to programming languages and the amazing things I could do with
 them. I was hooked. Every so often, I still find a new programming language feature that revives this excitement because it
 enables me to write clearer, more concise code in half the time. I hope that the new ideas in Java 8, Java 9, and Java 10,
 incorporated from functional programming and explored in this book, inspire you in the same way.

 So, you may wonder, how did this book—and its second edition—come about?

 Well, back in 2011, Brian Goetz (the Java Language Architect at Oracle) was sharing various proposals to add lambda expressions
 to Java, with the aim of getting the community involved. These rekindled my excitement, and I started to evangelize the ideas,
 organizing Java 8 workshops at various developer conferences and giving lectures to students at the University of Cambridge.

 By April 2013, word had spread, and our publisher at Manning emailed asking whether I was interested in writing a book about
 lambdas in Java 8. At the time I was a “humble” second-year PhD candidate, and that seemed to be a bad idea because it would
 interfere with my thesis submission schedule. On the other hand, carpe diem. I thought writing a short book shouldn’t be too much work, right? (It was only later that I realized I was utterly wrong!)
 So, I sought advice from my PhD supervisor, Professor Alan Mycroft, who, it turned out, was ready to support me in this adventure
 (even offering to help in such non-PhD work—I’m forever in his debt). A few days later, we met fellow Java 8 evangelist Mario
 Fusco, who had vast professional experience and had become well known at major developer conferences for his talks on functional
 programming.

 We quickly realized that by combining our energy and diverse backgrounds we could deliver, not just a short book on Java 8
 lambdas, but instead a book that, we hope, the Java community will still be reading in five or ten years. We had a unique
 opportunity to discuss many topics in depth that will benefit Java programmers and open doors to a new universe of ideas:
 functional programming.

 Now, it’s 2018, and we find that the first edition amazingly sold 20,000 copies, Java 9 has just been released, Java 10 is
 about to be released, and time has dulled the memory of many long nights of editing. So, here it is—the second edition Modern Java in Action, covering Java 8, Java 9, and Java 10. We hope you will enjoy it!

 RAOUL-GABRIEL URMA
CAMBRIDGE SPARK

Acknowledgments

 This book would not have been possible without the support of many amazing people:

 	Personal friends and people who provided valuable reviews and suggestions on a volunteer basis: Richard Walker, Jan Saganowski,
 Brian Goetz, Stuart Marks, Cem Redif, Paul Sandoz, Stephen Colebourne, Íñigo Mediavilla, Allahbaksh Asadullah, Tomasz Nurkiewicz,
 and Michael Müller

 	Our Manning Early Access Program (MEAP) readers who posted comments in the Author Online forum

 	The reviewers from the development process who provided helpful feedback: Antonio Magnaghi, Brent Stains, Franziska Meyer,
 Furkan Kamachi, Jason Lee, Jörn Dinkla, Lochana Menikarachchi, Mayur Patil, Nikolaos Kaintantzis, Simone Bordet, Steve Rogers,
 Will Hayworth, and William Wheeler

 	Kevin Harreld, our development editor at Manning, who was very patient in answering all our questions and concerns, provided
 detailed feedback for each of our draft chapters, and supported us in all possible ways

 	Dennis Selinger and Jean-François Morin, who provided a thorough technical proofread of the manuscript shortly before it went
 to production; and Al Scherer, who provided technical expertise during development

Raoul-Gabriel Urma

 First and foremost, I’d like to thank my parents for their endless love and support in my life. This little dream of writing
 a book has now come true! Next, I would like to express my eternal gratitude to Alan Mycroft, my PhD supervisor and coauthor,
 for his trust and support. I’d also like to thank my coauthor Mario Fusco for sharing this fun journey. Finally, I’d like
 to thank friends who have provided mentorship, useful advice, and encouragement in my life: Sophia Drossopoulou, Aidan Roche,
 Alex Buckley, Haadi Jabado, and Jaspar Robertson. You guys rock!

Mario Fusco

 I’d like to especially thank my wife, Marilena, whose boundless patience allowed me to stay focused on the book, and our daughter,
 Sofia, because the infinite chaos she can produce allowed me to get creatively distracted from the book. As you’ll discover
 reading the book, Sofia also taught us, like only a two-year-old baby girl can, the difference between internal and external
 iteration. I’d like to also thank Raoul-Gabriel Urma and Alan Mycroft, with whom I shared the (big) joys and the (small) pains
 of this writing experience.

Alan Mycroft

 I’d like to thank my wife, Hilary, and the rest of my family for enduring the many hours that “just a bit more work to do
 on the book” consumed. I also thank my colleagues and students over the years for teaching me how to teach, Mario and Raoul
 for being such efficient coauthors, and particularly Raoul for his skill at being so pleasantly demanding when requiring “the
 next bit of text by Friday.”

About this book

 Put simply, the new features in Java 8 along with the (less-obvious) changes in Java 9 are the biggest change to Java in the
 21 years since Java 1.0 was released. Nothing has been taken away, so all your existing Java code continues to work—but the
 new features provide powerful new idioms and design patterns to help you write clearer, more concise code. At first you might
 think (as with all new features), “Why are they changing my language again?” But then, after a bit of practice, comes the
 revelation that you’ve just used the features to write shorter, clearer code in half the time you expected—and you realize
 you could never go back to “old Java” again.

 The second edition of this book, Modern Java in Action: Lambdas, Streams, Functional and Reactive Programming, is written to get you over that initial hump of “sounds good in principle, but it’s all a bit new and unfamiliar” and into
 coding like a native.

 “Perhaps,” you might think, “but lambdas, functional programming—aren’t those the sort of things that bearded sandal-wearing
 academics talk about in their ivory towers?” They might be, but Java 8 has incorporated just the right balance of ideas into
 Java to gain many of their advantages in a way that’s comprehensible to ordinary Java programmers. And this book tells the
 story from the ordinary-programmer viewpoint, with an occasional “how this arose” for perspective.

 “Lambdas—that sounds Greek to me!” Yes, it does, but it’s a great idea for enabling you to write concise Java programs. Many
 of you are familiar with event handlers and callbacks, where you register an object containing a method to be used when some
 event happens. Lambdas make this sort of idea much more widely usable in Java. Put simply, lambdas and their friends, method
 references, provide the ability to concisely pass code or methods as arguments to be executed in the middle of doing something
 else. You’ll see in this book how this idea occurs more frequently than you might think: from simply parameterizing a sort
 method with code to do the comparison to expressing complex queries on collections of data using the new Streams API.

 “Streams—what are they?” They’re a great new Java 8 addition. They behave like collections but have several advantages that
 enable new styles of programming. First, if you’ve ever programmed using a database-query language such as SQL, you’ll recognize
 that it enables queries to be written in a few lines that would take many lines in Java. Java 8 streams support this concise
 database-queries style of programming—but with Java syntax and none of the need to know about databases! Second, streams are
 designed so that not all their data needs to be in memory (or even computed) at once. Thus, you can process streams that are
 too big to fit in your computer memory. But Java 8 can optimize operations on streams in a way that Java can’t do for collections—for
 example, it can group together several operations on the same stream so that the data is traversed only once instead of expensively
 traversing it multiple times. Even better, Java can automatically parallelize stream operations for you (unlike collections).

 “And functional-style programming, what’s that?” It’s another style of programming, just like object-oriented programming,
 but centered on using functions as values, just as we mentioned previously when discussing lambdas.

 What’s great about Java 8 is that it incorporates many of the best ideas from functional programming into the familiar Java
 syntax. The fine design choices enable you to see functional-style programming in Java 8 as an additional set of design patterns
 and idioms to enable you to write clearer, more concise code in less time. Think of it as having a wider range of weapons
 in your programming armory.

 Oh yes, in addition to these features that lean on big conceptual additions to Java, we also explain the many other useful
 Java 8 features and updates such as default methods, the new Optional class, CompletableFuture, and the new Date and Time API.

 And there are the Java 9 additions: a new module system, support for reactive programming via the Flow API, and various other
 enhancements.

 But hey, this is an overview, and it’s time now for us to leave you to read the book.

How this book is organized: a roadmap

 Modern Java in Action is divided into six parts: “Fundamentals,” “Functional-style data processing with streams,” “Effective programming with streams
 and lambdas,” “Everyday Java,” “Enhanced Java concurrency,” and “Functional programming and future Java evolution.” While
 we strongly recommend that you read the chapters in the first two parts first (and in order because many of the concepts presented
 build on previous chapters), the remaining four parts can be read reasonably independently. Most chapters include several
 quizzes to help you work through the material.

 The first part of the book provides the fundamentals to help you get started with the new Java ideas introduced in Java 8.
 By the end of this first part, you’ll have a full understanding of what lambda expressions are, and you’ll be able to write
 code that’s both concise and flexible enough to easily adapt to changing requirements.

 	In chapter 1, we summarize the main changes to Java (lambda expressions, method references, streams, and default methods) and set the
 scene for the book.

 	In chapter 2, you’ll learn about behavior parameterization, a software-development- pattern that Java 8 relies heavily on and is the motivation
 for lambda expressions.

 	
Chapter 3 gives a full explanation, with code examples and quizzes at every step, of the concepts of lambda expressions and method
 references.

 The second part of this book is a deep exploration of the new Streams API, which lets you write powerful code that processes
 a collection of data in a declarative way. By the end of this second part, you’ll have a full understanding of what streams
 are and how you can use them in your codebase to process a collection of data concisely and efficiently.

 	
Chapter 4 introduces the concept of a stream and explains how it compares with a collection.

 	
Chapter 5 investigates in detail the stream operations available to express sophisticated data-processing queries. You’ll look at many
 patterns such as filtering, slicing, finding, matching, mapping, and reducing.

 	
Chapter 6 covers collectors—a feature of the Streams API that lets you express even more complex data-processing queries.

 	In chapter 7, you’ll learn about how streams can automatically run in parallel and leverage your multicore architectures. In addition,
 you’ll learn about various pitfalls to avoid when using parallel streams correctly and effectively.

 The third part of this book explores various Java 8 and Java 9 topics that will make you more effective at using Java and
 will enhance your codebase with modern idioms. Because it is oriented toward more-advanced programming ideas we have arranged,
 nothing later in the book depends on the techniques described here.

 	
Chapter 8 is a new chapter for the second edition and explores the Collection API Enhancements of Java 8 and Java 9. It covers using
 collection factories and learning new idiomatic patterns to work with List and Set collections along with idiomatic patterns
 involving Map.

 	
Chapter 9 explores how you can improve your existing code using new Java 8 features and a few recipes. In addition, it explores vital
 software-development techniques such as design patterns, refactoring, testing, and debugging.

 	
Chapter 10 is also new for the second edition. It explores the idea of basing an API on a domain-specific language (DSL). This is not
 only a powerful way of designing APIs but one which is both becoming increasingly popular and is already appearing in the
 Java classes such as Comparators, Stream, and Collectors.

 The fourth part of this book explores various new features in Java 8 and Java 9 centered around making it easier and more
 reliable to code your projects. We start with two APIs introduced in Java 8.

 	
Chapter 11 covers the java.util.Optional class, which allows you to both design better APIs and reduce null pointer exceptions.

 	
Chapter 12 explores the Date and Time API, which greatly improves the previous error-prone APIs for working with dates and time.

 	In chapter 13, you’ll learn what default methods are, how you can use them to evolve APIs in a compatible way, some practical usage patterns,
 and rules for using default methods effectively.

 	
Chapter 14 is new for this second edition and explores the Java Module System—a major enhancement in Java 9 that enables huge systems
 to be modularized in a documented and enforceable way, rather than being “just a haphazard collection of packages.”

 The fifth part of this book explores the more advanced ways of structuring concurrent programs in Java—beyond the ideas of
 easy-to-use parallel processing for streams introduced in chapters 6 and 7. Chapter 15 is new to this second edition and covers the “big-picture” idea of asynchronous APIs—including the ideas of Futures and the
 Publish-Subscribe protocol behind Reactive Programming and encapsulated in the Java 9 Flow API.

 	
Chapter 16 explores CompletableFuture, which lets you express complex asynchronous computations in a declarative way—paralleling the design of the Streams API.

 	
Chapter 17 is again new to this second edition and explores the Java 9 Flow API in detail, focusing on practical reactive programming
 code.

 In the sixth and final part of this book, we draw back a little with a tutorial introduction to writing effective functional-style
 programs in Java, along with a comparison of Java 8 features with those of Scala.

 	
Chapter 18 gives a full tutorial on functional programming, introduces some of its terminology, and explains how to write functional-style
 programs in Java.

 	
Chapter 19 covers more advanced functional programming techniques including higher-order functions, currying persistent data structures,
 lazy lists, and pattern matching. You can view this chapter as a mix of practical techniques to apply in your codebase as
 well as academic information that will make you a more knowledgeable programmer.

 	
Chapter 20 follows by discussing how Java 8 features compare to features in the Scala language—a language that, like Java, is implemented
 on top of the JVM and that has evolved quickly to threaten some aspects of Java’s niche in the programming language ecosystem.

 	In chapter 21, we review the journey of learning about Java 8 and the gentle push toward functional-style programming. In addition, we
 speculate on what future enhancements and great new features may be in Java’s pipeline beyond Java 8, Java 9, and the small
 additions in Java 10.

 Finally, there are four appendixes, which cover a number of other topics related to Java 8. Appendix A summarizes minor Java 8 language features that we didn’t discuss in the book. Appendix B gives an overview of other main additions to the Java library that you may find useful. Appendix C is a continuation of part 2 and looks at advanced uses of streams. Appendix D explores how the Java compiler implements lambda expressions behind the scenes.

About the code

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code for all the working examples in the book and instructions to run them are available on a GitHub repository and
 as a download via the book’s website. Both links to the source code may be found at www.manning.com/books/modern-java-in-action.

Book forum

 Purchase of Modern Java in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/modern-java-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the authors

 [image:]

 RAOUL-GABRIEL URMA is CEO and co-founder of Cambridge Spark, a leading learning community for data scientists and developers in the UK. Raoul
 was nominated a Java Champion in 2017. He has worked for Google, eBay, Oracle, and Goldman Sachs. Raoul completed a PhD in
 Computer Science at the University of Cambridge. In addition, he holds a MEng in Computer Science from Imperial College London
 and graduated with first-class honors, having won several prizes for technical innovation. Raoul has delivered over 100 technical
 talks at international conferences.

 [image:]

 MARIO FUSCO is a senior software engineer at Red Hat working on the core development of Drools, the JBoss rule engine. He has vast experience
 as a Java developer, having been involved in (and often leading) many enterprise-level projects in several industries ranging
 from media companies to the financial sector. Among his interests are functional programming and domain-specific languages.
 By leveraging these two passions, he created the open source library lambdaj with the goal of providing an internal Java DSL
 for manipulating collections and allowing a bit of functional programming in Java.

 [image:]

 ALAN MYCROFT is professor of computing in the Computer Laboratory of Cambridge University, where he has been a faculty member since 1984.
 He’s also a fellow at Robinson College, a co-founder of the European Association for Programming Languages and Systems, and
 a co-founder and trustee of the Raspberry Pi Foundation. He has degrees in Mathematics (Cambridge) and Computer Science (Edinburgh).
 He’s the author of about 100 research papers and has supervised more than 20 PhD theses. His research centers on programming
 languages and their semantics, optimization, and implementation. He maintains strong industrial links, having worked at AT&T
 Laboratories and Intel Research during academic leave, as well as spinning out Codemist Ltd., which built the original ARM
 C compiler under the Norcroft name.

About the cover illustration

 The figure on the cover of Java in Action is captioned “Habit of a Mandarin of War in Chinese Tartary in 1700.” The Mandarin’s habit is ornately decorated, and he
 is carrying a sword and a bow and quiver on his back. If you look carefully at his belt, you will find a lambda buckle (added
 by our designer as a wink at one of the topics of this book). The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened
 with gum Arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who
 was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
 dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century, and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 centuries ago. Dress codes have changed, and the diversity by region and country, so rich at one time, has faded away. It
 is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
 traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical
 life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of national costumes three centuries ago, brought back to life
 by Jefferys’ pictures.

Part 1. Fundamentals

 This first part of the book provides the fundamentals to help you get started with the new Java ideas introduced in Java 8.
 By the end of this first part, you’ll have a full understanding of what lambda expressions are, and you’ll be able to write
 code that’s both concise and flexible enough to easily adapt to changing requirements.

 In chapter 1, we summarize the main changes to Java (lambda expressions, method references, streams, and default methods) and set the
 scene for the book.

 In chapter 2, you’ll learn about behavior parameterization, a software development pattern that Java 8 relies heavily on and is the motivation
 for lambda expressions.

 Chapter 3 gives a full explanation, with code examples and quizzes at every step, of the concepts of lambda expressions and method
 references.

Chapter 1. Java 8, 9, 10, and 11: what’s happening?

 This chapter covers

 	Why Java keeps changing

 	Changing computing background

 	Pressures for Java to evolve

 	Introducing new core features of Java 8 and 9

 Since the release of Java Development Kit (JDK 1.0) in 1996, Java has won a large following of students, project managers,
 and programmers who are active users. It’s an expressive language and continues to be used for projects both large and small.
 Its evolution (via the addition of new features) from Java 1.1 (1997) to Java 7 (2011) has been well managed. Java 8 was released
 in March 2014, Java 9 in September 2017, Java 10 in March 2018, and Java 11 planned for September 2018. The question is this:
 Why should you care about these changes?

1.1. So, what’s the big story?

 We argue that the changes to Java 8 were in many ways more profound than any other changes to Java in its history (Java 9
 adds important, but less-profound, productivity changes, as you’ll see later in this chapter, while Java 10 makes much smaller
 adjustments to type inference). The good news is that the changes enable you to write programs more easily. For example, instead
 of writing verbose code (to sort a list of apples in inventory based on their weight) like

 Collections.sort(inventory, new Comparator<Apple>() {
 public int compare(Apple a1, Apple a2){
 return a1.getWeight().compareTo(a2.getWeight());
 }
});

 in Java 8 you can write more concise code that reads a lot closer to the problem statement, like the following:

 inventory.sort(comparing(Apple::getWeight)); 1

 	1 The first Java 8 code of the book!

 It reads “sort inventory comparing apple weight.” Don’t worry about this code for now. This book will explain what it does
 and how you can write similar code.

 There’s also a hardware influence: commodity CPUs have become multicore—the processor in your laptop or desktop machine probably
 contains four or more CPU cores. But the vast majority of existing Java programs use only one of these cores and leave the
 other three idle (or spend a small fraction of their processing power running part of the operating system or a virus checker).

 Prior to Java 8, experts might tell you that you have to use threads to use these cores. The problem is that working with
 threads is difficult and error-prone. Java has followed an evolutionary path of continually trying to make concurrency easier
 and less error-prone. Java 1.0 had threads and locks and even a memory model—the best practice at the time—but these primitives
 proved too difficult to use reliably in nonspecialist project teams. Java 5 added industrial-strength building blocks like
 thread pools and concurrent collections. Java 7 added the fork/join framework, making parallelism more practical but still
 difficult. Java 8 gave us a new, simpler way of thinking about parallelism. But you still have to follow some rules, which
 you’ll learn in this book.

 As you’ll see later in this book, Java 9 adds a further structuring method for concurrency—reactive programming. Although
 this has more-specialist use, it standardizes a means of exploiting the RxJava and Akka reactive streams toolkits that are
 becoming popular for highly concurrent systems.

 From the previous two desiderata (more concise code and simpler use of multicore processors) springs the whole consistent
 edifice captured by Java 8. We start by giving you a quick taste of these ideas (hopefully enough to intrigue you, but short
 enough to summarize them):

 	The Streams API

 	Techniques for passing code to methods

 	Default methods in interfaces

 Java 8 provides a new API (called Streams) that supports many parallel operations to process data and resembles the way you
 might think in database query languages—you express what you want in a higher-level manner, and the implementation (here the
 Streams library) chooses the best low-level execution mechanism. As a result, it avoids the need for you to write code that
 uses synchronized, which is not only highly error-prone but also more expensive than you may realize on multicore CPUs.[1]

 1

Multicore CPUs have separate caches (fast memory) attached to each processor core. Locking requires these to be synchronized,
 requiring relatively slow cache-coherency-protocol inter-core communication.

 From a slightly revisionist viewpoint, the addition of Streams in Java 8 can be seen as a direct cause of the two other additions
 to Java 8: concise techniques to pass code to methods (method references, lambdas) and default methods in interfaces.

 But thinking of passing code to methods as a mere consequence of Streams downplays its range of uses within Java 8. It gives
 you a new concise way to express behavior parameterization. Suppose you want to write two methods that differ in only a few lines of code. You can now simply pass the code of the parts
 that differ as an argument (this programming technique is shorter, clearer, and less error-prone than the common tendency
 to use copy and paste). Experts will here note that behavior parameterization could, prior to Java 8, be encoded using anonymous
 classes—but we’ll let the example at the beginning of this chapter, which shows increased code conciseness with Java 8, speak
 for itself in terms of clarity.

 The Java 8 feature of passing code to methods (and being able to return it and incorporate it into data structures) also provides
 access to a range of additional techniques that are commonly referred to as functional-style programming. In a nutshell, such code, called functions in the functional programming community, can be passed around and combined in a way to produce powerful programming idioms
 that you’ll see in Java guise throughout this book.

 The meat of this chapter begins with a high-level discussion on why languages evolve, continues with sections on the core
 features of Java 8, and then introduces the ideas of functional-style programming that the new features simplify using and
 that new computer architectures favor. In essence, section 1.2 discusses the evolution process and the concepts, which Java was previously lacking, to exploit multicore parallelism in
 an easy way. Section 1.3 explains why passing code to methods in Java 8 is such a powerful new programming idiom, and section 1.4 does the same for Streams—the new Java 8 way of representing sequenced data and indicating whether these can be processed
 in parallel. Section 1.5 explains how the new Java 8 feature of default methods enables interfaces and their libraries to evolve with less fuss and
 less recompilation; it also explains the modules addition to Java 9, which enables components of large Java systems to be specified more clearly than “just a JAR file of
 packages.” Finally, section 1.6 looks ahead at the ideas of functional-style programming in Java and other languages sharing the JVM. In summary, this chapter
 introduces ideas that are successively elaborated in the rest of the book. Enjoy the ride!

1.2. Why is Java still changing?

 With the 1960s came the quest for the perfect programming language. Peter Landin, a famous computer scientist of his day,
 noted in 1966 in a landmark article[2] that there had already been 700 programming languages and speculated on what the next 700 would be like—including arguments for functional-style
 programming similar to that in Java 8.

 2

P. J. Landin, “The Next 700 Programming Languages,” CACM 9(3):157–65, March 1966.

 Many thousands of programming languages later, academics have concluded that programming languages behave like ecosystems:
 new languages appear, and old languages are supplanted unless they evolve. We all hope for a perfect universal language, but
 in reality certain languages are better fitted for certain niches. For example, C and C++ remain popular for building operating
 systems and various other embedded systems because of their small runtime footprint and in spite of their lack of programming
 safety. This lack of safety can lead to programs crashing unpredictably and exposing security holes for viruses and the like;
 indeed, type-safe languages such as Java and C# have supplanted C and C++ in various applications when the additional runtime
 footprint is acceptable.

 Prior occupancy of a niche tends to discourage competitors. Changing to a new language and tool chain is often too painful
 for just a single feature, but newcomers will eventually displace existing languages, unless they evolve fast enough to keep
 up. (Older readers are often able to quote a range of such languages in which they’ve previously coded but whose popularity
 has since waned—Ada, Algol, COBOL, Pascal, Delphi, and SNOBOL, to name but a few.)

 You’re a Java programmer, and Java has been successful at colonizing (and displacing competitor languages in) a large ecosystem
 niche of programming tasks for nearly 20 years. Let’s examine some reasons for that.

 1.2.1. Java’s place in the programming language ecosystem

 Java started well. Right from the start, it was a well-designed object-oriented language with many useful libraries. It also
 supported small-scale concurrency from day one with its integrated support for threads and locks (and with its early prescient
 acknowledgment, in the form of a hardware-neutral memory model, that concurrent threads on multicore processors can have unexpected
 behaviors in addition to those that happen on single-core processors). Also, the decision to compile Java to JVM bytecode
 (a virtual machine code that soon every browser supported) meant that it became the language of choice for internet applet
 programs (do you remember applets?). Indeed, there’s a danger that the Java Virtual Machine (JVM) and its bytecode will be
 seen as more important than the Java language itself and that, for certain applications, Java might be replaced by one of
 its competing languages such as Scala, Groovy, or Kotlin, which also run on the JVM. Various recent updates to the JVM (for
 example, the new invokedynamic bytecode in JDK7) aim to help such competitor languages run smoothly on the JVM—and to interoperate with Java. Java has also been successful at colonizing various aspects of embedded
 computing (everything from smart cards, toasters, and set-top boxes to car-braking systems).

 	

 How did Java get into a general programming niche?

 Object orientation became fashionable in the 1990s for two reasons: its encapsulation discipline resulted in fewer software
 engineering issues than those of C; and as a mental model it easily captured the WIMP programming model of Windows 95 and
 up. This can be summarized as follows: everything is an object; and a mouse click sends an event message to a handler (invokes
 the clicked method in a Mouse object). The write-once, run-anywhere model of Java and the ability of early browsers to (safely) execute Java code applets
 gave it a niche in universities, whose graduates then populated industry. There was initial resistance to the additional run
 cost of Java over C/C++, but machines got faster, and programmer time became more and more important. Microsoft’s C# further
 validated the Java-style object-oriented model.

 	

 But the climate is changing for the programming language ecosystem; programmers are increasingly dealing with so-called big data (data sets of terabytes and up) and wishing to exploit multicore computers or computing clusters effectively to process it.
 And this means using parallel processing—something Java wasn’t previously friendly to. You may have come across ideas from
 other programming niches (for example, Google’s map-reduce or the relative ease of data manipulation using database query
 languages such as SQL) that help you work with large volumes of data and multicore CPUs. Figure 1.1 summarizes the language ecosystem pictorially: think of the landscape as the space of programming problems and the dominant
 vegetation for a particular bit of ground as the favorite language for that program. Climate change is the idea that new hardware
 or new programming influences (for example, “Why can’t I program in an SQL-like style?”) mean that different languages become
 the language of choice for new projects, just like increasing regional temperatures mean grapes now thrive in higher latitudes. But there’s
 hysteresis—many an old farmer will keep raising traditional crops. In summary, new languages are appearing and becoming increasingly
 popular because they’ve adapted quickly to the climate change.

 Figure 1.1. Programming-language ecosystem and climate change

 [image:]

 The main benefit of the Java 8 additions for a programmer is that they provide more programming tools and concepts to solve
 new or existing programming problems more quickly or, more importantly, in a more concise, more easily maintainable way. Although
 the concepts are new to Java, they’ve proved powerful in niche research-like languages. In the following sections, we’ll highlight
 and develop the ideas behind three such programming concepts that have driven the development of the Java 8 features to exploit
 parallelism and write more concise code in general. We’ll introduce them in a slightly different order from the rest of the
 book to enable a Unix-based analogy and to expose the “need this because of that” dependencies in Java 8’s new parallelism for multicore.

 	

 Another climate-change factor for Java

 One climate-change factor involves how large systems are designed. Nowadays, it’s common for a large system to incorporate
 large component subsystems from elsewhere, and perhaps these are built on top of other components from other vendors. Worse
 still, these components and their interfaces also tend to evolve. Java 8 and Java 9 have addressed these aspects by providing
 default methods and modules to facilitate this design style.

 	

 The next three sections examine the three programming concepts that drove the design of Java 8.

 1.2.2. Stream processing

 The first programming concept is stream processing. For introductory purposes, a stream is a sequence of data items that are conceptually produced one at a time. A program might read items from an input stream
 one by one and similarly write items to an output stream. The output stream of one program could well be the input stream
 of another.

 One practical example is in Unix or Linux, where many programs operate by reading data from standard input (stdin in Unix and C, System.in in Java), operating on it, and then writing their results to standard output (stdout in Unix and C, System.out in Java). First, a little background: Unix cat creates a stream by concatenating two files, tr translates the characters in a stream, sort sorts lines in a stream, and tail -3 gives the last three lines in a stream. The Unix command line allows such programs to be linked together with pipes (|), giving examples such as

 cat file1 file2 | tr "[A-Z]" "[a-z]" | sort | tail -3

 which (supposing file1 and file2 contain a single word per line) prints the three words from the files that appear latest in dictionary order, after first
 translating them to lowercase. We say that sort takes a stream of lines[3] as input and produces another stream of lines as output (the latter being sorted), as illustrated in figure 1.2. Note that in Unix these commands (cat, tr, sort, and tail) are executed concurrently, so that sort can be processing the first few lines before cat or tr has finished. A more mechanical analogy is a car-manufacturing assembly line where a stream of cars is queued between processing
 stations that each take a car, modify it, and pass it on to the next station for further processing; processing at separate
 stations is typically concurrent even though the assembly line is physically a sequence.

 3

Purists will say a “stream of characters,” but it’s conceptually simpler to think that sort reorders lines.

 Figure 1.2. Unix commands operating on streams

 [image:]

 Java 8 adds a Streams API (note the uppercase S) in java.util.stream based on this idea; Stream<T> is a sequence of items of type T. You can think of it as a fancy iterator for now. The Streams API has many methods that can be chained to form a complex
 pipeline just like Unix commands were chained in the previous example.

 The key motivation for this is that you can now program in Java 8 at a higher level of abstraction, structuring your thoughts
 of turning a stream of this into a stream of that (similar to how you think when writing database queries) rather than one
 item at a time. Another advantage is that Java 8 can transparently run your pipeline of Stream operations on several CPU cores on disjoint parts of the input—this is parallelism almost for free instead of hard work using Threads. We cover the Java 8 Streams API in detail in chapters 4–7.

 1.2.3. Passing code to methods with behavior parameterization

 The second programming concept added to Java 8 is the ability to pass a piece of code to an API. This sounds awfully abstract.
 In the Unix example, you might want to tell the sort command to use a custom ordering. Although the sort command supports command-line parameters to perform various predefined kinds of sorting such as reverse order, these are
 limited.

 For example, let’s say you have a collection of invoice IDs with a format similar to 2013UK0001, 2014US0002, and so on. The
 first four digits represent the year, the next two letters a country code, and last four digits the ID of a client. You may
 want to sort these invoice IDs by year or perhaps using the customer ID or even the country code. What you want is the ability to tell
 the sort command to take as an argument an ordering defined by the user: a separate piece of code passed to the sort command.

 Now, as a direct parallel in Java, you want to tell a sort method to compare using a customized order. You could write a method compareUsingCustomerId to compare two invoice IDs, but, prior to Java 8, you couldn’t pass this method to another method! You could create a Comparator object to pass to the sort method as we showed at the start of this chapter, but this is verbose and obfuscates the idea of simply reusing an existing
 piece of behavior. Java 8 adds the ability to pass methods (your code) as arguments to other methods. Figure 1.3, based on figure 1.2, illustrates this idea. We also refer to this conceptually as behavior parameterization. Why is this important? The Streams API is built on the idea of passing code to parameterize the behavior of its operations,
 just as you passed compareUsingCustomerId to parameterize the behavior of sort.

 Figure 1.3. Passing method compareUsingCustomerId as an argument to sort

 [image:]

 We summarize how this works in section 1.3 of this chapter, but leave full details to chapters 2 and 3. Chapters 18 and 19 look at more advanced things you can do using this feature, with techniques from the functional programming community.

 1.2.4. Parallelism and shared mutable data

 The third programming concept is rather more implicit and arises from the phrase “parallelism almost for free” in our previous
 discussion on stream processing. What do you have to give up? You may have to make some small changes in the way you code
 the behavior passed to stream methods. At first, these changes might feel a little uncomfortable, but once you get used to
 them, you’ll love them. You must provide behavior that is safe to execute concurrently on different pieces of the input. Typically this means writing code that doesn’t access shared mutable data
 to do its job. Sometimes these are referred to as pure functions or side-effect-free functions or stateless functions, and
 we’ll discuss these in detail in chapters 18 and 19. The previous parallelism arises only by assuming that multiple copies of your piece of code can work independently. If there’s
 a shared variable or object, which is written to, then things no longer work. What if two processes want to modify the shared
 variable at the same time? (Section 1.4 gives a more detailed explanation with a diagram.) You’ll find more about this style throughout the book.

 Java 8 streams exploit parallelism more easily than Java’s existing Threads API, so although it’s possible to use synchronized to break the no-shared-mutable-data rule, it’s fighting the system in that it’s abusing an abstraction optimized around that
 rule. Using synchronized across multiple processing cores is often far more expensive than you expect, because synchronization forces code to execute
 sequentially, which works against the goal of parallelism.

 Two of these points (no shared mutable data and the ability to pass methods and functions—code—to other methods) are the cornerstones
 of what’s generally described as the paradigm of functional programming, which you’ll see in detail in chapters 18 and 19. In contrast, in the imperative programming paradigm you typically describe a program in terms of a sequence of statements that mutate state. The no-shared-mutable-data
 requirement means that a method is perfectly described solely by the way it transforms arguments to results; in other words,
 it behaves as a mathematical function and has no (visible) side effects.

 1.2.5. Java needs to evolve

 You’ve seen evolution in Java before. For example, the introduction of generics and using List<String> instead of just List may initially have been irritating. But you’re now familiar with this style and the benefits it brings (catching more errors
 at compile time and making code easier to read, because you now know what something is a list of).

 Other changes have made common things easier to express (for example, using a for-each loop instead of exposing the boilerplate use of an Iterator). The main changes in Java 8 reflect a move away from classical object orientation, which often focuses on mutating existing
 values, and toward the functional-style programming spectrum in which what you want to do in broad-brush terms (for example, create a value representing all transport routes from A to B for less than a given price) is considered prime and separated from how you can achieve this (for example, scan a data structure modifying certain components). Note that classical object-oriented programming and functional programming, as extremes, might appear
 to be in conflict. But the idea is to get the best from both programming paradigms, so you have a better chance of having
 the right tool for the job. We discuss this in detail in sections 1.3 and 1.4.

 A takeaway line might be this: languages need to evolve to track changing hardware or programmer expectations (if you need
 convincing, consider that COBOL was once one of the most important languages commercially). To endure, Java has to evolve
 by adding new features. This evolution will be pointless unless the new features are used, so in using Java 8 you’re protecting
 your way of life as a Java programmer. On top of that, we have a feeling you’ll love using Java 8’s new features. Ask anyone
 who’s used Java 8 whether they’re willing to go back! Additionally, the new Java 8 features might, in the ecosystem analogy, enable Java to conquer programming-task territory currently occupied by other languages,
 so Java 8 programmers will be even more in demand.

 We now introduce the new concepts in Java 8, one by one, pointing out the chapters that cover these concepts in more detail.

1.3. Functions in Java

 The word function in programming languages is commonly used as a synonym for method, particularly a static method; this is in addition to it being used for mathematical function, one without side effects. Fortunately, as you’ll see, when Java 8 refers to functions these usages nearly coincide.

 Java 8 adds functions as new forms of value. These facilitate the use of streams, covered in section 1.4, which Java 8 provides to exploit parallel programming on multicore processors. We start by showing that functions as values
 are useful in themselves.

 Think about the possible values manipulated by Java programs. First, there are primitive values such as 42 (of type int) and 3.14 (of type double). Second, values can be objects (more strictly, references to objects). The only way to get one of these is by using new, perhaps via a factory method or a library function; object references point to instances of a class. Examples include "abc" (of type String), new Integer(1111) (of type Integer), and the result new HashMap<Integer, String>(100) of explicitly calling a constructor for HashMap. Even arrays are objects. What’s the problem?

 To help answer this, we’ll note that the whole point of a programming language is to manipulate values, which, following historical
 programming-language tradition, are therefore called first-class values (or citizens, in the terminology borrowed from the
 1960s civil rights movement in the United States). Other structures in our programming languages, which perhaps help us express
 the structure of values but which can’t be passed around during program execution, are second-class citizens. Values as listed
 previously are first-class Java citizens, but various other Java concepts, such as methods and classes, exemplify second-class
 citizens. Methods are fine when used to define classes, which in turn may be instantiated to produce values, but neither are
 values themselves. Does this matter? Yes, it turns out that being able to pass methods around at runtime, and hence making
 them first-class citizens, is useful in programming, so the Java 8 designers added the ability to express this directly in
 Java. Incidentally, you might wonder whether making other second-class citizens such as classes into first-class-citizen values
 might also be a good idea. Various languages such as Smalltalk and JavaScript have explored this route.

 1.3.1. Methods and lambdas as first-class citizens

 Experiments in other languages, such as Scala and Groovy, have determined that allowing concepts like methods to be used as
 first-class values made programming easier by adding to the toolset available to programmers. And once programmers become
 familiar with a powerful feature, they become reluctant to use languages without it! The designers of Java 8 decided to allow methods to be values—to make it easier for you to program. Moreover,
 the Java 8 feature of methods as values forms the basis of various other Java 8 features (such as Streams).

 The first new Java 8 feature we introduce is that of method references. Suppose you want to filter all the hidden files in a directory. You need to start writing a method that, given a File, will tell you whether it’s hidden. Fortunately, there’s such a method in the File class called isHidden. It can be viewed as a function that takes a File and returns a boolean. But to use it for filtering, you need to wrap it into a FileFilter object that you then pass to the File.listFiles method, as follows:

 File[] hiddenFiles = new File(".").listFiles(new FileFilter() {
 public boolean accept(File file) {
 return file.isHidden(); 1
 }
});

 	1 Filtering hidden files!

 Yuck! That’s horrible. Although it’s only three significant lines, it’s three opaque lines—we all remember saying “Do I really
 have to do it this way?” on first encounter. You already have the method isHidden that you could use. Why do you have to wrap it up in a verbose FileFilter class and then instantiate it? Because that’s what you had to do prior to Java 8.

 Now, you can rewrite that code as follows:

 File[] hiddenFiles = new File(".").listFiles(File::isHidden);

 Wow! Isn’t that cool? You already have the function isHidden available, so you pass it to the listFiles method using the Java 8 method reference :: syntax (meaning “use this method as a value”); note that we’ve also slipped into using the word function for methods. We’ll explain later how the mechanics work. One advantage is that your code now reads closer to the problem
 statement.

 Here’s a taste of what’s coming: methods are no longer second-class values. Analogous to using an object reference when you pass an object around (and object references are created by new), in Java 8 when you write File::isHidden, you create a method reference, which can similarly be passed around. This concept is discussed in detail in chapter 3. Given that methods contain code (the executable body of a method), using method references enables passing code around as
 in figure 1.3. Figure 1.4 illustrates the concept. You’ll also see a concrete example (selecting apples from an inventory) in the next section.

 Figure 1.4. Passing the method reference File::isHidden to the method listFiles

 [image:]

Lambdas: anonymous functions

 As well as allowing (named) methods to be first-class values, Java 8 allows a richer idea of functions as values, including lambdas[4] (or anonymous functions). For example, you can now write (int x) -> x + 1 to mean “the function that, when called with argument x, returns the value x + 1.” You might wonder why this is necessary,
 because you could define a method add1 inside a class MyMathsUtils and then write MyMaths-Utils::add1! Yes, you could, but the new lambda syntax is more concise for cases where you don’t have a convenient method and class available.
 Chapter 3 explores lambdas in detail. Programs using these concepts are said to be written in functional-programming style; this phrase
 means “writing programs that pass functions around as first-class values.”

 4

Originally named after the Greek letter λ (lambda). Although the symbol isn’t used in Java, its name lives on.

 1.3.2. Passing code: an example

 Let’s look at an example of how this helps you write programs (discussed in more detail in chapter 2). All the code for the examples is available on a GitHub repository and as a download via the book’s website. Both links
 may be found at www.manning.com/books/modern-java-in-action. Suppose you have a class Apple with a method getColor and a variable inventory holding a list of Apples; then you might wish to select all the green apples (here using a Color enum type that includes values GREEN and RED) and return them in a list. The word filter is commonly used to express this concept. Before Java 8, you might write a method filterGreenApples:

 public static List<Apple> filterGreenApples(List<Apple> inventory) {
 List<Apple> result = new ArrayList<>(); 1
 for (Apple apple: inventory){
 if (GREEN.equals(apple.getColor())) { 2
 result.add(apple);
 }
 }
 return result;
}

 	1 The result list accumulates the result; it starts as empty, and then green apples are added one by one.

 	2 The highlighted text selects only green apples.

 But next, somebody would like the list of heavy apples (say over 150 g), and so, with a heavy heart, you’d write the following
 method to achieve this (perhaps even using copy and paste):

 public static List<Apple> filterHeavyApples(List<Apple> inventory) {
 List<Apple> result = new ArrayList<>();
 for (Apple apple: inventory){
 if (apple.getWeight() > 150) { 1
 result.add(apple);
 }
 }
 return result;
}

 	1 Here the highlighted text selects only heavy apples.

 We all know the dangers of copy and paste for software engineering (updates and bug fixes to one variant but not the other),
 and hey, these two methods vary only in one line: the highlighted condition inside the if construct. If the difference between the two method calls in the highlighted code had been what weight range was acceptable,
 then you could have passed lower and upper acceptable weights as arguments to filter—perhaps (150, 1000) to select heavy apples (over 150 g) or (0, 80) to select light apples (under 80 g).

 But as we mentioned previously, Java 8 makes it possible to pass the code of the condition as an argument, avoiding code duplication
 of the filter method. You can now write this:

 public static boolean isGreenApple(Apple apple) {
 return GREEN.equals(apple.getColor());
}
public static boolean isHeavyApple(Apple apple) {
 return apple.getWeight() > 150;
}
public interface Predicate<T>{ 1
 boolean test(T t);
}
static List<Apple> filterApples(List<Apple> inventory,
 Predicate<Apple> p) { 2
 List<Apple> result = new ArrayList<>();
 for (Apple apple: inventory){
 if (p.test(apple)) { 3
 result.add(apple);
 }
 }
 return result;
}

 	
1 Included for clarity (normally imported from java.util.function)

 	2 A method is passed as a Predicate parameter named p (see the sidebar “What’s a Predicate?”).

 	3 Does the apple match the condition represented by p?

 And to use this, you call either

 filterApples(inventory, Apple::isGreenApple);

 or

 filterApples(inventory, Apple::isHeavyApple);

 We explain how this works in detail in the next two chapters. The key idea to take away for now is that you can pass around
 a method in Java 8.

 	

 What’s a Predicate?

 The previous code passed a method Apple::isGreenApple (which takes an Apple for argument and returns a boolean) to filterApples, which expected a Predicate <Apple> parameter. The word predicate is often used in mathematics to mean something function-like that takes a value for an argument and returns true or false. As you’ll see later, Java 8 would also allow you to write Function<Apple, Boolean>—more familiar to readers who learned about functions but not predicates at school—but using Predicate<Apple> is more standard (and slightly more efficient because it avoids boxing a boolean into a Boolean).

 	

 1.3.3. From passing methods to lambdas

 Passing methods as values is clearly useful, but it’s annoying having to write a definition for short methods such as isHeavyApple and isGreenApple when they’re used perhaps only once or twice. But Java 8 has solved this, too. It introduces a new notation (anonymous functions,
 or lambdas) that enables you to write just

 filterApples(inventory, (Apple a) -> GREEN.equals(a.getColor()));

 or

 filterApples(inventory, (Apple a) -> a.getWeight() > 150);

 or even

 filterApples(inventory, (Apple a) -> a.getWeight() < 80 ||
 RED.equals(a.getColor()));

 You don’t even need to write a method definition that’s used only once; the code is crisper and clearer because you don’t
 need to search to find the code you’re passing. But if such a lambda exceeds a few lines in length (so that its behavior isn’t
 instantly clear), you should instead use a method reference to a method with a descriptive name instead of using an anonymous
 lambda. Code clarity should be your guide.

 The Java 8 designers could almost have stopped here, and perhaps they would have done so before multicore CPUs. Functional-style
 programming as presented so far turns out to be powerful, as you’ll see. Java might then have been rounded off by adding filter and a few friends as generic library methods, such as

 static <T> Collection<T> filter(Collection<T> c, Predicate<T> p);

 You wouldn’t even have to write methods like filterApples because, for example, the previous call

 filterApples(inventory, (Apple a) -> a.getWeight() > 150);

 could be written as a call to the library method filter:

 filter(inventory, (Apple a) -> a.getWeight() > 150);

 But, for reasons centered on better exploiting parallelism, the designers didn’t do this. Java 8 instead contains a new Collection-like
 API called Stream, containing a comprehensive set of operations similar to the filter operation that functional programmers may be familiar with (for example, map and reduce), along with methods to convert between Collections and Streams, which we now investigate.

1.4. Streams

 Nearly every Java application makes and processes collections. But working with collections isn’t always ideal. For example, let’s say you need to filter expensive transactions
 from a list and then group them by currency. You’d need to write a lot of boilerplate code to implement this data-processing
 query, as shown here:

 Map<Currency, List<Transaction>> transactionsByCurrencies =
 new HashMap<>(); 1
for (Transaction transaction : transactions) { 2
 if(transaction.getPrice() > 1000){ 3
 Currency currency = transaction.getCurrency(); 4
 List<Transaction> transactionsForCurrency =
 transactionsByCurrencies.get(currency);
 if (transactionsForCurrency == null) { 5
 transactionsForCurrency = new ArrayList<>();
 transactionsByCurrencies.put(currency,
 transactionsForCurrency);
 }
 transactionsForCurrency.add(transaction); 6
 }
}

 	
1 Creates the Map where the grouped transaction will be accumulated

 	2 Iterates the List of transactions

 	3 Filters expensive transactions

 	4 Extracts the transaction’s currency

 	5 If there isn’t an entry in the grouping Map for this currency, create it.

 	6 Adds the currently traversed transaction to the List of transactions with the same currency

 In addition, it’s difficult to understand at a glance what the code does because of the multiple nested control-flow statements.

 Using the Streams API, you can solve this problem as follows:

 import static java.util.stream.Collectors.groupingBy;
Map<Currency, List<Transaction>> transactionsByCurrencies =
 transactions.stream()
 .filter((Transaction t) -> t.getPrice() > 1000) 1
 .collect(groupingBy(Transaction::getCurrency)); 2

 	1 Filters expensive transactions

 	2 Groups them by currency

 Don’t worry about this code for now because it may look like a bit of magic. Chapters 4–7 are dedicated to explaining how to make sense of the Streams API. For now, it’s worth noticing that the Streams API provides
 a different way to process data in comparison to the Collections API. Using a collection, you’re managing the iteration process
 yourself. You need to iterate through the elements one by one using a for-each loop processing them in turn. We call this way of iterating over data external iteration. In contrast, using the Streams API, you don’t need to think in terms of loops. The data processing happens internally inside
 the library. We call this idea internal iteration. We come back to these ideas in chapter 4.

 As a second pain point of working with collections, think for a second about how you would process the list of transactions
 if you had a vast number of them; how can you process this huge list? A single CPU wouldn’t be able to process this large
 amount of data, but you probably have a multicore computer on your desk. Ideally, you’d like to share the work among the different
 CPU cores available on your machine to reduce the processing time. In theory, if you have eight cores, they should be able
 to process your data eight times as fast as using one core, because they work in parallel.[5]

 5

This naming is unfortunate in some ways. Each of the cores in a multicore chip is a full-fledged CPU. But the phrase multicore
 CPU has become common, so core is used to refer to the individual CPUs.

 	

 Multicore computers

 All new desktop and laptop computers are multicore computers. Instead of a single CPU, they have four or eight or more CPUs
 (usually called Cores5). The problem is that a classic Java program uses just a single one of these cores, and the power of
 the others is wasted. Similarly, many companies use computing clusters (computers connected together with fast networks) to be able to process vast amounts of data efficiently. Java 8 facilitates
 new programming styles to better exploit such computers.

 Google’s search engine is an example of a piece of code that’s too big to run on a single computer. It reads every page on
 the internet and creates an index, mapping every word appearing on any internet page back to every URL containing that word.
 Then, when you do a Google search involving several words, software can quickly use this index to give you a set of web pages
 containing those words. Try to imagine how you might code this algorithm in Java (even for a smaller index than Google’s,
 you’d need to exploit all the cores in your computer).

 	

 1.4.1. Multithreading is difficult

 The problem is that exploiting parallelism by writing multithreaded code (using the Threads API from previous versions of Java) is difficult. You have to think differently: threads can access
 and update shared variables at the same time. As a result, data could change unexpectedly if not coordinated[6] properly. This model is harder to think about[7] than a step-by-step sequential model. For example, figure 1.5 shows a possible problem with two threads trying to add a number to a shared variable sum if they’re not synchronized properly.

 6

Traditionally via the keyword synchronized, but many subtle bugs arise from its misplacement. Java 8’s Stream-based parallelism encourages a functional programming style where synchronized is rarely used; it focuses on partitioning the data rather than coordinating access to it.

 7

Aha—a source of pressure for the language to evolve!

 Figure 1.5. A possible problem with two threads trying to add to a shared sum variable. The result is 105 instead of an expected result of 108.

 [image:]

 Java 8 also addresses both problems (boilerplate and obscurity involving processing collections and difficulty exploiting
 multicore) with the Streams API (java.util.stream). The first design motivator is that there are many data-processing patterns (similar to filterApples in the previous section or operations familiar from database query languages such as SQL) that occur over and over again
 and that would benefit from forming part of a library: filtering data based on a criterion (for example, heavy apples), extracting data (for example, extracting the weight field from each apple in a list), or grouping data (for example, grouping a list of numbers into separate lists of even and odd numbers), and so on. The second motivator
 is that such operations can often be parallelized. For instance, as illustrated in figure 1.6, filtering a list on two CPUs could be done by asking one CPU to process the first half of a list and the second CPU to process
 the other half of the list. This is called the forking step (1). The CPUs then filter their respective half-lists (2). Finally (3), one CPU would join the two results. (This is closely
 related to how Google searches work so quickly, using many more than two processors.)

 Figure 1.6. Forking filter onto two CPUs and joining the result

 [image:]

 For now, we’ll just say that the new Streams API behaves similarly to Java’s existing Collections API: both provide access
 to sequences of data items. But it’s useful for now to keep in mind that Collections is mostly about storing and accessing
 data, whereas Streams is mostly about describing computations on data. The key point here is that the Streams API allows and
 encourages the elements within a stream to be processed in parallel. Although it may seem odd at first, often the fastest
 way to filter a collection (for example, to use filterApples in the previous section on a list) is to convert it to a stream, process it in parallel, and then convert it back to a list.
 Again, we’ll just say “parallelism almost for free” and provide a taste of how you can filter heavy apples from a list sequentially
 or in parallel using streams and a lambda expression.

 Here’s an example of sequential processing:

 import static java.util.stream.Collectors.toList;
List<Apple> heavyApples =
 inventory.stream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());

 And here it is using parallel processing:

 import static java.util.stream.Collectors.toList;
List<Apple> heavyApples =
 inventory.parallelStream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());

 	

 Parallelism in Java and no shared mutable state

 People have always said parallelism in Java is difficult, and all this stuff about synchronized is error-prone. Where’s the magic bullet in Java 8?

 There are two magic bullets. First, the library handles partitioning—breaking down a big stream into several smaller streams
 to be processed in parallel for you. Second, this parallelism almost for free from streams, works only if the methods passed
 to library methods like filter don’t interact (for example, by having mutable shared objects). But it turns out that this restriction feels natural to a
 coder (see, by way of example, our Apple::isGreenApple example). Although the primary meaning of functional in functional programming means “using functions as first-class values,” it often has a secondary nuance of “no interaction during execution between
 components.”

 	

 Chapter 7 explores parallel data processing in Java 8 and its performance in more detail. One of the practical issues the Java 8 developers
 found in evolving Java with all these new goodies was that of evolving existing interfaces. For example, the method Collections.sort belongs to the List interface but was never included. Ideally, you’d like to do list.sort(comparator) instead of Collections.sort(list, comparator). This may seem trivial but, prior to Java 8 you can update an interface only if you update all the classes that implement
 it—a logistical nightmare! This issue is resolved in Java 8 by default methods.

1.5. Default methods and Java modules

 As we mentioned earlier, modern systems tend to be built from components—perhaps bought-in from elsewhere. Historically, Java
 had little support for this, apart from a JAR file containing a set of Java packages with no particular structure. Moreover,
 evolving interfaces to such packages was hard—changing a Java interface meant changing every class that implements it. Java
 8 and 9 have started to address this.

 First, Java 9 provides a module system that provide you with syntax to define modules containing collections of packages—and keep much better control over visibility and namespaces. Modules enrich a simple JAR-like
 component with structure, both as user documentation and for machine checking; we explain them in detail in chapter 14. Second, Java 8 added default methods to support evolvable interfaces. We cover these in detail in chapter 13. They’re important because you’ll increasingly encounter them in interfaces, but because relatively few programmers will
 need to write default methods themselves and because they facilitate program evolution rather than helping write any particular
 program, we keep the explanation here short and example-based.

 In section 1.4, we gave the following example Java 8 code:

 List<Apple> heavyApples1 =
 inventory.stream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());
List<Apple> heavyApples2 =
 inventory.parallelStream().filter((Apple a) -> a.getWeight() > 150)
 .collect(toList());

 But there’s a problem here: a List<T> prior to Java 8 doesn’t have stream or parallel-Stream methods—and neither does the Collection<T> interface that it implements—because these methods hadn’t been conceived of. And without these methods, this code won’t compile.
 The simplest solution, which you might employ for your own interfaces, would have been for the Java 8 designers to add the
 stream method to the Collection interface and add the implementation in the ArrayList class.

 But doing this would have been a nightmare for users. Many alternative collection frameworks implement interfaces from the
 Collections API. Adding a new method to an interface means all concrete classes must provide an implementation for it. Language
 designers have no control over existing implementations of Collection, so you have a dilemma: How can you evolve published interfaces without disrupting existing implementations?

 The Java 8 solution is to break the last link: an interface can now contain method signatures for which an implementing class
 doesn’t provide an implementation. Then who implements them? The missing method bodies are given as part of the interface
 (hence default implementations) rather than in the implementing class.

 This provides a way for an interface designer to enlarge an interface beyond those methods that were originally planned—without
 breaking existing code. Java 8 allows the existing default keyword to be used in interface specifications to achieve this.

 For example, in Java 8, you can call the sort method directly on a list. This is made possible with the following default method in the Java 8 List interface, which calls the static method Collections.sort:

 default void sort(Comparator<? super E> c) {
 Collections.sort(this, c);
}

 This means any concrete classes of List don’t have to explicitly implement sort, whereas in previous Java versions such concrete classes would fail to recompile unless they provided an implementation for
 sort.

 But wait a second. A single class can implement multiple interfaces, right? If you have multiple default implementations in
 several interfaces, does that mean you have a form of multiple inheritance in Java? Yes, to some extent. We show in chapter 13 that there are some rules that prevent issues such as the infamous diamond inheritance problem in C++.

1.6. Other good ideas from functional programming

 The previous sections introduced two core ideas from functional programming that are now part of Java: using methods and lambdas
 as first-class values, and the idea that calls to functions or methods can be efficiently and safely executed in parallel
 in the absence of mutable shared state. Both of these ideas are exploited by the new Streams API we described earlier.

 Common functional languages (SML, OCaml, Haskell) also provide further constructs to help programmers. One of these is avoiding
 null by explicit use of more descriptive data types. Tony Hoare, one of the giants of computer science, said this in a presentation
 at QCon London 2009:

 I call it my billion-dollar mistake. It was the invention of the null reference in 1965. . . .I couldn’t resist the temptation
 to put in a null reference, simply because it was so easy to implement.

 Java 8 introduced the Optional<T> class that, if used consistently, can help you avoid null-pointer exceptions. It’s a container object that may or may not
 contain a value. Optional<T> includes methods to explicitly deal with the case where a value is absent, and as a result you can avoid null-pointer exceptions.
 It uses the type system to allow you to indicate when a variable is anticipated to potentially have a missing value. We discuss
 Optional<T> in detail in chapter 11.

 A second idea is that of (structural) pattern matching.[8] This is used in mathematics. For example:

 8

This phrase has two uses. Here we mean the one familiar from mathematics and functional programming whereby a function is
 defined by cases, rather than using if-then-else. The other meaning concerns phrases like “find all files of the form ‘IMG*.JPG’ in a given directory” associated with so-called
 regular expressions.

 f(0) = 1
 f(n) = n*f(n-1) otherwise

 In Java, you would write an if-then-else or a switch statement. Other languages have shown that, for more complex data types, pattern matching can express programming ideas more
 concisely compared to using if-then-else. For such data types, you might also use polymorphism and method overriding as an alternative to if-then-else, but there’s ongoing language-design discussion as to which is more appropriate.[9] We’d say that both are useful tools and that you should have both in your armory. Unfortunately, Java 8 doesn’t have full
 support for pattern matching, although we show how it can be expressed in chapter 19. A Java Enhancement Proposal is also being discussed to support pattern matching in a future version of Java (see http://openjdk.java.net/jeps/305). In the meantime, let’s illustrate with an example expressed in the Scala programming language (another Java-like language
 using the JVM that has inspired some aspects of Java evolution; see chapter 20). Suppose you want to write a program that does basic simplifications on a tree representing an arithmetic expression. Given
 a data type Expr representing such expressions, in Scala you can write the following code to decompose an Expr

