

 [image: cover]

 Test Driven:
Practical TDD and Acceptance TDD for Java Developers

 Lasse Koskela

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2008 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Laura Merrill
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07

Dedication

 To my colleagues, for bugging me to finish this project.

 And to my love Lotta, who gave me the energy to do it.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. A TDD primer

 Chapter 1. The big picture

 Chapter 2. Beginning TDD

 Chapter 3. Refactoring in small steps

 Chapter 4. Concepts and patterns for TDD

 2. Applying TDD to specific technologies

 Chapter 5. Test-driving web components

 Chapter 6. Test-driving data access

 Chapter 7. Test-driving the unpredictable

 Chapter 8. Test-driving Swing

 3. Building products with Acceptance TDD

 Chapter 9. Acceptance TDD explained

 Chapter 10. Creating acceptance tests with Fit

 Chapter 11. Strategies for implementing acceptance tests

 Chapter 12. Adopting TDD

 Appendix A. Brief JUnit 4 tutorial

 Appendix B. Brief JUnit 3.8 tutorial

 Appendix C. Brief EasyMock tutorial

 Appendix D. Running tests with Ant

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. A TDD primer

 Chapter 1. The big picture

 1.1. The challenge: solving the right problem right

 1.1.1. Creating poorly written code

 1.1.2. Failing to meet actual needs

 1.2. Solution: being test-driven

 1.2.1. High quality with TDD

 1.2.2. Meeting needs with acceptance TDD

 1.2.3. What’s in it for me?

 1.3. Build it right: TDD

 1.3.1. Test-code-refactor: the heartbeat

 1.3.2. Developing in small increments

 1.3.3. Keeping code healthy with refactoring

 1.3.4. Making sure the software still works

 1.4. Build the right thing: acceptance TDD

 1.4.1. What’s in a name?

 1.4.2. Close collaboration

 1.4.3. Tests as a shared language

 1.5. Tools for test-driven development

 1.5.1. Unit-testing with xUnit

 1.5.2. Test frameworks for acceptance TDD

 1.5.3. Continuous integration and builds

 1.5.4. Code coverage

 1.6. Summary

 Chapter 2. Beginning TDD

 2.1. From requirements to tests

 2.1.1. Decomposing requirements

 2.1.2. What are good tests made of?

 2.1.3. Working from a test list

 2.1.4. Programming by intention

 2.2. Choosing the first test

 2.2.1. Creating a list of tests

 2.2.2. Writing the first failing test

 2.2.3. Making the first test pass

 2.2.4. Writing another test

 2.3. Breadth-first, depth-first

 2.3.1. Faking details a little longer

 2.3.2. Squeezing out the fake stuff

 2.4. Let’s not forget to refactor

 2.4.1. Potential refactorings in test code

 2.4.2. Removing a redundant test

 2.5. Adding a bit of error handling

 2.5.1. Expecting an exception

 2.5.2. Refactoring toward smaller methods

 2.5.3. Keeping methods in balance

 2.5.4. Expecting details from an exception

 2.6. Loose ends on the test list

 2.6.1. Testing for performance

 2.6.2. A looming design dead-end

 2.7. Summary

 Chapter 3. Refactoring in small steps

 3.1. Exploring a potential solution

 3.1.1. Prototyping with spikes

 3.1.2. Learning by writing tests

 3.1.3. Example spike for learning an API

 3.2. Changing design in a controlled manner

 3.2.1. Creating an alternative implementation

 3.2.2. Switching over safely

 3.3. Taking the new design further

 3.3.1. Keeping things compatible

 3.3.2. Making the switchover

 3.4. Summary

 Chapter 4. Concepts and patterns for TDD

 4.1. How to write tests and make them pass

 4.1.1. Test-selection strategies

 4.1.2. Implementation strategies

 4.1.3. Prime guidelines for test-driving

 4.2. Essential testing concepts

 4.2.1. Fixtures are the context for tests

 4.2.2. Test doubles stand in for dependencies

 4.2.3. State and interaction-based testing

 4.3. Closer look into test doubles

 4.3.1. Example of a test double

 4.3.2. Stubs, fakes, and mocks

 4.3.3. Mock objects in action

 4.4. Guidelines for testable designs

 4.4.1. Choose composition over inheritance

 4.4.2. Avoid static and the Singleton

 4.4.3. Isolate dependencies

 4.4.4. Inject dependencies

 4.5. Unit-testing patterns

 4.5.1. Assertion patterns

 4.5.2. Fixture patterns

 4.5.3. Test patterns

 4.6. Working with legacy code

 4.6.1. Test-driven legacy development

 4.6.2. Analyzing the change

 4.6.3. Preparing for the change

 4.6.4. Test-driving the change

 4.7. Summary

 2. Applying TDD to specific technologies

 Chapter 5. Test-driving web components

 5.1. MVC in web applications in 60 seconds

 5.2. Taming the controller

 5.2.1. Test-driving Java Servlets

 5.2.2. Test-driving Spring controllers

 5.3. Creating the view test-first

 5.3.1. Test-driving JSPs with JspTest

 5.3.2. Test-driving Velocity templates

 5.4. TDD with component-based web frameworks

 5.4.1. Anatomy of a typical framework

 5.4.2. Fleshing out Wicket pages test-first

 5.5. Summary

 Chapter 6. Test-driving data access

 6.1. Exploring the problem domain

 6.1.1. Data access crosses boundaries

 6.1.2. Separating layers with the DAO pattern

 6.2. Driving data access with unit tests

 6.2.1. Witnessing the tyranny of the JDBC API

 6.2.2. Reducing pain with Spring’s JdbcTemplate

 6.2.3. Closer to test-driven nirvana with Hibernate

 6.3. Writing integration tests before the code

 6.3.1. What is an integration test?

 6.3.2. Selecting the database

 6.4. Integration tests in action

 6.4.1. Writing our first Hibernate integration test

 6.4.2. Creating the database schema

 6.4.3. Implementing the production code

 6.4.4. Staying clean with transactional fixtures

 6.5. Populating data for integration tests

 6.5.1. Populating objects with Hibernate

 6.5.2. Populating data with DbUnit

 6.6. Should I drive with unit or integration tests?

 6.6.1. TDD cycle with integration tests

 6.6.2. Best of both worlds

 6.7. File-system access

 6.7.1. A tale from the trenches

 6.7.2. Practices for testable file access

 6.8. Summary

 Chapter 7. Test-driving the unpredictable

 7.1. Test-driving time-based functionality

 7.1.1. Example: logs and timestamps

 7.1.2. Abstracting system time

 7.1.3. Testing log output with faked system time

 7.2. Test-driving multithreaded code

 7.2.1. What are we testing for?

 7.2.2. Thread-safety

 7.2.3. Blocking operations

 7.2.4. Starting and stopping threads

 7.2.5. Asynchronous execution

 7.2.6. Synchronization between threads

 7.3. Standard synchronization objects

 7.3.1. Semaphores

 7.3.2. Latches

 7.3.3. Barriers

 7.3.4. Futures

 7.4. Summary

 Chapter 8. Test-driving Swing

 8.1. What to test in a Swing UI

 8.1.1. Internal plumbing and utilities

 8.1.2. Rendering and layout

 8.1.3. Interaction

 8.2. Patterns for testable UI code

 8.2.1. Classic Model-View-Presenter

 8.2.2. Supervising Controller

 8.2.3. Passive View

 8.3. Tools for testing view components

 8.3.1. Why do we need tools?

 8.3.2. TDD-friendly tools

 8.4. Test-driving a view component

 8.4.1. Laying out the design

 8.4.2. Adding and operating standard widgets

 8.4.3. Drawing custom graphics

 8.4.4. Associating gestures with coordinates

 8.5. Summary

 3. Building products with Acceptance TDD

 Chapter 9. Acceptance TDD explained

 9.1. Introduction to user stories

 9.1.1. Format of a story

 9.1.2. Power of storytelling

 9.1.3. Examples of user stories

 9.2. Acceptance tests

 9.2.1. Example tests for a story

 9.2.2. Properties of acceptance tests

 9.2.3. Implementing acceptance tests

 9.3. Understanding the process

 9.3.1. The acceptance TDD cycle

 9.3.2. Acceptance TDD inside an iteration

 9.4. Acceptance TDD as a team activity

 9.4.1. Defining the customer role

 9.4.2. Who writes tests with the customer?

 9.4.3. How many testers do we need?

 9.5. Benefits of acceptance TDD

 9.5.1. Definition of “done”

 9.5.2. Cooperative work

 9.5.3. Trust and commitment

 9.5.4. Specification by example

 9.5.5. Filling the gap

 9.6. What are we testing, exactly?

 9.6.1. Should we test against the UI?

 9.6.2. Should we stub parts of our system?

 9.6.3. Should we test business logic directly?

 9.7. Brief overview of available tools

 9.7.1. Table-based frameworks

 9.7.2. Text-based frameworks

 9.7.3. Scripting language-based frameworks

 9.7.4. Homegrown tools

 9.8. Summary

 Chapter 10. Creating acceptance tests with Fit

 10.1. What’s Fit?

 10.1.1. Fit for acceptance TDD

 10.1.2. Test documents contain fixture tables

 10.1.3. Fixtures: combinations of tables and classes

 10.2. Three built-in fixtures

 10.2.1. ColumnFixture

 10.2.2. RowFixture

 10.2.3. ActionFixture

 10.2.4. Extending the built-in fixtures

 10.3. Beyond the built-ins with FitLibrary

 10.3.1. DoFixture

 10.3.2. SetUpFixture

 10.3.3. There’s more

 10.4. Executing Fit tests

 10.4.1. Using a single test document

 10.4.2. Placing all tests in a folder structure

 10.4.3. Testing as part of an automated build

 10.5. Summary

 Chapter 11. Strategies for implementing acceptance tests

 11.1. What should acceptance tests test?

 11.1.1. Focus on what’s essential

 11.1.2. Avoid turbulent interfaces

 11.1.3. Cross the fence where it is lowest

 11.2. Implementation approaches

 11.2.1. Going end-to-end

 11.2.2. Crawling under the skin

 11.2.3. Exercising the internals

 11.2.4. Stubbing out the irrelevant

 11.2.5. Testing backdoors

 11.3. Technology-specific considerations

 11.3.1. Programming libraries

 11.3.2. Faceless, distributed systems

 11.3.3. Console applications

 11.3.4. GUI applications

 11.3.5. Web applications

 11.4. Tips for common problems

 11.4.1. Accelerating test execution

 11.4.2. Reducing complexity of test cases

 11.4.3. Managing test data

 11.5. Summary

 Chapter 12. Adopting TDD

 12.1. What it takes to adopt TDD

 12.1.1. Getting it

 12.1.2. Sense of urgency

 12.1.3. Sense of achievement

 12.1.4. Exhibiting integrity

 12.1.5. Time for change

 12.2. Getting others aboard

 12.2.1. Roles and ability to lead change

 12.2.2. Change takes time

 12.3. How to fight resistance

 12.3.1. Recognizing resistance

 12.3.2. Three standard responses to resistance

 12.3.3. Techniques for overcoming resistance

 12.3.4. Picking our battles

 12.4. How to facilitate adoption

 12.4.1. Evangelize

 12.4.2. Lower the bar

 12.4.3. Train and educate

 12.4.4. Share and infect

 12.4.5. Coach and facilitate

 12.4.6. Involve others by giving them roles

 12.4.7. Destabilize

 12.4.8. Delayed rewards

 12.5. Summary

 Appendix A. Brief JUnit 4 tutorial

 Appendix B. Brief JUnit 3.8 tutorial

 Appendix C. Brief EasyMock tutorial

 Appendix D. Running tests with Ant

 D.1. Project directory structure

 D.2. The basics: compiling all source code

 D.3. Adding a target for running tests

 D.4. Generating a human-readable report

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Seven years ago, in the midst of a global IT boom, programming shops of all shapes and sizes were racing like mad toward the
 next IPO, and the job market was hotter than ever. I had been pulled into the booming new media industry and was just starting
 my programming career, spending long days and nights hacking away at random pieces of code, configuring servers, uploading
 PHP scripts to a live production system, and generally acting like I knew my stuff.

 On a rainy September evening, working late again, my heart suddenly skipped a beat: What did I just do? Did I drop all the
 data from the production database? That’s what it looked like, and I was going to get canned. How could I get the data back?
 I had thought it was the test database. This couldn’t be happening to me! But it was.

 I didn’t get fired the next morning, largely because it turned out the customer didn’t care about the data I’d squashed. And
 it seemed everyone else was doing the same thing—it could have been any one of us, they said. I had learned a lesson, however,
 and that evening marked the beginning of my journey toward a more responsible, reliable way of developing software.

 A couple of years later, I was working for a large multinational consulting company, developing applications and backend systems
 for other large corporations. I’d learned a lot during my short career, thanks to all those late nights at the computer, and
 working on these kinds of systems was a good chance to sharpen my skills in practice. Again, I thought I knew my stuff well
 when I joined the ranks. And again, it turned out I didn’t know as much as I thought. I continued to learn something important
 almost every day.

 The most important discovery I made changed the way I thought about software development: Extreme Programming (XP) gave me
 a new perspective on the right way to develop software. What I saw in XP was a combination of the high productivity of my
 past hack-a-thons and a systematic, disciplined way to work. In addition to the fact that XP projects bring the development
 team closer to the customer, the single biggest idea that struck a chord with me was test-driven development (TDD). The simple
 idea of writing tests before the code demolished my concept of programming and unit-testing as separate activities.

 TDD wasn’t a walk in the park. Every now and then, I’d decide to write tests first. For a while, it would work; but after
 half an hour I’d find myself editing production code without a failing test. Over time, my ability to stick with the test-first
 programming improved, and I was able to go a whole day without falling back on my old habits. But then I stumbled across a
 piece of code that didn’t bend enough to my skills. I was coming to grips with how it should be done but didn’t yet have all
 the tricks up my sleeve. I didn’t know how to do it the smart way, and frequently I wasn’t determined enough to do it the
 hard way. It took several years to master all the tricks, learn all the tools, and get where I am now.

 I wrote this book so you don’t have to crawl over the same obstacles I did; you can use the book to guide your way more easily
 through these lessons. For me, catching the test-first bug has been the single most important influence on how I approach
 my work and see programming—just as getting into agile methods changed the way I think about software development.

 I hope you’ll catch the bug, too.

Acknowledgments

 Taking an idea and turning it into a book is no small feat, and I couldn’t have done it without the help of the legion of
 hard-core professionals and kind souls who contributed their time and effort to this project.

 First, thanks to Mike Curwen from JavaRanch, who started it all by connecting me with Jackie Carter at Manning in early 2005.
 Jackie became my first development editor; she taught me how to write and encouraged me to keep going. Looking back at my
 first drafts, Jackie, I can see that what you did was a heroic act!

 I’d also like to thank the rest of the team at Manning, especially publisher Marjan Bace, my second development editor Cynthia
 Kane, technical editor Ernest Friedman-Hill, review editor Karen Tegtmeyer, copy editor Laura Merrill, proofreader Tiffany
 Taylor, and project editor Mary Piergies. It was a true pleasure working with all of you.

 I didn’t write this book behind closed doors. I had the pleasure of getting valuable feedback early on and throughout the
 development process from an excellent cast of reviewers, including J. B. Rainsberger, Ron Jeffries, Laurent Bossavit, Dave
 Nicolette, Michael Feathers, Christopher Haupt, Johannes Link, Duncan Pierce, Simon Baker, Sam Newman, David Saff, Boris Gloger,
 Cédric Beust, Nat Pryce, Derek Lakin, Bill Fly, Stuart Caborn, Pekka Enberg, Hannu Terävä, Jukka Lindström, Jason Rogers,
 Dave Corun, Doug Warren, Mark Monster, Jon Skeet, Ilja Preuss, William Wake, and Bas Vodde. Your feedback not only made this
 a better book but also gave me confidence and encouragement.

 My gratitude also goes to the MEAP readers of the early manuscript for their valuable feedback and comments. You did a great
 job pointing out remaining discrepancies and suggesting improvements, picking up where the reviewers left off.

 I wouldn’t be writing this today if not for my past and present colleagues, from whom I’ve learned this trade. I owe a lot
 to Allan Halme and Joonas Lyytinen for showing me the ropes. You continue to be my mentors, even if we no longer work together
 on a day-to-day basis. I’d like to thank my fellow moderators at JavaRanch for keeping the saloon running. I’ve learned a
 lot through the thousands of conversations I’ve had at the ranch. And speaking of conversations, I’d especially like to thank
 Bas Vodde for all the far-out conversations we’ve had on trains and in hotel lobbies.

 Special thanks to my colleagues at Reaktor Innovations for their encouragement, support, enthusiasm, and feedback. You’ve
 taught me a lot and continue to amaze me with your energy and talent. It’s an honor to be working with you.

 I’d also like to thank my clients: the ones I’ve worked with and the ones who have attended my training sessions. You’ve given
 me the practical perspective for my work, and I appreciate it. I wouldn’t know what I was talking about if it weren’t for
 the concrete problems you gave me to solve!

 My life as a software developer has become easier every year due to the tools that open source developers around the world
 are creating free of charge for all of us. Parts 2 and 3 of this book are full of things that wouldn’t be possible without your philanthropic efforts. Thank you, and keep up the
 good work. I hope to return the favor one day.

 Finally, I’d like to thank my family and loved ones, who have endured this project with me. I appreciate your patience and
 unfailing support—even when I haven’t been there for you as much as I should have. And, most important, I love you guys!

About this Book

 Test-driven development was born in the hands and minds of software developers looking for a way to develop software better
 and faster. This book was written by one such software developer who wishes to make learning TDD easier. Because most of the
 problems encountered by developers new to TDD relate to overcoming technical hindrances, we’ve taken an extremely hands-on
 approach. Not only do we explain TDD through an extended hands-on example, but we also devote several chapters to showing
 you how to write unit tests for technology that’s generally considered difficult to test. First-hand experiences will be the
 biggest learning opportunities you’ll encounter, but this book can act as the catalyst that gets you past the steepest learning
 curve.

Audience

 This book is aimed at Java programmers of all experience levels who are looking to improve their productivity and the quality
 of the code they develop. Test-driven development lets you unleash your potential by offering a solid framework for building
 software reliably in small increments. Regardless of whether you’re creating a missile-control system or putting together
 the next YouTube, you can benefit from adopting TDD.

 Our second intended audience includes Java programmers who aren’t necessarily interested in TDD but who are looking for help
 in putting their code under test. Test-driven development is primarily a design and development technique; but writing unit
 tests is such an essential activity in TDD that this book will lend you a hand during pure test-writing, too—we cover a lot
 of (so-called) difficult-to-test technologies such as data-access code, concurrent programs, and user-interface code.

 Whether you’re simply looking to get the job done or have a larger goal of personal improvement in mind, we hope you’ll find
 this book helpful.

Roadmap

 You’re reading a book that covers a lot of ground. In order to structure the material, we’ve divided the book into three parts
 with distinct focuses. Part 1 introduces the book’s main topics—test-driven development and acceptance test-driven development—starting with the very basics.

 Chapter 1 begins with a problem statement—the challenges we need to overcome—and explains how TDD and acceptance TDD provide an effective
 solution in the form of test-first programming, evolutionary design, test automation, and merciless refactoring.

 Chapter 2 gets our hands dirty, extending our understanding of TDD through an in-depth example: a homegrown template engine we test-drive
 from scratch. Along the way, we discuss how to manage the tests we want to write in a test list and how to select the next
 test from that list.

 Chapter 3 finishes what chapter 2 started, continuing the development of the template engine through an extensive design change, starting with a spike—a learning
 experiment—and then proceeding to make the change to the template engine in a controlled, disciplined manner.

 Chapter 4 brings our perspective back to a higher level to explain the strategies in our toolkit, from selecting tests to making them
 pass. We also talk about essential testing concepts such as fixtures, test doubles, and the differences between state- and
 interaction-based testing. After giving some guidelines for creating testable designs, chapter 4 ends with an overview of a number of key test patterns and a section on working in a test-first manner with legacy code.

 Part 2 is about getting dirty again, demonstrating through working examples how we can apply TDD when working with a variety of
 technologies that are sometimes referred to as being “difficult to test-drive.” After part 2, you’ll know that folks who say that don’t know what they’re talking about!

 Chapter 5 starts our journey through the trenches of web development. We learn to test-drive request/response-style web layers using
 plain old Java Servlets and Spring Controllers, and we learn to test-drive the presentation layer built with JavaServer Pages
 and Apache Velocity templates. The chapter also contrasts these request/response examples with test-driving web applications
 using a component-based framework, Apache Wicket.

 Chapter 6 explains how to test-drive the data-access layer behind our web components. We’ll see examples of test-driving data-access
 objects based on raw JDBC code, the Spring Framework’s JdbcTemplate API, and the de facto object-relational mapping (ORM)
 tool, Hibernate. We’ll also discuss how to deal with the database in our unit tests and how to fill in the gaps with integration
 tests. Finally, we share a few tricks for dealing with the file system.

 Chapter 7 takes us to the land of the unknown: nondeterministic behavior. After first examining our options for faking time, we turn
 our attention to multithreading. We begin with a discussion of what we can and should test for, exploring topics such as thread
 safety, blocking operations, starting and stopping threads, and asynchronous execution. Our trip to the world of the unpredictable
 ends with a tour of the new synchronization objects from java.util.concurrent that were introduced in Java 5.

 Chapter 8 is about face—the face of Java Swing applications, that is. Again, we begin by figuring out what we should test for when
 test-driving UI code. Then, we look at three design patterns that make our test-driven lives easier, and we briefly introduce
 two open source tools—Jemmy and Abbot—for unit-testing Swing components. We finish chapter 8 (and part 2) with an extended example, test-driving the face and behavior for a custom Swing component.

 Part 3 is a change of tempo. We move from the concrete world of test-driving objects and classes into the fuzzier world of building
 whole systems in a test-first manner with acceptance TDD.

 Chapter 9 gets us going with an introduction to user stories for managing requirements, and to the essence of acceptance tests. Once
 we’re up to speed with the what, we focus on the how—the process of acceptance TDD and what it requires from the team. We also crystallize the benefits of and the reasons for
 developing software with acceptance TDD. The chapter ends with a discussion of what kinds of aspects our acceptance tests
 should specify about the system we’re building and an overview of some of the tools in our disposal.

 Chapter 10 makes acceptance TDD more concrete by taking a closer look at Fit, a popular acceptance-testing tool. Our Fit tutorial begins
 with a description of how the developer can use Fit to collaborate with the customer, first sketching acceptance tests in
 a tabular format and then touching them up into syntax recognized by Fit. We then see how to implement the backing code that
 glues our tabular tests into interaction with the system, first going through the three standard fixtures built into Fit and
 then looking at additional utilities provided by the FitLibrary, an extension to Fit. Finally, we learn to run our precious
 Fit tests from the command line and as part of an Apache Ant build.

 Chapter 11 expands our perspective by looking at a number of strategies for implementing our acceptance tests independent of the tools
 in use. After going through our options for connecting tests to the system we’re developing, we discuss the kinds of limitations
 and opportunities that technology puts in our way. We also share some tips for speeding up acceptance tests and keeping complexity
 in check.

 Chapter 12 ends part 3 as a black sheep of sorts—a chapter on ensuring the success of TDD adoption. We begin by exploring what ingredients should
 be in place for us to achieve lasting change, both for ourselves and for our peers. We then focus on resistance: how to recognize
 it and how to deal with it. Finally, we go through a long list of things in our toolbox that can facilitate the successful
 adoption we’re seeking.

 Because writing unit tests is so central to test-driven development, we’ve also provided three brief tutorials on some of
 the essential tools; you can use them as cheat sheets. Appendices A and B are for the JUnit unit-testing framework, illustrating
 the syntax for versions 4.3 and 3.8, respectively. Appendix C does the same for EasyMock, a dynamic mock-object framework we can use to generate smart test doubles.

 Test-driving code in the comfort of our favorite IDE is cool, but we need to make those tests part of our automated build.
 That’s why we’ve included appendix D: a brief tutorial for running JUnit tests with Apache Ant, the standard build tool for Java developers.

Code conventions

 The code examples presented in this book consist of Java source code as well as a host of markup languages and output listings.
 We present the longer pieces of code as listings with their own headers. Smaller bits of code are run inline with the text.
 In all cases, we present the code using a monospaced font, to differentiate it from the rest of the text. In part 2, we frequently refer from the text to elements in code listings. Such references are also presented using a monospaced font, to make them stand out from plain English. Many longer listings also have numbered annotations that we refer to in
 the text.

Code downloads

 The complete example code for the book can be downloaded from the Manning website page for this book, at http://www.manning.com/koskela. This includes the source code shown in the book as well as the omitted parts-everything you need to play and tinker with
 the code, taking it further from where we left off, or tearing it into pieces for a closer autopsy.

 The download includes a Maven 2 POM file and instructions for installing and using Maven (http://maven.apache.org) to compile and run the examples. Note that the download doesn’t include the various dependencies, and you need to have an
 Internet connection when running the Maven build for the first time—Maven will then download all the required dependencies
 from the Internet. After that, you’re free to disconnect and play with the examples offline.

 The code examples were written against Java 5, so you’ll need to have that installed in order to compile and run the examples.
 You can download a suitable Java environment from http://java.sun.com/javase. (To compile the code, you’ll need to download the JDK, not the JRE.)

 We seriously recommend installing a proper IDE as well. The example code comes in the form of an Eclipse project, so you may
 want to download and install the latest and greatest version of Eclipse (http://www.eclipse.org). Other mainstream tools such as IntelliJ IDEA (http://www.jetbrains.com/idea) and NetBeans (http://www.netbeans.org) should work fine, too—you’ll just need to configure the project yourself.

Online chapter

 There’s one hot topic that we don’t cover in the 12 chapters that made their way into the final manuscript: test-driving Enterprise
 JavaBeans. Instead, we’ve provided more than 40 pages of detailed advice for developers working with this technology in the
 form of an extra chapter that’s only available online.

 This bonus chapter covers Enterprise JavaBeans, ranging from regular session beans we use to encapsulate our applications’
 business logic to the persistence-oriented entity beans to the asynchronous-message-driven beans and the Timer API.

 Although we focus on covering the latest and greatest EJB 3.0 specification, we show some key tips and tricks for both 3.0
 and the older 2.x API. We do this because many legacy systems continue to use the 2.x version of the EJB specification, regardless
 of the massive testability and design improvements introduced in the EJB 3.0 specification.

 You can download the bonus chapter from http://www.manning.com/koskela.

What’s next?

 This book should give you enough ammunition to get going with test-driven development, but there’s bound to be a question
 or two that we haven’t managed to answer in full. Fortunately, Manning provides an online forum where you can talk to the
 authors of Manning titles, including the one you’re reading right now. You can reach Lasse at the Author Online forum for
 Test Driven at http://www.manning-sandbox.com/forum.jspa?forumID=306.

 Test-driven development is a technique and a methodology that can’t be described perfectly in a single written document, be
 it a short article or a series of books. This is partly because TDD is a technique that evolves together with the practitioner
 and partly because writing tests—a central activity in TDD—varies so much from one technology domain to the next. There are
 always new twists or tricks that we could’ve included but didn’t. Thus, it’s good to know where to go for further assistance.
 The testdrivendevelopment Yahoo! group is an excellent resource and frequently features interesting discussions about TDD and related issues. If you
 have a burning question and aren’t sure who to ask, ask the mailing list!

 If tapping into the Yahoo! group isn’t enough to satisfy your need for passive information-gathering about what’s happening
 in the community, I also suggest subscribing your feed reader to http://www.testdriven.com, a web portal focused on TDD. This portal gives you a heads-up about any relevant new article, blog entry, or development
 tool that appears on the scene. And, of course, many of the industry conferences on agile methods feature content about or
 related to TDD, so why not start attending those if you haven’t already?

 I’m looking forward to seeing you join the TDD community!

Author Online

 Purchase of Test Driven includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to http://www.manning.com/koskela. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Test Driven is a Franc Comtois, an inhabitant of the Free County of Burgundy in northeastern France. This territory of Burgundy was an independent state
 for a large part of its history, becoming permanently ceded to France only in the seventeenth century. The region has its
 own traditions and language, called Franc-Comtois, which is still spoken today.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions
 of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present. Dress codes have changed since then and the diversity by region, so rich at the time, has faded
 away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual
 and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. A TDD primer

 Part 1 is a test-driven development (TDD) primer, giving you a kick start in the art of test driving. In chapter 1, you’ll learn about both TDD and its big brother, acceptance TDD, from the very basics, getting an overview of both techniques.
 Chapter 2 takes you deeper into the test-first realm through a hands-on tutorial that you can follow on your computer, editing and
 running actual code as we go along. Chapter 3 continues on this path, developing the hands-on example further by throwing in a larger-scale refactoring that introduces
 significant changes to our design.

 While teaching TDD to dozens and dozens of programmers over the years, I’ve learned that practice is a better teacher than
 I am. By the time you’ve implemented a fully capable template engine through chapters 2 and 3, you’ll be ready to add some heavily guarded trade secrets to your toolbox. Chapter 4 expands our idea of TDD with a number of tips and tricks, from selecting the next test to different ways of making it pass.
 Design guidelines and testing tools will get the coverage they deserve, too.

Chapter 1. The big picture

 I can stand brute force, but brute reason is quite unbearable.

 Oscar Wilde

 “Only ever write code to fix a failing test.” That’s test-driven development, or TDD,[1] in one sentence. First we write a test, then we write code to make the test pass. Then we find the best possible design for
 what we have, relying on the existing tests to keep us from breaking things while we’re at it. This approach to building software
 encourages good design, produces testable code, and keeps us away from over-engineering our systems because of flawed assumptions.
 And all of this is accomplished by the simple act of driving our design each step of the way with executable tests that move
 us toward the final implementation.

 1 The acronym TDD is sometimes expanded to Test-Driven Design. Another commonly used term for what we refer to as TDD is Test-First
 Programming. They’re just different names for the same thing.

 This book is about learning to take those small steps. Throughout the chapters, we’ll learn the principles and intricacies
 of TDD, we’ll learn to develop Java and Enterprise Java applications with TDD, and we’ll learn to drive our overall development
 process with an extension to the core idea of TDD with what we call acceptance test-driven development (acceptance TDD or
 ATDD). We will drive development on the feature level by writing functional or acceptance tests for a feature before implementing
 the feature with TDD.

 As a way of applying tests for more than just verification of the correctness of software, TDD is not exactly a new invention.
 Many old-timers have stories to tell about how they used to write the tests before the code, back in the day. Today, this
 way of developing software has a name—TDD. The majority of this book is dedicated to the “what” and “how” of test-driven development,
 applied to the various tasks involved in developing software.

 In terms of mainstream adoption, however, TDD is still new. Much like today’s commodities are yesterday’s luxury items, a
 programming and design technique often starts as the luxury of a few experienced practitioners and then is adopted by the
 masses some years later when the pioneers have proven and shaped the technique. The technique becomes business as usual rather
 than a niche for the adventurous.

 I believe that mainstream adoption of TDD is getting closer every day. In fact, I believe it has already started, and I hope
 that this book will make the landing a bit less bumpy.

 We’ll start by laying out the challenge to deliver software using the current state of the practice in software development.
 Once we’re on the same page about what we’d like to accomplish and what’s standing in our way, we’ll create a roadmap for
 exploring how TDD and acceptance TDD can help resolve those problems, and we’ll look at the kinds of tools we might want to employ during our journey becoming to master craftspeople.

1.1. The challenge: solving the right problem right

 The function of software development is to support the operations and business of an organization. Our focus as professional
 software developers should be on delivering systems that help our organizations improve their effectiveness and throughput,
 that lower the operational costs, and so forth.

 Looking back at my years as a professional software developer and at the decades of experience documented in printed literature
 and as evidenced by craftsmen’s war stories around the world, we can only conclude that most organizations could do a lot
 better in the task of delivering systems that support their business. In short, we’re building systems that don’t work quite
 right; even if they would work without a hitch, they tend to solve the wrong problems. In essence, we’re writing code that
 fails to meet actual needs.

 Next, let’s look at how creating poorly written code and missing the moving target of the customer’s actual needs are parts
 of the challenge of being able to deliver a working solution to the right problem.

 1.1.1. Creating poorly written code

 Even after several decades of advancements in the software industry, the quality of the software produced remains a problem.
 Considering the recent years’ focus on time to market, the growth in the sheer volume of software being developed, and the
 stream of new technologies to absorb, it is no surprise that software development organizations have continued to face quality
 problems.

 There are two sides to these quality problems: high defect rates and lack of maintainability.

Riddled with defects

 Defects create unwanted costs by making the system unstable, unpredictable, or potentially completely unusable. They reduce
 the value of the software we deliver—sometimes to the point of creating more damage than value.

 The way we try to get rid of defects is through testing—we see if the software works, and then we try to break it somehow.
 Testing has been established as a critical ingredient in software development, but the way testing is traditionally performed—a
 lengthy testing phase after the code is “frozen”—leaves much room for improvement. For instance, the cost of fixing defects
 that get caught during testing is typically a magnitude or two higher than if we’d caught them as they were introduced into the code base. Having defects
 means we’re not able to deliver. The slower and the more costly it is to find and fix defects, the less able we become.

 Defects might be the most obvious problem with poorly written code, but such code is also a nightmare to maintain and slow
 and costly to develop further.

Nightmare to maintain, slow to develop

 Well-written code exhibits good design and a balanced division of responsibilities without duplication—all the good stuff.
 Poorly written code doesn’t, and working with it is a nightmare in many aspects. One of them is that the code is difficult
 to understand and, thus, difficult to change. As if that wasn’t enough of a speed bump, changing problematic code tends to
 break functionality elsewhere in the system, and duplication wreaks havoc in the form of bugs that were supposed to be fixed
 already. The list goes on.

 “I don’t want to touch that. It’ll take forever, and I don’t know what will break if I do.” This is a very real problem because
 software needs to change. Rather than rewrite every time we need to change existing code or add new code, we need to be able
 to build on what we have. That’s what maintainability is all about, and that’s what enables us to meet a business’s changing
 needs. With unmaintainable code we’re moving slower than we’d like, which often leads to the ever-increasing pressure to deliver,
 which ends up making us deliver still more poorly written code. That’s a vicious cycle that must end if we want to be able
 to consistently deliver.

 As if these problems weren’t enough, there’s still the matter of failing to meet actual needs. Let’s talk about that.

 1.1.2. Failing to meet actual needs

 Nobody likes buying a pig in a poke.[2] Yet the customers of software development groups have been constantly forced to do just that. In exchange for a specification,
 the software developers have set off to build what the specification describes—only to find out 12 months later that the specification
 didn’t quite match what the customer intended back then. Not to mention that, especially in the modern day’s hectic world
 of business, the customer’s current needs are significantly different from what they were last year.

 2 A sack. Don’t buy a pig in a sack.

 As a result of this repeated failure to deliver what the customer needs, we as an industry have devised new ways of running
 software projects. We’ve tried working harder (and longer) to create the specification, which has often made things even worse, considering that the extended period of time to a delivered system leaves even more time for the world to change around
 the system. Plus, nailing down even more details early on has a connection to building a house of cards. Errors in the specification
 can easily bring down the whole project as assumptions are built on assumptions.

 Our industry’s track record makes for gloomy reading. There’s no need to fall into total depression, however, because there
 are known cures to these problems. Agile software development,[3] including methods such as Extreme Programming (XP) and Scrum, represents the most effective antidote I am aware of. The rest of this book will give us a thorough understanding
 of a key ingredient of the agility provided by these methods—being test-driven.

 3 Refer to Agile & Iterative Development: A Manager’s Guide (Addison-Wesley, 2003) by Craig Larman for a good introduction to agile methods.

1.2. Solution: being test-driven

 Just like the problem we’re facing has two parts to it—poorly written code and failure to meet actual needs—the solution we’re
 going to explore in the coming chapters is two-pronged as well. On one hand, we need to learn how to build the thing right.
 On the other, we need to learn how to build the right thing. The solution I’m describing in this book—being test-driven—is
 largely the same for both hands. The slight difference between the two parts to the solution is in how we take advantage of tests in helping us to create maintainable, working software that meets the customer’s actual, present
 needs.

 On a lower level, we test-drive code using the technique we call TDD. On a higher level—that of features and functionality—we
 test-drive the system using a similar technique we call acceptance TDD. Figure 1.1 describes this combination from the perspective of improving both external and internal quality.

 Figure 1.1. TDD is a technique for improving the software’s internal quality, whereas acceptance TDD helps us keep our product’s external
 quality on track by giving it the correct features and functionality.

 [image:]

 As we can see from figure 1.1, these two distinct levels on which we test-drive the software collectively improve both the product’s internal quality and
 the external, or perceived, quality. In the following sections, we’ll discover how TDD and acceptance TDD accomplish these
 improvements. Before we dig deeper into the techniques, let’s first concentrate on how these techniques help us overcome the
 challenge of being able to deliver.

 1.2.1. High quality with TDD

 TDD is a way of programming that encourages good design and is a disciplined process that helps us avoid programming errors.
 TDD does so by making us write small, automated tests, which eventually build up a very effective alarm system for protecting
 our code from regression. You cannot add quality into software after the fact, and the short development cycle that TDD promotes
 is well geared toward writing high-quality code from the start.

 The short cycle is different from the way we’re used to programming. We’ve always designed first, then implemented the design,
 and then tested the implementation somehow—usually not too thoroughly. (After all, we’re good programmers and don’t make mistakes,
 right?) TDD turns this thinking around and says we should write the test first and only then write code to reach that clear
 goal. Design is what we do last. We look at the code we have and find the simplest design possible.

 The last step in the cycle is called refactoring. Refactoring is a disciplined way of transforming code from one state or structure to another, removing duplication, and
 gradually moving the code toward the best design we can imagine. By constantly refactoring, we can grow our code base and
 evolve our design incrementally.

 If you’re not quite sure what we’re talking about with the TDD cycle, don’t worry. We’ll take a closer look at this cycle
 in section 1.3.

 To recap what we’ve learned about TDD so far, it is a programming technique that helps us write thoroughly tested code and
 evolve our code with the best design possible at each stage. TDD simply helps us avoid the vicious circle of poorly written
 code. Prong number one of the test-driven solution!

 Speaking of quality, let’s talk a bit about that rather abstract concept and what it means for us.

Quality comes in many flavors

 Evidenced by the quality assurance departments of the corporate world of today, people tend to associate the word quality with the number of defects found after using the software. Some consider quality to be other things such as the degree to
 which the software fulfills its users’ needs and expectations. Some consider not just the externally visible quality but also
 the internal qualities of the software in question (which translate to external qualities like the cost of development, maintenance,
 and so forth). TDD contributes to improved quality in all of these aspects with its design-guiding and quality-oriented nature.

 Quite possibly the number one reason for a defect to slip through to production is that there was no test verifying that that
 particular execution path through our code indeed works as it should. (Another candidate for that unwanted title is our laziness:
 not running all of the tests or running them a bit sloppily, thereby letting a bug crawl through.)

 TDD remedies this situation by making sure that there’s practically no code in the system that is not required—and therefore
 executed—by the tests. Through extensive test coverage and having all of those tests automated, TDD effectively guarantees
 that whatever you have written a test for works, and the quality (in terms of defects) becomes more of a function of how well
 we succeed in coming up with the right test cases.

 One significant part of that task is a matter of testing skills—our ability to derive test cases for the normal cases, the
 corner cases, the foreseeable user errors, and so forth. The way TDD can help in this regard is by letting us focus on the
 public interfaces for our modules, classes, and what have you. By not knowing what the implementation looks like, we are better
 positioned to think out of the box and focus on how the code should behave and how the developer of the client code would—or
 could—use it, either on purpose or by mistake.

 TDD’s attention to quality of both code and design also has a significant effect on how much of our precious development time
 is spent fixing defects rather than, say, implementing new functionality or improving the existing code base’s design.

Less time spent fixing defects

 TDD helps us speed up by reducing the time it takes to fix defects. It is common sense that fixing a defect two months after
 its introduction into the system takes time and money—much more than fixing it on the same day it was introduced. Whatever
 we can do to reduce the number of defects introduced in the first place, and to help us find those defects as soon as they’re
 in, is bound to pay back.

 Proceeding test-first in tiny steps makes sure that we will hardly ever need to touch the debugger. We know exactly which
 couple of lines we added that made the test break and are able to drill down into the source of the problem in no time, avoiding
 those long debugging sessions we often hear about in fellow programmers’ war stories. We’re able to fix our defects sooner,
 reducing the business’s cost to the project. With each missed defect costing anywhere from several hundred to several thousand dollars,[4] it’s big bucks we’re talking here. Not having to spend hours and hours looking at the debugger allows for more time to be
 spent on other useful activities.

 4http://www.jrothman.com/Papers/Costtofixdefect.html.

 The fact that we are delivering the required functionality faster means that we have more time available for cleaning up our
 code base, getting up to speed on the latest developments in tools and technologies, catching up with our coworkers, and so
 forth—more time available to improve quality, confidence, and speed. These are all things that feed back into our ability
 to test-drive effectively. It’s a virtuous cycle, and once you’re on it, there seems to be no end to the improvements!

 We’ll soon talk about further benefits of adopting and practicing TDD—the benefits for you and me as programmers—but before
 we go there, let’s talk a bit about the second prong of our solution to the aforementioned challenge of being able to deliver:
 acceptance TDD.

 1.2.2. Meeting needs with acceptance TDD

 TDD helps us build code with high technical quality—code that does what we expect it to do and code that’s easy to understand
 and work with. The correctness of the code we develop with TDD, however, is tested for isolated blocks of logic rather than
 for features and system capabilities. Furthermore, even the best code written test-first can implement the wrong thing, something
 the customer doesn’t really need. That’s where acceptance test-driven development comes into the picture. The traditional
 way of adding features into a system is to first write a requirements document of some kind, proceed with implementation,
 have the development team test the feature, and then have the customer acceptance-test the feature. Acceptance TDD differs
 from this method by moving the testing function before the implementation, as shown in figure 1.2. In other words, we translate a requirement into a set of executable tests and then do the implementation against the tests
 rather than against the developer’s interpretation of a verbal requirement.

 Acceptance TDD provides the missing ingredient to delivering a good product by bridging the gap between the programmer and
 the customer. Rather than working off of arbitrary requirements documents, in acceptance TDD we strive for close collaboration
 and defining explicit, unambiguous tests that tell us exactly what it means when we say a feature is “done.” By defining the
 desired functionality in very concrete terms—via executable tests—we are effectively ensuring that we’re delivering what the customer needs.

 Figure 1.2. Acceptance test-driven development drives implementation of a requirement through a set of automated, executable acceptance
 tests.

 [image:]

 The process is much like the TDD cycle on the code level. With acceptance TDD, we’re just talking about tests for the behavior
 of a system rather than tests for the behavior of objects. This difference also means that we need to speak a language that
 both the programmer and the customer understand.

 TDD and acceptance TDD often go hand in hand. On the system level, we run our development process with acceptance TDD; and
 inside the implementation step of each feature; we employ TDD. They are by no means tightly coupled, but they are powerful
 in combination and they do fit together seamlessly.

 We should now have an idea of how TDD and acceptance TDD team together for a solution to the challenge of being able to deliver
 high-quality software that targets the right need. We’ll soon study in more detail what TDD is, how it helps us create high-quality
 code, and how to build it right. In section 1.4, we’ll talk more about how we can let tests drive our development on a higher level to help us meet our customers’ needs—to
 build the right thing—with acceptance TDD. Before going farther, though, let’s talk a bit about how we, as programmers, benefit
 from working test-first.

 1.2.3. What’s in it for me?

 We don’t buy a new car for no reason, and we definitely shouldn’t adopt a new development technique just because it exists.
 There has to be something valuable—something that improves our productivity—in order for it to make sense for us to take on
 learning a new way of doing our job. We already know that TDD and acceptance TDD help us produce higher-quality software that
 meets our customers’ needs. Let’s spell out to ourselves how these techniques make our personal work experience more enjoyable.

 I can easily identify at least three clear benefits I have personally gained from having adopted TDD back in the day:

	
I rarely get a support call or end up in a long debugging session.

 	I feel confident in the quality of my work.

 	I have more time to develop as a professional.

Let me explain what I mean by these benefits.

No more long debugging sessions

 I still remember a particular programming task a few years back. I got the task of fixing a defect in a homegrown parser for
 a proprietary file format. I read hundreds and hundreds of lines of code, going back and forth as I was trying to come to
 grips with the design; eventually figured I knew what needed to be done.

 Not yet having adopted TDD at that time, I started molding the parser toward the new design I had envisioned that would get
 rid of the defect and make the parser easier to understand as a nice bonus. It took a couple of hours to get the new design
 in place and the code base compiling. Full of excitement about my ultra-smart design, I tabbed to a terminal window to install
 the parser to a test server. And? The darn parser didn’t work. It just did not work, and I had no idea why. I ran the code
 in a debugger, but I still couldn’t figure out the problem. I’m pretty sure it took more than a couple of hours of stepping
 through the code again and again with the debugger before I found and fixed the problem. And it turned out to be a rather
 trivial one. Tired, hungry, and slightly pissed off, I left the office cursing my blindness for the error.

 It was much later that I realized the problem was not with my blindness but the way I approached the task—the process, if
 you will—by taking way too big a step, effectively losing sight of the tree from the woods. If I had written small, focused
 tests along the way as we do with TDD, I would’ve spotted the error immediately after writing the flawed branching construct.

 As if the deadly debugging session wasn’t enough, Murphy’s Law[5] proved itself yet again. I soon got a rather angry call due to the parser crashing in a customer’s production environment.
 It turns out that I had introduced at least one major defect into the parser as I changed its design. It’s one thing to know
 that your code could exhibit a better design. It’s another thing to be awakened at 3:00 a.m. from sleep by an angry account
 manager who was just awakened by an even angrier customer.

 5 Murphy’s Law: If something bad can happen, it will happen.

 I would’ve slept at least two hours more that night—and better—if only I had used a technique like TDD or, at the very least,
 written proper tests for the parser. That particular incident raised my interest in testing my changes significantly because I was suddenly painfully aware of
 having had false confidence in my work. And I like to feel confident with my work.

Feeling confident with my work

 Deep down, we want to write code that works. Our job might be at stake if we deliver code that’s too buggy. On the other hand,
 we want to write code as fast as possible. Our livelihood might also be at stake if we take too long writing the code. As
 a result, we often have to decide when we are confident enough about the code we’re writing to release it and move on to our
 next task.

 For a moment, let’s take a trip down memory lane. Think about a programming session you’ve experienced, writing some piece—any
 piece—of code that needed to work or bad things would happen. Take a minute to reminisce about that moment.

 How did you go about writing that code? Did you design it first on a notepad? Did you write the code in one burst, getting
 it right the first time, or did you go back and start over? Did you spot an obvious error in your loop? Did it compile at
 first try?

 How did you verify that the particular piece of code worked? Did you write a main method just for testing? Did you click through the user interface to see that the functionality was there? Did you spot errors
 in your tests? Did you step through the code in a debugger? Did you have to go back multiple times to fix some small issues?
 Overall, how long did it take to test it compared to writing the code itself?

 Whatever your answers were for these questions, I hope you’ve got some idea right now of the kind of things and activities
 you have done in order to crank out code that you trust—code that you’re confident works. With this in mind, I have a question
 for you.

 What if you could be confident that any code you release contains exactly zero defects? If you could know that your code works exactly how the specification says it should, would your stress level come falling down? Mine has. What if you could speed up the
 slow parts of that programming session you were thinking about—while increasing your confidence in the code’s correctness?
 Could you envision working that way all the time?

 I cannot promise that adopting TDD would make your software defect-free. In the end it’s you who’s writing the code, and it’s
 up to you to avoid injecting bugs into your code base. What I can promise, though, is that practicing TDD will make you more confident about your software by letting you know exactly what your code does in which situations.

 This added confidence does wonders to the internal quality of our software as well. You might say it’s a virtuous cycle. The
 better your test suite is, the better the quality of your code and the more confident you can be about any changes you make.
 The more confident you are about the changes you make, the more changes you dare to make. The more changes you make, the better
 your internal quality becomes, the easier it is to write tests for your code, and so on. Clearly a good thing!

More time for other stuff

 TDD and acceptance TDD don’t make us type any faster, but they help us cut time from less productive activities such as debugging
 and cursing at unreadable code, or rework due to misunderstandings regarding requirements. As we proceed in small steps, accumulating
 tests and becoming more confident about our code, we no longer feel the need to repeat the same tests over and over again
 “just in case the computer would do something different this time,” or feel unsure whether we’ve checked that odd combination
 of data that could break things.

 The more confidence we have, the faster we can move on to other tasks. Sure, our confidence can sometimes be false, but the
 occasion when that happens is, in my experience, outweighed by the diminished time we spend pondering whether we have tested
 the code enough to pass it on or check it in and whether the feature is implemented correctly or not.

 TDD and acceptance TDD aren’t silver bullets, but they are one of the closest things to that legendary shiny projectile we’ve
 seen since the invention of timesharing machines. In the next section, we’ll talk about TDD in more detail. After that, we’ll
 do the same for acceptance TDD.

 Let’s go.

1.3. Build it right: TDD

 So test-driven development is a development and design technique that helps us build up the system incrementally, knowing
 that we’re never far from a working baseline. And a test is our way of taking that next small step.

 In this section, we’ll learn what makes TDD tick, and we’ll elaborate on why it works and what kind of benefits we get from
 using the technique. It all begins with the TDD cycle, which is the heartbeat of our work. After exploring the TDD cycle,
 we’ll talk about the meaning of having working software all the time, starting from day one. An essential part of building the system incrementally is to design for the present, rather than try to go for a
 design of the whole system up front. We’ll also talk through how TDD helps us do just that. Then, we’ll continue with a discussion
 of what makes this approach feasible—how to keep our software in good health and working, all day, every day.

 Let’s get going. Next stop, the TDD cycle of test-code-refactor.

 1.3.1. Test-code-refactor: the heartbeat

 As we learned in the first paragraph of this chapter, test-driven development, or TDD, is a programming technique based on
 a very simple rule:

 Only ever write code to fix a failing test.

 In other words, write the test first, and only then write the code that makes it pass. This rule is controversial to many
 of us who have been schooled to first produce a thorough design, then implement the design, and finally test our software
 in order to find all those bugs we’ve injected during implementation. TDD turns this cycle around, as illustrated in figure 1.3.

 Figure 1.3. TDD turns around the traditional design-code-test sequence. Instead, we test first, then write code, and design afterward.

 [image:]

 Test first, then code, and design afterward. Does the thought of “designing afterward” feels awkward? That’s only natural.
 It’s not the same kind of design we’re used to in the traditional design-code-test process. In fact, it’s such a different
 beast that we’ve given it a different name, too. We call it refactoring to better communicate that the last step is about transforming the current design toward a better design. With this little
 renaming operation, our TDD cycle really looks like that in figure 1.4: test-code-refactor.

 Figure 1.4. Test-code-refactor is the mantra we test-driven developers like to chant. It describes succinctly what we do, it’s easy to
 spell, and it sounds cool.

 [image:]

 In its deceptive simplicity, this little cycle, test-code-refactor, encompasses a significant power to improve the overall
 quality of our personal software process and, subsequently, that of the whole team, project, and organization.

	

 Red-green-refactor
 Red-green-refactor is an alternative mnemonic for the TDD cycle of writing a test, making it pass, and making it pretty. What’s with the colors, you ask?

 When we begin the TDD cycle by writing a test, it fails. It fails because our system is broken right now; it doesn’t have
 all the functionality we want it to have. In some development environments, it fails by displaying a red bar—thus the red in the mnemonic.

 In the second step, making it pass, we implement the missing functionality so that all tests pass—both the one we just added
 and all the ones we had already. At this time, the red bar turns to green, which takes us to green in the mnemonic.

 The last part of the cycle, refactor, is just that—refactoring. As we improve the design of the code without altering its external behavior, all tests should
 pass and, thus, we should remain green.

 Red, green, green. Red, green, refactor. Quite catchy, isn’t it?

	

We’ll take a closer look at this cycle in chapter 2, but let’s do a quick overview of what we do in each of these three steps and why we do them. Then we’ll explore further
 the rationale and dynamics behind the technique.

First we write a test

 When we write a test in the first step of the TDD cycle, we’re really doing more than just writing a test. We’re making design
 decisions. We’re designing the API—the interface for accessing the functionality we’re testing. By writing the test before
 the code it’s testing, we are forcing ourselves to think hard about how we want the code to be used. It’s a bit like putting
 together a jigsaw puzzle. As illustrated by figure 1.5, it’s difficult to get the piece you need if you don’t know the pieces with which it should connect.

 Figure 1.5. How do we know what our interface should be like if we don’t try to use it? We don’t. Writing the test before the code makes
 us think about our design from the code user’s (the developer’s) perspective, leading to a usable API.

 [image:]

 That’s not something to be taken lightly. You may have heard user-interface specialists talk about how important it is to
 design user interfaces for the user. Why should things be any different for the internals of our software? Aren’t we—the programmers—users
 of our code just like end users are users of our software?

 This way of thinking about code can sometimes make a huge difference. I’ve often looked at the API of some third-party library
 and wondered how the heck I’m supposed to use it. I’m pretty confident that many of those APIs haven’t been designed with
 the user in mind, but rather on the terms of the programmers developing the library. One of the fundamental lessons in designing
 an interface is that we only evaluate a design effectively and objectively when we try to use it. By writing the test first,
 we are ensuring that we will not miss that feedback.

	

Note

 Granularity of the tests we write is also something to pay attention to. We strive to write just enough test code to have
 a failing test rather than write an epic-sized test for a piece of functionality that’ll take an hour to implement. Depending
 on the domain, tools, and technologies in question, writing the test might be a matter of a few seconds or it might take a
 couple of minutes. The implementation for a test should generally be within that time range, too. Using complex technologies
 might push our granularity and rhythm toward the longer end of the range, but, as we will see in part 2, most of the time all the talk about the complexity associated with stuff like Java Servlets or data access code is really
 just that: talk.

	

It’s not easy to create simple-to-use APIs. That’s why we need all the help we can get. As it turns out, driving our design
 with tests is extremely effective and produces modular, testable code. Because we’re writing the test first, we have no choice
 but to make the code testable. By definition, the code we write is testable—otherwise it wouldn’t exist!

 The design of software is not just about structure. It’s also about the suitability of the software for the current needs.
 Software that knows how to boil water, cook rice, deep-fry vegetables, and marinate a chicken is not the perfect match for
 someone who’s only interested in getting a cup of tea. While it probably doesn’t bother you that your car’s engine has two extra valves on stand-by for those occasions when extra acceleration is needed,
 it certainly would bother you if you needed to change all the valves from your engine. That’s the cost of over-engineering
 software.

 You’re spending money on developing stuff that’s not really needed, and you’re spending money on having to deal with the added
 complexity while working on that over-engineered piece of code. You aren’t going to need it yet, so why put it in? Instead,
 put those extras on a list somewhere so you don’t forget them. It might be that many of them never end up in the software—and
 for a good reason.

 One way tests drive the design in TDD is that they tell you exactly what your software needs to be able to do now. Not tomorrow, not yesterday—now. Proceeding in these small steps, implementing just enough functionality to get that next
 test passing, we are in control of our software and its design. We have the safety net of automated tests to make sure we
 don’t stumble in the dark, we have the clear sight of where we need to go, and we have the confidence that we’re implementing
 stuff that matters and stuff that we need right now.

 This theme of focusing on the present is central to TDD. Indeed, the theme repeats itself in the second step of the TDD cycle,
 writing just enough code.

Then we write just enough code

 The second step of the TDD cycle is to write just enough code to make the test pass. Why just enough code? The test we’ve
 written is a test that’s failing. It’s pointing out a gap between what the code does and what we expect it to do. It’s a small
 gap, which we should be able to close in a few minutes, which, in turn, means that the code is never broken for long.

 One of the fundamental ideas behind the concept of test-first development is to let the tests show you what to implement in
 order to make progress on developing the software. You’re not just coding away, oblivious to the requirements of the piece
 of code you’re writing. You’re satisfying an explicit, unambiguous requirement expressed by a test. You’re making progress,
 and you’ve got a passing test to show for it.

 It’s worth noting that when we write just enough code, our main goal is to make the test pass as quickly as possible. That
 often means an implementation that’s not optimal. And that’s OK. We’ll take care of all that after we have the desired behavior
 in place—and tests to prove it. With the tests as our safety net, we can then proceed to improving the design in the last
 step of the TDD cycle: refactoring.

And then we refactor

 The final step of the TDD cycle of test-code-refactor is when we take a step back, look at our design, and figure out ways
 of making it better. The refactoring step is what makes TDD sustainable. We could consider TDD without refactoring to be a
 good way of producing ugly code. Thoroughly tested ugly code, but still. The ugliness is directly proportionate to our productivity
 in working with and further developing the code, which makes it pretty darn important to not forget to refactor. In fact,
 it’s so important that we’ll dedicate a whole section to talking about refactoring in more detail.

 Before we go there, though, let’s explore the big picture of developing software in small increments.

 1.3.2. Developing in small increments

 A common tenet of agile methods is that they all suggest producing a potentially deployable product as soon as possible—regardless
 of how little functionality it has—and to keep on cranking out those deployable versions every day (some projects have reported
 building a release package of their software several times a day) until the project is finished. This practice makes sure
 that when the deadline comes, you have something you can deliver and that works. It might not have all the features the customer
 asked for, and it might not have everything your iteration plan said it would, but at least you’ve got something—and something
 that works.

 Figure 1.6 shows an incremental progression of working, tested functionality where the inventory of non-integrated, unfinished work
 is very small at any given point in time.

 Figure 1.6. With incremental development—building the whole system in small increments—we are never far from an integrated, working code
 base. This reduces risk, because the inventory of unfinished work remains small. As we’ll learn later on, incremental development
 also enables effective learning through early feedback based on the customer and developers constantly seeing actual, working
 software.

 [image:]

 Too many projects have pushed back their deadline again and again, eventually getting canceled, without delivering a single
 line of working code. By building your product in small increments, iteration by iteration, you don’t have to worry about
 not making the deadline because you have a working (albeit not feature-complete) system starting from the first iteration.
 Similarly, too many projects have delivered buggy code as a result of a last-minute rush of getting it together for the deadline.

 TDD removes this problem by proceeding in small steps, each of which results in a working product that’s one small step closer
 to the desired behavior. Because these steps are so small (calculated in minutes rather than hours or days), we don’t end
 up with a pile of random code we need to quickly stitch together. We keep the software working by never letting it go too
 far away from that state. Likewise, we keep the software lean and mean by designing for the present moment rather than looking
 too far ahead.

 Building software in increments and, especially, in increments dictated by the perceived cost and benefit of business functionality,
 is not something you can do with the traditional “design everything up front, considering every possible twist, so that the
 architecture is rock solid and supports all the features the product will have” approach to design. We can’t build the complete,
 perfect architecture for the envisioned end product in a single run. Only the simplest or most thoroughly understood project
 makes it possible to get the architecture right early on. We need to iterate, adding to our design a small step at a time.

 Figure 1.7 shows how this iterative, incremental process moves back and forth between the small step of adding functionality and adjusting
 our design—and architecture—to properly accommodate that added functionality.

 Figure 1.7. Incremental design is about adjusting the code’s structure in small increments as more behavior is added. At any stage during
 the lifetime of the code base, the code exhibits the best design the developers could conceive for supporting the present
 functionality. This way, we evolve an empirically proven architecture.

 [image:]

 This is incremental and evolutionary design. Instead of designing as much as we possibly can up front, we design as much as
 we deem necessary in order to make progress. Instead of thoroughly analyzing all the possible scenarios imaginable before
 finalizing the design, we opt for making our design decisions based on knowledge—not assumptions—acquired during implementation.

 The degree of up-front design necessary before diving into the implementation of the specific feature or capability varies
 from situation to situation, between teams, between individuals, and between technologies. The key is to keep an eye on whether you’re going in the right direction.
 Big part of your design didn’t work out? Cut back on up-front design. Ended up with a design that doesn’t scale enough? Turn
 the up-front design lever up a notch.

 You’ve probably noticed that we keep talking about taking small steps. Let’s take a closer look at why small is good for us.

Small enough to fit our heads

 The rationale behind slicing a bigger goal into small tests is two-fold. First of all, many tasks we face out there in the
 field are far too big, ambiguous, or outright complex to be manageable. Thus, we need to split them into smaller pieces so
 they fit our heads better. I don’t know about yours, but my mind doesn’t handle those big monsters well, and I’ve heard others
 say the same thing (I’m hoping they weren’t just being polite). Figure 1.8 shows how a complex problem can be simplified into smaller, simpler problems to be solved one at a time.

 Figure 1.8. We are much better able to grasp complex problems by giving our attention to smaller pieces one at a time.

 [image:]

 Let’s face it. The majority of people can handle up to five to seven concepts simultaneously in their working memory. Overloading
 your brain beyond its capacity is bound to result in something getting overlooked while we’re swapping things back and forth between the working
 and long-term memory (or a written document). Having a sequence of smaller steps toward the end goal lets us measure our progress
 in terms of something concrete, assuming that we will know when each of those steps gets finished—which we do know because
 we’ve sliced our overall task into a sequence of small tests that make measurable progress toward the ultimate goal.

 TDD by its nature encourages such small steps with evolutionary design. We’re constantly improving, changing the design in
 small increments. In practice, we’ll have to build some architecture as we go—we’ll just need to take that task into consideration when estimating the work.

 Let’s take a closer look at how evolutionary design works, how it creates a living code base, and what kinds of implications
 it has for our way of working.

Evolutionary design

 Many programmers are familiar with a situation where a piece of code screams for someone to fix it but nobody does. Why? Because
 that piece of code happens to be part of the interface between two components and is, thus, that much harder to change, so
 nobody ends up changing it. Evolutionary design is a mindset that requires us to make that change—nurture the living and growing
 code base instead of protecting it from the bad, bad world that wants change—and thus improve the quality of our design and,
 indirectly, the quality of the whole system.

 So, how does this evolutionary design work? It works in small steps. The suggested amount of up-front design varies from one
 agile method to another, but the common idea is that you’ll only implement architecture that you know you’re going to need.
 In one extreme, you know this only when you start working on a feature that requires, say, an email server. At that point,
 you know you’ll need an email server, so you implement that email service architectural component, install the email server,
 and so forth. Typically, this kind of architectural change can be added just in time without too much pain. Sometimes, it’s
 not that easy.

 Software systems can have certain needs—typically related to performance and/ or networking capabilities—that may not be easy
 to add into the architecture after the fact. For example, splitting a single-user desktop application into a desktop client
 talking to a multi-user server over the network is something that’s bound to take plenty of effort. Similarly, making a batch-processing
 application support real-time updates on the side might not be the easiest task the team will face.

 Then again, these needs don’t tend to come to developers as a complete surprise. Although changes in requirements are generally
 something we cannot anticipate, the developers often see beforehand that certain evolution is going to take place at some point, in light of the known requirements.
 We could call this anticipated change. As figure 1.9 points out, though, anticipated change is not guaranteed change. Some anticipated change never happens, and some may quickly turn to unanticipated change as the various unknowns
 reveal surprises.

 Figure 1.9. The emerging, evolutionary design of a system is influenced by both anticipated and unanticipated change. It’s worth noting,
 though, that a significant amount of anticipated change doesn’t happen—or happens in a different form than expected, essentially
 making it unanticipated change. Our job is to apply common sense and good judgment when preparing for change that we know
 will happen. A lot of such change never does.

 [image:]

 Evolutionary design does not mean using common sense is prohibited. The developers should make use of what they know within
 the limits of common sense, with awareness of the uncertainty of change itself, and while keeping in mind what the priorities
 are.

 For example, consider a situation where we know that while the system now needs to handle an hourly batch update over the
 network from the company’s customer relationship management (CRM) system, in a few months it will likely be developed further into real-time integration, passing web service messages over
 the hypertext transfer protocol (HTTP). With this information, what should we do to accommodate the possible future requirement for real-time integration?

 Should we separate the data-processing logic from the data-receiving logic? Definitely! Should we already build the first,
 batch-based release on top of an application server so that we’ve got out-of-the-box web services support when the issue of
 handling web service messages becomes relevant? Perhaps we should, perhaps we shouldn’t.

 The point here is to make a trade-off between avoiding unnecessary work on something that we don’t need and avoiding taking
 shortcuts now that will come back to bite us. History has shown time and time again that for the most part, evolutionary design
 is less expensive than trying to get the final design on paper in the beginning.

Discipline required

 Again, the amount of up-front work varies from project to project (and it should—one size doesn’t fit all), but evolutionary
 design means that in any case you’ll be doing a lot of changes to existing code to make room for the new features you’re adding
 into the system as the iterations go by. With a lot of change happening all the time, we cannot afford having poorly written
 code. As such, we need plenty of discipline on the part of developers to keep our code from rotting.[6] The good news is that together with its supporting practices, evolutionary design will also help us weed out those problems
 and eventually stabilize our bug count closer to zero[7] instead of letting us build on a foundation of lurking defects.

 6http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf.

 7 No, I’m not going to talk about whether zero-defect software is feasible. Feel free to voice your opinion, though.

 What are these supporting practices? In short, it’s all about keeping your software in good health—at all times. An essential
 part of achieving this is refactoring. We already mentioned refactoring in passing as the last step of the TDD cycle of test-code-refactor.
 For a longer explanation of how refactoring fits into the big picture, read on.

 1.3.3. Keeping code healthy with refactoring

 Proceeding in small increments means that we’re constantly extending the system to do something that its current design might
 not support. Consequently, we’re constantly extending the system’s design in ways that might break existing concepts as well
 as introduce new ones. This, in turn, means that we’re bound to end up with a broken design that’s inconsistent, unbalanced,
 difficult to understand, difficult to extend, or otherwise having a bad hair day. If we’re out of luck, all of them. And that
 would seriously hamper our ability to keep delivering software to our customers. Not to worry, though. There is a way to practice
 evolutionary design without letting the design rot—that way is called refactoring.

 Quoting Martin Fowler, the author of Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999), refactoring is “a disciplined technique for restructuring an existing body of code, altering its internal structure without
 changing its external behavior.” That description manages to pack a lot of information into such a short sentence. Let’s spell
 it out and see what it’s actually telling us about refactoring, shall we?

Refactoring is disciplined

 When refactoring (verb), we are not just altering the code’s structure but improving the design by altering it in a controlled manner—by applying
 small behavior-preserving transformations that are called refactorings (noun). In other words, refactoring is about applying refactorings on code in a controlled manner. This restructuring can
 be a significant change to the existing design, but it is always performed in small steps, verifying at each stage that the
 little transformations we’ve made have not changed existing behavior.

 We don’t just change code. We first identify specific problems in the design, and then we select appropriate refactorings
 and apply them carefully and thoughtfully. We wait until a problem begins to present itself, and only then do we solve it.
 We don’t predict design problems beforehand and prepare for them—that would increase the possibility of creating more problems
 with our system’s design than solving them.

Refactorings are transformations

 A refactoring can also be thought of as a transformation between two states. The starting state has some characteristic you’d like to get rid of or otherwise improve on, and the target state represents
 a design that would incorporate that improvement. Figure 1.10 shows an example of a refactoring called Replace Inheritance with Delegation (also documented in Fowler’s book) that, as
 its name implies, moves our design from an inheritance-based solution to a delegation-based solution.

 Figure 1.10. Refactorings are transformations between two functionally identical states or structures of the code. Here we see a transformation
 from using inheritance hierarchy to using a delegate to provide the same functionality while improving the design’s fitness
 for our current needs. These transformations are not absolute improvements—they’re simply disciplined transitions from one
 possible design to another. In fact, for many refactorings there exists a reverse refactoring, making the same transformation
 in the opposite direction.

 [image:]

 The reason for doing this refactoring might be, for instance, that the subclass is only extending the superclass in order
 to reuse a small part of its functionality and, as an unwanted side effect, inherits a whole bunch of data and functionality
 we don’t care for.

 Some of these refactorings are so well defined that modern development tools have automated them. This automation has made
 refactoring evolutionary designs feasible for applications and systems of pretty much any size and complexity. (Can you imagine
 yourself renaming a method for clarity if that would mean manually checking out some five dozen source files from version
 control, doing a search-and-replace, and then checking in?)

	

 Refactoring to patterns
 Sometimes, one or both of the states we move between with our refactorings are known design patterns,[8] or known solutions to common design problems. Although most of the refactorings people apply on a daily basis are operating
 on a level much smaller than that of design patterns, every now and then we do, in fact, spot signs of a hidden pattern in
 our code and decide to move the design toward that pattern, making it explicit. To read more about the relationship between
 refactoring and design patterns, I heartily recommend Joshua Kerievsky’s Refactoring to Patterns (Addison-Wesley, 2004).

 8 A good Java-oriented reference for classic design patterns is Software Architecture Design Patterns in Java by Partha Kuchana (Auerbach, 2004).

	

Refactorings alter internal structure

 So these transformations are applied to the system’s internal structure—the code—which means that many of the refactorings
 are very low-level. For example, one of the most common refactorings is called rename method. Renaming a method or a local variable might not seem like too significant a change in the system’s design, but renaming
 a method from something ambiguous to something clear and concise can make a world of difference to someone new to the code
 and needing to understand the existing code.

OEBPS/01fig04.jpg
Test Code Refactor

OEBPS/01fig05.jpg
<

OEBPS/01fig02.jpg
Requirement [—»{ Acceptance tests | Feedback | Implementation

OEBPS/01fig03.jpg
Traditional development cycle

Design Code Test

Test-driven development cycle

Test Code Design

OEBPS/pub.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/01fig06.jpg
Functionality

_-O T Maximum inventory

! of nonintegrated

L work at any one time

>
Time

OEBPS/01fig08.jpg
Complex

OEBPS/01fig07.jpg
Implement new
functionality

Adjust design

OEBPS/cover.jpg
RIVEN

Practical TDD and
Acceptance TDD for
Java Developers.

/I' manning LASSE KOSKELA

OEBPS/01fig10.jpg
Delegator
E g =
[+ method(L

OEBPS/01fig09_alt.jpg
// Anicipated
change that
doesn't
happen

Anticipated
change

Unanticipated
change

