
        
            [image: cover]
        

    
      ActiveMQ in Action

      Bruce Snyder, Dejan Bosanac & Rob Davies 

 

 

[image: ]

      



Copyright
      

      For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact
      

      Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

      ©2011 by Manning Publications Co. All rights reserved.

      No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
         mechanical, photocopying, or otherwise, without prior written permission of the publisher.
      

      Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
         those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
         printed in initial caps or all caps.
      

      [image: ] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
         on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
         of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
         chlorine
      

      
         







	[image: ]
                  	Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901

               



Development editor: Jeff Bleiel
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Coverdesigner: MarijaTudor


      Printed in the United States of America

      1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

      


Brief Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Preface


         Acknowledgments


         About this Book


      

      
         1. An introduction to messaging and ActiveMQ


         
            Chapter 1. Introduction to Apache ActiveMQ


            Chapter 2. Understanding message-oriented middleware and JMS


            Chapter 3. The ActiveMQ in Action examples


         

         2. Configuring standard ActiveMQ components


         
            Chapter 4. Connecting to ActiveMQ


            Chapter 5. ActiveMQ message storage


            Chapter 6. Securing ActiveMQ


         

         3. Using ActiveMQ to build messaging applications


         
            Chapter 7. Creating Java applications with ActiveMQ


            Chapter 8. Integrating ActiveMQ with application servers


            Chapter 9. ActiveMQ messaging for other languages


         

         4. Advanced features in ActiveMQ


         
            Chapter 10. Deploying ActiveMQ in the enterprise


            Chapter 11. ActiveMQ broker features in action


            Chapter 12. Advanced client options


            Chapter 13. Tuning ActiveMQ for performance


            Chapter 14. Administering and monitoring ActiveMQ


         

      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      


Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Preface


         Acknowledgments


         About this Book


      

      
         1. An introduction to messaging and ActiveMQ


         
            Chapter 1. Introduction to Apache ActiveMQ


            
               1.1. ActiveMQ features


               1.2. Using ActiveMQ: why and when?


               
                  1.2.1. Loose coupling and ActiveMQ


                  1.2.2. When to use ActiveMQ


               

               1.3. Getting started with ActiveMQ


               
                  1.3.1. Downloading and installing the Java SE


                  1.3.2. Downloading ActiveMQ


                  1.3.3. Examining the ActiveMQ directory


                  1.3.4. Starting up ActiveMQ


               

               1.4. Running your first examples with ActiveMQ


               1.5. Summary


            

            Chapter 2. Understanding message-oriented middleware and JMS


            
               2.1. Introduction to enterprise messaging


               2.2. What’s message-oriented middleware?


               2.3. What’s the Java Message Service?


               2.4. The JMS specification


               
                  2.4.1. JMS clients


                  2.4.2. Non-JMS clients


                  2.4.3. The JMS provider


                  2.4.4. The JMS message


                  2.4.5. JMS message internals


                  2.4.6. Message selectors


                  2.4.7. JMS domains


                  2.4.8. Administered objects


               

               2.5. Using the JMS APIs to create JMS applications


               
                  2.5.1. A simple JMS application


                  2.5.2. Message-driven beans


               

               2.6. Summary


            

            Chapter 3. The ActiveMQ in Action examples


            
               3.1. Downloading Maven and compiling the examples


               3.2. Use case one: the stock portfolio example


               
                  3.2.1. Running the stock portfolio example


               

               3.3. Use case two: the job queue example


               
                  3.3.1. Running the job queue example


               

               3.4. Summary


            

         

         2. Configuring standard ActiveMQ components


         
            Chapter 4. Connecting to ActiveMQ


            
               4.1. Understanding connector URIs


               4.2. Transport connectors


               
                  4.2.1. Configuring transport connectors


                  4.2.2. Adapting the stock portfolio example


               

               4.3. Connecting to ActiveMQ over the network


               
                  4.3.1. Transmission Control Protocol (TCP)


                  4.3.2. New I/O API protocol (NIO)


                  4.3.3. User Datagram Protocol (UDP)


                  4.3.4. Secure Sockets Layer Protocol (SSL)


                  4.3.5. Hypertext Transfer Protocol (HTTP/HTTPS)


               

               4.4. Connecting to ActiveMQ inside the virtual machine (VM connector)


               4.5. Network connectors


               
                  4.5.1. Static networks


                  4.5.2. Dynamic networks


               

               4.6. Summary


            

            Chapter 5. ActiveMQ message storage


            
               5.1. How are messages stored by ActiveMQ?


               5.2. The KahaDB message store


               
                  5.2.1. The KahaDB message store internals


                  5.2.2. The KahaDB message store directory structure


                  5.2.3. Configuring the KahaDB message store


               

               5.3. The AMQ message store


               
                  5.3.1. The AMQ message store internals


                  5.3.2. The AMQ message store directory structure


                  5.3.3. Configuring the AMQ message store


               

               5.4. The JDBC message store


               
                  5.4.1. Databases supported by the JDBC message store


                  5.4.2. The JDBC message store schema


                  5.4.3. Configuring the JDBC message store


                  5.4.4. Using the JDBC message store with the ActiveMQ journal


               

               5.5. The memory message store


               
                  5.5.1. Configuring the memory store


               

               5.6. Caching messages in the broker for consumers


               
                  5.6.1. How message caching for consumers works


                  5.6.2. The ActiveMQ subscription recovery policies


                  5.6.3. Configuring the subscription recovery policy


               

               5.7. Summary


            

            Chapter 6. Securing ActiveMQ


            
               6.1. Authentication


               
                  6.1.1. Configuring the simple authentication plug-in


                  6.1.2. Configuring the JAAS plug-in


               

               6.2. Authorization


               
                  6.2.1. Destination-level authorization


                  6.2.2. Message-level authorization


               

               6.3. Building a custom security plug-in


               
                  6.3.1. Implementing the plug-in


                  6.3.2. Configuring the plug-in


                  6.3.3. Testing the plug-in


               

               6.4. Certificate-based security


               
                  6.4.1. Preparing certificates


                  6.4.2. Creating a truststore


                  6.4.3. Configuring the broker


                  6.4.4. Authorization explained


                  6.4.5. Testing it out


               

               6.5. Summary


            

         

         3. Using ActiveMQ to build messaging applications


         
            Chapter 7. Creating Java applications with ActiveMQ


            
               7.1. Embedding ActiveMQ using Java


               
                  7.1.1. Embedding ActiveMQ using the BrokerService


                  7.1.2. Embedding ActiveMQ using the BrokerFactory


               

               7.2. Embedding ActiveMQ using Spring


               
                  7.2.1. Pure Spring XML


                  7.2.2. Using the BrokerFactoryBean


                  7.2.3. Using Apache XBean with Spring


                  7.2.4. Using a custom XML namespace with Spring


               

               7.3. Implementing request/reply with JMS


               
                  7.3.1. Implementing the server and the worker


                  7.3.2. Implementing the client


                  7.3.3. Running the request/reply example


               

               7.4. Writing JMS clients using Spring


               
                  7.4.1. Configuring JMS connections


                  7.4.2. Configuring JMS destinations


                  7.4.3. Creating JMS consumers


                  7.4.4. Creating JMS producers


                  7.4.5. Putting it all together


               

               7.5. Summary


            

            Chapter 8. Integrating ActiveMQ with application servers


            
               8.1. The sample web application


               8.2. Integrating with Apache Tomcat


               
                  8.2.1. Using local JNDI to integrate ActiveMQ with Tomcat


                  8.2.2. Using global JNDI to integrate ActiveMQ with Tomcat


               

               8.3. Integrating with Jetty


               
                  8.3.1. Using local JNDI to integrate ActiveMQ with Jetty


                  8.3.2. Using global JNDI to integrate ActiveMQ with Jetty


               

               8.4. Integrating with Apache Geronimo


               
                  8.4.1. Installing Geronimo and configuring the ActiveMQ plug-in in Geronimo


                  8.4.2. Configuring the ActiveMQ JMS resources in Geronimo


                  8.4.3. Preparing the sample application for deployment in Geronimo


                  8.4.4. Deploying and verifying the sample application in Geronimo


               

               8.5. Integrating with JBoss


               
                  8.5.1. Installing JBoss and configuring the ActiveMQ resource adapter in JBoss


                  8.5.2. Configuring the ActiveMQ JMS resources in JBoss


                  8.5.3. Preparing the sample application for deployment in JBoss


                  8.5.4. Deploying and verifying the sample application in JBoss


               

               8.6. ActiveMQ and JNDI


               
                  8.6.1. Client-side JNDI configuration


               

               8.7. Summary


            

            Chapter 9. ActiveMQ messaging for other languages


            
               9.1. Adapting the stock portfolio example


               9.2. Messaging for scripting languages


               
                  9.2.1. STOMP protocol basics


                  9.2.2. Configuring STOMP transport


                  9.2.3. Ruby STOMP consumer


                  9.2.4. Python STOMP consumer


                  9.2.5. PHP STOMP consumer


                  9.2.6. Perl STOMP consumer


                  9.2.7. Advanced messaging with STOMP


               

               9.3. Messaging for compiled languages


               
                  9.3.1. Writing a C# consumer (using the NMS API)


                  9.3.2. Writing a C++ consumer (using the CMS API)


               

               9.4. Messaging on the web with ActiveMQ


               
                  9.4.1. Using the ActiveMQ REST API


                  9.4.2. Using the ActiveMQ Ajax API


               

               9.5. Summary


            

         

         4. Advanced features in ActiveMQ


         
            Chapter 10. Deploying ActiveMQ in the enterprise


            
               10.1. Configuring ActiveMQ for high availability


               
                  10.1.1. Shared nothing master/slave


                  10.1.2. Shared storage master/slave


               

               10.2. How ActiveMQ passes messages across a network of brokers


               
                  10.2.1. Store and forward


                  10.2.2. Network discovery


                  10.2.3. Network configuration


               

               10.3. Deploying ActiveMQ for large numbers of concurrent applications


               
                  10.3.1. Vertical scaling


                  10.3.2. Horizontal scaling


                  10.3.3. Traffic partitioning


               

               10.4. Summary


            

            Chapter 11. ActiveMQ broker features in action


            
               11.1. Wildcards and composite destinations


               
                  11.1.1. Consume from multiple destinations using wildcards


                  11.1.2. Sending a message to multiple destinations


               

               11.2. Advisory messages


               11.3. Supercharge JMS topics by going virtual


               11.4. Retroactive consumers


               11.5. Message redelivery and dead-letter queues


               11.6. Extending functionality with interceptor plug-ins


               
                  11.6.1. Visualization


                  11.6.2. Enhanced logging


                  11.6.3. Central timestamp messages with the timestamp interceptor plug-in


                  11.6.4. Statistics


               

               11.7. Routing engine with Apache Camel framework


               11.8. Summary


            

            Chapter 12. Advanced client options


            
               12.1. Exclusive consumers


               
                  12.1.1. Selecting an exclusive message consumer


                  12.1.2. Using exclusive consumers to provide a distributed lock


               

               12.2. Message groups


               12.3. ActiveMQ streams


               12.4. Blob messages


               12.5. Surviving network or broker failure with the failover protocol


               12.6. Scheduling messages to be delivered by ActiveMQ in the future


               12.7. Summary


            

            Chapter 13. Tuning ActiveMQ for performance


            
               13.1. General techniques


               
                  13.1.1. Persistent versus nonpersistent messages


                  13.1.2. Transactions


                  13.1.3. Embedding brokers


                  13.1.4. Tuning the OpenWire protocol


                  13.1.5. Tuning the TCP transport


               

               13.2. Optimizing message producers


               
                  13.2.1. Asynchronous send


                  13.2.2. Producer flow control


               

               13.3. Optimizing message consumers


               
                  13.3.1. Prefetch limit


                  13.3.2. Delivery and acknowledgment of messages


                  13.3.3. Asynchronous dispatch


               

               13.4. Tuning in action


               13.5. Summary


            

            Chapter 14. Administering and monitoring ActiveMQ


            
               14.1. The JMX API and ActiveMQ


               
                  14.1.1. Local vs. remote JMX access


                  14.1.2. Exposing the JMX MBeans for ActiveMQ


                  14.1.3. Exploring broker properties using the JMX API


                  14.1.4. Advanced JMX configuration


                  14.1.5. Restricting JMX access to a specific host


                  14.1.6. Configuring JMX password authentication


               

               14.2. Monitoring ActiveMQ with advisory messages


               
                  14.2.1. Configuring advisory support


                  14.2.2. Using advisory messages


                  14.2.3. Conclusion


               

               14.3. Tools for ActiveMQ administration


               
                  14.3.1. Command-line tools


                  14.3.2. Command agent


                  14.3.3. JConsole


                  14.3.4. Web console


               

               14.4. Configuring ActiveMQ logging


               
                  14.4.1. Broker logging


                  14.4.2. Client logging


                  14.4.3. Internal broker event logging


               

               14.5. Summary


            

         

      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      



Preface
      

      To this day, enterprise message queuing is a concept that is not well understood by most software developers. Commercial message-oriented
         middleware (MOM) did not help to encourage adoption of the process; most of the MOMs on the market were closed source, were
         costly to buy and support, and required trained system administrators for proper installation. ActiveMQ was developed to provide
         an open source alternative: its central theme is to put the power in the hands of developers. To date, the ActiveMQ project
         has been successful in this endeavor by creating a MOM that is easy to install, administer, and utilize, while providing a
         large number of unique features.
      

      Today, six or seven years after ActiveMQ was originally created, it’s surprising how far and widely it is being used. ActiveMQ
         is a crucial component in many applications. Used by small businesses and very large enterprises alike, ActiveMQ is deployed
         throughout a wide variety of industries around the world including manufacturing, government, retail, healthcare, finance,
         military, telecom, and many more. The versatility of not only ActiveMQ but also event-based systems has appealed to a very
         large audience of users and that appeal continues to grow.
      

      In writing a book about ActiveMQ, our intent was to provide a comprehensive guide for its features and how to use them. Although
         ActiveMQ implements the JMS specification, which has not moved in many years, ActiveMQ provides many features beyond this
         spec and it has not stopped innovating. As is always the case, authoring a book about software is a game of chase; as the
         software evolves, so must the book that is still being written. We did our best to keep this book up to date with ActiveMQ
         5.4.1.
      

      We hope that, by reading this book, you will come to appreciate not only ActiveMQ but the concepts surrounding event-based
         systems. After all, some of the largest systems in the world are designed using events and message queuing.
      

      



Acknowledgments
      

      The authors would collectively like to thank the following individuals:

      Jeff Bleiel, our development editor, for his work liaising with Manning—without Jeff’s input, the book would not be what it
         is today; Gary Tully for his tireless technical reviews of the entire book; the Manning staff for their arduous work on the
         book; Filip Hanik for his assistance with Tomcat; Jan Bartel and Greg Wilkins for their assistance with Jetty; David Jencks
         and Kevan Miller for their assistance with Geronimo; and Jaikiran Pai for his assistance with JBoss.
      

      We would also like to thank the following reviewers, who read the manuscript at different stages of its development, for their
         invaluable feedback: Jeff Davis, Deepak Vohra, Robert Hanson, Davide Piazza, David Strong, Tijs Rademakers, Prasad A. Chodavarapu,
         John Merryman, Jeroen Benckhuijsen, Pratik Patel, Scott Dawson, Jason Kolter, Rod Biresch, and Roberto Rojas.
      

      Finally, thanks to the many readers of Manning’s Early Access Program (MEAP) for their comments and input on early drafts
         of the manuscript posted in the Author Online forum.
      

      
Bruce Snyder
      

      I would like to thank my incredible wife Janene for her patience and understanding during another book project, and my girls
         Bailey and Jade for reminding me what really matters in life.
      

      
Dejan Bosanac
      

      I would like to thank my lovely wife for supporting me through yet another book project.

      
Rob Davies
      

      I would like to thank my wife Karen for editing and proofreading my chapters; my children Chris, Connor, and Michael for keeping
         the zombies at bay; and my dog Rex for forcing me to go on walks in the snow and the rain.
      

      



About this Book
      

      ActiveMQ in Action is for software architects, developers, and integrators interested in enterprise message queuing in general and ActiveMQ
         in particular. This book is designed to serve as part introduction and part reference for both beginners and experienced application
         developers. It begins with an introduction to ActiveMQ and a high-level overview of JMS, followed by a progressively deeper
         dive into ActiveMQ as the book advances.
      

      The concepts discussed throughout this book assume that the reader possesses enough knowledge of Java EE to design and develop
         applications. Though such knowledge is not a strict requirement, it will make it easier to grasp many of the concepts touched
         upon throughout the chapters. Chapter 9 even discusses using ActiveMQ with languages other than Java, including C++, C#, JavaScript, Perl, PHP, Python, and Ruby.
      

      
Roadmap
      

      This book is divided into four parts:

      Part 1 provides an introduction to ActiveMQ, a high-level overview of JMS, and a brief discussion of the examples used throughout
         the book. Chapter 1 introduces ActiveMQ at a high level and discusses why and when to use ActiveMQ. It also demonstrates how to download and
         install ActiveMQ and how to run the examples that come with ActiveMQ in Action.
      

      Chapter 2 introduces enterprise messaging, message-oriented middleware (MOM) and the JMS specification.
      

      Chapter 3 introduces the examples to be used throughout ActiveMQ in Action.
      

      Part 2 focuses on the three standard components in ActiveMQ including connectivity into the message broker, message persistence,
         and message broker security.
      

      Chapter 4 covers all the connectivity options for ActiveMQ. It discusses ActiveMQ URIs and all the transport connectors for both client-to-broker
         and broker-to-broker communications including TCP, NIO, STOMP, failover, SSL, HTTP/S, and much more.
      

      Chapter 5 discusses message persistence in ActiveMQ; how messages are stored for queues and topics, the four styles of message stores
         available, and message caching.
      

      Chapter 6 introduces and elaborates on security in ActiveMQ. It covers authentication, authorization, and certificate-based security,
         as well as how to create a custom security plug-in.
      

      The theme of part 3 is using ActiveMQ to build applications using technologies such as the Spring Framework, leading open source application
         servers, and numerous applications beyond just Java.
      

      Chapter 7 deals with creating Java applications using ActiveMQ. It shows some options for embedding ActiveMQ in Java applications,
         developing a request/reply application, and writing JMS clients using Spring.
      

      Chapter 8 is all about integrating ActiveMQ with some popular open source application servers including Tomcat, Jetty, Geronimo, and
         JBoss. It also discusses the client-side JNDI support provided by ActiveMQ.
      

      Chapter 9 discusses messaging with ActiveMQ using languages other than Java including C++, C#, JavaScript, Perl, PHP, Python, and Ruby.
      

      Part 4 discusses advanced features in ActiveMQ such as high availability, scalability, many advanced broker and client features,
         performance tuning, and administration of ActiveMQ.
      

      Chapter 10 discusses concepts around deploying ActiveMQ for production systems. Topics in this chapter are focused on high availability
         and scalability.
      

      Chapter 11 presents advanced features provided by ActiveMQ such as wildcards and composite destinations, advisory messages, virtual
         topics, some info about ActiveMQ plug-ins, and an introduction to message routing with Apache Camel.
      

      Chapter 12 covers advanced ActiveMQ client features including exclusive consumers, message groups, ActiveMQ streams and large objects,
         the failover transport, and message scheduling.
      

      Chapter 13 deals with ActiveMQ performance tuning. It presents some general tuning techniques covering such topics as persistent versus
         nonpersistent messages, transactions, embedded brokers, tuning the wire level protocol, tuning the TCP transport, and some
         optimizations for message producers and message consumers.
      

      Chapter 14 finishes up by discussing the administration and monitoring of ActiveMQ. It shows how to configure ActiveMQ for JMX monitoring
         and demonstrates this using JConsole. It also discusses and demonstrates the use of advisory messages for monitoring ActiveMQ.
         There is also coverage of command-line tools, the command agent, use of XMPP, JConsole, and the web console. The discussion
         then moves on to broker- and client-level logging.
      

      
Code Conventions and Downloads
      

      This book contains many code examples in many different programming languages, all of which are presented using a fixed-width font like this to set it apart from the regular text. Many code listings are annotated to point out important items, and the listings are
         discussed by the surrounding text.
      

      The full source code that is presented in the book is freely available for download from the publisher’s website at http://manning.com/ActiveMQinAction.
      

      
Authors’ Note
      

      This book was authored using DocBook XML and was processed using the Docbkx Tools Maven plug-in on Mac OS X. Other items that
         became part of the book-writing process include MacBook Pros, Google Docs, GMail, Foonz (until it shut down), Free-ConferenceCall.com,
         barking dogs during conference calls, company acquisitions, lots and lots of music, loud construction next door, sleepless
         nights, too much work on airplanes, and plain old exhaustion.
      

      
Author Online
      

      Purchase of ActiveMQ in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
         browser to www.manning.com/ActiveMQinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
         rules of conduct on the forum.
      

      Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
         readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
         authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking them some challenging
         questions lest their interest stray!
      

      The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
         the book is in print.
      

      
About the cover illustration
      

      The figure on the cover of ActiveMQ in Action is taken from a French travel book, Encyclopédie Des Voyages by J. G. De Saint-Sauveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel
         guides such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of
         other regions of France and abroad.
      

      The diversity of the drawings in the Encyclopédie Des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
         when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
         The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
         our own hyperkinetic present.
      

      Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
         to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
         and visual diversity for a more varied personal life, or a more varied and interesting intellectual and technical life.
      

      We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
         the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.
      

      


Part 1. An introduction to messaging and ActiveMQ
      

      Apache ActiveMQ is a message broker for remote communication between systems using the JMS (Java Message Service) specification.
         Although ActiveMQ is written in Java, APIs for many languages other than Java are provided, including C/C++, .NET, Perl, PHP,
         Python, Ruby, and many more. This book provides the information you need to understand, configure, and use ActiveMQ successfully
         to meet the requirements of many business applications.
      

      In part 1, you’ll be introduced to ActiveMQ briefly to get you up and running. We’ll discuss the concepts surrounding message-oriented
         middleware and JMS so that you have an adequate background on how enterprise messaging came to be what it is today. We’ll
         also introduce the examples for the book, including their use cases and how to run each example. We’ll use these examples
         throughout the book, so it’s important to understand them before they’re applied through the chapters. The chapters in part 1 provide a good base set of knowledge that prepares you for the rest of the book.
      

      


Chapter 1. Introduction to Apache ActiveMQ
      

       




	
            




         This chapter covers
         

         
	
A high-level overview of ActiveMQ features and uses
            

            	Downloading and installing ActiveMQ

            	Understanding the ActiveMQ directory structure

            	Running examples that come with ActiveMQ

         



      


	
            



 

Enterprise messaging software has been in existence since the late 1980s. Not only is messaging a style of communication between
         applications, it’s also a style of integration. Therefore, messaging fulfills the need for both notification as well as inter-operation
         among applications. But open source solutions have only emerged in the last 10 years. Apache ActiveMQ is one such solution,
         providing the ability for applications to communicate in an asynchronous, loosely coupled manner. This chapter will introduce
         you to ActiveMQ.
      

      ActiveMQ is an open source, Java Message Service (JMS) 1.1–compliant, message-oriented middleware (MOM) from the Apache Software
         Foundation that provides high availability, performance, scalability, reliability, and security for enterprise messaging.
         ActiveMQ is licensed using the Apache License, one of the most liberal and business-friendly Open Source Initiative (OSI)–approved licenses available. Because of the Apache License,
         anyone can use or modify ActiveMQ without any repercussions for the redistribution of changes. This is a critical point for
         businesses who use ActiveMQ in a strategic manner. As described later in chapter 2, the job of a MOM is to mediate events and messages among distributed applications, guaranteeing that they reach their intended
         recipients. So it’s vital that a MOM be highly available, performant, and scalable.
      

      The goal of ActiveMQ is to provide standards-based, message-oriented application integration across as many languages and
         platforms as possible. ActiveMQ implements the JMS spec and offers dozens of additional features and value on top of this
         spec. These additional features will be introduced and discussed in detail throughout this book.
      

      Your first steps with ActiveMQ are important to your success in using it for your own work. To the novice user, ActiveMQ may
         appear to be daunting, and yet to the seasoned hacker, it might be easier to understand. This chapter will walk you through
         the task of becoming familiar with ActiveMQ in a simple manner. You’ll not only gain a high-level understanding of the ActiveMQ
         feature set, but you’ll also be taken through a discussion of why and where to use ActiveMQ in your application development.
         Then you’ll be prepared enough to install and begin using ActiveMQ.
      

      
1.1. ActiveMQ features
      

      ActiveMQ provides an abundance of features created through hundreds of man-years of effort. The chapters in this book break
         down ActiveMQ into sets of features to focus on describing many of them. The following is a high-level list of some of the
         features that will be discussed throughout this book:
      

      

      
	
JMS compliance— A good starting point for understanding the features in ActiveMQ is that ActiveMQ is an implementation of the JMS 1.1 spec.
            As discussed later in this chapter, the JMS spec provides important benefits and guarantees, including synchronous or asynchronous
            message delivery, once-and-only-once message delivery, message durability for subscribers, and much more. Adhering to the
            JMS spec for such features means that no matter what JMS provider is used, the same base set of features will be made available.
         

         	
Connectivity— ActiveMQ provides a wide range of connectivity options, including support for protocols such as HTTP/S, IP multicast, SSL,
            STOMP, TCP, UDP, XMPP, and more. Support for such a wide range of protocols equates to more flexibility. Many existing systems
            utilize a particular protocol and don’t have the option to change, so a messaging platform that supports many protocols lowers
            the barrier to adoption. Though connectivity is important, the ability to closely integrate with other containers is also
            important. Chapter 4 addresses both the transport connectors and the network connectors in ActiveMQ.
         

         	
Pluggable persistence and security— ActiveMQ provides multiple flavors of persistence and you can choose between them. Also, security in ActiveMQ can be completely customized for the type of authentication and authorization that’s best for your needs. For example, ActiveMQ offers
            its own style of ultra-fast message persistence via KahaDB, but also supports standard JDBC-accessible databases. ActiveMQ
            also supports its own simple style of authentication and authorization using properties files as well as standard JAAS login
            modules. These two topics are discussed in chapters 5 and 6.
         

         	
Building messaging applications with Java— The most common route with ActiveMQ is with Java applications for sending and receiving messages. This task entails use of
            the JMS spec APIs with ActiveMQ and is covered in chapter 7.
         

         	
Integration with application servers— It’s common to integrate ActiveMQ with a Java application server. Chapter 8 provides examples of integrating with some of the most popular application servers, including Apache Tomcat, Jetty, Apache
            Geronimo, and JBoss.
         

         	
Client APIs— ActiveMQ provides client APIs for many languages besides just Java, including C/C++, .NET, Perl, PHP, Python, Ruby, and more.
            This opens the door to opportunities where ActiveMQ can be utilized outside of the Java world. Many other languages also have
            access to all of the features and benefits provided by ActiveMQ through these various client APIs. Of course, the ActiveMQ
            broker still runs in a Java VM, but the clients can be written using any of the supported languages. Client connectivity to
            ActiveMQ is covered in chapter 9.
         

         	
Broker clustering— Many ActiveMQ brokers can work together as a federated network of brokers for scalability purposes. This is known as a network of brokers and can support many different topologies. This topic is covered in chapter 10.
         

         	
Many advanced broker features and client options— ActiveMQ provides many sophisticated features for both the broker and the clients connecting to the broker. ActiveMQ also
            supports the use of Apache Camel within the broker’s XML configuration file. These features are discussed in chapters 11 and 12.
         

         	
Dramatically simplified administration— ActiveMQ is designed with developers in mind. As such, it doesn’t require a dedicated administrator because it provides easy-to-use
            yet powerful administration features. There are many ways to monitor different aspects of ActiveMQ, including via JMX using
            tools such as JCon-sole or the ActiveMQ web console, by processing the ActiveMQ advisory messages, by using command-line scripts,
            and even by monitoring various types of logging. This is all covered in chapter 14.
         

      

This is just a taste of the features offered by ActiveMQ. As you can see, these topics will be addressed through the rest
         of the chapters of the book. For demonstration purposes, a couple of simple examples will be carried throughout and these
         examples will be introduced in chapter 3. But before we take a look at the examples, and given the fact that you’ve been presented with numerous different features,
         we’re sure you have some questions about why you might use ActiveMQ.
      

      
1.2. Using ActiveMQ: why and when?
      

      Back around 2003, a group of open source developers got together to form Apache Geronimo. In doing so, they discovered that
         there was no good message broker available that utilized a BSD-style license. Geronimo needed a JMS implementation for reasons
         of Java EE compatibility, so a few of the developers starting discussing the possibilities. Possessing vast experience with
         commercial MOMs and even having built a few MOMs themselves previously, these developers set out to create the next great
         open source message broker. Additional inspiration for ActiveMQ came from the fact that most of the MOMs in the market were
         commercial, closed source, and were costly to buy and support. The commercial MOMs were popular with businesses, but some
         businesses couldn’t afford the steep costs required. This further increased the motivation to build an open source alternative.
         There was clearly a market available for an open source MOM using an Apache License. What evolved over time is Apache ActiveMQ.
      

      ActiveMQ was meant to be used as the JMS spec intended, for remote communications between distributed applications. To better
         understand what this means, the best thing to do is look at a few of the ideas behind distributed application design, specifically
         communications.
      

      1.2.1. Loose coupling and ActiveMQ
      

      ActiveMQ provides the benefits of loose coupling for application architecture. Loose coupling is commonly introduced into
         an architecture to mitigate the classic tight coupling of Remote Procedure Calls (RPC). Such a loosely coupled design is considered
         to be asynchronous, where the calls from either application have no bearing on one another; there’s no interdependence or
         timing requirements. The applications can rely upon ActiveMQ’s ability to guarantee message delivery. Because of this, it’s
         often said that applications sending messages just fire-and-forget—they send the message to ActiveMQ and aren’t concerned
         with how or when the message is delivered. In the same manner, the consuming applications have no concern with where the messages
         originated or how they were sent to ActiveMQ. This is an especially powerful benefit in heterogeneous environments, allowing
         clients to be written using different languages and even possibly different wire protocols. ActiveMQ acts as the middleman,
         allowing heterogeneous integration and interaction in an asynchronous manner. More on this in the next section.
      

      When considering distributed application design, coupling is important. Coupling refers to the interdependence of two or more applications or systems. An easy way to think about coupling is to consider
         the effect of changes to any application in the system: the implications across the other applications in the architecture
         as features are added. Do changes to one application force changes to other applications involved? If the answer is yes, then
         those applications are tightly coupled. But if one application can be changed without affecting other applications, then those
         applications are more loosely coupled. The overall lesson here is that tightly coupled applications are more difficult to maintain compared to loosely coupled applications. Said another way, loosely coupled applications can easily
         deal with unforeseen changes.
      

      Technologies such as those discussed in chapter 2 (COM, CORBA, DCE, and EJB) using RPC are considered to be tightly coupled. Using RPC, when one application calls another
         application, the caller is blocked until the callee returns control to the caller. The diagram in figure 1.1 depicts this concept.
      

      Figure 1.1. Two tightly coupled applications using remote procedure calls to communicate
      

      [image: ]

      The caller (application one) in figure 1.1 is blocked until the callee (application two) returns control. Many system architectures use RPC and are successful. But
         there are numerous disadvantages to such a tightly coupled design: most notable is the higher amount of maintenance required,
         since even small changes ripple throughout the system architecture. Correct timing between the two applications is a necessity.
         Both applications must be available at the same time for the request from application one to reach application two [image: ], and for the response to travel from application two to application one [image: ]. Such timing requirements can be cumbersome, causing the application to be fragile. Compare such a tightly coupled design
         with a design where two applications are completely unaware of one another such as that depicted in figure 1.2.
      

      Figure 1.2. Two loosely coupled applications using JMS messaging to communicate
      

      [image: ]

      Application one in figure 1.2 sends a message to the MOM in a one-way fashion. Then, possibly sometime later, application two receives a message from the
         MOM, in a one-way fashion. Neither application has any knowledge that the other even exists, and there’s no timing between
         the two applications. This one-way style of interaction results in much lower maintenance because changes in one application
         have little to no effect on the other application. For these reasons, loosely coupled applications offer big advantages over
         tightly coupled architectures when considering distributed application design. This is where ActiveMQ enters the picture.
      

      Consider the changes necessary when an application must move to a new location. This can happen when new hardware is introduced
         or the application needs to be moved. With a tightly coupled system design, such movement is difficult because all segments
         of the application must experience an outage. With an application designed using loose coupling, different segments of the
         system can be moved independent of one another. Consider a scenario where there are multiple instances of application A and
         multiple instances of application B, where each instance resides on a different machine. ActiveMQ is installed on still another
         machine independent of either application A or application B. In this scenario, any one of the application A or application B instances can be moved around
         without affecting one another. In fact, multiple instances of ActiveMQ could be used in what’s known as a network of brokers configuration. This would allow the ActiveMQ instances to be moved around without affecting either application A or application
         B. This means that any segment of this architecture can be taken down for maintenance at any time without taking down the
         entire system. More details about this are available in chapter 10.
      

      So ActiveMQ provides an incredible amount of flexibility in application architecture, allowing the concepts surrounding loose
         coupling to become a reality. ActiveMQ also supports the request/reply paradigm of messaging if a completely asynchronous
         style of messaging isn’t possible for a given use case. But when should ActiveMQ be used to introduce these benefits?
      

      1.2.2. When to use ActiveMQ
      

      There are many occasions where ActiveMQ and asynchronous messaging can have a meaningful impact on a system architecture.
         Here are just a few example scenarios:
      

      

      
	
Heterogeneous application integration— The ActiveMQ broker is written using the Java language, so naturally a Java client API is provided. But ActiveMQ also provides
            clients for C/C++, .NET, Perl, PHP, Python, Ruby, and a few other languages. This is a huge advantage when considering how
            you might integrate applications written in different languages on different platforms. In cases such as this, the various
            client APIs make it possible to send and receive messages via ActiveMQ no matter what language is used. In addition to the
            cross-language capabilities provided by ActiveMQ, the ability to integrate such applications without the use of RPC is definitely
            a big benefit because messaging truly helps to decouple the applications.
         

         	
As a replacement for RPC— Applications using RPC-style synchronous calls are widespread. Consider that the vast majority of client-server applications
            use RPC including ATMs, most web applications, credit card systems, point-of-sale systems, and more. Even though many of these
            systems are successful, conversion to the use of asynchronous messaging can bring about benefits without giving up the guarantee
            of a response. Systems that rely upon synchronous requests typically have a limited ability to scale because eventually requests
            will begin to back up, thereby slowing the whole system. Instead of experiencing this type of a slowdown, using asynchronous
            messaging, additional message receivers can be easily added so that messages are consumed concurrently and therefore handled
            faster. This, of course, assumes that your applications can be decoupled.
         

         	
To loosen the coupling between applications— As already discussed, tightly coupled architectures can be problematic for many reasons, especially if they’re distributed.
            Loosely coupled architectures, on the other hand, exhibit fewer dependencies, making them better at handling unforeseen changes.
            Not only will a change to one component in the system not ripple across the entire system, but component interaction is also
            dramatically simplified. Instead of using a synchronous scheme for component interaction (where one method calls another and
            the caller waits for a response from the callee), components utilize asynchronous communications (where they simply send a
            message without waiting for a response—also known as fire-and-forget). Such loose coupling throughout a system can lead to what’s known as an event-driven architecture (EDA).
         

         	
As the backbone of an event-driven architecture— The decoupled, asynchronous style of architecture described in the previous point allows the broker itself to scale much further
            and handle considerably more clients via tuning, additional memory allocation, and so on (known as vertical scalability) instead of only relying upon the ability of the number of broker nodes to be increased to handle many more clients (known
            as horizontal scalability). Consider an incredibly high-traffic e-commerce site such as Amazon. When a user makes a purchase on Amazon, there are quite
            a few separate stages through which that order must travel including order placement, invoice creation, payment processing,
            order fulfillment, shipping, and more. But when a user actually places an order, the user is immediately taken to a page stating,
            “Thanks for your order.” Not only that, but without delay, the user also receives an email stating that the order was received.
            The order placement process that’s employed by Amazon is a good example of the first stage in a much larger set of asynchronous
            processes. Each stage of the order is handled discretely by a separate service. When the user places the order, there’s a
            synchronous call to submit the order, but the entire order process doesn’t take place behind a synchronous call via the web
            browser. Instead, the order is accepted and acknowledged immediately. The rest of the steps in the process are handled asynchronously.
            If a problem occurs that prevents the process from proceeding, the user is notified via email. Such asynchronous processes are what afford massive
            scalability and high availability.
         

         	
To improve application scalability— Many applications utilize an event-driven architecture in order to provide massive scalability including such domains as e-commerce,
            government, manufacturing, and online gaming, just to name a few. By separating an application along lines in the business
            domain using asynchronous messaging, many other possibilities begin to emerge. Consider the ability to design an application
            using a service for a specific task. This is the backbone of service-oriented architecture (SOA). Each service fulfills a
            discrete function and only that function. Then applications are built through the composition of these services, and the communication
            among services is achieved using asynchronous messaging and eventual consistency. This style of application design makes it
            possible to introduce such concepts as complex event processing (CEP). Using CEP, the interactions among the components in a system are tracked for further analysis. Such possibilities
            are truly endless when you consider that asynchronous messaging is simply adding a level of indirection between components
            in a system.
         

      

Now that you’ve been offered some examples of where to use ActiveMQ, it’s time to install ActiveMQ and begin using it.

      
1.3. Getting started with ActiveMQ
      

      Getting started with ActiveMQ isn’t difficult. You simply need to start up the broker and make sure that it’s capable of accepting
         connections and sending messages. ActiveMQ comes with some simple examples that will help you with this task, but first we
         need to install Java and download ActiveMQ.
      

      In this section, you’ll download and install the Java SE, download and install ActiveMQ, examine the ActiveMQ directory, and
         start up ActiveMQ for the first time.
      

      1.3.1. Downloading and installing the Java SE
      

      ActiveMQ requires a minimum of the Sun Java SE 1.5, though 1.6 is preferred. This must be installed prior to attempting this
         section. If you don’t have the Sun J2SE installed and you’re using Linux, Solaris, or Windows, download and install it from
         the following URL: http://www.oracle.com/technetwork/java/javase/downloads/index.html.
      

      If you’re using Mac OS X, you should already have Java installed. But just in case you don’t, you can grab it from the following
         URL: http://developer.apple.com/java/download/.
      

      Once you have the Java SE installed, you’ll need to test that it is set up correctly. To do this, open a terminal or command
         line and enter the command shown in the following listing.
      

      

      Listing 1.1. Check the Java version
      

      [~]$ java version "1.6.0_20"
Java(TM) SE Runtime Environment (build 1.6.0_20-b02-279-10M3065)
Java HotSpot(TM) 64-Bit Server VM (build 16.3-b01-279, mixed mode)

      Your output may be slightly different depending on the operating system you’re using, but the important part is that there’s
         output from the Java SE. The command tells us two things: that the J2SE is installed correctly and that Java version 1.6 is
         being used. If you don’t see similar output, then you’ll need to rectify this situation before moving on to the next section.
      

       




	
            




         Downloading and Installing Ant
         Ant will be used to build and run the examples that ship with ActiveMQ. Ant is available from the Apache Ant website at the
            following URL: http://ant.apache.org/bindownload.cgi.
         

         Click on the link to the appropriate archive for your operating system (the tarballs are for Linux and Unix; the zip is for
            Windows). Please follow the instructions for intalling Ant at this URL: http://ant.apache.org/manual/install.html. Make sure to set up the $ANT_HOME environment variable and to put $ANT_HOME/bin in the $PATH environment variable. Once
            Ant is properly installed, you should be able to run the following command from a terminal to see the Ant version:
         

         $ ant -version
Apache Ant version 1.8.1 compiled on April 30 2010

         You may be using a slightly different version of Ant, but that shouldn’t matter. Once Ant outputs its version as shown above,
            you know that both the Java SE and Ant have been installed properly.
         

      

      


	
            



 

1.3.2. Downloading ActiveMQ
      

      ActiveMQ is available from the Apache ActiveMQ website at the following URL: http://activemq.apache.org/download.html.
      

      Click on the link to the 5.4.1 release and you’ll find both tarball and zip formats available (the tarball is for Linux and
         Unix; the zip is for Windows). Once you’ve downloaded one of the archives, expand it and you’re ready to move along. Once
         you get to this point, you should have the Java SE all set up and working correctly, and you’re ready to take a peek at the
         ActiveMQ directory.
      

      1.3.3. Examining the ActiveMQ directory
      

      From the command line, move into the apache-activemq-5.4.1 directory and enter the command shown here.

      Listing 1.2. List the contents of the ActiveMQ directory
      

      [apache-activemq-5.4.1]$ ls -1
LICENSE
NOTICE
README.txt
WebConsole-README.txt
activemq-all-5.4.1.jar
bin
conf
data
docs
example
lib
user-guide.html
webapps

      The contents of the directory are fairly straightforward:

      

      
	
LICENSE— A file required by the Apache Software Foundation (ASF) for legal purposes; contains the licenses of all libraries used by
            ActiveMQ.
         

         	
NOTICE— Another ASF-required file for legal purposes; it contains copyright information of all libraries used by ActiveMQ.
         

         	
README.txt— A file containing some URLs to documentation to get new users started with ActiveMQ.
         

         	
WebConsole-README.txt— Contains information about using the ActiveMQ web console.
         

         	
activemq-all-5.4.1.jar— A jar file that contains all of ActiveMQ; it’s placed here for convenience if you need to grab it and use it.
         

         	
bin— The bin directory contains binary/executable files for ActiveMQ; the startup scripts live in this directory.
         

         	
conf— The conf directory holds all the configuration information for ActiveMQ.
         

         	
data— The data directory is where the log files and message persistence data is stored.
         

         	
docs— Contains a simple index.html file referring to the ActiveMQ website.
         

         	
example— The ActiveMQ examples; these are what we’ll use shortly to test out ActiveMQ quickly.
         

         	
lib— The lib directory holds all the libraries needed by ActiveMQ.
         

         	
user-guide.html— A brief guide to starting up ActiveMQ and running the examples.
         

         	
webapps— The webapps directory holds the ActiveMQ web console and some other web-related demos.
         

      

The next task is to start up ActiveMQ and verify it using the examples.

      1.3.4. Starting up ActiveMQ
      

      After downloading and expanding the archive, ActiveMQ is ready for use. The binary distribution provides a basic configuration
         to get you started easily and that’s what we’ll use in the examples. So start up ActiveMQ now as shown next.
      

      

      Listing 1.3. Start up ActiveMQ
      

      $ ./bin/activemq console
INFO: Using default configuration
(you can configure options in one of these file: /etc/default/activemq
/Users/bsnyder/.activemqrc)
INFO: Invoke the following command to create a configuration file
./bin/activemq setup [ /etc/default/activemq | /Users/bsnyder/.activemqrc ]
INFO: Using java '/System/Library/Frameworks/JavaVM.framework/Home/bin/java'
INFO: Starting in foreground, this is just for debugging purposes
(stop process by pressing CTRL+C)
Java Runtime: Apple Inc. 1.6.0_20
/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home
Heap sizes: current=258880k free=253105k max=258880k
JVM args: -Xms256M -Xmx256M
-Dorg.apache.activemq.UseDedicatedTaskRunner=true
-Djava.util.logging.config.file=logging.properties
-Dcom.sun.management.jmxremote
-Dactivemq.classpath=/Users/bsnyder/amq/apache-activemq-5.4.1/conf;
-Dactivemq.home=/Users/bsnyder/amq/apache-activemq-5.4.1
-Dactivemq.base=/Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_HOME: /Users/bsnyder/amq/apache-activemq-5.4.1
ACTIVEMQ_BASE: /Users/bsnyder/amq/apache-activemq-5.4.1
Loading message broker from: xbean:activemq.xml
WARN | destroyApplicationContextOnStop parameter is deprecated,
please use shutdown hooks instead
INFO | PListStore:/Users/bsnyder/amq/apache-activemq-5.4.1/data/localhost/
tmp_storage started INFO | Using Persistence Adapter:
KahaDBPersistenceAdapter[/Users/bsnyder/amq/apache-activemq-5.4.1/data/
     kahadb]
INFO | KahaDB is version 2
INFO | Recovering from the journal ...
INFO | Recovery replayed 1 operations from the journal in 0.029 seconds.
INFO | ActiveMQ 5.4.1 JMS Message Broker (localhost) is starting
...
INFO | ActiveMQ Console at http://0.0.0.0:8161/admin
INFO | Initializing Spring root WebApplicationContext
INFO | Connector vm://localhost Started
INFO | Camel Console at http://0.0.0.0:8161/camel
INFO | ActiveMQ Web Demos at http://0.0.0.0:8161/demo
INFO | RESTful file access application at http://0.0.0.0:8161/fileserver
INFO | Started SelectChannelConnector@0.0.0.0:8161

       




	
            



Note

      The examples in the listings in this book were developed on Mac OS X, a Unix operating system. For readers who are using Windows,
         simply do not use the ‘console’ argument from any of the examples. To run the example command shown in Listing 1.3 above on Windows, use the following command from the command prompt:
      

      C:\apache-activemq-5.4.1>bin\activemq

      Please note that the command used to start up ActiveMQ on Windows should not contain the ‘console’ argument. This applies
         to all the example listings in the book.
      

      


	
            



 

This command starts up the ActiveMQ broker and some of its connectors to expose it to clients via a few protocols, namely,
         TCP, SSL, STOMP, and XMPP. Just be aware that ActiveMQ has started and is available to clients via TCP on port 61616. This
         is all configurable and will be discussed later in chapter 4. For now, the preceding output tells you that ActiveMQ is up and running and ready for use. Now it’s ready to begin handling
         some messages. The best way to begin sending and receiving messages is by using some of the examples that come with ActiveMQ.
         The next section walks you through this in a step-by-step manner.
      

      
1.4. Running your first examples with ActiveMQ
      

      The previous section walked you through starting up ActiveMQ in one terminal. For verification of this, you should open two
         more terminals to run the ActiveMQ examples. In the second terminal, move into the example directory and look at its contents
         as shown in the following listing.
      

      Listing 1.4. List the contents of the ActiveMQ example directory
      

      [apache-activemq-5.4.1]$ cd ./example/
bsnyder@mongoose [example]$ ls -1
build.xml
conf
perfharness
ruby
src
transactions

      The example directory contains a few different items. Here’s a quick description of each item in that directory:

      

      
	
build.xml— An Ant build configuration for use with the Java examples.
         

         	
conf— The conf directory holds configuration information for use with the Java examples.
         

         	
perfharness— The perfharness directory contains a script for running the IBM JMS performance harness against ActiveMQ.
         

         	
ruby— The ruby directory contains some examples of using ActiveMQ with Ruby and the STOMP connector.
         

         	
src— The src directory is where the Java examples live; this directory is used by the build.xml.
         

         	
transactions— The transactions directory holds an ActiveMQ implementation of the TransactedExample from Sun’s JMS Tutorial.
         

      

Using the second terminal, start up a JMS consumer as shown here.

      Listing 1.5. Start up the ActiveMQ consumer example
      

      [example]$ ant consumer
Buildfile: build.xml
init:
compile:
consumer:
     [echo] Running consumer against server at $url =
tcp://localhost:61616 for subject $subject = TEST.FOO
     [java] Connecting to URL: tcp://localhost:61616
     [java] Consuming queue: TEST.FOO
     [java] Using a non-durable subscription
     [java] Running 1 parallel threads
     [java] [Thread-2] We are about to wait until we consume:
2000 message(s) then we will shutdown

      The command compiles the Java examples and starts up a simple JMS consumer. As you can see from the output, this consumer
         is
      

      

      
	Connecting to the broker using the TCP protocol (tcp://localhost:61616)

         	Watching a queue named TEST.FOO

         	Using nondurable subscription

         	Waiting to receive 2000 messages before shutting down

      

Basically, the JMS consumer is connected to ActiveMQ and waiting for messages. Now you can send some messages to the TEST.FOO
         destination.
      

      In the third terminal, move into the example directory and start up a JMS producer as shown below. This will immediately begin
         to send messages.
      

      Listing 1.6. Start up the ActiveMQ producer example
      

      [example]$  ant producer
Buildfile: build.xml
init:
compile:
producer:
     [echo] Running producer against server at $url =
tcp://localhost:61616 for subject $subject = TEST.FOO
     [java] Connecting to URL: tcp://localhost:61616
     [java] Publishing a Message with size 1000 to queue: TEST.FOO
     [java] Using non-persistent messages
     [java] Sleeping between publish 0 ms
     [java] Running 1 parallel threads
     [java] [Thread-2] Sending message: 'Message: 0 sent at: Thu Oct 14
21:24:07 MDT 2010  ...'
     [java] [Thread-2] Sending message: 'Message: 1 sent at: Thu Oct 14
21:24:07 MDT 2010  ...'
     [java] [Thread-2] Sending message: 'Message: 2 sent at: Thu Oct 14
21:24:07 MDT 2010  ...'

      Although the output has been truncated for readability, the command starts up a simple JMS producer and you can see from the
         output that it
      

      

      
	Connects to the broker using the TCP connector (tcp://localhost:61616)

         	Publishes messages to a queue named TEST.FOO

         	Uses nonpersistent messages

         	Doesn’t sleep between publishing messages

      

Once the JMS producer is connected, it then sends 2,000 messages and shuts down. This is the number of messages the consumer
         is waiting to consume before it shuts down. So as the messages are being sent by the producer in terminal three, flip back
         to terminal two and watch the JMS consumer as it consumes those messages. Here’s the output you’ll see in terminal two:
      

            [java] [Thread-2] Received: 'Message: 0 sent at: Thu Oct 14 21:23:56
MDT  2010  ...' (length 1000)
      [java] [Thread-2] Received: 'Message: 1 sent at: Thu Oct 14 21:23:56
MDT  2010  ...' (length 1000)
      [java] [Thread-2] Received: 'Message: 2 sent at: Thu Oct 14 21:23:56
MDT  2010  ...' (length 1000)
...
      [java] [Thread-2] Received: 'Message: 1999 sent at: Thu Oct 14 21:23:56
MDT  2010  ...' (length 1000)

      Again, the output has been truncated for brevity but this doesn’t change the fact that the consumer received 2,000 messages
         and shut itself down. At this time, both the consumer and the producer should be shut down, but the ActiveMQ broker is still
         running in the first terminal. Take a look at the first terminal again and you’ll see that ActiveMQ appears to not have budged
         at all. This is because the default logging configuration doesn’t output anything beyond what’s absolutely necessary. If you’d
         like to tweak the logging configuration to output more information as messages are sent and received, you can do so. Logging
         will be covered further in chapter 14.
      

      So what did you learn here? Through the use of the Java examples that come with ActiveMQ, it has been proven that the broker
         is up and running and can mediate messages. This doesn’t seem like much but it’s an important first step. If you were able
         to successfully run the Java examples, then you know that you have no networking problems on the machine you’re using and
         you know that ActiveMQ is behaving properly. If you were unable to successfully run the Java examples, then you’ll need to
         troubleshoot the situation. If you need some help, heading over to the ActiveMQ mailing lists is the best way to find help.
         These examples are just to get you started but can be used to test many scenarios. Throughout the rest of the book, some different
         examples surrounding a couple of common use cases will be used to demonstrate ActiveMQ and its features. These examples are
         explained further in chapter 3.
      

      
1.5. Summary
      

      ActiveMQ is a versatile, easy-to-use messaging middleware. You learned about some of the ActiveMQ features that will be covered
         throughout this book and about some scenarios where ActiveMQ can be applied. The scenarios introduced in this chapter are
         real-world use cases that are deployed in businesses throughout the world. The JMS spec was designed for use in business applications
         with these scenarios in mind. For those who aren’t familiar with the JMS spec, or even those who’d like a refresher on the
         topic, the next chapter covers enterprise messaging and provides an overview of JMS. If you’re already fluent in these two
         topics, you can skip ahead to chapter 3 to explore the examples for the book.
      

      


Chapter 2. Understanding message-oriented middleware and JMS
      

       




	
            




         This chapter covers
         

         
	
Enterprise messaging and message-oriented middleware
            

            	Understanding the Java Message Service (JMS)

            	Using the JMS APIs for sending and receiving messages

            	An example of a message-driven bean

         



      


	
            



 

To help you better understand the ideas behind ActiveMQ, it’s important to have some background and history on enterprise
         messaging in general. After discussing enterprise messaging, you’ll be prepared for a brief introduction to JMS followed by
         some small examples of its use. The purpose of this chapter is to briefly review enterprise messaging and the JMS specification.
         If you’re already familiar with these topics, you can skip ahead to the next chapter.
      

      At one time or another, every software developer needs to communicate between applications or transfer data from one system
         to another. Not only are there various solutions to this sort of problem, but depending on your constraints and requirements, deciding how to go about such a task
         can be a big decision. Business requirements often place restrictions on items that directly impact such a decision including
         performance, scalability, reliability, and more. There are numerous applications that we use every day that impose such requirements
         including ATMs, airline reservation systems, credit card systems, point-of-sale systems, and telecommunications, to name a
         few. Where would we be without most of these applications in our daily lives?
      

      For a moment, think about how these types of services have made your life easier. These applications and others like them
         are made possible because of their reliable and secure nature. Behind the scenes of these applications, just about all of
         them are composed of many applications, usually distributed, communicating by passing events or messages back and forth. Even
         the most sophisticated financial trading systems are integrated in this manner, operating completely through the sending and
         receipt of business information among all the necessary systems using messaging.
      

      Many products provide messaging for various purposes. Necessity is the mother of invention, and this is how messaging middleware
         was born. A form of software became necessary for communication and data transfer capabilities that could more easily manage
         the disparity among data formats, operating systems, protocols, and even programming languages. Additionally, capabilities
         such as sophisticated message routing and transformation began to emerge as part of or in conjunction with these solutions.
         Such systems came to be known as message-oriented middleware (MOM).
      

      ActiveMQ is a MOM product that provides asynchronous messaging for such business systems. By providing a MOM that utilizes
         the JMS spec, ActiveMQ facilitates application architectures that support such reliability and scalability.
      

      
2.1. Introduction to enterprise messaging
      

      Most systems like those mentioned previously were built using mainframe computers and many still use them today. So how can
         these applications work in such a reliable manner? To answer this and other questions, let’s briefly explore some of the history
         behind such solutions and how enterprise messaging was born.
      

      Starting in the 1960s, large organizations invested in mainframes for critical applications to facilitate functions such as
         data processing, financial processing, statistical analysis, and much more. Mainframes provided appreciable benefits including
         high availability, redundancy, reliability and scalability, upgradability without service interruption, and many other critical
         features required by business. Although these systems were extremely powerful, access to such systems was restricted, as input
         options were few. Also, interconnectivity among systems hadn’t yet been invented, meaning that parallel processing wasn’t
         yet possible.
      

      Figure 2.1 shows a diagram demonstrating how terminals connect to a mainframe. In the 1970s, users began to access mainframes through
         terminals, which dramatically expanded the use of these systems by allowing thousands of concurrent users. It was during this
         period that computer networks were invented and connectivity among mainframes themselves now became possible. By the 1980s,
         not only were graphical terminals available, but PCs were also invented and terminal emulation software quickly became common.
         Interconnectivity became even more important because applications needing access to the mainframe were being developed to
         run on PCs and workstations. Figure 2.2 shows these various types of connectivity to the mainframe. Note how this expanded connectivity introduced additional platforms
         and protocols, posing a new set of problems to be addressed.
      

      Figure 2.1. Standalone terminals connecting to a mainframe using a single protocol
      

      [image: ]

      Figure 2.2. Standalone terminals and applications connecting to a mainframe using many protocols.
      

      [image: ]

      Connecting a source system and a target system wasn’t easy since each data format, each piece of hardware, and each protocol
         required a different type of adapter. As the list of adapters grew, so did the versions of each, causing them to become difficult
         to maintain. Soon the effort required to maintain the adapters outweighed that of the systems themselves. This is where enterprise
         messaging entered the picture.
      

      The purpose of enterprise messaging was to transfer data among disparate systems by sending messages from one system to another.
         There have been numerous technologies for various forms of messaging through the years, including the following list:
      

OEBPS/01fig02.jpg
Sending a message

Message-oriented
middieware

Receiving a message






OEBPS/02fig01.jpg
Mainframe





OEBPS/icon_01.jpg





OEBPS/icon_02.jpg





OEBPS/vi-1.jpg





OEBPS/01fig01.jpg
Blocking remote procedural call






OEBPS/logo.jpg
/I MANNING PUBLICATIONS





OEBPS/infin.jpg





OEBPS/02fig02.jpg
Protocol W

Mainframe.






OEBPS/cover.jpg
INACTIO

Bruce Snyder
Dejan Bosanac
Rob Davies

| FTYTHT






