

 [image: cover]

React in Action

 Mark Tielens Thomas

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Marina Michaels
Technical development editor: Nickie Bruckner
Project manager: Janet Vail
Copy editor: Corbin Collins
Technical proofreader: German Frigerio
Proofreader: Melody Dolab
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617293856

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 This book is dedicated to my wife, Haley. Stay forever.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Meet React

 Chapter 1. Meet React

 Chapter 2. <Hello World />: our first component

 2. Components and data in React

 Chapter 3. Data and data flow in React

 Chapter 4. Rendering and lifecycle methods in React

 Chapter 5. Working with forms in React

 Chapter 6. Integrating third-party libraries with React

 Chapter 7. Routing in React

 Chapter 8. More routing and integrating Firebase

 Chapter 9. Testing React components

 3. React application architecture

 Chapter 10. Redux application architecture

 Chapter 11. More Redux and integrating Redux with React

 Chapter 12. React on the server and integrating React Router

 Chapter 13. An introduction to React Native

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Meet React

 Chapter 1. Meet React

 1.1. Meet React

 1.1.1. Who this book is for

 1.1.2. A note on tooling

 1.1.3. Who uses React?

 1.2. What does React not do?

 1.2.1. Tradeoffs of React

 1.3. The virtual DOM

 1.3.1. The DOM

 1.3.2. The virtual DOM

 1.3.3. Updates and diffing

 1.3.4. Virtual DOM: Need for speed?

 1.4. Components: The fundamental unit of React

 1.4.1. Components in general

 1.4.2. Components in React: Encapsulated and reusable

 1.5. React for teams

 1.6. Summary

 Chapter 2. <Hello World />: our first component

 2.1. Introducing React components

 2.1.1. Understanding the application data

 2.1.2. Multiple components: Composition and parent-child relationships

 2.1.3. Establishing component relationships

 2.2. Creating components in React

 2.2.1. Creating React elements

 2.2.2. Rendering your first component

 2.2.3. Creating React components

 2.2.4. Creating React classes

 2.2.5. The render method

 2.2.6. Property validation via PropTypes

 2.3. The life and times of a component

 2.3.1. A React state of mind

 2.3.2. Setting initial state

 2.4. Meet JSX

 2.4.1. Creating components using JSX

 2.4.2. Benefits of JSX and differences from HTML

 2.5. Summary

 2. Components and data in React

 Chapter 3. Data and data flow in React

 3.1. Introducing state

 3.1.1. What is state?

 3.1.2. Mutable and immutable state

 3.2. State in React

 3.2.1. Mutable state in React: Component state

 3.2.2. Immutable state in React: Props

 3.2.3. Working with props: PropTypes and default props

 3.2.4. Stateless functional components

 3.3. Component communication

 3.4. One-way data flow

 3.5. Summary

 Chapter 4. Rendering and lifecycle methods in React

 4.1. Getting set up with the Letters Social repo

 4.1.1. Getting the source code

 4.1.2. Which version of node should I use?

 4.1.3. Note on tooling and CSS

 4.1.4. Deploying

 4.1.5. The API server and database

 4.1.6. Running the app

 4.2. The render process and lifecycle methods

 4.2.1. Introducing lifecycle methods

 4.2.2. Types of lifecycle methods

 4.2.3. Initial and “will” methods

 4.2.4. Mounting components

 4.2.5. Updating methods

 4.2.6. Unmounting methods

 4.2.7. Catching errors

 4.3. Starting to create Letters Social

 4.4. Summary

 Chapter 5. Working with forms in React

 5.1. Creating posts in Letters Social

 5.1.1. Data requirements

 5.1.2. Component overview and hierarchy

 5.2. Forms in React

 5.2.1. Getting started with forms

 5.2.2. Form elements and events

 5.2.3. Updating state in forms

 5.2.4. Controlled and uncontrolled components

 5.2.5. Form validation and sanitization

 5.3. Creating new posts

 5.4. Summary

 Chapter 6. Integrating third-party libraries with React

 6.1. Sending posts to the Letters Social API

 6.2. Enhancing your component with maps

 6.2.1. Creating the DisplayMap component using refs

 6.2.2. Creating the LocationTypeAhead component

 6.2.3. Updating CreatePost and adding maps to posts

 6.3. Summary

 Chapter 7. Routing in React

 7.1. What is routing?

 7.1.1. Routing in modern front-end web applications

 7.2. Creating a router

 7.2.1. Component routing

 7.2.2. Creating the <Route /> component

 7.2.3. Starting to build the <Router/> component

 7.2.4. Matching URL paths and parameterized routing

 7.2.5. Adding routes to the Router component

 7.3. Summary

 Chapter 8. More routing and integrating Firebase

 8.1. Using the router

 8.1.1. Creating a page for a post

 8.1.2. Creating a <Link/> component

 8.1.3. Creating a <NotFound/> component

 8.2. Integrating Firebase

 8.2.1. Ensuring a user is logged in

 8.3. Summary

 Chapter 9. Testing React components

 9.1. Types of testing

 9.1.1. Why test?

 9.2. Testing React components with Jest, Enzyme, and React-test-renderer

 9.3. Writing your first tests

 9.3.1. Getting started with Jest

 9.3.2. Testing a stateless functional component

 9.3.3. Testing the CreatePost component without Enzyme

 9.3.4. Test coverage

 9.4. Summary

 3. React application architecture

 Chapter 10. Redux application architecture

 10.1. The Flux application architecture

 10.1.1. Meet Redux: A variation on Flux

 10.1.2. Getting set up for Redux

 10.2. Creating actions in Redux

 10.2.1. Defining action types

 10.2.2. Creating actions in Redux

 10.2.3. Creating the Redux store and dispatching actions

 10.2.4. Asynchronous actions and middleware

 10.2.5. To Redux or not to Redux?

 10.2.6. Testing actions

 10.2.7. Creating custom Redux middleware for crash reporting

 10.3. Summary

 Chapter 11. More Redux and integrating Redux with React

 11.1. Reducers determine how state should change

 11.1.1. State shape and initial state

 11.1.2. Setting up reducers to respond to incoming action

 11.1.3. Combining reducers together in our store

 11.1.4. Testing reducers

 11.2. Bringing React and Redux together

 11.2.1. Containers vs. presentational components

 11.2.2. Using <Provider /> to connect components to the Redux store

 11.2.3. Binding actions to component event handlers

 11.2.4. Updating your tests

 11.3. Summary

 Chapter 12. React on the server and integrating React Router

 12.1. What is server-side rendering?

 12.1.1. Digging into server-side rendering

 12.2. Why render on the server?

 12.3. You might not need SSR

 12.4. Rendering components on the server

 12.5. Switching to React Router

 12.5.1. Setting up React router

 12.6. Handling authenticated routes with React router

 12.7. Server rendering with data-fetching

 12.8. Summary

 Chapter 13. An introduction to React Native

 13.1. Introducing React Native

 13.2. React and React Native

 13.3. When to use React Native

 13.4. The simplest “Hello World”

 13.5. Where to go next

 13.6. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I first started learning about and using React, the JavaScript community was just beginning to settle down from a period
 of rapid innovation and disruption (read: turbulence). React was gaining in popularity, but the JavaScript community still
 seemed like the Wild West in many ways. I was excited about React as a technology because it showed real promise. The mental
 model seemed solid, components made building UIs easier, the API was flexible and expressive, and the whole project seemed
 like it was “just right.” Postulations about its API surface, usability, and theoretical underpinnings aside, there was also
 the fact that it seemed really cool to me and I enjoyed working with it.

 Since then, quite a bit has changed—and at the same time not much has changed at all. React has remained largely the same
 in terms of its fundamental concepts and API, although a body of knowledge and best practices have emerged and evolved, and
 more people use it. An open source ecosystem of libraries and related technologies has flourished. There are conferences,
 meetups, and communities that involve React to one degree or another. In version 16, the React core team rewrote the internal
 architecture of React in a way that both maintained backward compatibility and paved the way for a slew of future innovations.
 All these “changes without too much change” point to what I believe is one of React’s greatest strengths: a maintained tension
 between stability and innovation that drives adoption without leaving people in the dust.

 For all these reasons and more, React has continued to take hold as a technology and has only become more popular. It’s in
 use in one way or another at many large companies, at countless startups, and at every sort of company in between. And many
 companies that don’t currently use React are trying to switch over to it to modernize their frontend applications.

 React hasn’t only grown in popularity with respect to the web—it’s also made inroads into other platforms. React Native, the
 port of React to mobile platforms, has also been a major innovation. It demonstrates React’s “learn once, write anywhere”
 approach. This idea of React as a platform means you’re not limited to using it for browser-based applications.

 Let’s forget the hype around React and focus on what this book should do for you. My primary hopes for React in Action are that it equips you to understand and work with React effectively and, even more, that it makes you better at building
 user interfaces overall, even if in a small way. My aim is not to engage in buzzword-driven development or push you toward
 “magical” technologies. Rather, my wager is that a robust mental model and deep understanding coupled with practical examples
 will put you in a place to do incredible things with React, whether on your own or with others.

Acknowledgments

 Don’t wait for things to be perfect before you share them with others. Show early and show often. It’ll be pretty when we
 get there, but it won’t be pretty along the way.

 Ed Catmull, Creativity, Inc.: Overcoming the Unseen Forces That Stand in the Way of True Inspiration

 Few worthwhile endeavors are undertaken alone. In many cases, a single person or handful of people is entirely credited with
 success, but this singular attribution belies the larger network of contributors who work toward an end. Those who would claim
 to have “done it alone” often fail to realize the ways in which others have helped them, whether by example or by instruction.
 What’s more, failure to realize the strength of working in a community pushes success and excellence even further out of reach.
 Working alone means being limited to what you, and only you, can do. Collaboration provides a path to excellence by opening
 us to humility, new ideas, different perspectives, and invaluable feedback.

 I won’t be so foolish as to think, even for a second, that I’ve written this book by myself. My fingers pushed keys, and my
 name will be on the cover, but that doesn’t mean this was a one-person show. No, this book—like all the things in my life
 that I’m grateful for—is the result of a rich community of smart, humble, loving people willing to be patient, kind, and sometimes
 firm with me.

 First, I would like to thank my wife, Haley. She’s my joy, my best friend, my creative partner. She’s put up with this book
 for a long time. Late nights, more late nights, and endless talking about the book. She—the brilliant and better writer—helped
 me when I had writer’s block. She encouraged me when I felt as if finishing the book was impossible. She’s always constant
 in love and in prayer. She’s always comforted me in low times, challenged me when I doubted myself, and celebrated with me
 in times of joy. She’s been incredible through the entire process and I can’t wait to return the favor and help her with the
 many books she’ll write in the future. I’m always and immeasurably grateful for her.

 I would also like to thank the other people in my life who have supported me in this process. I’m humbled and thankful to
 have an incredible family. My mom and dad, Annmarie and Mitchell, have been encouraging throughout the writing of this book
 (and my whole life). They’ve also promised to read it in its entirety, though I won’t hold them to that. My brothers, David
 and Peter, have also been supportive and encouraging. They haven’t promised to read the book, though, so I’ll be reading it
 aloud to them for the next year (or however long it takes). My friends from church, childhood, and work have also been incredibly
 helpful. They did me the great service of always asking, “Is it done yet?” to spur me on, and they put up with my explanations
 of React. I would also like to thank my professors, especially Dr. Diana Pavlac Glyer, for teaching me to think and to write.

 The folks at Manning have been very helpful in this process. I want to extend a special thank you to Marina Michaels (development
 editor), Nickie Bruckner (technical development editor), and German Frigerio (technical proofer). They spent countless hours
 reading and helping with my writing. This book wouldn’t exist without them. I would also like to thank Brian Sawyer for reaching
 out to me about writing the book and Marjan Bace for giving me the opportunity to write the book in the first place. Everyone
 at Manning is committed to helping people everywhere learn important, impactful skills and concepts in effective ways. I firmly
 believe in and am excited to help further Manning’s educational mission.

About this book

 React in Action is about React, the library for building user interfaces on the web. It covers the core concepts and APIs involved in building
 React applications. You’ll build a sample social networking application with React over the course of the book. This app will
 cover a variety of topics, ranging from adding dynamic data to rendering on the server.

Audience

 This book is written for people who want to learn React. It doesn’t matter if you’re a software engineer, a VP of engineering,
 a CTO, a designer, an engineering manager, a university or coding boot camp student, or someone who’s just curious about React.
 Depending on what your needs are, you can focus on different parts of the book, too. I cover React from a high level during
 the first part of the book and get more specific and advanced as we go.

 You’ll have a better experience reading the book if you have some basic familiarity with JavaScript. This book uses a lot
 of JavaScript, but it isn’t about JavaScript. I don’t cover fundamental concepts in JavaScript, although I do lightly touch
 on them if they’re relevant to a discussion about React. You should be able to work through the examples if you have a basic
 proficiency with JavaScript and understand how asynchronous programming in JavaScript works.

 React in Action also assumes that you know some of the basics of building a front-end web application from a technology perspective—knowing
 about the basic browser APIs will be helpful. You’ll work with things like the Fetch API to make network requests, set and
 get cookies, and work with user events (typing, clicks, and so on). You’ll also interact heavily with libraries (although
 not too many!). Familiarity with the basics of a modern frontend application will help you get the most out of this book.

 Fortunately, I’ve abstracted away all the complexity around tooling and the build process that’s also a requisite part of
 building modern web applications. The source code for the project includes all the necessary dependencies and build tools,
 so you don’t have to understand, for example, how Webpack and Babel work in order to enjoy this book. All in all, you should
 have at least a basic proficiency with JavaScript and some frontend web application concepts to fully enjoy React in Action.

Roadmap

 React in Action’s 13 chapters are divided into 3 parts.

 Part 1, “Meet React,” introduces you to React. Chapter 1 covers core ideas of React at a high level. It talks about some of the key points of React, shows how it might fit into your
 development process, and looks at what React does and doesn’t do. Chapter 2 is the “show me the code” chapter. You’ll dive into React’s APIs and build a simple comment box with React components.

 Part 2, “Components and data in React,” is where you’ll start to go deeper with React. You’ll see how data flows in React in chapter 3 and look at the component lifecycle API and start building the Letters Social sample project in chapter 4. This project will take us through the remainder of the book. Chapter 4 goes over setting up the project from the application source code and explains how to work with it for the rest of the book.

 Chapters 5 through 9 are an even deeper dive into React. Chapter 5 covers working with forms and gives you another opportunity to work with data and data flow in React. Chapter 6 follows in the same vein and builds on the work done in chapter 5 to create a more complex React component for displaying maps.

 Chapters 7 and 8 tackle routing, a crucial part of almost any modern frontend application. You’ll build a router from scratch and get your
 app set up to handle multiple pages. You’ll keep going with routing in chapter 8 and integrate the Firebase platform so you can authenticate users. Chapter 9 closes out part 3 by introducing testing React apps and components.

 Part 3, “React application architecture,” covers more advanced topics in React and focuses especially on transitioning your application
 to use Redux. Chapters 10 and 11 introduce Redux, a state-management solution. Once your app is transitioned to use Redux, we’ll explore server-side rendering
 in chapter 12. This chapter also covers switching out your custom-built router for React Router. Chapter 13 briefly discusses React Native, another React project that allows you to write JavaScript React apps for mobile devices (iOS
 and Android).

About the code

 React in Action uses two main groups of source code. For the first two chapters, you’ll work with code outside the project repository. You’ll
 be able to run these code samples on Codesandbox.io, an online code playground. It takes care of bundling your code and running
 it in real time, so you don’t have to worry about setting up a build process.

 In chapter 4, you’ll get set up with the project source code. It’s available for download at the book’s website, www.manning.com/books/react-in-action, and on GitHub online at https://github.com/react-in-action/letters-social, and the final result of the project is live at https://social.react.sh. Each chapter or range of chapters has its own branch in Git, so you can easily switch into a later chapter or follow the
 progression of the project throughout the book. The source code all lives on GitHub, so feel free to ask questions on GitHub
 or on the book’s forum at https://forums.manning.com/forums/react-in-action.

 The JavaScript for the app should all be formatted using Prettier (https://github.com/prettier/prettier), written using the most current ECMAScript specification (which is ES2017 at time of writing). Prettier uses concepts, syntax,
 and methods available in that specification. The project includes an ESLint configuration, but if you prefer to modify it
 to suit your own needs, feel free.

Software and hardware requirements

 React in Action doesn’t have any strict hardware requirements. You’re free to use any type of computer (physical or a virtual provider like
 Cloud9 https://c9.io), although I won’t address inconsistencies caused by differences in development environments. If these
 issues come up for individual packages, the repositories for those packages or Stack Overflow (https://stackoverflow.com) are the best place to seek help.

 As for software, here are a few requirements and recommendations:

 	The build process for the sample project uses node.js (https://nodejs.org), so you’ll need to install the latest stable version. See chapter 4 for more on getting set up with node.js.

 	You’ll also need a text editor and a web browser. I recommend something like Visual Studio Code (https://code.visualstudio.com), Atom (https://atom.io), or Sublime Text (www.sublimetext.com).

 	You’ll use Chrome as the main browser for the course of the book, especially its developer tools. Download it at www.google.com/chrome.

About the author

 [image:]

 Mark Tielens Thomas is a full-stack software engineer and author. He and his wife live and work in southern California. Mark
 enjoys tackling large-scale engineering problems and leading teams to deliver high-impact, high-value solutions. He loves
 Jesus, good coffee, too many books, fast APIs, and beautiful systems. He writes for Manning and on his personal blog at https://ifelse.io.

About the cover illustration

 The caption for the illustration on the cover of React in Action is “The Capitan Pasha, Derya Bey, admiral of the Turkish navy.” The capitan pasha was a high-admiral with supreme command
 of the navy of the Ottoman Empire. The illustration is taken from a collection of costumes of the Ottoman Empire published
 on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection, and we have
 been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and
 each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their
 art gracing the front cover of a computer programming book ... two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation
 was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed
 with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with
 the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds
 the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that
 might have happened a long time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Meet React

 If you’ve worked on frontend JavaScript applications in the past two years, you’ve probably heard of React. You might have
 heard of it even if you’re just starting out building user interfaces. Even if you’re hearing about React for the first time
 in this book, I’ve still got you covered: there are many hugely popular applications that use React. If you use Facebook,
 watch Netflix, or learn about computer science through Khan Academy, you’ve used an application built with React.

 React is a library for building user interfaces. It was created by engineers at Facebook and since its release has made waves
 in the JavaScript communities. It’s gained in popularity over the past few years and is the tool of choice for many teams
 and engineers building dynamic user interfaces. In fact, the combination of React’s API, mental model, and robust community
 have led to the development of React for other platforms, including mobile and even virtual reality.

 In this book, you’ll explore React and see why it’s been such a successful and useful open source project. In part 1, you’ll start with the basics of React and learn them from the ground up. Because the tooling involved in building robust
 JavaScript UI applications can be incredibly complex, we’ll avoid getting bogged down in tools and focus on learning the ins
 and outs of the React API. We’ll also avoid “magic” and work toward a concrete understanding of React and how it works.

 In chapter 1, you’ll learn about React at a high level. We’ll cover some important ideas like components, the virtual DOM, and some of
 the tradeoffs of React. In chapter 2, you’ll take a whirlwind tour through React’s APIs and build a simple comment-box component to get your hands dirty with
 React.

Chapter 1. Meet React

 This chapter covers

 	Introducing React

 	Some of React’s high-level concepts and paradigms

 	The virtual DOM

 	Components in React

 	React for teams

 	Tradeoffs of using React

 If you work as a web engineer in the tech industry, chances are you’ve heard of React. Maybe it was somewhere online like
 Twitter or Reddit. Maybe a friend or colleague mentioned it to you or you heard a talk about it at a meetup. Wherever it was,
 I bet that what you heard was probably either glowing or a bit skeptical. Most people tend to have a strong opinion about
 technologies like React. Influential and impactful technologies tend to generate that kind of response. For these technologies,
 often a smaller number of people initially “get it” before the technology catches on and moves to a broader audience. React
 started this way, but now enjoys immense popularity and use in the web engineering world. And it’s popular for good reason: it has a lot to offer and can reinvigorate, renew, or even transform how you think about and build user interfaces.

1.1. Meet React

 React is a JavaScript library for building user interfaces across a variety of platforms. React gives you a powerful mental
 model to work with and helps you build user interfaces in a declarative and component-driven way. We’ll unpack these ideas
 and much more over the course of the book, but that’s what React is in the broadest, briefest sense.

 Where does React fit into the broader world of web engineering? You’ll often hear React talked about in the same space as
 projects like Vue, Preact, Angular, Ember, Webpack, Redux and other well-known JavaScript libraries and frameworks. React
 is often a major part of front-end applications and shares similar features with the other libraries and frameworks just mentioned.
 In fact, many popular front-end technologies are more like React in subtle ways now than in the past. There was a time when
 React’s approach was novel, but other technologies have since been influenced by React’s component-driven, declarative approach.
 React continues to maintain a spirit of rethinking established best practices, with the main goal being providing developers
 with an expressive mental model and a performant technology to build UI applications.

 What makes React’s mental model powerful? It draws on deep areas of computer science and software engineering techniques.
 React’s mental model draws broadly on functional and object-oriented programming concepts and focuses on components as primary
 units for building with. In React applications, you create interfaces from components. React’s rendering system manages these
 components and keeps the application view in sync for you. Components often correspond to aspects of the user interface, like
 datepickers, headers, navbars, and others, but they can also take responsibility for things like client-side routing, data
 formatting, styling, and other responsibilities of a client-side application.

 Components in React should be easy to think about and integrate with other React components; they follow a predictable lifecycle,
 can maintain their own internal state, and work with “regular old JavaScript.” We’ll dive into these ideas over the course
 of the rest of the book, but we can look at them at a high level right now. Figure 1.1 gives you an overview of the major ingredients that go into a React application. Let’s look at each part briefly:

 	
Components— Encapsulated units of functionality that are the primary unit in React. They utilize data (properties and state) to render your UI as output; we’ll explore how React components work with data later in chapter 2 onward. Certain types of React components also provide a set of lifecycle methods that you can hook into. The rendering process (outputting and updating a UI based on your data) is predictable in React, and your components can hook into it using React’s
 APIs.

 	
React libraries— React uses a set of core libraries. The core React library works with the react-dom and react-native libraries and is focused on component specification and definition. It allows you to build a tree of components that a renderer
 for the browser or another platform can use. react-dom is one such renderer and is aimed at browser environments and server-side rendering. The React Native libraries focus on
 native platforms and let you create React applications for iOS, Android, and other platforms.

 Figure 1.1. React allows you to create user interfaces from components. Components maintain their own state, are written in and work with
 “vanilla” JavaScript, and inherit a number of helpful APIs from React. Most React apps are written for browser-based environments,
 but can also be used in native environments like iOS and Android. For more about React Native, see Nader Dabit’s React Native in Action, also available from Manning.

 [image:]

 	
Third-party libraries— React doesn’t come with tools for data modeling, HTTP calls, styling libraries, or other common aspects of a front-end application.
 This leaves you free to use additional code, modules, or other tools you prefer in your application. And even though these
 common technologies don’t come bundled with React, the broader ecosystem around React is full of incredibly useful libraries.
 In this book, we’ll use a few of these libraries and devote chapters 10 and 11 to looking at Redux, a library for state management.

 	
Running a React application— Your React application runs on the platform you’re building for. This book focuses on the web platform and builds a browser
 and server-based application, but other projects like React Native and React VR open the possibility of your app running on
 other platforms.

 We’ll spend lots of time exploring the ins and outs of React in this book, but you may have a few questions before getting
 started. Is React something for you? Who else is using React? What are some of the tradeoffs of using React or not? These
 are important questions about a new technology that you’ll want answered before adopting it.

 1.1.1. Who this book is for

 This book is for anyone who’s working on or interested in building user interfaces. Really, it’s is for anyone who’s curious
 about React, even if you don’t work in UI engineering. You’ll get the most out of this book if you have some experience with
 using JavaScript to build front-end applications.

 You can learn how to build applications with React as long as you know the basics of JavaScript and have some experience building
 web applications. I don’t cover the fundamentals of JavaScript in this book. Topics like prototypal inheritance, ES2015+ code,
 type coercion, syntax, keywords, asynchronous coding patterns like async/await, and other fundamental topics are beyond the
 scope of this book. I do lightly cover anything that’s especially pertinent to React but don’t dive deep into JavaScript as
 a language.

 This doesn’t mean you can’t learn React or won’t get anything from this book if you don’t know JavaScript. But you’ll get
 much more if you take the time to learn JavaScript first. Charging ahead without a working knowledge of JavaScript will make
 things more difficult. You might run into situations where things might seem like “magic” to you—things will work, but you
 won’t understand why. This usually hurts rather than helps you as a developer, so ... last warning: get comfortable with the
 basics of JavaScript before learning React. It’s a wonderfully expressive and flexible language. You’ll love it!

 You may already know JavaScript well and may have even dabbled in React before. This wouldn’t be too surprising given how
 popular React has become. If this is you, you’ll be able to gain a deeper understanding of some of the core concepts of React.
 But I don’t cover highly specific topics you may be looking for if you’ve been working with React for a while. For those, see other React-related Manning titles like React Native in Action.

 You may not fit into either group and may want a high-level overview of React. This book is for you, too. You’ll learn the
 fundamental concepts of React and you’ll have access to a sample application written in React—check out the running app at
 https://social.react.sh. You’ll be able to see the basics of building a React application in practice and how it might be suited to your team or
 next project.

 1.1.2. A note on tooling

 If you’ve worked extensively on front-end applications in the past few years, you won’t be surprised by the fact that the
 tooling around applications has become as much a part of the development process as frameworks and libraries themselves. You’re
 likely using something like Webpack, Babel, or other tools in your applications today. Where do these and other tools fit
 into this book, and what you need to know?

 You don’t need to be a master of Webpack, Babel, or other tools to enjoy and read this book. The sample application I’ve created
 utilizes a handful of important tools, and you can feel free to read through the configuration code for these in the sample
 application, but I don’t cover these tools in depth in this book. Tooling changes quickly, and more importantly, it would
 be well outside the scope of this book to cover these topics in depth. I’ll be sure to note anywhere tooling is relevant to
 our discussion, but besides that I’ll avoid covering it.

 I also feel that tooling can be a distraction when learning a new technology like React. You’re already trying to get your
 head around a new set of concepts and paradigms—why clutter that with learning complex tooling too? That’s why chapter 2 focuses on learning “vanilla” React first before moving on to features like JSX and JavaScript language features that require
 build tools. The one area of tooling that you’ll need to be familiar with is npm. npm is the package management tool for JavaScript,
 and you’ll use it to install dependencies for your project and run project commands from the command line. It’s likely you’re
 already familiar with npm, but if not, don’t let that dissuade you from reading the book. You only need the most basic terminal
 and npm skills to go forward. You can learn about npm at https://docs.npmjs.com/getting-started/what-is-npm.

 1.1.3. Who uses React?

 When it comes to open source software, who is (and who isn’t) using it is more than just a matter of popularity. It affects
 the experience you’ll have working with the technology (including availability of support, documentation, and security fixes),
 the level of innovation in the community, and the potential lifetime of a certain tool. It’s generally more fun, easier, and
 overall a smoother experience to work with tools that have a vibrant community, a robust ecosystem, and a diversity of contributor
 experience and background.

 React started as a small project but now has broad popularity and a vibrant community. No community is perfect, and React’s
 isn’t either, but as far as open source communities go, it has many important ingredients for success. What’s more, the React
 community also includes smaller subsets of other open source communities. This can be daunting because the ecosystem can seem
 vast, but it also makes the community robust and diverse. Figure 1.2 shows a map of the React ecosystem. I mention various libraries and projects throughout the course of the book, but if you’re
 curious to learn more about the React ecosystem, I’ve put together a guide at https://ifelse.io/react-ecosystem. I’ll keep this updated over time and ensure it evolves as the ecosystem does.

 Figure 1.2. A map of the React ecosystem is diverse—even more so than I can represent here. If you’d like to learn more, check out my
 guide at https://ifelse.io/react-ecosystem, which will help you find your way in the React ecosystem when starting out.

 [image:]

 The primary way you might interact with React is probably in open source, but you likely use apps built with it every day.
 Many companies use React in different and exciting ways. Here are a few of the companies using React to power their products:

 	Facebook

 	Netflix

 	New Relic

 	Uber

 	Wealthfront

 	Heroku

 	PayPal

 	BBC

 	Microsoft

 	NFL

 	And more!

 	Asana

 	ESPN

 	Walmart

 	Venmo

 	Codecademy

 	Atlassian

 	Asana

 	Airbnb

 	Khan Academy

 	FloQast

 These companies aren’t blindly following the trends of the JavaScript community. They have exceptional engineering demands
 that impact a huge number of users and must deliver products on hard deadlines. Someone saying, “I heard React was good; we
 should React-ify everything!” won’t fly with managers or other engineers. Companies and developers want good tools that help
 them think better and move quickly so they can build high-impact, scalable, and reliable applications.

1.2. What does React not do?

 So far, I’ve been talking about React at a high-level: who uses it, who this book is for, and so on. My primary goals in writing
 this book are to teach you how to build applications with React and empower you as an engineer. React isn’t perfect, but it’s
 genuinely been a pleasure to work with, and I’ve seen teams do great things with it. I love writing about it, building with
 it, hearing talks about it at conferences, and engaging in the occasional spirited debate about this or that pattern.

 But I would be doing you a disservice if I didn’t talk about some of the downsides of React and describe what it doesn’t do. Understanding what something can’t do is as important as understanding what it can do. Why? The best engineering decisions
 and thinking usually happen in terms of tradeoffs instead of opinions or absolutes (“React is fundamentally better than tool
 X because I like it more”). On the former point: you’re probably not dealing with two totally different technologies (COBOL
 versus JavaScript); hopefully you’re not even considering technologies that are fundamentally unsuited to the task at hand.
 And to the latter point: building great projects and solving engineering challenges should never be about opinions. It’s not
 that people’s opinions don’t matter—that’s certainly not true—it’s that opinions don’t make things work well or at all.

 1.2.1. Tradeoffs of React

 If tradeoffs are the bread and butter of good software evaluation and discussion, what tradeoffs are there with React? First,
 React is sometimes called just the view. This can be misconstrued or misunderstood because it can lead you to think React is just a templating system like Handlebars
 or Pug (née Jade) or that it has to be part of an MVC (model-view-controller) architecture. Neither is true. React can be
 both of those things, but it can be much more. To make things easier, I’ll describe React more in terms of what it is than what it’s not (“just the view,” for example). React is a declarative, component-based library for building user interfaces that works on a variety of platforms: web, native, mobile, server, desktop, and even
 on virtual reality platforms going forward (React VR).

 This leads to our first tradeoff: React is primarily concerned with the view aspects of UI. This means it’s not built to do many of the jobs of a more comprehensive framework or library. A quick comparison
 to something like Angular might help drive this point home. In its most recent major release, Angular has much more in common
 with React than it previously did in terms of concepts and design, but in other ways it covers much more territory than React.
 Angular includes opinionated solutions for the following:

 	HTTP calls

 	Form building and validation

 	Routing

 	String and number formatting

 	Internationalization

 	Dependency injection

 	Basic data modeling primitives

 	Custom testing framework (although this isn’t as important a distinction as the other areas)

 	Service workers included by default (a worker-style approach to executing JavaScript)

 That’s a lot, and in my experience there are generally two ways people tend to react[1] to all these features coming with a framework. Either it’s along the lines of “Wow, I don’t have to deal with all those myself”
 or it’s “Wow, I don’t get to choose how I do anything.” The upside of frameworks like Angular, Ember, and the like is that
 there’s usually a well-defined way to do things. For example, routing in Angular is done with the built-in Angular Router,
 HTTP tasks are all done with the built-in HTTP routines, and so on.

 1

Pun not intended but, hey, it’s a book about React, so there it is.

 There’s nothing fundamentally wrong with this approach. I’ve worked on teams where we used technologies like this and I’ve
 worked on teams where we went the more flexible direction and chose technologies that “did one thing well.” We did great work with both kinds of technologies,
 and they served their purposes well. My personal preference is toward the choose-your-own, does-one-thing-well approach, but
 that’s really neither here nor there; it’s all about tradeoffs. React doesn’t come with opinionated solutions for HTTP, routing,
 data modeling (although it certainly has opinions about data flow in your views, which we’ll get to), or other things you
 might see in something like Angular. If your team sees this as something you absolutely can’t do without in a singular framework,
 React might not be your best choice. But in my experience, most teams want the flexibility of React coupled with the mental
 model and intuitive APIs that it brings.

 One upside to the flexible approach of React is that you’re free to pick the best tools for the job. Don’t like the way X HTTP library works? No problem—swap it out for something else. Prefer to do forms in a different way? Implement it, no problem.
 React provides you with a set of powerful primitives to work with. To be fair, other frameworks like Angular will usually
 allow you to swap things out too, but the de facto and community-backed way of doing things will usually be whatever is built-in
 and included.

 The obvious downside to having more freedom is that if you’re used to a more comprehensive framework like Angular or Ember,
 you’ll need to either come up with or find your own solution for different areas of your application. This can be a good thing
 or a bad thing, depending on factors like developer experience on your team, engineering management preferences, and other
 factors specific to your situation. There are plenty of good arguments for the one-size-fits-all as well as the does-one-thing-well
 approaches. I tend to be more convinced by the approach that lets you adapt and make flexible, case-by-case decisions about
 tooling over time in a way that entrusts engineering teams with the responsibility to determine or create the right tools.
 There’s also the incredibly broader JavaScript ecosystem to consider—you’ll be hard-pressed to find nothing aimed at a problem you’re solving. But at the end of the day, the fact remains that excellent, high-impact teams use both
 sorts of approaches (sometimes at the same time!) to build out their products.

 I’d be remiss if I didn’t mention lock-in before moving on. It’s an unavoidable fact that JavaScript frameworks are rarely
 truly interoperable; you can’t usually have an app that’s part Angular, part Ember, part Backbone, and part React, at least
 not without segmenting off each part or tightly controlling how they interact. It doesn’t usually make sense to put yourself
 in that sort of situation when you can avoid it. You usually go with one and maybe temporarily, at most, two primary frameworks
 for a particular application.

 But what happens when you need to change? If you use a tool with wide-ranging responsibilities like Angular, migrating your
 app is likely going to be a complete rewrite due to the deep idiomatic integration of your framework. You can rewrite smaller
 parts of the application, but you can’t just swap out a few functions and expect everything to work. This is an area where
 React can shine. It employs relatively few “magic” idioms. That doesn’t mean it makes migration painless, but it does help
 you to potentially forgo incurring the cost of a tightly integrated framework like Angular if you migrate to or from it.

 Another tradeoff you make when choosing React is that it’s primarily developed and built by Facebook and is meant to serve
 the UI needs of Facebook. You might have a hard time working with React if your application is fundamentally different than
 the UI needs of Facebook’s apps. Fortunately, most modern web apps are in React’s technological wheelhouse, but there are
 certainly apps that aren’t. These might also include apps that don’t work within the conventional UI paradigms of modern web
 apps or apps that have very specific performance needs (such as a high-speed stock ticker). Yet even these can often be addressed
 with React, though some situations require more-specific technologies.

 One last tradeoff we should discuss is React’s implementation and design. Baked into the core of React are systems that handle
 updating the UI for you when the data in your components change. They execute changes that you can hook into using certain
 methods called lifecycle methods. I cover these extensively in later chapters. React’s systems that handle updating your UI make it much easier to focus on
 building modular, robust components that your application can use. The way React abstracts away most of the work of keeping
 a UI up-to-date with data is a big part of why developers enjoy working with it so much and why it’s a powerful primitive
 in your hands. But it shouldn’t be assumed that there are no downsides or tradeoffs made with respect to the “engines” that
 power the technology.

 React is an abstraction, so the costs of it being an abstraction still remain. You don’t get as much visibility into the system
 you’re using because it’s built in a particular way and exposed through an API. This also means you’ll need to build your
 UI in an idiomatically React way. Fortunately, React’s APIs provide “escape hatches” that let you drop down into lower levels
 of abstraction. You can still use other tools like jQuery, but you’ll need to use them in a React-compatible way. This again
 is a tradeoff: a simpler mental model at the cost of not being able to do absolutely everything how you’d like.

 Not only do you lose some visibility to the underlying system, you also buy into the way that React does things. This tends
 to impact a narrower slice of your application stack (only views instead of data, special form-building systems, data modeling,
 and so on), but it affects it nonetheless. My hope is that you’ll see that the benefits of React far outweigh the cost of
 learning it and that the tradeoffs you make when using it generally leave you in a much better place as a developer. But it
 would be disingenuous for me to pretend that React will magically solve all your engineering challenges.

1.3. The virtual DOM

 We’ve talked a little bit about some of the high-level features of React. I’ve posited that it can help you and your team
 become better at creating user interfaces and that part of this is due to the mental model and APIs that React provides. What’s behind all that? A major theme in React is a drive
 to simplify otherwise complex tasks and abstract unnecessary complexity away from the developer. React tries to do just enough
 to be performant while freeing you up to think about other aspects of your application. One of the main ways it does that
 is by encouraging you to be declarative instead of imperative. You get to declare how your components should behave and look under different states, and React’s internal machinery handles
 the complexity of managing updates, updating the UI to reflect changes, and so on.

 One of the major pieces of technology driving this is the virtual DOM. A virtual DOM is a data structure or collection of data structures that mimics or mirrors the Document Object Model that exists in browsers.
 I say a virtual DOM because other frameworks such as Ember employ their own implementation of a similar technology. In general, a
 virtual DOM will serve as an intermediate layer between the application code and the browser DOM. The virtual DOM allows the
 complexity of change detection and management to be hidden from the developer and moved to a specialized layer of abstraction.
 In the next sections, we’ll look from a high level at how this works in React. Figure 1.3 shows a simplified overview of the DOM and virtual DOM relationship that we’ll explore shortly.

 Figure 1.3. The DOM and virtual DOM. React’s virtual DOM handles change detection in data as well as translating browser events into events
 that React components can understand and react to. React’s virtual DOM also aims to optimize changes made to the DOM for the
 sake of performance.

 [image:]

 1.3.1. The DOM

 The best way to ensure that we understand React’s virtual DOM is to start by checking our understanding of the DOM. If you
 already feel you have a deep understanding of the DOM, feel free to move ahead. But if not, let’s start with an important question: what is the DOM? The DOM, or Document Object Model, is a programming interface that allows your JavaScript programs to interact with different types of documents (HTML, XML,
 and SVG). There are standards-driven specifications for it, which means that a public working group has created a standard
 set of features it should have and ways it should behave. Although other implementations exist, the DOM is mostly synonymous
 with web browsers like Chrome, Firefox, and Edge.

 The DOM provides a structured way of accessing, storing, and manipulating different parts of a document. At a high level,
 the DOM is a tree structure that reflects the hierarchy of an XML document. This tree structure is comprised of sub-trees
 that are in turn made of nodes. You’ll probably know these as the divs and other elements that make up your web pages and applications.

 You’ve probably used the DOM API before—but you may not have known you were using it. Whenever you use a method in JavaScript
 that accesses, modifies, or stores information related to something in an HTML document, you’re almost certainly using the
 DOM or its related APIs (see https://developer.mozilla.org/en-US/docs/Web/API for more on web APIs). This means that not all the methods you’ve used in JavaScript are necessarily part of the JavaScript
 language itself (document.findElemenyById, querySelectorAll, alert, and so on). They’re part of the bigger collection of web APIs—the DOM and other APIs that go into a browser—that allow you to interact with documents. Figure 1.4 shows a simplified version of the DOM tree structure you’ve probably seen in your web pages.

 Figure 1.4. Here’s a simple version of the DOM tree structure, using elements you’re probably familiar with. The DOM API that’s exposed
 to JavaScript lets you performs operations on these elements in the tree.

 [image:]

 Common methods or properties you may have used to update or query a web page might include getElementById, parent.appendChild, querySelectorAll, innerHTML, and others. These are all provided by the host environment (in this case, the browser) and allow JavaScript to interact with
 the DOM. Without this ability, we’d have far less interesting web apps to use and perhaps no books about React to write!

 Interacting with the DOM is usually straightforward but can get complicated in the context of a large web application. Fortunately,
 we don’t often need to directly interact with the DOM when building applications with React—we mostly leave that to React.
 There are cases when we want to reach out past the virtual DOM and interact with the DOM directly, and we’ll cover those in
 future chapters.

 1.3.2. The virtual DOM

 The web APIs in browsers let us interact with web documents with JavaScript via the DOM. But if we can already do this, why
 do we need something else in between? I want to first state that React’s implementation of a virtual DOM doesn’t mean that
 the regular web APIs are bad or inferior to React. Without them, React can’t work. There are, however, certain pain points
 of working directly with the DOM in larger web applications. Generally, these pain points arise in the area of change detection.
 When data changes, we want to update the UI to reflect that. Doing that in a way that’s efficient and easy to think about
 can be difficult, so React aims to solve that problem.

 Part of the reason for that problem is the way browsers handle interactions with the DOM. When a DOM element is accessed,
 modified, or created, the browser is often performing a query across a structured tree to find a given element. That’s just
 to access an element, which is usually only the first part of an update. More often than not, it may have to reperform layout,
 sizing, and other actions as part of a mutation—all of which can tend to be computationally expensive. A virtual DOM won’t get you around this, but it can help updates to
 the DOM be optimized to account for these constraints.

 When creating and managing a sizeable application that deals with data that changes over time, many changes to the DOM may
 be required, and often these changes can conflict or are done in a less-than-optimal way. That can result in an overly complicated
 system that’s difficult for engineers to work on and likely a subpar experience for users—lose-lose. Thus performance is another
 key consideration in React’s design and implementation. Implementing a virtual DOM helps address this, but it should be noted
 that it’s designed to be just “fast enough.” A robust API, simple mental model, and other things like cross-browser compatibility
 end up being more important outcomes of React’s virtual DOM than an extreme focus on performance. The reason I make this point
 is that you may hear the virtual DOM talked about as a sort of silver bullet for performance. It is performant, but it’s no
 magic performance bullet, and at the end of the day, many of its other benefits are more important for working with React.

 1.3.3. Updates and diffing

 How does the virtual DOM work? React’s virtual DOM has a few similarities to another software world: 3D gaming. 3D games sometimes
 employ a rendering process that works very roughly as follows: get information from the game server, send it to the game world
 (the visual representation that the user sees), determine what changes need to be made to the visual world, and then let the
 graphics card determine the minimum changes necessary. One advantage of this approach is that you only need the resources
 for dealing with incremental changes and can generally do things much quicker than if you had to update everything.

 That’s a gross oversimplification of the way 3D games are rendered and updated, but the general ideas give us a good example
 to think of when looking at how React performs updates. DOM mutation done poorly can be expensive, so React tries to be efficient
 in its updates to your UI and employs methods similar to 3D games.

 As figure 1.5 shows, React creates and maintains a virtual DOM in memory, and a renderer like React-DOM handles updating the browser DOM
 based on changes. React can perform intelligent updates and only do work on parts that have changed because it can use heuristic diffing to calculate which parts of the in-memory DOM require changes to the DOM. Theoretically, this is much more streamlined and
 elegant than “dirty checking” or other more brute-force approaches, but a major practical implication is that developers have
 less complicated state tracking to reason about.

 Figure 1.5. React’s diffing and update procedure. When a change happens, React determines differences between the actual and in-memory
 DOMs. Then it performs an efficient update to the browser’s DOM. This process is often referred to as a diff (“what changed?”) and patch (“update only what changed”) process.

 [image:]

 1.3.4. Virtual DOM: Need for speed?

 As I’ve noted, there’s more to the virtual DOM than speed. It’s performant by design and generally results in snappy, speedy
 applications that are fast enough for modern web application needs. Performance and a better mental model have been so appreciated
 by engineers that many popular JavaScript libraries are creating their own versions or variations of a virtual DOM. Even in
 these cases, people tend to think that the virtual DOM is primarily focused on performance. Performance is a key feature of
 React, but it’s secondary to simplicity. The virtual DOM is part of what enables you to defer thinking about complicated state
 logic and focus on other, more important parts of your application. Together, speed and simplicity mean happier users and
 happier developers—a win-win!

 I’ve spent some time talking about the virtual DOM, but I don’t want to give you the idea that it will be an important part
 of working with React. In practice, you won’t need to be thinking extensively about how the virtual DOM is accomplishing your
 data updates or making your changes to your application. That’s part of the simplicity of React: you’re freed up to focus
 on the parts of your application that need the most focus.

1.4. Components: The fundamental unit of React

 React doesn’t just use a novel approach to dealing with changing data over time; it also focuses on components as a paradigm
 for organizing your application. Components are the most fundamental unit of React. There are several different ways you can
 create components with React, which future chapters will cover. Thinking in terms of components is essential for grasping
 not only how React was meant to work but also how you can best use it in your projects.

 1.4.1. Components in general

 What is a component? It’s a part of a larger whole. The idea of components is likely familiar to you, and you probably see
 them often even though you might not realize it. Using components as mental and visual tools when designing and building user
 interfaces can lead to better, more intuitive application design and use. A component can be whatever you determine it to
 be, although not everything makes sense as a component. For example, if you decide that the entirety of an interface is a
 component, with no child components or further subdivisions, you’re probably not helping yourself. Instead, it’s helpful to
 break different parts of an interface into parts that can be composed, reused, and easily reorganized.

 To start thinking in terms of components, we’ll look at an example interface and break it down into its constituent parts.
 Figure 1.6 shows an example of an interface you’ll be working on later in the book. User interfaces often contain elements that are
 reused or repurposed in other parts of the interface. And even if they’re not reused, they’re at least distinct. These different
 elements, the distinct elements of an interface, can be thought of as components. The interface on the left in figure 1.6 is broken down into components on the right.

 Figure 1.6. An example of an interface broken into components. Each distinct section can be thought of as a component. Items that repeat
 in a uniform nature can be thought of as one component that gets reused over different data.

 [image:]

 	

 Component thinking

 Visit a popular site that you enjoy and use often (like GitHub, for example) and break down the interface into components.
 As you go, you’ll probably find yourself dividing things into separate parts. When does it make sense to stop breaking things
 down? Should an individual letter be a component? When might it make sense for a component to be something small? When would
 it make sense to consider a grouping of things as one component?

 	

 1.4.2. Components in React: Encapsulated and reusable

 React components are well encapsulated, reusable, and composable. These characteristics help enable a simpler and more elegant
 way of thinking about and building user interfaces. Your application can be comprised of clear, concise groups instead of
 being a spaghetti-code mess. Using React to build your application is almost like building your project with LEGOs, except that you can’t run out of pieces. You’ll encounter bugs, but thankfully there are
 no pieces to step on.

 In exercise 1.1, you practiced thinking with components and broke an interface into some constituent components. You could have done it any
 number of ways, and it’s possible you might not have been especially organized or consistent. That’s fine. But when you work
 with components in React, it will be important to consider organization and consistency in component design. You’ll want to
 design components that are self-contained and focus on a particular concern or a handful of related concerns.

 This lends itself towards components that are portable, logically grouped, and easy to move around and reuse throughout your
 application. Even if it takes advantage of other libraries, a well-designed React component should be fairly self-contained.
 Breaking your UI into components allows you to work more easily on different parts of the application. Boundaries between
 components mean that functionality and organization can be well-defined, whereas self-contained components mean they can be
 reused and moved around more easily.

 Components in React are meant to work together. This means you can compose together components to form new composite components. Component composition is one of the most powerful aspects of React. You can create a component once and make
 it available to the rest of your application for reuse. This is often especially helpful in larger applications. If you’re
 on a medium-to-large team, you could publish components to a private registry (npm or otherwise) that other teams could easily
 pull down and use in new or existing projects. This might not be a realistic scenario for all sizes of teams, but even smaller
 teams will benefit from the code reuse that React components promote.

 A final aspect of React components is lifecycle methods. These are predictable, well-defined methods you can use as your component moves through different parts of its lifecycle
 (mounting, updating, unmounting, and so on). We’ll spend a lot of time on these methods in future chapters.

1.5. React for teams

 You now know a little bit more about components in React. React can make your life easier as an individual developer. But
 what about on a team? Overall, what makes React so appealing to individual developers is also what can make it a great fit
 for teams. Like any technology, React isn’t a perfect solution for every use case or project, no matter the hype or what fanatical
 developers may try to convince you of. As you’ve already seen, there are many things that React doesn’t do. But the things
 it does do, it does extremely well.

 What makes React a great tool for larger teams and larger applications? First, there’s the simplicity of using it. Simplicity is not the same thing as ease. Easy solutions are often dirty and quick, and worst of all, they can incur technical debt. Truly simple technology is flexible
 and robust. React provides powerful abstractions that can still be worked with along with ways to drop down into the lower-level
 details when necessary. Simple technology is easier to understand and work with because the difficult work of streamlining
 and removing what’s not necessary has been done. In many ways React has made simple easy, providing an effective solution
 without introducing harmful “black magic” or an opaque API.

 All this is great for the individual developer, but the effect is amplified across larger teams and organizations. Although
 there’s certainly room for React to improve and keep growing, the hard work of making it a simple and flexible technology
 pays off for engineering teams. Simpler technologies with good mental models tend to create less of a mental burden for engineers
 and let them move faster and have a higher impact. As a bonus, a simpler set of tools is easier to learn for new employees.
 Trying to ramp up a new team member to an overly complex stack will not only cost time for the training engineers, it will
 also probably mean that the new developer will be unable to make meaningful contributions for some time. Because React seeks
 to carefully rethink established best practices, there’s the initial cost in paradigm switch, but after that it’s often a
 big, long-term win.

 Although it’s certainly a different tool than others in the same space, React is a fairly lightweight library in terms of
 responsibility and functionality. Where something like Angular may require you to “buy in” to a more comprehensive API, React
 is only concerned with the view of your application. This means it’s much more trivial to integrate it with your current technologies,
 and it will leave you room to make choices about other aspects. Some opinionated frameworks and libraries require an all-or-nothing
 adoption stance, but React’s “just the view” scope and general interoperability with JavaScript mean this isn’t always the
 case.

 Instead of going all-in, you can incrementally transition different projects or tools over to React without having to make
 a drastic change to your structure, build stack, or other related areas. That’s a desirable trait for almost any technology,
 and it’s how React was first tried out at Facebook—in one small project area. From there it grew and took hold as more and
 more teams saw and experienced its benefits. What does all this mean for your team? It means you can evaluate React without
 having to take the risk of completely rewriting the product using React.

 The simplicity, un-opinionated nature, and performance of React make it a great fit for projects small and large alike. As
 you keep exploring React, you’ll see how it can be a good fit for your team and projects.

1.6. Summary

 React is a library for creating user interfaces that was initially built and open sourced by Facebook. It’s a JavaScript library
 built with simplicity, performance, and components in mind. Rather than provide a comprehensive set of tools for creating
 applications, it allows you to choose how to implement your data models, server calls, and other application concerns, and
 what to implement them with. These key reasons and others are why React can be a great tool for small and large applications
 and teams alike. Here are some of the benefits of React briefly summarized for a few typical roles:

 	
Individual developer— Once you learn React, your applications can be easier to rapidly build out. They will tend to be easier to work on for larger
 teams, and sophisticated features can be easier to implement and maintain.

 	
Engineering manager— There’s an initial cost for developers as they learn React, but eventually they’ll be able to more easily and quickly develop
 complex applications.

 	
CTO or upper management— React, like any technology, is an investment with risks. But the eventual gains in productivity and reduced mental burdens
 often outweigh time sunk into ramping up. That’s not the case for every team, but it’s true for many.

OEBPS/01fig03_alt.jpg

OEBPS/01fig04_alt.jpg

OEBPS/01fig01_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/common2.jpg

OEBPS/logo.jpg

OEBPS/xxiifig01.jpg

OEBPS/common1.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig06_alt.jpg

OEBPS/cover.jpg

