

 [image:]

 Grokking Web Application Security

 Malcolm McDonald

 Foreword by Stuart McClure

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Becky Whitney

 	

 Technical editor:

 	

 Rajvardhan Oak

 	

 Review editor:

 	

 Kishor Rit

 	

 Production editor:

 	

 Deirdre Hiam

 	

 Copy editor:

 	

 Keir Simpson

 	

 Proofreader:

 	

 Katie Tennant

 	

 Technical proofreader:

 	

 Karsten Strøbæk

 	

 Typesetter:

 	

 Dennis Dalinnik

 ISBN: 9781633438262

сontents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 Part 1.

 1 Know your enemy

 Figuring out how hackers attack you (and why)

 Surviving the fallout from getting hacked

 Determining how paranoid you should be

 Knowing where to start protecting yourself

 Summary

 2 Browser security

 The parts of a browser

 The JavaScript sandbox

 Disk access

 Cookies

 Cross-site tracking

 Summary

 3 Encryption

 The principles of encryption

 Encryption keys

 Encryption in transit

 Encryption at rest

 Integrity checking

 Summary

 4 Web server security

 Validating input

 Escaping output

 Handling resources

 Representation State Transfer (REST)

 Defense in depth

 The principle of least privilege

 Summary

 5 Security as a process

 Using the four-eyes principle

 Applying the principle of least privilege to processes

 Automating everything you can

 Not reinventing the wheel

 Keeping audit trails

 Writing code securely

 Using tools to protect yourself

 Owning your mistakes

 Summary

 Part 2.

 6 Browser vulnerabilities

 Cross-site scripting

 Cross-site request forgery

 Clickjacking

 Cross-site script inclusion

 Summary

 7 Network vulnerabilities

 Monster-in-the-middle vulnerabilities

 Misdirection vulnerabilities

 Certificate compromise

 Stolen keys

 Summary

 8 Authentication vulnerabilities

 Brute-force attacks

 Single sign-on

 Strengthening your authentication

 Multifactor authentication

 Biometrics

 Storing credentials

 User enumeration

 Summary

 9 Session vulnerabilities

 How sessions work

 Session hijacking

 Session tampering

 Summary

 10 Authorization vulnerabilities

 Modeling authorization

 Designing authorization

 Implementing access control

 Testing authorization

 Spotting common authorization flaws

 Summary

 11 Payload vulnerabilities

 Deserialization attacks

 XML vulnerabilities

 File upload vulnerabilities

 Path traversal

 Mass assignment

 Summary

 12 Injection vulnerabilities

 Remote code execution

 SQL injection

 NoSQL injection

 LDAP injection

 Command injection

 CRLF injection

 Regex injection

 Summary

 13 Vulnerabilities in third-party code

 Dependencies

 Farther down the stack

 Information leakage

 Insecure configuration

 Summary

 14 Being an unwitting accomplice

 Server-side request forgery

 Email spoofing

 Open redirects

 Summary

 15 What to do when you get hacked

 Knowing when you’ve been hacked

 Stopping an attack in progress

 Figuring out what went wrong

 Preventing the attack from happening again

 Communicating details about the incident to users

 Deescalating future attacks

 Summary

 index

 front matter

foreword

 I’ve hacked just about everything that’s walked or crawled on this planet at one time or another. From my first hack of a fellow systems administrator’s root password (authorized, of course) in 1989 to taking over an insulin pump and dispensing all the pump’s insulin on the keynote stage of RSA 2012, I have made it my purpose to expose the world of the adversary—how an attacker thinks and works. After all, education is the final bastion of hope we have to prevent cyberattacks.

 When I wrote my first book, Hacking Exposed: Network Secrets and Solutions, in 1999, I knew how important content on adversaries was to administrators. So I quickly cowrote one of the first textbooks on applying these hacking techniques to the new world of the internet: Web Hacking: Attacks and Defense, published in 2002. In that book, my coauthors and I used the same prescriptive formula to educate and kinetically teach defenders how to prevent cyberattacks on their web properties. Little did we know back then just how important software developers would be to the success or failure of hacks. In short, they are everything—because 100% of cyberattacks begin and end with code.

 Every piece of the internet runs on software. From network routers and switches to servers and endpoints to industrial control technologies, everything we use to share, communicate, and disseminate information is written in code. When a vulnerability is found, it is ultimately found in source code.

 In this book, Malcolm delivers real-world examples of successful attacks and shows how to avoid being the next victim.

 Two core problems exist in code that lead to security flaws: the presence of a security flaw and the lack of security features in code to prevent logic flaws. These conditions combine to cause 100% of cyberattacks, and only developers can truly prevent the attack at the root. Every other layer is simply window dressing. “Only you can prevent cyberattacks!” is the rallying cry for the developers of the world.

 The only way we defenders can get ahead of the adversary once and for all is to solve the problem at its root: source code. Software engineers have to become security-savvy gurus who can predict how adversaries will use their code (or lack of code) maliciously to exploit weaknesses. For this reason, only developers can fix the cybersecurity problem.

 We’ve needed a book just like this one—simple, intuitive, and easy to grok; by developers for developers; speaking developers’ language; offering advice and assistance in easily digestible nuggets. That is exactly what Malcolm achieves. He doesn’t cover just the necessary bits of the code that developers produce, but also open source code. Additionally, he educates coders on managing a breach. These practical steps are critical for demystifying and destigmatizing developers and their role. If you could read only one book on cybersecurity, this book would be the one.

 Grokking Web Application Security empowers all developers at all levels to understand the causes of cyberattacks and how to fix or mitigate those risks in a codebase. Malcolm clears up the murky waters of hacking and gives developers the confidence to attack the problems they find in code. In essence, Grokking Web Application Security should be considered the seminal primer on vulnerabilities in code. Every developer (and consequently every human) would benefit greatly from reading every single word.

 —Stuart McClure, CEO of Qwiet AI, founding author of the Hacking Exposed book series

preface

 Many moons ago (well, it wasn’t that long ago, but the tech world moves so fast that programmer years are like dog years), I was put in charge of building and maintaining a system that would handle credit card information. Such systems have to meet the Payment Card Industry Data Security Standards (PCI DSS), which requires a grueling annual audit to ensure that you are meeting security requirements.

 One of these requirements is to train your development team each year about the key software vulnerabilities that might affect such a system and how to protect against them. “Right,” I thought. “This ought to be easy: the internet has so much freely accessible information about web application security.”

 It turned out that there was far too much to choose from. The internet is awash with so much information on web application security: detailed, disorganized, sometimes out of date or duplicative, and often aimed at cybersecurity professionals rather than working coders. I wanted something succinct and to the point. What are the most essential things to know if I could steal a day of every developer’s time? And how best could I structure that information? I certainly didn’t want to trap the whole development team in a conference room for 8 hours and make them sit through PowerPoint presentations of info they already mostly know. That frustration led me to create Hacksplaining.com and, eventually, to write this book.

 Web application security is a curious subject area, in that every programmer (even fresh out of boot camp or with a recent computer science degree in hand) will have a fair knowledge of it, but we tend to feel (quite correctly) that we should know a little bit more. Doing your own research on the web can feel like walking into a disorganized library and picking up random texts, hoping to gain some good insights. Furthermore, nobody loves going to their boss and admitting that they have gaps in their knowledge, so we tend to be a little insecure about what we might not know.

 With this book, I’ve tried to follow a few rules:

 	

 Everything essential to know about web application security is contained within these pages.

 	

 Everything here is useful to know.

 	

 I’ve tried not to leave too many questions unanswered for the curious reader. Security advice on the internet tends to be along these lines: “Just use antisnarfing tokens to protect against the snarf-warbling vulnerability, or else a hacker will snarf your warbles.” When I read this type of advice, I immediately begin to ask, “But how would you snarf someone’s warbles? How would I get a job as a snarf warbler?” I have the sudden desire to know everything about snarf warbling.

 To address this situation, where length permits, I’ve tried to show the tools hackers use, because (1) knowing about these tools gives you a real sense of the threat they pose, and (2) it’s just plain fun to know some snarf-warbling secrets. Hackers tend to be like stage magicians in that they appear to have incredible powers, but once you know how a trick works, it tends to be disappointingly mundane in the mechanics yet amazingly impressive in the amount of preparation required to pull it off. Peeking behind the curtain should give the reader some motivation to plow through what can be somewhat-dry subject matter, as well as gain some useful background for assessing risks.

 The result is (I hope) the book I would have wanted to read when I was starting as a developer, and one that I would delve into as an experienced developer to chase away the suspicion that I may have missed a few topics. (And I probably will delve into it, too; being a middle-aged programmer is an exercise in refreshing your knowledge periodically.) It’s certainly the book I would drop on the desk of the newest member of my development team, saying, “Read this when you get the chance. If you know all this already, that’s a very good sign.”

 We programmers tend to learn by making mistakes; you can’t truly call yourself an experienced developer until you’ve brought down production at least once, after all. But security mistakes definitely are not the type of thing you want to learn about from experience. If this book helps you prevent a single security mistake before it hits production, I would say that reading it has been worthwhile. I hope it proves to be worthwhile for you!

acknowledgments

 I would like to thank my wife, Monica. Since we started dating, I’ve had approximately three different jobs, and she’s been extremely patient as I’ve slugged through the writing process and grunted at my laptop. I promise not to write another book for a little while! She is also the one who bought me an Apple Pencil and suggested that I create my own illustrations, thus allowing me to live out the alternative life path where I went to art school and smoked clove cigarettes.

 I need to thank my coauthor, our cat Haggis, who has been a constant writing companion and a sounding board for ideas. His insistence that I take frequent breaks to attend to his needs was probably healthy for me, although walking across the keyboard is probably not the most polite way to communicate those needs.

 I also need to thank our dog, Beans, for warning me whenever anybody crossed the threshold of our house. It’s difficult to know quite why he harbors such a grudge against our mail carrier, but it’s refreshing to know that packages will never be dropped off unannounced.

 I thank Mum and Dad for feeding me so much reading material as I grew up. And I’d like to thank my elder and younger brothers—Scott and Alasdair, respectively, who are the kindest and smartest people I know. (They are both very kind and very smart! But we are a competitive family, so these things need to be ranked.)

 I thank my editor, Becky Whitney, for putting my sometimes-mangled grammar into approximately sensible order. There are so many words to choose among, and good writing is hard, so I endlessly remove and edit the same errors without a good editor. Which she is! I’d also like to thank my technical editor, Raj Oak, for catching the many and varied errors I committed when coming up with the code samples and illustrations. I also thank the rest of the team at Manning: review editor Kishor Rit, production editor Deirdre Hiam, copy editor Keir Simpson, proofreader Katie Tennant, and typesetter Dennis Dalinnik.

 Finally, I’d like to thank the (at the time of writing) reader review panel: Aboudou Samadou Sare, Adam Wan, Adrian Cucoș, Alexander Zenger, Aliaksandra Sankova, Bill Mitchell, Charles Chan, David Romano, Diana Carsona, Dieter Späth, Dr. Michael Piscatello, Ed Bacher, Emmanouil Chardalas, Giampiero granatella, Greg MacLean, Greg White, Ian De La Cruz, Jaehyun Yeom, Janet Jose, Jared Duncan, Javid Asgarov, Jorge Ezequiel Bo, Lev Veyde, Mario Pavlov, Maxim Volgin, Milorad Imbra, Najeeb Arif, Nathan McKinley-Pace, Patrick Regan, Paul Love, Peter Mahon, Ranjit Sahai, Samuel Bosch, Santosh Shanbhag, Sergio Britos, Tomasz Borek, and Zachary Manning. The quickest way for me to learn is to be wrong in public, and their generous feedback gave me room to correct my mistakes before the book was officially published. They also nudged me to cover certain topic areas I hadn’t considered, which improved the book immeasurably.

about this book

 Grokking Web Application Security was written to be a comprehensive overview of every aspect of web application security. The book covers all the major security principles a modern web developer should know and all the vulnerabilities they are likely to encounter. There are two ways to read this book, depending on how you absorb knowledge. If you are patient, read it from cover to cover, and you will find that the topics gradually reveal the world of application security. If you are impatient (like me!), dive into a chapter that looks interesting; you will find that it references related topics that pull you in different directions.

 Who should read this book

 This book is for anyone who writes web applications and feels that they should know more about web application security. That includes first-time coders who are looking for a map of the territory and experienced hands who want to brush up their knowledge. The code samples are in a variety of languages, chosen to illustrate various principles and vulnerabilities.

 How this book is organized: A road map

 The first half of the book covers the major security principles you need to know as a developer. The second half covers all the major vulnerabilities you will encounter in web applications, starting in the browser and moving across the network to the server.

 About the code

 This book contains many examples of source code both in snippets and in line with normal text. In both cases, code is formatted in a fixed-width font like this to separate it from ordinary text. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/grokking-web-application-security/discussion.

 liveBook discussion forum

 Purchase of Grokking Web Application Security includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grokking-web-application-security. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest that you try asking him some challenging questions, lest his interest stray! The forum and the archives of previous discussions will be accessible on the publisher’s website as long as the book is in print.

about the author

 Malcolm McDonald is a web developer with 20 years of experience and the creator of Hacksplaining.com, a popular website that teaches secure coding practices.

 Part 1.

 1 Know your enemy

 In this chapter

 	How hackers attack you and why

 	How you will be affected if your site gets hacked

 	How paranoid you should be

 	How to start addressing the risk of being hacked

 Launching a web application on the internet is a daunting task. The steps you take along the road to deploying a web app can be onerous: designing and coding your web pages, adding interactivity using JavaScript, implementing the backend services and connecting them to a data store, choosing a hosting platform, and registering a domain name. The result is worthwhile, of course: your website will be available to billions of users immediately, thanks to the magic of the internet.

 Not all these users have good intentions, though. The internet hosts a complex ecosystem of scripts, bots, and hackers who will try to abuse any security flaws in your web app for nefarious ends. This is probably the most disconcerting aspect of web development: after all the work you put into building your web application, someone will immediately come along to kick the tires and scratch the paintwork.

 Because you are reading this book, you are likely a developer who is wary of these security risks and who wants to learn how to protect yourself. This book is a comprehensive guide to web security: you will learn how to secure your web apps in the browser, on the network, on the server, and at code level. I will also introduce the key security principles that can be applied at each level of abstraction.

 Before we delve into the nuts and bolts, however, it’s worth investigating who these malicious actors on the internet are, what motivates them, and what tools they use. Let’s talk about hackers.

 Figuring out how hackers attack you (and why)

 Hacking is, in its most literal sense, an attempt to gain unauthorized access to software systems. But this definition doesn’t do justice to the wide variety of miscreants and nuisance-makers who populate the internet, though it encompasses a few gray areas we wouldn’t consider hacking. (Does sharing your Netflix login with a family member make you a hacker? Don’t answer that question, Reed Hastings.)

 Instead, we should switch our scope to consider the hackers themselves—the cybercriminals who will target your web application. These folks have been using the internet to commit crimes for almost as long as the internet has existed. Attackers can be broadly classified as black hat hackers, who perform malicious (and illegal) acts for financial or political gain, or white hat hackers, who attempt to identify vulnerabilities before the black hats can take advantage of them. Large companies often pay so-called bug bounties to the latter group, rewarding anybody who can find flaws in their security strategy before the bad actors do. This practice has led to the rise of gray hat hackers, who will report a vulnerability rather than exploit it if they deem reporting it to be more profitable.

 [image:]

 Hackers on both sides of the divide use automated tools and scripts to detect vulnerabilities. These tools are generally open source and easy to obtain. Many hackers use Kali Linux, a custom Linux distribution containing the most popular digital forensic and hacking tools. White hat hackers use Kali as part of their penetration testing activities, scanning a client system for vulnerable access points as part of a security audit. Black hats use the same tools to find vulnerabilities they can exploit.

 The white hat world also includes security researchers who work to discover, document, and share information about vulnerabilities in common software. A researcher might discover a vulnerability on a popular Java web server such as Apache Tomcat, for example, and then demonstrate to the authors of the software how the vulnerability is exhibited. When a software patch has been made available to resolve the problem, such vulnerabilities are cataloged in the Common Vulnerability and Exposure (CVE) database maintained by MITRE Corporation, an American not-for-profit organization specializing in cybersecurity. You often see such vulnerabilities referred to by CVE numbers.

 [image:]

 As soon as a new CVE is published—and sometimes before—proof-of-concept exploits also become available. Exploits are snippets of code that demonstrate how the vulnerability can be used to perform malicious activity, such as smuggling malicious code into a vulnerable system. Such exploits quickly get incorporated into hacking tools such as Metasploit, commonly used by both black hat and white hat hackers to probe websites for vulnerabilities. Black hat hackers also hoard knowledge of vulnerabilities they have discovered, trying to keep the vulnerability in place as long as possible so that it doesn’t get patched.

 Making use of software vulnerabilities isn’t the only tool in the cybercriminal’s toolkit, either. Social engineering is the process of gaining a target’s trust and persuading them to divulge confidential information, such as login credentials. Social engineering can be done in person, over the phone, or via messaging channels. You may be familiar with phishing emails that attempt to trick a target into sharing their password. Hackers find a lot of success with spear phishing, performing background research to target named people (often in the accounting departments of companies). This form of fraud has a counterpart in messaging apps and social media.

 [image:]

 Some of the most audacious cybercrimes of recent years have been assisted by malicious insiders—rogue employees or contractors who decide to sell or leak company secrets or intellectual property or to cause other types of harm. Having a bad actor in your organization is one of the most difficult situations to protect against, so companies at risk tend to restrict data access on a need-to-know basis.

 Why is cybercrime so common? The answer, unsurprisingly, is that it can be quite profitable. An underground economy of sites comprises the dark web, where hackers resell stolen data, credit card numbers, vulnerabilities, and even compromised servers. Payments are exchanged via cryptocurrencies, making them very difficult to trace. Because the dark web is available only via the Tor browser, which anonymizes access, these markets operate with impunity and are extremely difficult for law enforcement agencies to disrupt.

 In addition to selling stolen data on the dark web, cybercriminals use extortion to extract money directly from their victims. Ransomware is a form of malicious software that encrypts a victim’s files and prevents access to them until a cryptocurrency ransom is paid to the attacker. Businesses as diverse as oil pipelines, healthcare providers, meat suppliers, and hotel chains have all been victims of major attacks and have been forced to pay to get their servers unlocked. Ransomware has become so ubiquitous that the authors of such software operate a franchise model, making their tools freely available to black hat hacker groups in exchange for a cut of each ransom payment. Attackers sometimes even offer “support channels” to victims who need assistance decrypting their file-systems after a ransom is paid.

 [image:]

 It’s worth noting that not all hacking is done for financial reasons. Hacktivism describes hacking that’s done for political reasons by provocateurs who want to further their cause. The aims of hacktivists are often laudable, such as bringing down social media sites used by the far right by deanonymizing (doxing) their users, disrupting repressive political regimes, or leaking documents from tax havens.

 Cyber espionage plays a key role in modern warfare, too, and the most formidable hacker groups are usually state sponsored. Hacking groups that fall into this category use sophisticated surveillance techniques to target their victims. Security researchers trace such advanced persistent threats (APTs) by tracking the signature techniques they use. The security community gives each APT a fun code name such as Cozy Bear (a Russian hacking group) or Charming Kitten (an Iranian government cyberwarfare group) that contrasts with the chaos it causes.

 [image:]

 Surviving the fallout from getting hacked

 Now that we’ve met our adversaries, let’s consider what it means to be a victim of a hacker. Just as hacking describes a wide range of activities, falling victim to a cyberattack can have a variety of outcomes with differing degrees of severity.

 The most straightforward consequence of getting hacked is that your web app will become unavailable to other, legitimate users. This type of hack is called a denial-of-service (DoS) attack. To achieve this end, hacking tools don’t need to penetrate your security perimeter; an attacker can simply bombard your servers with so many requests that no computing resources are available to other visitors.

 [image:]

 Despite their relative lack of sophistication, DoS attacks can be hard to prevent. Distributed denial-of-service (DDoS) attacks use thousands of individual servers to send requests simultaneously from different Internet Protocol addresses, making it difficult to block malicious requests based on their sources. In 2016, Domain Name System (DNS) provider Dyn fell victim to one of the largest DDoS attacks in history, which led to some of the most popular websites in the world—everything from Amazon.com to Zillow.com—being unavailable in the United States for much of the day.

 Another potential consequence of your web application’s getting hacked is that the attacker will use it as a launchpad to target your users. Injecting malicious JavaScript into a website is called cross-site scripting (XSS), a common vulnerability we will look at in chapter 6. Malicious JavaScript can cause a nuisance by diverting users to scams and fraud on other sites, or it can be used to observe the victim’s activity on the host site itself. Keylogging scripts can capture usernames and passwords as a user logs in. On financial websites, web-skimming scripts can be used to steal credit card details.

 Stealing credentials is a common aim for hackers because harvested usernames and passwords can be sold on the dark web. Credentials for popular social media sites such as Facebook are purchased by scammers who use them to promote their scams. (No, your uncle is not selling discount sunglasses; his account has probably been hacked and resold.) Stolen credentials have a secondary use: because people tend to reuse usernames and passwords across websites, a hacker can retest stolen credentials against a host of different websites in password-spraying attacks. Alternatively, an attacker may target a single site, retrying a whole database of stolen passwords at one time in a credential-stuffing attack.

 The quickest way for an attacker to steal credentials in bulk is to find a way to access and download the contents of your database. Such data breaches are often the worst-case scenario for many companies because data is their key asset. Usernames and passwords are not the only sensitive data stored in databases; hackers can scoop up access tokens for third-party services, chat logs, trade secrets, personally identifiable information, and credit card numbers. In many countries, companies that suffer data breaches are legally obliged to disclose the scope of the breach to customers, which will cause them reputational damage.

 An attacker who can gain write access to a victim’s database gains the ability to expand the reach of their attack. They may be able to inject into the database some malicious JavaScript that will be rendered on the pages of the victim’s website. Or they might insert malicious files (such as ransomware) that the users of the site will be tricked into downloading.

 [image:]

 Hackers who have gained a foothold in your system will try to escalate their privileges until they acquire full access to your servers. The tools they use for this purpose are called rootkits; hackers try to gain access to your server’s root account, which holds the most privileges. A hacker who has achieved root access can start using your computing resources for their own purposes. Making the server part of a botnet—a centrally controlled network of compromised computers called bots—will allow them to mine cryptocurrency, send phishing emails, commit click fraud (by using bots to artificially inflate page views), and carry out many other profitable activities. Access to compromised servers can be resold on the dark web, so your computing resources may be resold without your knowledge.

 Detecting compromised servers is a challenging proposition even for security firms that do that work professionally. Generally, detection requires scanning for unusual activity on the network, searching for suspicious files on the filesystem, or detecting unexplained spikes in resource use. To complicate matters even further, modern hacker groups try to practice living off the land, mimicking existing processes and using only locally accessible services to avoid detection.

 Determining how paranoid you should be

 Hackers are real-life active threats, and the results of their hacking efforts can be catastrophic. Companies that get hacked face reputational and financial damage. Who wants to use a service that leaks your information, after all? Additionally, a data breach can have legal repercussions if the victim can be shown not to have taken due care when securing their systems. Cyberattacks have driven many companies into bankruptcy.

 Before you panic, however, take a step back and assess realistically how much of a threat hackers pose to your organization. Considering who would want to attack you and what they might seek to do is called threat modeling.

 [image:]

 How much of a threat hackers pose depends on how large a target you are and on what hackers might gain by compromising your systems. Government organizations, energy providers, and financial services are high-profile targets. Any industry that stores confidential information—such as healthcare or education—is high risk, too. The size of your organization is also a factor; gaining access to the network of a large company (called big-game hunting) is much more lucrative for a hacker.

 If you work for an organization in any of these industries, your employer most likely has an in-house security team that will audit systems and monitor for suspicious access. This team will carry some of the burden of considering security risks, allowing you to concentrate on writing secure code. (If you are ever called into a secret meeting to discuss a priority zero (P0) event, know that your company’s security team has applied a standard threat-modeling matrix and has deemed something to be a critical threat.)

 Hackers are opportunistic, however, and will use tools to trawl the internet for web servers with known vulnerabilities, whoever you work for. This type of drive-by vulnerability scanning is something that you, as a developer, should be worried about. You should also look for any existing flaws in your codebase that can be exploited, such as broken authentication functions or lack of access control. Taking precautions such as fixing the most obvious vulnerabilities in your code and making yourself a hard target often causes hackers to move on to easier prey.

 Knowing where to start protecting yourself

 This book will be your guide to writing secure code and detecting vulnerabilities in your web applications. Reading the whole thing—or diving into the chapters you find most relevant—will give you a head start on securing your apps. You are probably keen to start your security journey right now, though, so this section presents a few things you can start doing as you delve into the rest of the book.

 Keep track of new vulnerabilities

 Zero-day vulnerabilities describe security problems that have just been made public. (In other words, it has been zero days since public disclosure.) Hackers will jump on the opportunity to exploit zero days, so the onus is on your team to keep track of new vulnerabilities and apply security patches as they become available. When a zero day is announced, you are in a race against time.

 [image:]

 Social media and news sites are your friends if you’re looking to keep abreast of security alerts. X and Reddit will keep you in the loop if you follow tech leaders or subscribe to the relevant sub-Reddits. Major vulnerabilities such as Log4Shell, a remote code execution vulnerability in the Java logging library Log4J, make the news on major tech sites, such as TechCrunch and Ars Technica.

 Know what code you are deploying

 To keep your web application secure, you need to know what code it is running. It is impossible to know what vulnerable libraries your code is calling—and, hence, what patches you need to apply—unless you know what dependencies were deployed during the release process. Chapter 5 talks about how to deploy from source control and use a dependency manager. If you can’t determine at a glance what code is running on your web application, make fixing this situation a priority!

 [image:]

 Log and monitor activity

 You may never know that you have been a victim of a cyberattack unless you have sufficient information to diagnose it. You should be able to view real-time logs of a web app to observe how it is being accessed. Your code should be catching and reporting unexpected errors that occur. Finally, you should have a monitoring system on each web application so that you can see how many requests it is handling per second and the average response time of your application. Logging, error reporting, and monitoring also help with forensic analysis—figuring out after the fact how an attacker managed to compromise your systems.

 [image:]

 Convert your team members into security expert

 The best defense against being hacked is having a whole team on the lookout for security incidents and potential vulnerabilities. Code reviews can catch security problems before they’re released, and having a whole team of well-trained developers cross-checking one another’s work will put you in a strong security stance. Encourage your colleagues to brush up on their security knowledge and to be vocal about potential security problems in team meetings.

 [image:]

 Slow down

 Security problems at the code level often occur when a team is rushing to hit deadlines. Ensure that your development life cycle allows enough time for careful code reviews and analysis, especially if you’re maintaining legacy code—code written by someone who has moved on to other companies or projects. It can be hard to juggle security considerations in the face of tight deadlines, but it is certainly less time consuming than dealing with the aftermath of a cyberattack.

 [image:]

 Summary

 	

 Hackers will target your web applications for financial gain, notoriety, or political reasons.

 	

 Hackers employ a variety of tools and sophisticated techniques, and selling stolen data or deploying ransomware can be profitable.

 	

 If your website is hacked, it may be taken offline, your data stolen, your users targeted, or your servers infected with bots.

 	

 Your risk profile depends on the size of your company and your industry, but no one is safe from drive-by vulnerability scanning.

 	

 Keeping track of vulnerabilities, tracking your dependencies, making sure that your system is observable, educating your team about security, and baking security reviews into your development life cycle will lead to immediate benefits.

 2 Browser security

 In this chapter

 	How a web browser protects its users

 	How to set HTTP response headers to lock down where your web application can load resources from

 	How the browser manages network and disk access

 	How the browser secures cookies

 	How browsers can inadvertently leak history information

 In his 1975 textbook States of Matter (Prentice-Hall), science writer David L. Goodstein starts with the following ominous introduction:

 Ludwig Boltzmann, who spent most of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics.

 We will probably never know why Goodstein strikes up such a depressing note (and we can only hope that he was feeling more cheerful by the end of the book!). Nevertheless, we can relate to the sense of trepidation when cracking open a textbook and immediately diving into abstract principles. So I will warn you up front: the next four chapters of this book deal with the principles of web security.

 It may be tempting to jump ahead to the second half of the book, which looks at code-level vulnerabilities and how they are exploited. But when you’re learning how to protect against these vulnerabilities, the same handful of security principles present themselves as solutions, so I argue that it’s worthwhile to survey them up front. That way, when we finally reach the second half of the book, these security principles will crop up as old friends we are already familiar with, ready to be put into practice.

 So which security principles should we start with? Well, all web applications have a common software component: the web browser. Because the browser will do the most to protect your users from malicious actors, let’s start by looking at the principles of browser security.

 The parts of a browser

 Web applications operate on a client-server model, in which the author of an application has to write server code that responds to HTTP requests and write the client code that triggers those requests. Unless you are writing a web service, that client code will run in a web browser installed on your computer, phone, or tablet. (Or it will run in your car or refrigerator or doorbell: the Internet of Things means that browsers are increasingly being embedded in everyday devices.)

 The browser’s responsibility is to take the HTML, JavaScript, CSS, and media resources that make up a given web page and convert them to pixels on the screen. This process is called the rendering pipeline, and the code within a browser that executes it is called the rendering engine.

 [image:]

 The rendering engine of a browser like Mozilla Firefox consists of millions of lines of code. This code processes HTML according to publicly defined web standards, updates the drawing instructions for the underlying operating system as the user interacts with the page, and loads referenced resources (such as images) in parallel. The renderer also has to intelligently allow for malformed HTML and for resources that are missing (or slow to load), falling back to a best-effort guess at what the page is supposed to look like. To achieve all this, the engine will construct the Document Object Model (DOM), an internal representation of the structure of the web page that allows the styling and layout of elements to be determined efficiently and reused as the page is updated.

 Operating in parallel to the rendering engine is the JavaScript engine, which executes any JavaScript embedded in or imported by the web page. Web applications are increasingly JavaScript heavy, and single-page application (SPA) frameworks like React and Angular consist mostly of JavaScript that performs client-side rendering—editing the DOM directly without having to generate the interim HTML.

 [image:]

 Running untrusted code that is loaded from the internet poses all sorts of security risks, so browsers are very careful about what this JavaScript can do. Let’s take a quick look at how the JavaScript engine executes scripts safely.

 The JavaScript sandbox

 In a browser, JavaScript code loaded by <script> tags in the HTML of a web page is passed to the JavaScript engine for execution. JavaScript is typically used to make the web page dynamic, waiting for the user to interact with the page and updating parts of the page accordingly.

 If the <script> tag has a defer attribute, the browser waits until the DOM is finalized before executing the JavaScript. Otherwise, the JavaScript executes immediately—if it is included inline in the web page—or as soon as it is loaded from an external URL referenced in the src attribute.

 Because browsers execute scripts so eagerly, JavaScript engines put a lot of limitations on what JavaScript code is permitted to do. These limitations are called sandboxing—making a safe, isolated place where JavaScript can play without causing too much damage to the host system. Modern browsers generally implement sandboxing by running each web page in a separate process and ensuring that each process has limited permissions. JavaScript running in a browser cannot do the following things:

 	

 Access arbitrary files on disk

 	

 Interfere with or communicate with other operating system processes

 	

 Read arbitrary locations in the operating system’s memory

 	

 Make arbitrary network calls

 [image:]

 These rules have specific carve-outs, which we will discuss a little later, but the rules are the high-level safeguards built into the JavaScript engine to ensure that malicious JavaScript cannot do too much damage. (The developers of web browsers learned about security the hard way: plug-ins like Adobe Flash, Microsoft’s Active X, and Java applets that circumvent the sandbox have proved to be major security hazards in the past.)

 Though these restrictions may seem to be onerous, most JavaScript code in the browser is concerned with waiting for changes to occur in the DOM—often caused by users scrolling the page, clicking page elements, or typing text—and then updating other elements of the page, loading data, or triggering navigation events in response to these changes. JavaScript that needs to do more can call various browser APIs as long as the browser gives permission.

 TIP Because the intended use of JavaScript running in a browser is generally pretty narrow, this topic brings us to our first big security recommendation: lock down the JavaScript on your web application as much as possible. The JavaScript sandbox provides a strong degree of protection to your users, but hackers can still cause mischief by smuggling in malicious JavaScript via cross-site scripting (XSS) attacks. (We will look in detail at how XSS works in chapter 6.) Locking down your JavaScript mitigates a lot of the risks associated with XSS.

 You can choose among several key methods of locking down JavaScript on a web page. Before executing any script, the JavaScript engine performs these three checks on the code, which you can think of as questions that the browser asks the web application:

 	

 What JavaScript code can I run on this page?

 	

 What tasks should the JavaScript on this page be allowed to perform?

 	

 How can I be sure that I am executing the correct JavaScript code?

 Let’s look at how to answer each of these questions for the browser.

 Content security policies

 You can answer the first question (“What JavaScript code can I run on this page?”) by setting a content security policy on your web application. A content security policy (CSP) allows you, as the author of the web application, to specify where various types of resources—such as JavaScript files, image files, or stylesheets—can be loaded from. In particular, it can prevent the execution of JavaScript that is loaded from suspicious URLs or injected into a web page.

 [image:]

 A CSP can be set as a header in the HTTP response or a <meta> tag in the <head> tag of the HTML of a web page. Either way, the syntax is largely the same, and the browser will interpret the instructions in the same fashion. Here’s how you might set a CSP in a header when writing a Node.js app:

 const express = require("express")

const app = express()

const port = 3000

app.get("/", (req, res) => {

 res.set("Content-Security-Policy", "default-src 'self'") ❶

 res.send("Web app secure!")

})

app.listen(port, () => {

 console.log("Example app listening on port ${port}")

})

 ❶ The content security policy is set directly as a response header.

 Here’s how the same policy would be set in a <meta> tag:

 <!doctype html>

<html>

 <head>

 <meta http-equiv="Content-Security-Policy"

 content="default-src 'self'"> ❶

 <meta charset="utf-8"/>

 <title></title>

 </head>

 <body>

 <p>Web app secure!</p>

 </body>

</html>

 ❶ The content security policy is set in the HTML itself.

 The first approach is generally more useful because it allows policies to be set in a standard way for all URLs on a web application. (The second approach can be handy if you have hardcoded HTML pages that need special exceptions.) Both these instructions tell the browser the same thing—in this case, that all content (including JavaScript files) should be loaded only from the source domain where the site is hosted. So if your web page lives at example.com/login, the browser will execute only JavaScript that is also loaded from the example.com domain (as indicated by the self keyword). Any attempt to load JavaScript from another domain—such as the JavaScript files that Google hosts under the googleapis.com domain, for example—will not be permitted by the browser. (These examples show trivially simple code that doesn’t need these protections, but more complex web applications that include dynamic content benefit from CSPs.) CSP policies can lock various types of resources in different ways, as illustrated in the following minitable.

 	

 Content security policy

 	

 Interpretation

 	

 default-src 'self';

 script-src

 ajax.googleapis.com

 	

 JavaScript files can be loaded from the ajax.googleapis.com origin; all other resources must come from the host domain.

OEBPS/Images/01-02.png

OEBPS/Images/01-10.png
SOURCE CONTROL DEPLOYMENT

OEBPS/Images/02-02.png
Oh, boy!
I love

executing
JavaScript.

<htmi>
<seript>
alert("Hello”)
</script>
<htmi>

HTTP response Document Object Model JavaScript engine

OEBPS/Images/02-01.png
<htmi>
<p>
Hello!
</p>
<htmi>

=> &=

HTTP response Rendering engine Document Object Model

OEBPS/Images/01-07.png
Wi

OEBPS/Images/cover.jpeg
e
e

v |

G T s
T e
e e

T

1C

y Stuart McClure

b

p—
>
=

<
z

d

Malcolm McDonald

Forewor

OEBPS/Images/01-01.png
‘Hoard vuinerabilities
and take advantage
of people

Make the interet
Motivated by LI

greed or mischief

Responsibly disclose
the vulnerabiliies
they dis
Motivated by ey discover
ot Make the
internet safer!

TR TRRE

OEBPS/Images/01-11.png
10
10
10
10
10
10
10

10:
10:

10

8 [INFO] GET /account 200 took §:32ms

9 [INFO] GET /login 200 tock 6.37ms

2 [MARNING] GET /admin.php 404 took 8.01ms

8 [INFO] Queue size s 142 items
[INFO] POST /account 200 took 7082ms
[DEBUG] Cache refresh started...

8 [INFO] Queue size is 141 items

5 [INFO] POST /comment 200 took 5031ms
[INFO] Notification sent

1 [DEBUG] 25231 items in cache

10:23:02 [DEBUG] Cache refresh complete
10:23:08 [INFO] GET /account 200 took 9.31ms

OEBPS/Images/01-06.png

OEBPS/Images/02-04.png
What JavaScript
code can | run
on this page?

Content-Security-Policy:
default-src 'self’
*.googleapis.com

OEBPS/Images/Manning_M_small.png

OEBPS/Images/01-13.png

OEBPS/Images/01-05.png

OEBPS/Images/01-09.png
CUE-2822-3786: R.509 Email
RAddress Variable Length Buffer

OEBPS/Images/01-03.png
@ You are chatting with overly_familiar_stranger
I\

hey I'm doing a survey lol N

what's your favorite color

and your mother’s maiden name N

and the last 4 of your social security number

OEBPS/Images/02-03.png
N\

N%OWG N %

I

>

‘“"kf,f‘;:.;&
Ty

=z
(-

I
=}
N

=

OEBPS/Images/Manning_copyright.png

OEBPS/Images/01-12.png

OEBPS/Images/01-04.png

OEBPS/Images/01-08.png
f-service

penial-0
attacks
et I Diruses

DANG E

