

 inside front cover

 [image:]

 [image:]

 Tiny CSS Projects

 Martine Dowden and Michael Gearon

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Arthur Zubarev

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Keir Simpson

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Louis Lazaris

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439832

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 1 CSS introduction

 1.1 Overview of CSS

 Separation of Concerns

 What is CSS?

 1.2 Getting started with CSS by creating an article layout

 1.3 Adding CSS to our HTML

 Inline CSS

 Embedded CSS

 External CSS

 1.4 The cascade of CSS

 User-agent stylesheets

 Author stylesheets

 User stylesheets

 CSS reset

 Normalizer

 The !important annotation

 1.5 Specificity in CSS

 1.6 CSS selectors

 Basic selectors

 Combinators

 Pseudo-class and pseudo-element selectors

 Attribute value selectors

 Universal selector

 1.7 Different ways to write CSS

 Shorthand

 Formatting

 2 Designing a layout using CSS Grid

 2.1 CSS Grid

 2.2 Display grid

 2.3 Grid tracks and lines

 Repeating columns

 The minmax() function

 The auto keyword

 The fractions (fr) unit

 2.4 Grid template areas

 The grid-area property

 The gap property

 2.5 Media queries

 2.6 Accessibility considerations

 3 Creating a responsive animated loading screen

 3.1 Setup

 3.2 SVG basics

 Positions of SVG elements

 Viewport

 Viewbox

 Shapes in SVG

 3.3 Applying styles to SVGs

 3.4 Animating elements in CSS

 Keyframe and animation-name

 The duration property

 The iteration-count property

 The animation shorthand property

 The animation-delay property

 The transform-origin property

 3.5 Accessibility and the prefers-reduced-motion media query

 3.6 Styling an HTML progress bar

 Styling the progress bar

 Styling the progress bar for -webkit- browsers

 Styling the progress bar for -moz- browsers

 4 Creating a responsive web newspaper layout

 4.1 Setting up our theme

 Fonts

 The font-weight property

 The font shorthand property

 Visual hierarchy

 Inline versus block elements

 Quotes

 4.2 Using CSS counters

 The symbols descriptor

 The system descriptor

 The suffix descriptor

 Putting everything together

 @counter versus list-style-image

 4.3 Styling images

 Using the filter property

 Handling broken images

 Formatting captions

 4.4 Using the CSS Multi-column Layout Module

 Creating media queries

 Defining and styling columns

 Using the column-rule property

 Adjusting spacing with the column-gap property

 Making content span multiple columns

 Controlling content breaks

 4.5 Adding the finishing touches

 Justifying and hyphenating text

 Wrapping the text around the image

 Using max-width and a margin value of auto

 5 Summary cards with hover interactions

 5.1 Getting started

 5.2 Laying out the page using grid

 Layout using grid

 Media queries

 5.3 Styling the header using the background-clip property

 Setting the font

 Using background-clip

 5.4 Styling the cards

 Outer card container

 Inner container and content

 5.5 Using transitions to animate content on hover and focus-within

 6 Creating a profile card

 6.1 Starting the project

 6.2 Setting CSS custom properties

 6.3 Creating full-height backgrounds

 6.4 Styling and centering the card using Flexbox

 6.5 Styling and positioning the profile picture

 The object-fit property

 Negative margins

 6.6 Setting the background size and position

 6.7 Styling the content

 Name and job title

 The space-around and gap properties

 The flex-basis and flex-shrink properties

 The flex-direction property

 Paragraph

 The flex-wrap property

 6.8 Styling the actions

 7 Harnessing the full power of float

 7.1 Adding a drop cap

 Leading

 Justification

 First letter

 7.2 Styling the quote

 7.3 Curving text around the compass

 Adding shape-outside: circle

 Adding a clip-path

 Creating a shape using border-radius

 7.4 Wrapping text around the dog

 Using path() . . . or not yet

 Floating the image

 Adding shape-margin

 8 Designing a checkout cart

 8.1 Getting started

 8.2 Theming

 Typography

 Links and buttons

 Input fields

 Table

 Description list

 Cards

 8.3 Mobile layout

 Table mobile view

 Description list

 Call-to-action links

 Padding, margin, and margin collapse

 8.4 Medium screen layout

 Right-justified numbers

 Left-justifying the first two columns

 Right-justifying numbers in the input fields

 Cell padding and margin

 8.5 Wide screens

 9 Creating a virtual credit card

 9.1 Getting started

 9.2 Creating the layout

 Sizing the card

 Styling the front of the card

 Laying out the back of the card

 9.3 Working with background images

 Background property shorthand

 Text color

 9.4 Typography

 @font-face

 Creating fallbacks using @supports

 Font sizing and typography improvements

 9.5 Creating the flipping-over effect

 Position

 Transitions and backface-visibility

 The transition property

 The cubic-bezier() function

 9.6 Border radius

 9.7 Box and text shadows

 The drop-shadow function versus the box-shadow property

 Text shadows

 9.8 Wrapping up

 10 Styling forms

 10.1 Setting up

 10.2 Resetting fieldset styles

 10.3 Styling input fields

 Styling text and email inputs

 Making selects and textareas match the input styles

 Styling radio inputs and check boxes

 Using the :where() and :is() pseudo-classes

 Styling selected radio and checkbox inputs

 Using the :checked pseudo-class

 Shaping the selected radio buttons’ inner disk

 Using CSS shapes to create the check mark

 Calculating specificity with :is() and :where()

 10.4 Styling drop-down menus

 10.5 Styling labels and legends

 10.6 Styling the placeholder text

 10.7 Styling the Send button

 10.8 Error handling

 10.9 Adding hover and focus styles to form elements

 Using :focus versus :focus-visible

 Adding hover styles

 10.10 Handling forced-colors mode

 11 Animated social media share links

 11.1 Working with CSS architecture

 OOCSS

 SMACSS

 BEM

 11.2 Setting up

 11.3 Sourcing icons

 Media icons

 Icon libraries

 11.4 Styling the block

 11.5 Styling the elements

 Share button

 Share menu

 Share links

 scale()

 The inherit property value

 11.6 Animating the component

 Creating a transition

 Opening and closing the component

 Animating the menu

 12 Using preprocessors

 12.1 Running the preprocessor

 Setup instructions for npm

 .sass versus .scss

 Setup instructions for CodePen

 Starting HTML and SCSS

 12.2 Sass variables

 @extend

 12.3 @mixin and @include

 object-fit property

 Interpolation

 Using mixins

 border-radius shorthand

 12.4 Nesting

 12.5 @each

 12.6 Color functions

 12.7 @if and @else

 12.8 Final thoughts

 Appendix.

 index

 front matter

preface

 One of the hard parts of learning a new language or skill is extrapolating the individual skills learned into the thing we’re trying to build. Although we may know the mechanics of grid or understand how flex works, learning which to choose and when (or how) to achieve a specific end that we’re envisioning can be challenging. Rather than start with the theory and then apply it to our projects, in this book we took the opposite approach. We started with the project and then looked at which skills and techniques are necessary to achieve our end.

 But why talk about CSS? We can write an entire application using nothing but browser-provided defaults, but it wouldn’t have much personality, now, would it? With CSS, we can achieve a lot for both our users and our business needs. For everything from brand recognition to guiding users with consistent styles and design paradigms to making the project eye-catching, CSS is an important tool in our toolbox.

 Regardless of libraries, preprocessors, or frameworks, the underlying technology that drives how our applications and websites look is CSS. With that in mind, so as not to get sidetracked by the individual quirks and functionality of libraries and frameworks, we chose to go back to the basics, writing this book in plain old vanilla CSS because, if we understand CSS, applying it to any other tech stack or environment becomes much easier down the line.

acknowledgments

 We, Martine and Michael, thank Andrew Waldron, acquisitions editor, and Ian Hough, assistant acquisitions editor, for all their support and enthusiasm about getting the book off the ground and during the development process. We thank Elesha Hyde, development editor, who was a huge source of support from start to finish, providing professional guidance, editing, and encouragement. Louis Lazaris, technical proofreader, and Arthur Zubarev, technical development editor, provided thoughtful, useful technical feedback and code reviews. Thank you both for all your input. Finally, we send a huge thank-you to all the early-access readers and reviewers throughout the process, whose input helped shape and develop this book.

 We thank all the reviewers: Abhijith Nayak, Al Norman, Alain Couniot, Aldo Solis Zenteno, Andy Robinson, Anil Radhakrishna, Anton Rich, Aryan Maurya, Ashley Eatly, Beardsley Ruml, Bruno Sonnino, Carla Butler, Charles Lam, Danilo Zekovic´, Derick Hitchcock, Francesco Argese, Hiroyuki Musha, Humberto A. Sanchez II, James Alonso, James Carella, Jereme Allen, Jeremy Chen, Joel Clermont, Joel Holmes, Jon Riddle, Jonathan Reeves, Jonny Nisbet, Josh Cohen, Kelum Senanayake, Lee Harding, Lin Zhang, Lucian Enache, Marco Carnini, Marc-Oliver Scheele, Margret “Pax” Williams, Matt Deimel, Mladen Ðuric´, Neil Croll, Nick McGinness, Nitin Ainani, Pavel Šimon, Ranjit Sahai, Ricardo Marotti, Rodney Weis, Steffen Gläser, Stephan Max, Steve Grey-Wilson, and Vincent Delcoigne. Your suggestions helped make this book better.

 Martine Dowden: I thank my family, friends, and coworkers at Andromeda Galactic Solutions for their unwavering support and encouragement through my career and the writing of this book.

 I’d also like to recognize the Mozilla Foundation and the countless individual contributors to the MDN docs for their tireless efforts in providing the developer community documentation for web languages such as CSS. Finally, I’d like to thank the creators, Lennart Schoors and Alexis Deveria, and all the contributors to Caniuse, for making it easy to know which browsers will support which CSS features.

 Michael Gearon: This being my first book, producing it has been a fun and challenging process. I’d like to thank all my family members for their support, especially my wife, Amy Smith, who has been there through the whole process. I must also say a special thank-you to my cats, Puffin and Porg, who tried (and failed) to get the odd word in the book.

about this book

 Tiny CSS Projects enables designers and developers to learn CSS through a series of 12 projects.

Who should read this book?

 Tiny CSS Projects is for readers who know the basics of HTML and frontend development. No experience in CSS is required. Both beginners and experienced coders will develop a deeper understanding of CSS through this book. Rather than present a theoretical view of CSS, each chapter applies a different part of CSS to a project to demonstrate in practice how CSS works.

How this book is organized: A roadmap

 The book has 12 chapters, each of which is a self-contained project:

 	
 Chapter 1, “CSS introduction”—This chapter’s project walks readers through the basics of CSS, examining cascade, specificity, and selectors.

 	
 Chapter 2, “Designing a layout using CSS grids”—This chapter explores CSS grids by designing a layout for an article while, in the process, looking at concepts such as grid tracks, minmax(), repeat functions, and the fractions unit.

 	
 Chapter 3, “Creating a responsive animated loading screen”—This project uses CSS to create a responsive animated loading screen, using scalable vector graphics and animation to style an HTML progress bar.

 	
 Chapter 4, “Creating a responsive web newspaper layout”—This chapter is about designing a multicolumn responsive web newspaper layout. It explores the CSS Multi-column Layout Module, counter styles, and broken images, as well as how to adapt the layout by using media queries.

 	
 Chapter 5, “Summary cards with hover interactions”—This project creates a series of cards using background images, transitions to reveal content on hover, and media queries to check capabilities and browser window size.

 	
 Chapter 6, “Creating a profile card”—This chapter’s project creates a profile card and explores custom properties and background gradients, as well as setting image sizes and using Flexbox for layout.

 	
 Chapter 7, “Harnessing the full power of float”—This chapter shows the power of CSS floats to position images, shape content around CSS shapes, and even create a drop cap.

 	
 Chapter 8, “Designing a checkout cart”—This chapter is about designing a checkout cart, which involves styling responsive tables, using a CSS grid for layout, formatting numbers, and setting CSS conditionally based on viewport size by using media queries.

 	
 Chapter 9, “Creating a virtual credit card”—This chapter focuses on creating a virtual credit card and achieving a 3D effect by flipping the card over on hover.

 	
 Chapter 10, “Styling forms”—This chapter looks at designing forms, including radio buttons, inputs, and drop-down menus, as well as promoting accessibility.

 	
 Chapter 11, “Animated social media share links”—This project employs CSS transitions to animate social media share links and examines CSS architecture options such as OOCSS, SMACSS, and BEM.

 	
 Chapter 12, “Using preprocessors”—The final chapter demonstrates how we can use preprocessors when writing CSS and presents the Sass syntax.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight changes from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/tiny-css-projects. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com and from GitHub at https://github.com/michaelgearon/Tiny-CSS-Projects.

liveBook discussion forum

 Purchase of Tiny CSS Projects includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/tiny-css-projects/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contributions to the forum remain voluntary (and unpaid). We suggest that you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

Other online resources

 Often, we can’t remember how a property works or what values are available to us. One great resource for looking up how a particular property, function, or value works is the MDN docs (https://developer.mozilla.org/en-US).

 Although any given aspect of CSS functionality may be defined in the CSS specification, that doesn’t mean all browsers support it yet. We often find ourselves needing to understand which browsers support what and whether we should create a fallback or use alternative methods to achieve our goal. Caniuse (https://caniuse.com) is a great resource that allows us to check a particular property or function to see how well supported it is in browsers by version.

 Finally, to make sure that everyone can access and use our websites and applications, we can’t forget the importance of accessibility. The documents provided by the World Wide Web Consortium’s Web Accessibility Initiative are great places to start, and they link to many other resources, including Web Content Accessibility Guidelines (https://www.w3.org/WAI/fundamentals).

about the authors

 [image:]

 Martine Dowden is an author, international speaker, and award-winning chief technology officer of Andromeda Galactic Solutions. Her expertise includes psychology, design, art, accessibility, education, consulting, and software development. Tiny CSS Projects is her fourth book about web technologies and draws on 15 years of experience in building web interfaces that are beautiful, functional, and accessible. For her community contributions, Martine has been named a Microsoft MVP in Developer Technologies and a Google Developer Expert in Web Technologies and Angular.

 [image:]

 Michael Gearon is a user experience designer and frontend developer from Wales, UK. He earned a BS in Media Technology at the University of South Wales while practicing coding and design. Since then, Mike has worked with well-known UK brands, including Go.Compare and Ageas. He now works in the Civil Service, previously for Companies House and currently at Government Digital Service.

about the cover illustration

 The figure on the cover of Tiny CSS Projects is captioned “M’de. de bouquets à Vienne,” or “Flower seller from Vienna,” and is taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 CSS introduction

 This chapter covers

 	
A brief overview of CSS

 	
Basic CSS styling

 	
How to select HTML elements effectively

 Cascading Style Sheets (CSS) is used to control the appearance of the elements of a web page. CSS uses style rules to instruct the browser to select certain elements and apply styles and effects to them.

 Chapter 1 is a good place to start if you’re new to CSS or in need of a refresher. We’ll start with a brief history of CSS and swiftly move on to getting started with CSS, looking at ways to link CSS with HTML.

 When we have our CSS up and running, we’ll look at the structure of CSS by creating a static, single-column article page with basic media components such as headings, content, and imagery to see how everything works together.

1.1 Overview of CSS

 Håkon Wium Lie proposed the idea of CSS in 1994, a few years after Tim Berners-Lee created HTML in 1990. CSS was introduced to separate styling from the content of the web page through the options of colors, layout, and typography.

1.1.1 Separation of Concerns

 This separation of content and presentation is based on the design principle Separation of Concerns (SoC). The idea behind this principle is that a computer program or application should be broken into individual, distinct sections segregated by purpose. The benefits of keeping good SoC include

 	
 Decreased code duplication and, therefore, easier maintainability

 	
 Extendibility, because it requires elements to focus on a single purpose

 	
 Stability, because code is easier to maintain and test

 With this principle in mind, HTML serves as the structure and content of a web page, CSS is the presentation, and JavaScript (JS) provides additional functionality. Together, they form the web pages. Figure 1.1 displays a diagram of this process.

 [image:]

 Figure 1.1 A breakdown of a web page

 Since the introduction of smartphones in the mid-2000s, the web has expanded to mobile websites (often using m. subdomains, such as m.mywebsite.com), which tend to have fewer features than the desktop versions, and to responsive and adaptive designs. There are benefits and drawbacks to creating responsive/adaptive or mobile-specific websites.

 The difference between responsive and adaptive designs

 Responsive design uses a single fluid layout that can change based on factors such as screen size, orientation, and device preferences. Adaptive design can also change based on these factors. But instead of having a single fluid layout, we can create multiple fixed layouts, which gives us greater control of each one—at the cost of taking more time than a singular responsive layout. In practice, we can use both methods in conjunction with one another.

 In general, responsive and adaptive designs are the way the industry is moving, especially as CSS expands, giving us more ability to apply CSS based on window sizes and media types (such as screen or print). Since the announcement of CSS in 1994, there have been three overall releases:

 	
 1996—First World Wide Web Consortium (W3C) recommendation of CSS

 	
 1997—First working draft of CSS2

 	
 1999—First three CSS3 drafts (color profiles, multicolumn layouts, and paged media; https://www.w3.org/Style/CSS20)

 After 1999, the release strategy was changed to allow for faster, more frequent releases of new features. Now CSS is divided into modules, with numbered levels starting at 1 and incrementing upward as features and functionality evolve and expand.

 A CSS level-1 module is something that’s brand new to CSS, such as a property that hasn’t existed as an official standard before. Modules that have gone through a few versions—such as media queries, color, fonts, and cascading and inheritance modules—have higher-level numbers.

 The benefit of breaking CSS into modules is that each part can move independently, without requiring large sweeping changes to the language as a whole. There have been some discussions about the need for someone to declare the current stage as CSS4, even if only to acknowledge that CSS has changed a lot since 1999. This idea hasn’t gained any traction so far, however.

1.1.2 What is CSS?

 CSS is a declarative programming language: the code tells the browser what needs to be done rather than how to do it. Our code says we want a certain heading to be red, for example, and the browser determines how it’s going to apply the style. This is useful because if we want to increase the line height of a paragraph to improve the reading experience, it’s up to the browser to determine the layout, sizing, and formatting of that new line height, which reduces effort for the developer.

 Domain-specific language

 CSS is a domain-specific language (DSL)—a specialized language created to solve a specific problem. DSLs are generally less complex than general-purpose languages (GPLs) such as Java and C#. CSS’s specific purpose is to style web content. Languages such as SQL, HTML, and XPath are also DSLs.

 CSS has come a long way since 1994. Now we have ways to animate and transition elements, create motion paths to animate Scalable Vector Graphics (SVG) images, and conditionally apply styles based on viewport size. This type of functionality used to be possible only through JavaScript or Adobe Flash (now retired). We can look at CSS Zen Garden (www.csszengarden.com) for a glimpse of the possibilities; by looking at the first versus last designs, we can observe CSS’s progression over time (https://www.w3.org/Style/CSS20).

 In the past, design choices such as the use of transparency, rounded corners, masking, and blending were possible but required unconventional CSS techniques and hacks. As CSS evolved, properties were added to replace these hacks with standard, documented features.

 CSS preprocessors

 The evolution of CSS also led to the creation of CSS preprocessors and the introduction of Syntactically Awesome Style Sheets (Sass), released in 2006. They were created to facilitate writing code that’s easier to read and maintain, as well as to provide added functionality that’s not available in CSS alone. We’ll use a preprocessor to style a page in chapter 12.

 It could be said that CSS is in a golden age. With the continual development of the language, opportunities for new and creative experiences are virtually endless.

1.2 Getting started with CSS by creating an article layout

 In our first project, we’ll explore a common use case on the web: creating a single-column article. This chapter focuses on how to link CSS to HTML and explores the selectors we can use to style our HTML.

 The first thing we need to understand is how to tie our CSS to our HTML and how to select an element. Then we can worry about what properties and values we want to apply. Let’s start by going over some basics.

 If you’re new to coding, you can often find free tools to use for these projects. You have the option of coding online, or you can do the work on your computer, using a code editor such as Sublime Text (https://www.sublimetext.com), Brackets (https:// brackets.io), or Visual Studio Code (https://code.visualstudio.com). Alternatively, you can use a basic text editor such as TextEdit for Mac (http://mng.bz/rd9x), Windows Notepad (http://mng.bz/VpAN), or gedit for Linux (https://wiki.gnome.org/Apps/Gedit).

 The downside to using a basic text editor instead of a code editor or integrated development environment (IDE) is that it lacks syntax highlighting. This highlighting displays text in different colors and fonts according to its purpose in the code, which helps readability.

 You can also use a free online development editor such as CodePen (https://codepen.io). Online development editors are great ways to test ideas; they provide quick, easy access for frontend projects. CodePen provides a paid pro option that allows you to host assets such as images, which you’ll need in later chapters. Another option is to link to the GitHub location where the images are stored, as all assets that are uploaded to GitHub are stored in the raw.githubusercontent.com domain.

 When you have a code editor installed on your computer or have chosen an online editor and created an account, you’ll need to get the starter code for the chapter. We created a code repository in GitHub (https://github.com/michaelgearon/Tiny-CSS-Projects) containing all the code you’ll need to follow along with each chapter. Figure 1.2 shows a screenshot of the repository.

 [image:]

 Figure 1.2 Tiny-CSS-Projects repository in GitHub

 The code is organized in folders by chapter. Inside each chapter folder are two versions of the code:

 	
 before—Contains the starter code for the project. You’ll want this version if you’re coding along with the chapter.

 	
 after—Contains the completed project as it is at the end of the chapter with the presented CSS applied.

 Download (or, if you’re familiar with Git, clone) the project, using the Code drop-down menu at the top of the screen. If you’re coding along with the chapter, grab the files from the before folder for chapter 1 and copy them to your project folder or pen. You should see an HTML file with some starter code and an empty CSS file. If you open the HTML file in a web browser or copy the contents of the <body> tag into CodePen, you’ll see that the content is unstyled except for the defaults provided by your browser (figure 1.3). Now you’re ready to start styling the content with CSS, as shown in listing 1.1.

 [image:]

 Figure 1.3 Starter HTML for our article

 NOTE CodePen handles the information in the <head> tag for you automatically. Therefore, if you’re following along in CodePen or a similar online editor, you need to copy only the code within the <body> tag.

 Listing 1.1 Starting HTML

 <!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Chapter 1 - CSS introduction</title>
 <link rel="stylesheet" href="styles.css">
</head>
<body>

 <article>
 <header>
 <h1>Title of our article (heading 1)</h1>
 <p>
 Posted on
 <time datetime="2015-05-16 19:00">May 16</time>
 by Lisa.
 </p>
 </header>
 <p>Lorem ipsum dolor sit amet, ...</p>
 <ol class="ordered-list">
 List item 1

 Nested item 1
 Nested item 2

 List item 2
 List item 3
 List item 4

 <p>Curabitur id augue nulla ...</p>
 <blockquote id="quote-by-author">
 Nunc eleifend nulla lobortis ...
 </blockquote>
 <p>Etiam tempor vulputate varius ...</p>
 <h2>Heading 2</h2>
 <p>
 In ac euismod tortor ...
 In eleifend in dolor id aliquet
 ...
 </p>
 <p>In id lobortis leo ...</p>

 <h3>Heading 3</h3>
 <p>
 Mauris sit amet tempor ex ...
 Sed vulputate eget ante vel vehicula.
 Curabitur ac velit sed ...
 </p>
 <p>Quisque vel erat et ...</p>
 <h4 class="small-heading">Heading 4</h4>
 <p>Aliquam porttitor, ex ...
 Cras sed finibus libero
 Duis lobortis, ipsum ut consectetur ...
 </p>
 <h2>Heading 2</h2>
 <h3>Heading 3</h3>
 <svg xmlns="http:/ /www.w3.org/2000/svg" width="300" height="150">
 <circle cx="70" cy="70" r="50"></circle>
 <rect y="80" x="200" width="50" height="50" />
 </svg>
 <h4>Heading 4</h4>
 <h5 class="small-heading">Heading 5</h5>
 <p>In finibus ultrices nulla ut rhoncus ...</p>
 <h6 class="small-heading">Heading 6</h6>
 <p lang="it">Questo paragrafo è definito in italiano.</p>
 <ul class="list">
 List item 1

 Nested item 1
 Nested item 2

 List item 2
 List item 3
 List item 4

 <footer>
 <p>Footer text</p>
 </footer>
 </article>
 <p>Nam rutrum nunc at lectus ...</p>
</body>
</html>

1.3 Adding CSS to our HTML

 When we’re styling with CSS, we have three ways to apply CSS to our HTML:

 	
 Inline

 	
 Embedded

 	
 External

1.3.1 Inline CSS

 We can inline the CSS by adding a style attribute to an element. This method has us add the CSS to the element directly in the HTML.

 Attributes are always specified in the opening tag and typically consist of the name of the attribute—in this case, style. The attribute is sometimes followed by an equal sign (=) and its value in quotes. All the CSS goes inside the opening and closing quotation marks.

 As an example, let’s set the color of our heading to crimson: <h1 style="color: crimson"> Title of our article (heading 1)</h1>. If we save our HTML and view it in a browser, we’ll see that it’s crimson. If we’re using a code editor rather than a web client (CodePen), we need to refresh the browser page to view our changes. Figure 1.4 shows the output. Notice that the only element affected is the <h1> to which we applied the style.

 [image:]

 Figure 1.4 Crimson header

 One downside of inline CSS is that it takes the highest specificity in CSS, which we’ll look at in more detail soon. Another major downside to inline CSS is that it can become unmanageable quickly. Suppose that we have 20 paragraphs within an HTML document. We would need to apply the same style attributes with the same CSS properties 20 times to make sure that all our paragraphs look the same. This case involves two problems:

 	
 Our concerns are no longer separated. Our HTML, which is responsible for the content, and our CSS, which is responsible for styling, are now in the same place and tightly coupled.

 	
 We’re repeating the code in many places, which makes it extremely difficult to maintain and keep our styles consistent.

 The benefit of inline CSS is page-load performance. The browser loads the HTML file first and then loads any other files it needs to render the page. When the CSS is already in the HTML file, the browser doesn’t need to wait for it to load from a separate location. Let’s undo the style we added to the <h1> and look at a different technique that has the same benefits as inline but fewer drawbacks.

1.3.2 Embedded CSS

 To resolve the problem of repeating code, we can add our CSS within an embedded (sometimes referred to as internal) <style> element. The <style> element must be placed between the opening and closing <head> tags. To color all our heading elements crimson, we can use the snippet of code in the following listing.

 Listing 1.2 Embedded CSS

 <!DOCTYPE html>
<html lang="en">
 <head>
 ...
 <style>
 h1, h2, h3, h4, h5, h6 {
 color: crimson;
 }
 </style>
 </head>
 <body>
 ...
 </body>
</html>

 The benefit of this approach is that now we’re grouping all our CSS together, and the CSS will be applied to the whole HTML document. In our example, all headings (<h1>, <h2>, <h3>, <h4>, <h5>, and <h6>) within that web page will be crimson, as we can observe in figure 1.5.

 [image:]

 Figure 1.5 Styles applied to all headings

 We also see a difference in how the embedded CSS is written compared with inline CSS. When we’re writing embedded CSS, we create what are known as rulesets, which are composed of the parts shown in figure 1.6.

 [image:]

 Figure 1.6 An example of a CSS rule

 The part of the rule that defines which elements to apply the styles to is called the selector. The rule in figure 1.6 will be applied to all <h1> elements; its selector is h1.

 To apply multiple selectors, we write them as a comma-delimited list before the opening curly brace. To select all <h1> and <h2> elements, for example, we would write h1,h2 { ... }.

 The declaration is made up of the property—in this case, color—followed by a colon and then the property value (red). The declaration defines how the element selected will be styled. Both properties and values must be written in American English. Spelling variations such as colour and capitalise aren’t supported and won’t be recognized by the browser. When a browser comes across invalid CSS, it ignores it. If a rule has an invalid declaration inside it, valid declarations will still be applied; only those that are invalid will be ignored.

 Embedded CSS works well for one-off web pages in which the styles are specific to that page. It groups CSS nicely, allowing us to write rules that are applied across elements, preventing us from having to copy and paste the same styles in multiple places. It also has the same performance benefits as inline styles, in that the browser has immediate access to the CSS; it doesn’t have to wait for the CSS to be fetched from a different location.

 The downside of having our CSS within our HTML document is that the CSS will work for only that document. So if our website has multiple pages, which is often the case, we’d need to copy that CSS into each HTML document. Unless these styles are being generated by a template of backend language (such as PHP), this task will become unmaintainable quickly, especially for large applications such as blogs and e-commerce websites. Next, let’s undo the changes to our project one last time and look at a third technique.

1.3.3 External CSS

 Like embedded CSS, the external CSS approach keeps our styles grouped together, but it places the CSS in a separate .css file. By separating our HTML and CSS, we can effectively separate our concerns: content and style.

 We link the stylesheet to the HTML by using the <link> HTML tag. The link element needs two attributes for stylesheets: the rel attribute, which describes the relationship between the HTML document and the thing being linked to, and the href attribute, which stands for hypertext reference and indicates where to find the document that we want to include. The following listing shows how we link our stylesheet to our HTML for our project.

 Listing 1.3 Applying external CSS to HTML

 <!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <h1>Inline CSS</h1>
 </body>
</html>

 Most of the time, this approach is the one we see across the web, so it’s the approach we’ll use throughout this book. The benefit of external stylesheets is that our CSS is in one single document that can be modified once to apply the changes across all of our HTML pages. The downside to this approach is that it takes an extra request from the browser to retrieve that document, losing the performance benefit provided by putting the CSS directly inside the HTML.

1.4 The cascade of CSS

 One fundamental feature of CSS that we need to understand is the cascade. When CSS was created, it was developed around the concept of cascading, which allows styles to overwrite or inherit from one another. This concept paved the way for multiple stylesheets that compete over the presentation of the web page.

 For this reason, while inspecting an element with the browser’s developer tools, we sometimes see multiple CSS values fighting to be the one rendered by the browser. The browser decides which CSS property values to apply to an element through specificity. Specificity allows the browser (or the user agent) to determine which declarations are relevant to the HTML and apply the styling to that element.

 One aspect in which specificity is calculated is the order in which stylesheets are applied. When multiple stylesheets are applied, the styles in a later stylesheet will override styles provided by the preceding stylesheet. In other words, assuming that the same selector is used, the last one declared wins. CSS has three different stylesheet origins:

 	
 User-agent stylesheets

 	
 Author stylesheets

 	
 User stylesheets

1.4.1 User-agent stylesheets

 The first origin is the browser’s default styles. When we opened the project, before we added any styles to it, our elements didn’t all look the same. Our headers are bigger and bolder than our text, for example. This formatting is defined by user-agent (UA) stylesheets. These stylesheets have the lowest priority of the three types, and we find that different browsers present HTML properties slightly differently.

 Most of the time, UA stylesheets set the font size, border styles, and some basic layout for form elements such as the text input and progress bar, which can be useful if the user stylesheet can’t be found or a file-loading error occurs. The UA stylesheet provides some fallback styling, which makes the page more readable and maintains visual differentiation between element types.

1.4.2 Author stylesheets

 The stylesheets that we developers write are known as author stylesheets, which typically have the second-highest priority in terms of the styles that the browser displays. When we create a web page, the CSS we write (embedded, external, or inline) and apply to our web pages consists of author stylesheets.

1.4.3 User stylesheets

 A user who is accessing our web page can use their own stylesheet to override both author and UA styles. This option can improve their experience, especially for disabled users.

 Users may use their own stylesheets for a variety of reasons, such as to set a minimum font size, choose a custom font, improve contrast, or increase the spacing between elements. Any user can apply a user stylesheet to a web page. How these stylesheets are applied to the web page depends on the browser, usually through browser settings or a plugin.

 The user stylesheet is applied only for the user who added it, and only in the browser in which they applied it. Whether the change is carried over from one device to another depends on the browser itself and its ability to sync user settings and installed plugins across multiple devices.

1.4.4 CSS reset

 Default styles provided by the browser aren’t consistent. Each browser has its own stylesheet. Default styles are different in Google Chrome from the way they are in Apple’s Safari, for example. This difference can create some challenges if we want our applications to look the same across all browsers.

 Luckily, two options are available: CSS resets and CSS normalizers (such as Normalize.css; https://github.com/necolas/normalize.css). Although both can be used to solve cross-browser styling problems, they work in radically different ways.

 By using a CSS reset, we undo the browser’s default styles; we’re telling the browser we don’t want any defaults at all. Without any author styles applied, all elements, regardless of what they are, look like plain text (figure 1.7).

 [image:]

 Figure 1.7 CSS reset applied

 To apply a CSS reset to our project, first we create a reset stylesheet to add to our project. In our project folder, we create a file called reset.css. Then we copy the reset CSS into the file. Many reset options exist; one commonly used option is available at https://meyerweb.com/eric/tools/css/reset.

 Finally, we need to link our stylesheet to our HTML. Because order matters, we want to make sure to include the reset CSS before our author styles in our <head>. Our HTML, therefore, will look like listing 1.4.

 Page-load performance

 For readability, having the reset and our styles in separate files is a lot nicer than having everything in one file. This approach isn’t ideal for page-load performance, however.

 In a production environment, we’d want to do one of the following things:

 	
 Place the reset CSS at the beginning of the same file we have our own styles in so that we load only one stylesheet. We could do this manually or as part of a build process.

 	
 Load the reset code from a content delivery network (CDN) before our own styles. By loading it from a CDN, we increase the likelihood that our users will have the code already cached on their machines.

 Listing 1.4 Adding a CSS reset

 <head>
 ...
 <link rel="stylesheet" href="reset.css"> ①
 <link rel="stylesheet" href="styles.css"> ②
 </head>

 ① Resets stylesheet

 ② Author stylesheet

 The benefit of the CSS reset is that we have a blank slate to start from. As shown in figure 1.7, all our elements look like plain text now. The downside is that we need to define basic styles for all elements, including adding bullets to lists and differentiating header levels. Furthermore, each version of CSS reset will be slightly different, based on the version and the developer who authored it.

 Our other option is using a normalizer. Instead of resetting the styles, a normalizer specifically targets elements that have differences across browsers and applies rules to standardize them.

1.4.5 Normalizer

 Like a CSS reset, a normalizer styles things slightly differently depending on the version and author. One commonly used CSS normalizer is available at https://necolas.github.io/normalize.css. We can apply it to our project in much the same way that we did the CSS reset code: create a file, copy the code into the file, and link it to our HTML. Note that the same performance consideration holds true here.

 When the normalizer is applied (figure 1.8), our HTML looks the same as it did originally, as most of the discrepancies it handles are on elements that aren’t being used in this particular project. Depending on the browser we’re using, we may notice a difference in the size of the <h1>s.

 [image:]

 Figure 1.8 A normalizer applied to our project

 The good news is that UA stylesheet differences are far less problematic than they were more than 10 years ago. Today, browsers are more consistent in styling, so using a CSS reset or a normalizer is more a personal choice than a necessity.

 Some differences still exist, however. Whether or not we use a CSS reset or a normalizer, we should be testing our code across a variety of devices and browsers.

1.4.6 The !important annotation

 The !important annotation is one you may have seen in some stylesheets. Often used as a last resort when all else fails, it’s a way to override the specificity and declare that a particular value is the most important thing. With great power, however, comes great responsibility. The !important annotation was originally created as an accessibility feature.

 Remember that we talked about users being able to apply their own styles to have a better user experience? This annotation was created to help users define their own styles without having to worry about specificity. Because it overrides any other styles, it ensures that a user’s styles always have the highest importance and therefore are the ones applied.

 Using !important is considered to be bad practice, so we should generally avoid using it in our author stylesheets. Also, this annotation breaks the natural cascade of the CSS and can make it harder to manage the stylesheet going forward.

1.5 Specificity in CSS

 When multiple property values are being applied to an element, one will win over the others. We determine the winner through a multistep process. We’ll ignore !important (section 1.4.6) for the time being, as it breaks the normal flow; we’ll come back to it later.

 First, we look at where the value comes from. Anything explicitly defined in a rule will override inherited values. In listings 1.5 and 1.6, for example, if we set the font color to red on the <body> element, the elements inside <body> will have red text.

 The font color is inherited by child elements. If we specifically set a different color on a paragraph inside the body, the inherited red value would be overridden by the more specific blue value set on the paragraph. Therefore, that paragraph’s text color would be blue.

 Listing 1.5 Example of inheritance (HTML)

 <body>
 <h1>Example</h1> ①
 <p>My paragraph</p> ②
</body>

 ① Our header would inherit the red color.

 ② The paragraph’s color would be blue, as set by the paragraph rule.

 Listing 1.6 Example of inheritance (CSS)

 body { color: red }
p { color: blue }

 Not all property values will be inherited. Theme-related styles such as color and font size will generally be inherited; layout considerations generally are not. This guideline is a loose one, with definite exceptions, but it’s a good place to start. We’ll cover exceptions on a case-by-case basis throughout the projects.

 If the property value isn’t being inherited, the browser looks at the type of selector that was used and mathematically calculates the specificity value. We’ll get into more detail about what each selector type is in section 1.6, but first let’s look at how the math is applied.

 The browser looks at the selector, categorizes the types of selectors being used by the rule, and applies the type value. Then it adds all the values and gets a final specificity value. Figure 1.9 diagrams the process. The biggest number wins, so rule 1 in the diagram would win over rule 2.

 [image:]

 Figure 1.9 Calculating specificity

 Specificity values by selector type are as follows:

 	
 100—ID selectors

 	
 10—Class selectors, attribute selectors, and pseudo-classes

 	
 1—Type selectors and pseudo-elements

 	
 0—Universal selectors

 If we still have a tie, the browser looks at which stylesheet the style originated from. If both values come from the same stylesheet, the one later in the document wins. If the values come from different stylesheets, the order is as follows:

 	
 User stylesheet

 	
 Author stylesheets (in the order in which they’re being imported; the last one wins)

 	
 UA stylesheet

 We set !important to the side earlier. Now that we understand the normal flow, let’s add it back into the mix. When a value has the !important annotation, the process is short-circuited, and the value with the annotation automatically wins.

 If both values have the !important annotation, the browser follows the normal flow. Figure 1.10 shows the flow through the stylesheets, including !important declarations.

 [image:]

 Figure 1.10 CSS order of precedence

 We’ve established that the type of selector will affect specificity. Let’s take a closer look at the selectors and use them in our project.

1.6 CSS selectors

 The selector sets what HTML elements we want to target. In CSS, we have seven ways to target the HTML elements we want to style, as discussed in the following sections.

1.6.1 Basic selectors

 The most common method of applying styles to HTML elements is selecting them based on name, ID, or class name. These are used most often because of their one-to-one mapping to the HTML element itself or attributes set on the element.

 Type selector

 The type selector targets the HTML element by name. The benefit of using the type selector is that when we read through our CSS, we can quickly work out which HTML elements would be affected if we made changes in the rule. This selector doesn’t require us to add any particular markup to the HTML to target the element.

 Let’s use a type selector to target all our headings (<h1> through <h6>) and change their color to crimson. Our CSS would be h1, h2, h3, h4, h5, h6 { color: crimson; }. Figure 1.11 shows that our headers have changed colors.

 [image:]

 Figure 1.11 Header color change

 Class selectors

 We can use class selectors on as many different elements as we want. By applying a class name to elements, we’re grouping multiple HTML elements so that when we apply styles, they’ll roll out to any element with that class name.

 To add classes to HTML, we use the class attribute. Within the class attribute, we can add as many values (or classes) as we want, separating each with a space.

 We have many ways and methods to write our class names, such as Block, Element, Modifier (BEM) methodology (https://en.bem.info) and Scalable and Modular Architecture for CSS (SMACSS; http://smacss.com), which are style guides for writing consistent stylesheets.

OEBPS/OEBPS/Images/01-02.png

OEBPS/OEBPS/Images/01-10.png

OEBPS/OEBPS/Images/01-07.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/Gearon_author.png

OEBPS/OEBPS/Images/01-01.png

OEBPS/OEBPS/Images/01-11.png

OEBPS/OEBPS/Images/01-06.png

OEBPS/OEBPS/Images/IFC.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/01-05.png

OEBPS/OEBPS/Images/01-09.png

OEBPS/OEBPS/Images/Dowden_author.png

OEBPS/OEBPS/Images/01-03.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/01-04.png

OEBPS/OEBPS/Images/01-08.png

