

 The Joy of Kotlin

 Pierre-Yves Saumont

 [image: ManningBlackSized.png]

 Manning

 Shelter Island

 Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Development editor: Marina Michaels and Kristen Waterson

 Technical development editor: Riccardo Terrell, Joshua White, and Joel Kotarski

 Review editor: Aleks Dragosavljević

 Production editor: Deirdre Hiam

 Copy editor: Frances Buran

 Proofreader: Keri Hales

 Technical proofreader: Alessandro Campeis

 Typesetter: Happenstance Type-O-Rama

 Cover designer: Marija Tudor

 ISBN 9781617295362

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

 Brief contents

 1 Making programs safer

 2 Functional programming in Kotlin: An overview

 3 Programming with functions

 4 Recursion, corecursion, and memoization

 5 Data handling with lists

 6 Dealing with optional data

 7 Handling errors and exceptions

 8 Advanced list handling

 9 Working with laziness

 10 More data handling with trees

 11 Solving problems with advanced trees

 12 Functional input/output

 13 Sharing mutable states with actors

 14 Solving common problems functionally

 Appendix A. Mixing Kotlin with Java

 Appendix B. Property-based testing in Kotlin

 Front matter

 preface

 Although Kotlin appeared in 2011, it’s one of the newest languages in the Java ecosystem. Since then, a version of Kotlin running on the JavaScript virtual machine as been released, as well as a version compiling to native code. This makes Kotlin a much more universal language than Java, although there are great differences between these versions because the Java version relies upon the Java standard library, which isn’t available in the two others. JetBrains, the creator or Kotlin, is working hard to bring each version to an equivalent level, but this will take some time.

 The JVM (Java Virtual Machine) version is by far the most used version, and this has seen a great boost when Google decided to adopt Kotlin as an official language for developing Android applications. One of the primary reasons for Google’s adoption was that the version of Java available under Android is Java 6, whereas Kotlin offers most of the features of Java 11 and much more. Kotlin was also adopted by Gradle as the official language for writing build scripts to replace Groovy, which allows using the same language for the build and for what is built.

 Kotlin is primarily targeted at Java programmers. There might come a time when programmers will learn Kotlin as their primary language. But for now, most programmers will only be transitioning from Java to Kotlin.

 Each language has its own way, determined by some fundamental concepts. Java was created with several strong concepts in mind. It’s supposed to run everywhere, meaning in any environment for which a JVM is available. The promise was, “Write once, run anywhere.” Although some may argue otherwise, this promise was fulfilled. Not only can you run Java programs nearly everywhere, but you can also run programs written in other languages and compiled for the JVM. Kotlin is one of those languages.

 Another of Java’s promises was that no evolution would ever break existing code. Although this hasn’t always been true, it has most often been respected. But this might not be a good thing. The main consequence is that many improvements in other languages couldn’t be brought into Java because those improvements would have destroyed compatibility. Any program compiled with a previous version of Java must be able to run in the newer versions without being recompiled. Whether this is useful or not is a matter of opinion, but the result is that backward compatibility has constantly played against Java’s evolution.

 Java was also supposed to make programs safer by using checked exceptions, thus forcing programmers to take these exceptions into consideration. For many programmers, this has proven to be a burden, leading to the practice of constantly wrapping checked exceptions into unchecked ones.

 Although Java is an object-oriented language, it’s supposed to be as fast as most languages for crunching numbers. The language designers decided that besides objects representing numbers and Boolean values, Java would benefit from having corresponding non-object primitives, allowing for much faster computations. The consequence was that you couldn’t (and still can’t) put primitives into collections such as lists, sets, or maps. And when streams were added, the language designers decided to create specific versions for primitives—but not all primitives, only those most commonly used. If you’re using some of the unsupported primitives, you’re out of luck.

 The same thing happened with functions. Generic functions were added to Java 8, but they only allowed manipulating objects, not primitives. So specialized functions were designed to handle integers, longs, doubles, and Booleans. (Again, unfortunately, not all primitives. There are no functions for byte, short, and float primitive types.) To make things even worse, additional functions were needed to convert from one primitive type to another or from primitives to objects and back.

 Java was designed more than 20 years ago. Many things have changed since that time, but most of those changes couldn’t be brought into Java. That’s because it would have broken compatibility, or they were brought into Java in such a way that compatibility was preserved at the expense of usability.

 Many new languages, such as Groovy, Scala, and Clojure, have since been released to address these limitations. These languages are compatible with Java to a certain extent, meaning that you can use existing Java libraries in projects written in these languages, and Java programmers can use libraries developed in these languages.

 Kotlin is different. Kotlin is much more strongly integrated with Java, to the point that you can mix Kotlin and Java source code in the same project without any difficulties! Unlike other JVM languages, Kotlin doesn’t look like a different language (although it’s somewhat different). Instead, it looks like what Java should have become. Some even say that Kotlin is Java made right, meaning that it fixes most of the problems with the Java language. (Kotlin has yet to deal with the limitations of the JVM, however.)

 But more importantly, Kotlin was designed to be much friendlier towards many techniques coming from functional programming. Kotlin has both mutable and immutable references, but it heavily promotes immutable ones. Kotlin also has a great part of the functional abstractions that let you avoid control structures (although it also has traditional control structures in order to smooth the transition from traditional languages).

 Another great benefit of using Kotlin is that it reduces the need for boilerplate code, allowing for the bare minimum. With Kotlin, you can create a class with optional properties (plus equals, hashCode, toString, and copy functions) in a single line of code, where the same class written in Java would need about thirty lines (including getters, setters, and overloaded constructors).

 Although other languages exist that were designed to overcome Java’s limitations in the JVM environment, Kotlin is different because it integrates with Java programs at the project source level. You can mix Java and Kotlin source files in the same projects with a single build chain. This is a game changer, especially regarding team programming, where using Kotlin in a Java environment is no more a hassle than using any third-party library. This makes for the smoothest possible transition from Java to a new language, and that makes it possible for you to write programs that are:

 	Safer

 	Easier to write, test, and maintain

 	More scalable

 I suspect that many readers will be Java programmers looking for new solutions to their day-to-day problems. If this is you, you may be asking why you should use Kotlin. Aren’t there already other languages in the Java ecosystem with which you can easily apply safe programming techniques?

 Sure there are, and one of the most well-known is Scala. Scala is a very good alternative to Java, but Kotlin has something more. Scala can interact with Java at the library level, meaning that Java programs can use Scala libraries (objects and functions) and Scala libraries can use Java libraries (objects and methods). But Scala and Java programs have to be built as separate projects, or at least separate modules, whereas Kotlin and Java classes can be mixed inside the same module.

 Read on to find out more about Kotlin.

 acknowledgments

 I would like to thank the many people who participated in making this book possible. First, a big thank you to my developmental editor, Marina Michaels. Besides your wonderful work on the manuscript, it’s been a real pleasure to work with you. Also thank you to my review editor, Aleksandar Dragosavljević.

 A big thank you, too, to Joel Kotarski, Joshua White, and Riccardo Terrell, my technical editors, and to Alessandro Campeis and Brent Watson, my technical proofreaders, all of whom helped me make this book much better than I could have done alone. To all the reviewers, MEAP readers, and everyone else who provided feedback and comments, thank you! This book would not be what it is today without your help. Specifically, I’d like to thank the following people who all took the time to review and comment on the book: Aleksei Slaikovskii, Alessandro Campeis, Andy Kirsch, Benjamin Goldberg, Bridger Howell, Conor Redmond, Dylan McNamee, Emmanuel Medina López, Fabio Falci Rodrigues, Federico Kircheis, Gergő Mihály Nagy, Gregor Raýman, Jason Lee, Jean-François Morin, Kent R. Spillner, Leanne Northrop, Mark Elston, Matthew Halverson, Matthew Proctor, Nuno Alexandre, Raffaella Ventaglio, Ronald Haring, Shiloh Morris, Vincent Theron, and William E. Wheeler.

 I would also like to thank the staff at Manning: Deirdre Hiam, Frances Buran, Keri Hales, David Novak, Melody Dolab, and Nichole Beard.

 about this book

 Who should read this book

 The goal of this book isn’t simply to help you learn the Kotlin language, but also to teach you how you can write much safer programs using Kotlin. This doesn’t mean that you should only use Kotlin if you want to write safer programs and, even less, that only Kotlin allows writing safer programs. This book uses Kotlin for all examples because Kotlin is one of the friendliest languages for writing safe programs in the JVM (Java Virtual Machine) ecosystem.

 This book teaches techniques that were developed long ago in many different environments, although many of those come from functional programming. But this book isn’t about fundamentalist functional programming. This book is about pragmatic safe programming.

 All the techniques described have been put in production in the Java ecosystem for years and have proven to be effective in producing programs with much fewer implementation bugs than traditional imperative programming techniques. These safe techniques can be implemented in any language, and they’ve been used by some for many years in Java. But often, using these techniques has been accomplished through struggling to overcome Java limitations.

 This book isn’t about learning programming from level zero. It’s aimed at programmers in professional environments who are looking for an easier and safer way to write bug-free programs.

 What you’ll learn

 In this book, you’ll learn specific techniques that might differ from what you’ve learned if you’re a Java programmer. Most of these techniques will sound unfamiliar or will even contradict what programmers usually recognize as best practices. But many (though not all) best practices are from the days when computers had 640K of memory, 5 MB of disk storage, and a single-core processor. Things have changed. Nowadays, a simple smartphone is a computer with 3 GB or more RAM, 256 GB of solid-state disk storage, and an 8-core processor; likewise, computers have many gigabytes of memory, terabytes of storage, and multi-core processors.

 The techniques I cover in this book include:

 	Pushing abstraction further

 	Favoring immutability

 	Understanding referential transparency

 	Encapsulating state mutation sharing

 	Abstracting control flow and control structures

 	Using the right types

 	Working with laziness

 	And more

 Pushing abstraction further

 One of the most important techniques you’ll learn about is pushing abstraction much further (although traditional programmers consider premature abstraction to be as evil as premature optimization). But pushing abstraction further results in a much better understanding of the problem to solve, which, in turn, results in more often solving the right problem instead of a different one.

 You might wonder what pushing abstraction further really means. Simply, it means recognizing common patterns in different computations and abstracting these patterns in order to avoid rewriting them again and again.

 Immutability

 Immutability is a technique that consists in using only non-modifiable data. Many traditional programmers have trouble imagining how it can be possible to write useful programs using only immutable data. Isn’t programming primarily based upon modifying data? Well, this is like believing that accounting is primarily modifying values in an accounting book.

 The transition from mutable to immutable accounting was made in the 15th century, and the principle of immutability has been recognized since then as the main element of safety for accounting. This principle also applies to programming, as you’ll see in this book.

 Referential transparency

 Referential transparency is a technique that lets you write deterministic programs, meaning programs whose results you can predict and reason about. These programs always produce the same results when given the same input. This doesn’t mean that they always produce the same results, but that variations in results only depend on variations in input and not on external conditions.

 Not only are such programs safer (because you always know how they’ll behave), but they’re much easier to compose, to maintain, to update, and to test. And programs that are easier to test are generally tested better and, hence, are more reliable.

 Encapsulated state mutation sharing

 Immutable data is automatically protected against accidental sharing of state mutation, which causes many problems in concurrent and parallel processing, such as deadlock, livelock, thread starvation, and stale data. But making state mutation sharing impossible, because there’s no state mutation, is a problem when state must be shared. This is the case in concurrent and parallel programming.

 By removing state mutation, you make accidental sharing of state mutation impossible, so programs are safer. But parallel and concurrent programming implies sharing state mutation. Otherwise, there wouldn’t be any cooperation between parallel or concurrent threads. This specific use case of shared state mutation can be abstracted and encapsulated so that it can be reused without risk because the single implementation will have been fully tested instead of reimplementing it each time it’s used, as is the case in traditional programming.

 In this book, you’ll learn how to abstract and encapsulate state mutation sharing so that you’ll only have to write it once. Then you can reuse it everywhere you need it.

 Abstracting control flow and control structures

 The second common source of bugs in programs, after sharing mutable state, is control structures. Traditional programs are composed of control structures such as loops and conditional testing. It’s so easy to mess with these structures that language designers have tried to abstract the details as much as possible. One of the best examples is the for each loop that’s now present in most languages (although in Java it’s still simply called for).

 Another common problem is the correct use of while and do while (or repeat until), and particularly determining where to test the condition. An additional problem is concurrent modification while looping on collections, where you encounter the problem of sharing mutable state although you’re using a single thread! Abstracting control structures makes it possible to completely eliminate these kinds of problems.

 Using the right types

 In traditional programming, general types such as int and String are used to represent quantities without taking units into account. As a consequence, it’s very easy to mess with these types, adding miles to gallons or dollars to minutes. Using value types can completely eliminate this kind of problem at a very low cost, even if the language you’re using doesn’t offer true value types.

 Laziness

 Most of the common languages are said to be strict, meaning that arguments passed to a method or function are evaluated first before being processed. This seems to make sense, although it often doesn’t. On the contrary, laziness is a technique consisting in evaluating elements only if and when those are used. Programming is essentially based upon laziness.

 For example, in an if...else structure, the condition is strictly evaluated, meaning that it’s evaluated before being tested, but the branches are lazily evaluated, meaning that only the branch corresponding to the condition is executed. This laziness is totally implicit and the programmer doesn’t control it. Making explicit use of laziness will help you write much more efficient programs.

 Audience

 This book is for readers with some previous programming experience in Java. Some understanding of parameterized types (generics) is also assumed. This book makes heavy use of such techniques, including parameterized function calls, or variance, which aren’t often used in Java (although it’s a powerful technique). Don’t be afraid if you don’t know these techniques already; I’ll explain what they mean and why they’re needed.

 How this book is organized: A roadmap

 This book is intended to be read sequentially because each chapter builds upon the concepts learned in the previous ones. I use the word read, but this book isn’t intended to just be read. Very few sections contain theory only.

 To get the most out of this book, read it at your computer, solving each exercise as you go. Each chapter includes a number of exercises with the necessary instructions and hints to help you arrive at the solution. Each exercise comes with a proposed solution and test that you can use to verify that your solution is correct.

 Note All the code is available as a separate free download from GitHub (http://github.com/pysaumont/fpinkotlin). The code comes with all the necessary elements for the project to be imported into IntelliJ (recommended) or to be compiled and run using Gradle 4. If you use Gradle, you can edit the code with any text editor. Kotlin is supposed to be usable with Eclipse, but I can’t guarantee this. IntelliJ is a far superior IDE and is downloadable for free from the Jetbrains site (https://www.jetbrains.com/idea/download).

 Completing the exercises

 The exercises are essential to your learning and to understanding what this book teaches. Please note that you’re not expected to understand most of the concepts presented in this book just by reading the text. Doing the exercises is probably the most important part of the learning process, so I encourage you not to skip any exercises.

 Some exercises may seem quite difficult, and you might be tempted to look at the proposed solutions. It’s perfectly okay to do so, but you should then go back to the exercise and do it without looking at the solution. If you only read the solution, you’ll probably have trouble later trying to solve more advanced exercises.

 This approach doesn’t require much tedious typing because you’ve nearly nothing to copy. Most exercises consist in writing implementations for functions, for which you’re given the environment and the function signature. No exercise solution is longer than a dozen lines of code; the majority are around four or five lines long. Once you finish an exercise (which means when your implementation compiles), just run the corresponding test to verify that it’s correct.

 One important thing to note is that each exercise is self-contained in regards to the rest of the chapter, so code created inside a chapter is duplicated from one exercise to the next. This is necessary because each exercise is often built upon the preceding one, so although the same class might be used, implementations differ. As a consequence, you shouldn’t look at a later exercise before you complete the previous ones because you’d see the solutions to yet unsolved exercises.

 Learning the techniques in this book

 The techniques described in this book aren’t more difficult to master than traditional ones. They are just different. You can solve the same problems with traditional techniques, but translating from one technique to the other can sometimes be inefficient.

 Learning new techniques is like learning a foreign language. Just as you can’t efficiently think in one language and translate to another, you can’t think in traditional programming based upon state mutation and control flow and translate your code to functions handling immutable data. And, just as you have to learn to think in a new language, you have to learn to think differently. This doesn’t come with reading alone; it comes with writing code. So you have to practice!

 This is why I don’t expect you to understand what’s in this book just by reading it, and why I provide so many exercises; you must do the exercises to fully grasp the concepts. This isn’t because each topic is so complex that it isn’t possible to understand it through reading alone. If you could understand it just by reading without doing the exercises, you probably wouldn’t need this book.

 For all these reasons, the exercises are key to getting the most out of this book. I encourage you to try solving each exercise before you continue reading. If you don’t find a solution, try again rather than going directly to the solution I provide.

 If you’ve a hard time understanding something, ask questions on the forum (see the next section). Asking questions and getting answers on the forum will not only help you, it’ll also help the person answering the question (along with others who have the same question). We all learn by answering questions (mostly our own questions, by the way) much more than by asking them.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Code annotations accompany many of the listings, highlighting important concepts.

 You can download the code as an archive, or you can clone it using Git. The code for the exercises is organized in modules with names that reflect the chapter titles rather than the chapter numbers. As a result, IntelliJ will sort them alphabetically rather than in the order in which they appear in the book.

 To help you figure out which module corresponds to each chapter, I’ve provided a list of the chapters with the corresponding module names in the README file accompanying the code (http://github.com/pysaumont/fpinkotlin).

 The source code for all listings in this book is also available for download from the Manning website at https://www.manning.com/books/the-joy-of-kotlin.

 liveBook discussion

 Purchase of The Joy of Kotlin includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/the-joy-of-kotlin/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 Pierre-Yves Saumont is a seasoned Java developer with three decades of experience designing and building enterprise software. He is an R&D engineer at ASN (Alcatel Submarine Networks).

 about the cover illustration

 The figure on the cover of The Joy of Kotlin is captioned “Habit of a Lady in Chinese Tartary, 1700.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.

 1 Making programs safer

 This chapter covers

 	Identifying programming traps

 	Looking at problems with side effects

 	How referential transparency makes programs safer

 	Using the substitution model to reason about programs

 	Making the most of abstraction

 Programming is a dangerous activity. If you’re a hobbyist programmer, you may be surprised to read this. You probably thought you were safe sitting in front of your screen and keyboard. You might think that you don’t risk much more than some back pain from sitting too long, some vision problems from reading tiny characters onscreen, or even some wrist tendonitis if you happen to type too furiously. But if you’re (or want to be) a professional programmer, the reality is much worse than this.

 The main danger is the bugs that are lurking in your programs. Bugs can cost a lot if they manifest at the wrong time. Remember the Y2K bug? Many programs written between 1960 and 1990 used only two digits to represent the year in dates because the programmers didn’t expect their programs would last until the next century. Many of these programs that were still in use in the 1990s would have handled the year 2000 as 1900. The estimated cost of that bug, actualized in 2017 US dollars, was $417 billion.1

 But for bugs occurring in a single program, the cost can be much higher. On June 4, 1996, the first flight of the French Ariane 5 rocket ended after 36 seconds with a crash. It appears that the crash was due to a single bug in the navigation system. A single integer arithmetic overflow caused a $370 million loss.2

 How would you feel if you were held responsible for such a disaster? How would you feel if you were writing this kind of program on a day-to-day basis, never sure that a program working today will still be working tomorrow? This is what most programmers do: write undeterministic programs that don’t produce the same result each time they are run with the same input data. Users are aware of this, and when a program doesn’t work as expected, they try again, as if the same cause could produce a different effect the next time. And it sometimes does because nobody knows what these programs depend on for their output.

 With the development of artificial intelligence (AI), the problem of software reliability becomes more crucial. If programs are meant to make decisions that can jeopardize human life, such as flying planes or driving autonomous cars, we’d better be sure they work as intended.

 What do we need to make safer programs? Some will answer that we need better programmers. But good programmers are like good drivers. Of the programmers, 90% agree that only 10% of all programmers are good enough, but at the same time, 90% of the programmers think they are part of the 10%!

 The most needed quality for programmers is to acknowledge their own limitations. Let’s face it: we are only, at best, average programmers. We spend 20% of our time writing buggy programs, and then we spend 40% of our time refactoring our code to obtain programs with no apparent bugs. And later, we spend another 40% debugging code that’s already in production because bugs come in two categories: apparent and non-apparent. Rest assured, non-apparent bugs will become apparent—it’s just a matter of time. The question remains: how long and how much damage will be done before the bugs become apparent.

 What can we do about this problem? No programming tool, technique, or discipline will ever guarantee that our programs are completely bug-free. But many programming practices exist that can eliminate some categories of bugs and guarantee that the remaining bugs only appear in isolated (unsafe) areas of our programs. This makes a huge difference because it makes bug hunting much easier and more efficient. Among such practices are writing programs that are so simple that they obviously have no bugs, rather than writing programs that are so complex that they have no obvious bugs.3

 In the rest of this chapter, I briefly present concepts like immutability, referential transparency, and the substitution model, as well as other suggestions, which together you can use to make your programs much safer. You’ll apply these concepts over and over in the upcoming chapters.

 1.1 Programming traps

 Programming is often seen as a way of describing how some process is to be carried out. Such a description generally includes actions that mutate a state in a program’s model to solve a problem and decisions about the result of such mutations. This is something everyone understands and practices, even if they aren’t programmers.

 If you have some complex task to achieve, you divide it into steps. You then execute the first step and examine the result. Following the result of this examination, you continue with the next step or another. For example, a program for adding two positive values a and b might be represented by the following pseudocode:

 	if b = 0, return a

 	else increment a and decrement b

 	start again with the new a and b

 In this pseudocode, you can recognize the traditional instructions of most languages: testing conditions, mutating variables, branching, and returning a value. This code can be represented graphically by a flow chart like that shown in figure 1.1.

 [image: Fig01_01.png]

 Figure 1.1 A flow chart representing a program as a process that occurs in time. Various things are transformed and states are mutated until the result is obtained.

 You can easily see how such a program could go wrong. Change any data on the flowchart, or change the origin or the destination of any arrow, and you get a potentially buggy program. If you’re lucky, you could get a program that doesn’t run at all, or that runs forever and never stops. This could be considered as good luck because you’d immediately see that there’s a problem that needs fixing. Figure 1.2 shows three examples of such problems.

 [image: Fig01_02.png]

 Figure 1.2 Three buggy versions of the same program

 The first example produces an erroneous result, and the second and the third never terminate. Note, however, that your programming language might not allow you to write some of these examples. None of these could be written in a language that doesn’t allow mutating references, and none of them could be written in a language that doesn’t allow branching or looping. You might think all you have to do is to use such a language. And, in fact, you could. But you’d be restricted to a small number of languages and probably none of them would be allowed in your professional environment.

 Is there a solution? Yes, there is. What you can do is to avoid using mutable references, branching (if your language allows it), and looping. All you need to do is to program with discipline.

 Don’t use dangerous features like mutations and loops. It’s as simple as that! And if you do find that you eventually need mutable references or loops, abstract them. Write some component that abstracts state mutation once and for all, and you’ll never again have to deal with the problem. (Some more or less exotic languages offer this out of the box, but these too are probably not languages you can use in your environment.) The same applies to looping. In this case, most modern languages offer abstractions of looping alongside a more traditional usage of loops. Again, it’s a question of discipline. Only use the good parts! More on this in chapters 4 and 5.

 Another common source of bugs is the null reference. As you’ll see in chapter 6, with Kotlin you can clearly separate code that allows null references from code that forbids these. But ultimately, it’s up to you to completely eradicate the use of null references from your programs.

 Many bugs are caused by programs depending on the outside world to execute correctly. But depending on the outside world is generally necessary in some way in all programs. Restricting this dependency to specific areas of your programs will make problems easier to spot and deal with, although it won’t completely remove the possibility of these types of bugs.

 In this book, you’ll learn several techniques to make your programs much safer. Here’s a list of these practices:

 	Avoiding mutable references (variables) and abstracting the single case where mutation can’t be avoided.

 	Avoiding control structures.

 	Restricting effects (interaction with the outside world) to specific areas in your code. This means no printing to the console or to any device, no writing to files, databases, networks, or whatever else that can happen outside of these restricted areas.

 	No exception throwing. Throwing exceptions is the modern form of branching (GOTO), which leads to what’s called spaghetti code, meaning that you know where it starts, but you can’t follow where it goes. In chapter 7, you’ll learn how to completely avoid throwing exceptions.

 1.1.1 Safely handling effects

 As I said, the word effects means all interactions with the outside world, such as writing to the console, to a file, to a database, or to a network, and also mutating any element outside the component’s scope. Programs are generally written in small blocks that have scope. In some languages these blocks are called procedures; in others (like Java), they’re called methods. In Kotlin they’re called functions, although this doesn’t have the same meaning as the mathematical concept of a function.

 Kotlin functions are basically methods, as in Java and many other modern languages. These blocks of code have a scope, meaning an area of the program that’s visible only by those blocks. Blocks not only have visibility of the enclosing scope, but this itself also provides visibility of the outer scopes and, by transitivity, to the outside world. Any mutation of the outside world caused by a function or method (such as mutating the enclosing scope, like the class in which the method is defined) is, therefore, an effect.

 Some methods (functions) return a value. Some mutate the outer world, and some do both. When a method or function returns a value and has an effect, this is called a side effect. Programming with side effects is wrong in all cases. In medicine, the term “side effects” is primarily used to describe unwanted, adverse secondary outcomes. In programming, a side effect is something that’s observable outside of the program and comes in addition to the result returned by the program.

 If the program doesn’t return a result, you can’t call its observable effect a side effect; it’s the primary effect. It can still have side (secondary) effects, although this is also generally considered bad practice, following what’s called the “single responsibility” principle.

 Safe programs are built by composing functions that take an argument and return a value, and that’s it. We don’t care about what’s happening inside the functions because, in theory, nothing ever happens there. Some languages only offer such effect-free functions: programs written in these languages don’t have any observable effects beside returning a value. But this value can, in fact, be a new program that you can run to evaluate the effect. Such a technique can be used in any language, but it’s often considered inefficient (which is arguable). A safe alternative is to clearly separate effects evaluation from the rest of the program and even, as much as possible, to abstract effect evaluation. You’ll learn many techniques allowing this in chapters 7, 11, and 12.

 1.1.2 Making programs safer with referential transparency

 Having no side effects (not mutating anything in the external world) isn’t enough to make a program safe and deterministic. Programs also mustn’t be affected by the external world—the output of a program should depend only on its argument. This means that programs shouldn’t read data from the console, a file, a remote URL, a database, or even from the system.

 Code that neither mutates nor depends on the external world is said to be referentially transparent. Referentially transparent code has several interesting attributes:

 	
It’s self-contained. You can use it in any context; all you have to do is to provide a valid argument.

 	
It’s deterministic. It always returns the same value for the same argument so you won’t be surprised. It might, however, return a wrong result, but at least for the same argument, the result never changes.

 	
It will never throw any kind of exception. It might throw errors, such as out-of-memory errors (OOMEs) or stack-overflow errors (SOEs), but these errors mean that the code has a bug. This isn’t a situation either you, as a programmer, or the users of your API are supposed to handle (besides crashing the application, which often won’t happen automatically, and eventually fixing the bug).

 	
It doesn’t create conditions causing other code to unexpectedly fail. It won’t mutate arguments or some other external data, for example, causing the caller to find itself with stale data or concurrent access exceptions.

 	
It doesn’t depend on any external device to work. It won’t hang because some external device (whether database, filesystem, or network) is unavailable, too slow, or broken.

 Figure 1.3 illustrates the difference between a referentially transparent program and one that’s not referentially transparent.

 [image: Fig01_03.png]

 Figure 1.3 Comparing a program that’s referentially transparent to one that’s not

 1.2 The benefits of safe programming

 From what I’ve described, you can likely guess the many benefits you can expect by using referential transparency:

 	
Your programs will be easier to reason about because they’ll be deterministic. A specific input will always give the same output. In many cases, you might be able to prove a program correct rather than to extensively test it and still remain uncertain about whether it’ll break under unexpected conditions.

 	
Your programs will be easier to test. Because there are no side effects, you won’t need mocks, which are generally required when testing to isolate program components from the outside.

 	
Your programs will be more modular. That’s because they’ll be built from functions that only have input and output; there are no side effects to handle, no exceptions to catch, no context mutation to deal with, no shared mutable state, and no concurrent modifications.

 	
Composition and recombination of programs is much easier. To write a program, you start by writing the various base functions you’ll need and then combine these functions into higher-level ones, repeating the process until you have a single function corresponding to the program you want to build. And, because all these functions are referentially transparent, they can then be reused to build other programs without any modifications.

 	
Your programs will be inherently thread-safe because they avoid mutation of shared states. This doesn’t mean that all data has to be immutable, only shared data must be. But programmers applying these techniques soon realize that immutable data is always safer, even if the mutation is not visible externally. One reason is that data that’s not shared at one point can become shared accidentally after refactoring. Always using immutable data ensures that this kind of problem never happens.

 In the rest of this chapter, I’ll present some examples of using referential transparency to write safer programs.

 1.2.1 Using the substitution model to reason about programs

 The main benefit from using functions that return a value without any other observable effect is that they’re equivalent to their return value. Such a function doesn’t do anything. It has a value, which is dependent only on its arguments. As a consequence, it’s always possible to replace a function call or any referentially transparent expression with its value, as figure 1.4 shows.

 [image: Fig01_04.png]

 Figure 1.4 Replacing referentially transparent expressions with their values doesn’t change the overall meaning.

 When applied to functions, the substitution model lets you replace any function call with its return value. Consider the following code:

 fun main(args: Array<String>) {
 val x = add(mult(2, 3), mult(4, 5))
 println(x)
}
fun add(a: Int, b: Int): Int {
 log(String.format("Returning ${a + b} as the result of $a + $b"))
 return a + b
}
fun mult(a: Int, b: Int) = a * b
fun log(m: String) {
 println(m)
}

 Replacing mult(2, 3) and mult(4, 5) with their respective return values doesn’t change the signification of the program. This is shown here:

 val x = add(6, 20)

 In contrast, replacing the call to the add function with its return value changes the signification of the program, because the call to log will no longer be made, so no logging takes place. This may or may not be important; in any case, it changes the outcome of the program.

 1.2.2 Applying safe principles to a simple example

 To convert an unsafe program into a safer one, let’s consider a simple example representing the purchase of a donut with a credit card.

 Listing 1.1 A Kotlin program with side effects

 fun buyDonut(creditCard: CreditCard): Donut {
 val donut = Donut()
 creditCard.charge(donut.price) ①
 return donut ②
}

 ① Charges the credit card as a side effect

 ② Returns the donut

 In this code, charging the credit card is a side effect. Charging a credit card probably consists of calling the bank, verifying that the credit card is valid and authorized, and registering the transaction. The function returns the donut.

 The problem with this kind of code is that it’s difficult to test. Running the program for testing would involve contacting the bank and registering the transaction using some sort of mock account. Or you’d need to create a mock credit card to register the effect of calling the charge function and to verify the state of the mock after the test.

 If you want to be able to test your program without contacting the bank or using a mock, you should remove the side effect. But because you still want to charge the credit card, the only solution is to add a representation of this operation to the return value. Your buyDonut function will have to return both the donut and this representation of the payment. To represent the payment, you can use a Payment class, as shown in the following listing.

 Listing 1.2 The Payment class

 class Payment(val creditCard: CreditCard, val amount: Int)

 This class contains the necessary data to represent the payment, which consists of a credit card and the amount to charge. Because the buyDonut function must return both a Donut and a Payment, you could create a specific class for this, such as Purchase.

 class Purchase(val donut: Donut, val payment: Payment)

 You’ll often need such a class to hold two (or more) values of different types because, to make programs safer, you have to replace side effects with returning a representation of these effects.

 Rather than creating a specific Purchase class, you can use a generic one, Pair. This class is parameterized by the two types it contains (in this case, Donut and Payment). Kotlin provides this class, as well as Triple, which allows the representation of three values. Such a class would be useful in a language like Java because defining the Purchase class would imply writing a constructor, getters, and probably equals and hashcode methods, as well as toString. That’s much less useful in Kotlin because the same result can be obtained with a single line of code:

 data class Purchase(val donut: Donut, val payment: Payment)

 The Purchase class already doesn’t need an explicit constructor and getters. By adding the data keyword in front of the class definition, Kotlin additionally provides implementations of equals, hashCode, toString, and copy. But you must accept the default implementations. Two instances of a data class will be equal if all properties are equal. If this isn’t what you need, you can override any of these functions with your own implementations.

 fun buyDonut(creditCard: CreditCard): Purchase {
 val donut = Donut()
 val payment = Payment(creditCard, Donut.price)
 return Purchase(donut, payment)
}

 You’re no longer concerned at this stage with how the credit card will be charged. This adds some freedom to the way you build your application. You could process the payment immediately, or you could store it for later processing. You can even combine stored payments for the same card and process them in a single operation. This would save you some money by minimizing the bank fees for the credit card service.

 The combine function in listing 1.3 is used to combine payments. If the credit cards don’t match, an exception is thrown. This doesn’t contradict what I said about safe programs not throwing exceptions. Here, trying to combine two payments with two different credit cards is considered a bug, so it should crash the application. (This isn’t realistic. You’ll have to wait until chapter 7 to learn how to deal with such situations without throwing exceptions.)

 Listing 1.3 Composing multiple payments into a single one

 package com.fpinkotlin.introduction.listing03
class Payment(val creditCard: CreditCard, val amount: Int) {
 fun combine(payment: Payment): Payment =
 if (creditCard == payment.creditCard)
 Payment(creditCard, amount + payment.amount)
 else
 throw IllegalStateException("Cards don't match.")
}

 In this scenario, the combine function wouldn’t be efficient when buying several donuts at once. For this you could replace the buyDonut function with buyDonuts(n: Int, creditCard: CreditCard) as shown in the following listing, but you need to define a new Purchase class. Alternatively, if you had chosen to use a Pair<Donut, Payment>, you’d have to replace it with Pair<List<Donut>, Payment>.

 Listing 1.4 Buying multiple donuts at once

 package com.fpinkotlin.introduction.listing05
data class Purchase(val donuts: List<Donut>, val payment: Payment)
fun buyDonuts(quantity: Int = 1, creditCard: CreditCard): Purchase =
 Purchase(List(quantity) {
 Donut()
 }, Payment(creditCard, Donut.price * quantity))

 Here List(quantity) { Donut() } creates a list of quantity elements successively applying the function { Donut() } to values 0 to quantity - 1. The { Donut() } function is equivalent to

 { index -> Donut{} }

 or

 { _ -> Donut{} }

 When there’s a single parameter, you can omit the parameter -> part and use the parameter as it. Because it’s not used, the code is reduced to { Donut() }. If this isn’t clear, don’t worry: I’ll cover this more in the next chapter

 Also note that the quantity parameter receives a default value of 1. This lets you call the buyDonuts function with the following syntax without specifying the quantity:

 buyDonuts(creditCard = cc)

 In Java, you’d have to overload the method with a second implementation, such as

 public static Purchase buyDonuts(CreditCard creditCard) {
 return buyDonuts(1, creditCard);
}
public static Purchase buyDonuts(int quantity,
 CreditCard creditCard) {
 return new Purchase(Collections.nCopies(quantity, new Donut()),
 new Payment(creditCard, Donut.price * quantity));
}

 Now you can test your program without using a mock. For example, here’s a test for the method buyDonuts:

 import org.junit.Assert.assertEquals
import org.junit.Test
class DonutShopKtTest {
 @Test
 fun testBuyDonuts() {
 val creditCard = CreditCard()
 val purchase = buyDonuts(5, creditCard)
 assertEquals(Donut.price * 5, purchase.payment.amount)
 assertEquals(creditCard, purchase.payment.creditCard)
 }
}

 Another benefit of having refactored your code is that your program is more easily composable. If the same person makes several purchases with your initial program, you’d have to contact the bank (and pay the corresponding fee) each time the person bought something. With the new version, however, you can choose to charge the card immediately for each purchase or to group all payments made with the same card and charge it only once for the total. To group payments, you’ll need to use additional functions from the Kotlin List class:

 	
groupBy(f: (A) -> B): Map<B, List<A>> —Takes as its parameter a function from A to B and returns a map of keys and value pairs, with keys being of type B and values of type List<A>. You’ll use it to group payments by credit cards.

 	
values: List<A> —An instance function of Map that returns a list of all the values in the map.

 	
map(f: (A) -> B): List —An instance function of List that takes a function from A to B and applies it to all elements of a list of A, returning a list of B.

 	
reduce(f: (A, A) -> A): A —A function of List that uses an operation (represented by a function f: (A, A) -> A) to reduce the list to a single value. The operation could be, for example, addition. In such a case, it would mean a function such as f(a, b) = a + b.

 Using these functions, you can now create a new function that groups payments by credit card, as shown in the next listing.

 Listing 1.5 Grouping payments by credit card

 package com.fpinkotlin.introduction.listing05;
class Payment(val creditCard: CreditCard, val amount: Int) {
 fun combine(payment: Payment): Payment =
 if (creditCard == payment.creditCard)
 Payment(creditCard, amount + payment.amount)
 else
 throw IllegalStateException("Cards don't match.")
 companion object {
 fun groupByCard(payments: List<Payment>): List<Payment> =
 payments.groupBy { it.creditCard } ①
 .values ②

 .map { it.reduce(Payment::combine) } ③

 }
}

 ① Changes List<Payment> into a Map<CreditCard, List<Payment>>, where each list contains all payments for a particular credit card

 ② Changes the Map<CreditCard, List<Payment>> into a List<List<Payment>>

 ③ Reduces each List<Payment> into a single Payment, leading to the overall result of a List<Payment>

 Note the use of a function reference in the last line of the groupByCard function. Function references are similar to method references in Java. If this example isn’t clear, well, that’s what this book is for! When you reach the end, you’ll be an expert in composing such code.

 1.2.3 Pushing abstraction to the limit

 As you’ve seen, you can write safer programs that are easier to test by composing pure functions, which mean functions without side effects. You can declare these functions using the fun keyword or as value functions, such as the arguments of methods groupBy, map, or reduce in the previous listing. Value functions are functions represented in such a way that, unlike fun functions, they can be manipulated by the program. In most cases, you can use these as arguments to other functions or as values returned by other functions. You’ll learn how this is done in the following chapters.

 But the most important concept here is abstraction. Look at the reduce function. It takes as its argument an operation, and uses that operation to reduce a list to a single value. Here the operation has two operands of the same type. Except for this, it could be any operation.

 Consider a list of integers. You could write a sum function to compute the sum of the elements. Then you could write a product function to compute the product of the elements or a min or a max function to compute the minimum or the maximum of the list. Alternatively, you could also use the reduce function for all these computations. This is abstraction. You abstract the part that’s common to all operations in the reduce function, and you pass the variable part (the operation) as an argument.

 You could go further. The reduce function is a particular case of a more general function that might produce a result of a different type than the elements of the list. For example, it could be applied to a list of characters to produce a String. You’d need to start from a given value (probably an empty string). In chapters 3 and 5, you’ll learn how to use this function, called fold.

 The reduce function won’t work on an empty list. Think of a list of integers—if you want to compute the sum, you need to have an element to start with. If the list is empty, what should you return? You know that the result should be 0, but this only works for a sum. It won’t work for a product.

 Also consider the groupByCard function. It looks like a business function that can only be used to group payments by credit cards. But it’s not! You could use this function to group the elements of any list by any of their properties. This function then should be abstracted and put inside the List class in such a way that it could be reused easily. (It’s defined in the Kotlin List class.)

 Pushing abstraction to the limits allows making programs safer because the abstracted part will only be written once. As a consequence, once it’s fully tested, there’ll be no risk of producing new bugs by reimplementing it.

 In the rest of this book, you’ll learn how to abstract many things so you’ll only have to define them once. You will, for example, learn how to abstract loops so you won’t ever need to write loops again. And you’ll learn how to abstract parallelization in a way that’ll let you switch from serial to parallel processing by selecting a function in the List class.

Summary

 	You can make programs safer by clearly separating functions, which return values, from effects, which interact with the outside world.

 	Functions are easier to reason about and to test because their outcome is deterministic and doesn’t depend on an external state.

 	Pushing abstraction to a higher level improves safety, maintainability, testability, and reusability.

 	Applying safe principles like immutability and referential transparency protects programs against accidental sharing of a mutable state, which is a huge source of bugs in multithreaded environments.

 1 Federal Reserve Bank of Minneapolis Community Development Project. “Consumer Price Index (estimate) 1800–” https://www.minneapolisfed.org/community/teaching-aids/cpi-calculator-information/consumer-price-index-1800.

 2 Rapport de la commission d’enquête Ariane 501 Echec du vol Ariane 501 http://www.astrosurf.com/luxorion/astronautique-accident-ariane-v501.htm.

 3 “...there are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.” See C.A.R. Hoare, “The Emperor’s Old Clothes,” Communications of the ACM 24 (February 1981): 75–83.

 2 Functional programming in Kotlin: An overview

 In this chapter

 	Declaring and initializing fields and variables

 	Kotlin’s classes and interfaces

 	Kotlin’s two types of collections

 	Functions (and control structures)

 	Handling nulls

 In this chapter, I provide a quick overview of the Kotlin language. I assume that you know a bit (at least) of Java, so I stress the differences between the two languages. The intent is not to teach you Kotlin. You’ll find other books for this. If you need an in-depth coverage of Kotlin, I recommend you read Dmitry Jemerov and Svetlana Isakova’s Kotlin in Action (Manning, 2017).

 This chapter gives you a first glimpse of what to expect from Kotlin. Don’t try to remember everything. Look at some of the astounding features of the Kotlin language and see how it differs from Java. In the following chapters, I come back to each feature, used in a safe programming context. In the rest of this chapter, I give you an overview of the most important benefits of using Kotlin. This presentation is certainly not exhaustive, and you’ll discover additional benefits in the rest of the book.

 2.1 Fields and variables in Kotlin

 In Kotlin, fields are declared and initialized using the following syntax:

 val name: String = "Mickey"

 Note the differences with Java:

 	The val keyword comes first and means that the name reference is immutable (corresponding to final in Java).

 	The type (String) comes after the name, separated by a colon (:).

 	There’s no semicolon (;) at the end of the line. You can use semicolons, but they’re not mandatory because the end of the line has the same meaning. You would use semicolons only when you want to put several instructions on the same line, which isn’t a recommended practice.

 2.1.1 Omitting the type to simplify

 The previous example can be simplified as:

 val name = "Mickey"

 Here, Kotlin guesses the type by looking forward to the value used to initialize the field. This is called type inference, and it lets you omit the type in numerous cases. But there are places where type inference won’t work, such as when the type is ambiguous or the field isn’t initialized. In these cases, you must specify the type.

 It’s generally wise, however, to specify the type. By doing so, you can check that the type inferred by Kotlin is the type you expect. Believe me, that won’t always be the case!

 2.1.2 Using mutable fields

 I said at the start of section 2.1 that val means that the reference is immutable. Does this mean that all references are always immutable? No, but you should use val as much as possible. The reason is that if a reference can’t change, there’s no way to mess with it once it’s been initialized. For the same reason, you should initialize references as soon as possible. (Although, as you’ll see, Kotlin generally prevents using uninitialized references. This differs from Java, which automatically sets uninitialized references to null and lets you use them.)

 To use a mutable reference, you need to replace val with var, as in this example. This allows changing the value later:

 var name = "Mickey"

...
name = "Donald"

 Remember, though, you should avoid using var as much as possible because it’s easier to reason about a program when you know that references can’t change.

 2.1.3 Understanding lazy initialization

 Sometimes, you’ll want to use a var to delay initialization of a reference that doesn’t change once initialized. The reasons for delaying initialization varies. One common use case is that initialization is costly, so you don’t want it to happen if the value is never used.

 The solution is generally to use a var reference and set it to null until it’s initialized to a meaningful value, which almost always never changes. This is annoying because Kotlin allows you to differentiate between nullable and non-nullable types. Non-nullable types are much safer because there’s no risk of a NullPointerException. When the value isn’t known at declaration time, and will never change after initialization, it would be sad to be forced to use var for such a use case. That would force you to use a nullable type instead of a non-nullable one, for example:

 var name: String? = null

...

name = getName()

 Here the reference is of type String?, which is nullable, although it could be of type String, which isn’t. You could use a specific value to represent the uninitialized reference, such as

 var name: String = "NOT_INITIALIZED_YET"

...

name = getValue()

 Or, if the name should never be empty, you could use an empty string to denote a non-initialized reference. In any case, you’re forced to use a var even if the value never changes after initialization. But Kotlin offers a better solution:

 val name: String by lazy { getName() }

 This way, the getName() function will be called only once when the name reference is used for the first time. You can also use a function reference instead of a lambda:

 val name: String by lazy(::getName)

 Saying when the name reference will be used for the first time means when it’ll be de-referenced so that the value it points to can be used. Look at the following example:

 fun main(args: Array<String>) {

 val name: String by lazy { getName() }
 println("hey1")
 val name2: String by lazy { name }
 println("hey2")

 println(name)
 println(name2)
 println(name)
 println(name2)
}

fun getName(): String {
 println("computing name...")
 return "Mickey"
}

 Running this program will print

 hey1
hey2
computing name...
Mickey
Mickey
Mickey
Mickey

 Lazy initialization can’t be used for mutable references. In case you absolutely need a lazy mutable reference, you can use the lateinit keyword, which has somewhat the same effect, although without the automatic on-demand initialization:

 lateinit var name: String

...

name = getName()

 This construction avoids using a nullable type. But it offers absolutely no benefit compared to by lazy except when initialization should be done externally, such as when using a dependency injection framework while working with properties. Note that constructor-based dependency injection should always be preferred because it allows using immutable properties. As you’ll see in chapter 9, there’s much more to learn about laziness.

 2.2 Classes and interfaces in Kotlin

 Classes in Kotlin are created with a somewhat different syntax than those in Java. A class Person with a property name of type String can be declared in Kotlin as

 class Person constructor(name: String) {

 val name: String

 init {
 this.name = name
 }
}

 This is equivalent to the following Java code:

 public final class Person {

 private final String name;

 public Person(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

 As you can see, the Kotlin version is more compact. Note some particularities:

 	A Kotlin class is public by default, so there’s no need for the word public. To make a class non-public, you can use the private, protected, or internal modifiers. The internal modifier means that the class is accessible only from inside the module where it’s defined. There’s no Kotlin equivalent for "package private" (corresponding to the absence of a modifier) in Java. Unlike Java, protected is restricted to extending classes and doesn’t include classes in the same package.

 	A Kotlin class is final by default, so the equivalent Java class would be declared with the final modifier. In Java, most classes should be declared final but programmers often forget to do that. Kotlin solves this problem by making classes final by default. To make a Kotlin class non-final, use the open modifier. This is much safer because classes opened for extension should be specifically designed for this.

 	The constructor is declared after the class name, and its implementation is in an init block. This block has access to the constructor parameters.

 	Accessorsaren’t needed. They’re generated when you compile the code.

 	Unlike Java, public classes need not be defined in a file with the name of the class. You can name the file as you like. Furthermore, you can define several public classes in the same file. But this doesn’t mean you should do so. Having each public class in a separate file with the name of the class makes finding things easier.

 2.2.1 Making the code even more concise

 Kotlin code can be further simplified. First, because the init block is a one-liner, it can be combined with the name property declaration like this:

 class Person constructor(name: String) {

 val name: String = name
}

 Then you can combine the constructor declaration, the property declaration, and the property initialization like this:

 class Person constructor(val name: String) {

}

 Now, because the block is empty, it can be removed. And you can also remove the word constructor (whether the block is empty or not):

 class Person (val name: String)

 Additionally, you can create several properties for the same class:

 class Person(val name: String, val registered: Instant)

 As you can see, Kotlin removes most of the boilerplate code, resulting in concise code that’s easier to read. Keep in mind that code is written once but read many times. When code is more readable, it’s also easier to maintain.

 2.2.2 Implementing an interface or extending a class

 If you want your class to implement one or several interfaces, or to extend another class, you’ll list those after the class declaration:

 class Person(val name: String,
 val registered: Instant) : Serializable, Comparable<Person> {
 override fun compareTo(other: Person): Int {
 ...
 }
}

 Extending a class uses the same syntax. The difference is that the extended class name is followed by the parameter names enclosed in parentheses:

 class Member(name: String, registered: Instant) : Person(name, registered)

 Remember, however, that classes are final by default. For this example to compile, the extended class must be declared open, which means open for extension:

 open class Person(val name: String, val registered: Instant)

 A good programming practice is to allow extension only for classes that have been specifically designed for it. As you can see, Kotlin, unlike Java, tries to enforce this principle by not letting you extend a class if it hasn’t been designed for extension.

 2.2.3 Instantiating a class

 When creating an instance of a class, Kotlin spares you from repetitious typing, although to a lesser extent. For example, instead of writing

 final Person person = new Person("Bob", Instant.now());

 you can use the constructor as a function (which it is, indeed):

 val person = Person("Bob", Instant.now())

 This makes sense because the Person constructor is a function from the set of all possible pairs of strings and instants to the set of all possible persons. Now let’s look at how Kotlin handles overloading those constructors.

 2.2.4 Overloading property constructors

 Sometimes, a property is optional and has a default value. In the previous example, you could decide that the date of registration defaults to the date of creation of the instance. In Java, you’d have to write two constructors as indicated in the following listing.

 Listing 2.1 A typical Java object with an optional property

 public final class Person {

 private final String name;

 private final Instant registered;

 public Person(String name, Instant registered) {
 this.name = name;
 this.registered = registered;
 }

 public Person(String name) {
 this(name, Instant.now());
 }

 public String getName() {
 return name;
 }

 public Instant getRegistered() {
 return registered;
 }
}

 In Kotlin, you can obtain the same result by indicating the default value after the property name:

 class Person(val name: String, val registered: Instant = Instant.now())

 You can also override constructors in a more traditional way:

 class Person(val name: String, val registered: Instant = Instant.now()) {
 constructor(name: Name) : this(name.toString()) {
 // optional constructor implementation may be added
 }
}

 As in Java, if you don’t declare a constructor, a constructor without arguments is automatically generated.

 Private constructors and properties

 As in Java, you can make constructors private to prevent instantiation by external code:

 class Person private constructor(val name: String)

 But, unlike Java, private constructors aren’t needed to prevent instantiation of utility classes containing only static members. Kotlin puts static members at the package level, outside of any class.

 Accessors and properties

 In Java, it’s considered bad practice to expose object properties directly. Instead, you make those visible through methods that get and set property values. These methods are conveniently called getters and setters and referred to as accessors. The following example calls a getter for the name of a person:

 val person = Person("Bob")
...
println(person.name) // Calling the getter

 Although it looks like you’re accessing the name field directly, you’re using a generated getter. This has the same name as the field and doesn’t need to be followed by parentheses.

 You might remark that you can call the println method of System.out much more easily than in Java. Not that it matters much, because your programs will probably never print to the console, but it’s worth noting.

 2.2.5 Creating equals and hashCode methods

 If the Person class represents data, it’s likely that you’ll need the hashCode and equals methods. Writing these methods in Java is tedious and error-prone. Fortunately, a good Java IDE (like IntelliJ) generates them for you. The next listing shows what IntelliJ generates if you use this functionality.

 Listing 2.2 A Java data object generated by IntelliJ

 public final class Person {

 private final String name;

 private final Instant registered;

 public Person(String name, Instant registered) {
 this.name = name;
 this.registered = registered;
 }

 public Person(String name) {
 this(name, Instant.now());
 }

 public String getName() {
 return name;
 }

 public Instant getRegistered() {
 return registered;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Person person = (Person) o;
 return Objects.equals(name, person.name) &&
 Objects.equals(registered, person.registered);
 }

 @Override
 public int hashCode() {
 return Objects.hash(name, registered);
 }
}

 Having the IDE statically generate this code saves you some tedious typing, but you still have to live with this awful piece of code, which doesn’t improve readability. Even worse, you have to maintain it! If you later add a new property that should be part of the hashCode and equals methods, you’ll need to remove the two methods and regenerate them. Kotlin makes this much simpler:

 data class Person(val name: String, val registered: Instant = Instant.now())

 Yes, it’s as simple as adding the word data in front of the class definition. The hashCode and equals functions are generated when you compile your code. You’ll never see them, although you can use them as regular functions. Furthermore, Kotlin also generates a toString function, displaying a useful (human-readable) result, and a copy function, allowing you to copy an object while duplicating all its properties. Kotlin also generates additional componentN functions, letting you access each property of the class, as you’ll see in the following section.

 2.2.6 Destructuring data objects

 In each data class with n properties, the functions component1 to componentN are automatically defined. This lets you access properties in the order they’re defined in the class. The main use of this feature is to destructure objects, which provides much simpler access to their properties:

 data class Person(val name: String, val registered: Instant = Instant.now())

fun show(persons: List<Person>) {
 for ((name, date) in persons)
 println(name + "'s registration date: " + date)
}

fun main(args: Array<String>) {
 val persons = listOf(Person("Mike"), Person("Paul"))
 show(persons)
}

 The show function is equivalent to

 fun show(persons: List<Person>) {
 for (person in persons)
 println(person.component1()
 + "'s registration date: " + person.component2())
}

 As you can see, destructuring makes the code clearer and less verbose by avoiding de-referencing object properties each time those properties are used.

 2.2.7 Implementing static members in Kotlin

 In Kotlin, classes have no static members. To get the same effect, you’ll have to use a special construct called a companion object:

 data class Person(val name: String,
 val registered: Instant = Instant.now()) {

 companion object {
 fun create(xml: String): Person {
 TODO("Write an implementation creating " +
 "a Person from an xml string")
 }
 }
}

 The create function can be called on the enclosing class as you’d do with static methods in Java:

 Person.create(someXmlString)

 You can also call it explicitly on the companion object, but this is redundant:

 Person.Companion.create(someXmlString)

 On the other hand, if you use this function from Java code, you need to call it on the companion object. To be able to call it on the class, you must annotate the Kotlin function with the @JvmStatic annotation. For more information about calling Kotlin functions from Java code (and the other way round), see appendix A.

 Incidentally, you can see that Kotlin offers a TODO function, which makes your code much more consistent. This method throws an exception at runtime, reminding you about the work that should have been done!

 2.2.8 Using singletons

 It’s often necessary to create a single instance of a given class. Such an instance is called a singleton. The singleton pattern is a technique used to guarantee that there’s possibly only one instance of a class. In Java, it’s a controversial pattern because it’s difficult to guarantee that only one instance can be created. In Kotlin, a singleton can be easily created by replacing the word class with the word object:

 object MyWindowAdapter: WindowAdapter() {
 override fun windowClosed(e: WindowEvent?) {
 TODO("not implemented")
 }
}

 An object can’t have constructors. If it has properties, those must either be initialized or abstract.

 2.2.9 Preventing utility class instantiation

 In Java, it’s common usage to create utility classes that contain only static methods. In such cases, you usually want to forbid class instantiation. The Java solution is to create a private constructor. In Kotlin, this is possible, but useless. That’s because, with Kotlin, you can create functions outside of classes at the package level. To do that, create a file with any name and start with a package declaration. You can then define functions without putting them into classes:

 package com.acme.util

fun create(xml: String): Person {
 ...
}

 You can call such a function with its full name:

 val person = com.acme.util.create(someXmlString)

 Alternatively, you can import the package and use only the function’s short name:

 import com.acme.util.*

val person = create(someXmlString)

 Because Kotlin runs on the JVM, there must be a way to call package-level functions from Java code. This is described in appendix A.

 2.3 Kotlin doesn’t have primitives

 Kotlin has no primitives, at least not at the programmer level. Instead, it uses Java primitives under the hood to make computation faster. But you, as the programmer, will only be manipulating objects. The object class for integers is different than the object representation of integers in Java. Instead of Integer, you’ll use the Int class. The other numerical and Boolean types have the same names as in Java. Also, as in Java, you can use underscores in numbers:

 	Longs have a trailing L, and floats a trailing F.

 	Doubles are distinguished by the use of a decimal dot such as 2.0, or .9.

 	Hexadecimal values must be prefixed with 0x, such as
 0xBE_24_1C_D3

 	Binary literals are prefixed with 0b:
 0b01101101_11001010_10010011_11110100

 The absence of primitives makes programming much simpler, avoiding the need for specific function classes like in Java, and allowing collections of numerical and boolean values without resorting to boxing/unboxing.

 2.4 Kotlin’s two types of collections

 Kotlin collections are backed by Java collections, although Kotlin adds more to them. The most important aspect is that Kotlin has two types of collections: mutable and immutable. Usually, the first practical change you’ll experiment with is creating collections using specific functions. This snippet creates an immutable list containing the integers 1, 2, and 3:

 val list = listOf(1, 2, 3)

 By default, Kotlin collections are immutable.

 Note In fact, Kotlin immutable collections aren’t really immutable. They’re only collections that you can’t mutate. As a consequence, some prefer to call them read-only collections, which isn’t much better because they aren’t read-only either. Let’s not worry about this. In chapter 5, you’ll learn to create true immutable collections.

 The listOf function is a package-level function, which means that it’s not part of a class or an interface. It’s defined in the kotlin.collections package so you can import it using the following syntax:

 import kotlin.collections.listOf

 You don’t have to import it explicitly. All functions from this package are, in fact, implicitly imported as if you were using the following import:

 import kotlin.collections.*

 Many other packages are also automatically imported. This mechanism is similar to the automatic import of the java.lang package in Java.

 Note that immutable doesn’t mean that you can’t do any operations with these lists, for example:

 val list1 = listOf(1, 2, 3)
val list2 = list1 + 4
val list3 = list1 + list2
println(list1)
println(list2)
println(list3)

 This code creates a list containing integers 1, 2, and 3. Then it creates a new list by adding an element to the first one. Finally, it creates another new list again, concatenating the two existing lists. As the result shows, no one list has been modified:

 [1, 2, 3] [1, 2, 3, 4] [1, 2, 3, 1, 2, 3, 4]

 If you need mutable collections, you have to specify them:

 val list1 = mutableListOf(1, 2, 3)
val list2 = list1.add(4)
val list3 = list1.addAll(list1)
println(list1)
println(list2)
println(list3)

 The result is totally different:

 [1, 2, 3, 4, 1, 2, 3, 4]
true
true

 Here, all operations were made on the first list and are then cumulative. Due to type inference, no error occurred when assigning the result of the operation (which is of type Boolean) to the references. These references were automatically made Boolean by Kotlin. This is a good reason to explicitly write the expected type. It would prevent the following code from compiling:

OEBPS/OEBPS/Images/Fig01_03.png
Database

Objects Exception

Input Program ~ Output
(argument) (result)

Keyboard Screen

File

A referentially transparent program doesn’t interfere with the outside world apart from
taking an argument as input and outputting a result. Its result only depends on its argument.

Database
Objects Exception
Input = Program =~ Output
(argument) (result)
Keyboard Screen
File

A program that isn't referentially transparent may read data from or write it to elements
in the outside world, log to file, mutate external objects, read from keyboard, print to
screen, and so on. Its result is unpredictable.

OEBPS/OEBPS/Images/Fig01_01.png
Add 1toa

Y

Remove 1
from b

OEBPS/cover.jpeg
The

Pierre-Yves Saumont

| | FTTe

OEBPS/OEBPS/Images/ManningBlackSized.png

OEBPS/OEBPS/Images/Fig01_02.png
No
L 8

Add 1toa

Remove 1
from b

This program will
produce an
erroneous result.

This program will
never terminate.

This program will
never terminate.

OEBPS/OEBPS/Images/Fig01_04.png
The expression 3 x 2 may be replaced with its value:

The expression 4 x 5 may be replaced with its value:

3x2 4x5
6 4x5
6 20

26

26

26

