

 inside front cover

 [image:]

 Bank application architecture overview

 [image:]

 Kubernetes Native Microservices

 with Quarkus and MicroProfile

 John Clingan and Ken Finnigan

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Raphael Villela

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Mladen Knežić

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617298653

contents

 frontmatter

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Introduction

 1 Introduction to Quarkus, MicroProfile, and Kubernetes

 1.1 What is a microservice?

 The rise of microservices

 Microservices architecture

 The need for microservices specifications

 1.2 MicroProfile

 History of MicroProfile

 MicroProfile community core principles

 1.3 Quarkus

 Developer joy

 MicroProfile support

 Runtime efficiency

 1.4 Kubernetes

 Introduction to Kubernetes

 1.5 Kubernetes-native microservices

 2 Your first Quarkus application

 2.1 Creating a project

 2.2 Developing with live coding

 2.3 Writing a test

 2.4 Creating a native executable

 2.5 Running in Kubernetes

 Generating Kubernetes YAML

 Packaging an application

 Deploying and running an application

 Part 2. Developing microservices

 3 Configuring microservices

 3.1 MicroProfile Config architecture overview

 3.2 Accessing a configuration

 3.3 The Bank service

 Creating the Bank service

 Configuring the Bank service name field

 3.4 Configuration sources

 3.5 Configuring the mobileBanking field

 3.6 Grouping properties with @ConfigProperties

 3.7 Quarkus-specific configuration features

 Quarkus configuration profiles

 Property expressions

 Quarkus ConfigMapping

 Run-time vs. build-time properties

 3.8 Configuration on Kubernetes

 Common Kubernetes configuration sources

 Using a ConfigMap for Quarkus applications

 Editing a ConfigMap

 Kubernetes Secrets

 4 Database access with Panache

 4.1 Data sources

 4.2 JPA

 4.3 Simplifying database development

 Active record approach

 Data repository approach

 Which approach to use?

 4.4 Deployment to Kubernetes

 Deploying PostgreSQL

 Package and deploy

 5 Clients for consuming other microservices

 5.1 What is MicroProfile REST Client?

 5.2 Service interface definition

 CDI REST client

 Programmatic REST client

 Choosing between CDI and a programmatic API

 Asynchronous response types

 5.3 Customizing REST clients

 Client request headers

 Declaring providers

 6 Application health

 6.1 The growing role of developers in application health

 6.2 MicroProfile Health

 Liveness vs. readiness

 Determining liveness and readiness status

 6.3 Getting started with MicroProfile Health

 Account service MicroProfile Health liveness

 Creating an Account service liveness health check

 Account service MicroProfile Health readiness

 Disabling vendor readiness health checks

 Creating a readiness health check

 Quarkus health groups

 Displaying the Quarkus Health UI

 6.4 Kubernetes liveness and readiness probes

 Customizing health check properties

 Deploying to Kubernetes

 Testing the readiness health check in Kubernetes

 7 Resilience strategies

 7.1 Resilience strategies overview

 7.2 Executing a method under a separate thread with @Asynchronous

 7.3 Constraining concurrency with bulkheads

 7.4 Updating a TransactionService with a bulkhead

 7.5 Exception handling with fallbacks

 7.6 Defining execution timeouts

 7.7 Recovering from temporary failure with @Retry

 7.8 Avoiding repeated failure with circuit breakers

 MicroProfile Fault Tolerance: @CircuitBreaker

 How a circuit breaker works

 Updating the TransactionService to use @CircuitBreaker

 Testing the circuit breaker

 7.9 Overriding annotation parameter values using properties

 7.10 Deploying to Kubernetes

 8 Reactive in an imperative world

 8.1 Reactive example

 8.2 What is Reactive Streams?

 Publisher, Subscriber, and Processor

 The importance of back pressure

 8.3 Reactive Messaging in Quarkus

 Bridging from imperative to reactive with emitters

 What about blocking?

 Testing “in memory”

 8.4 How does it work?

 MicroProfile Reactive Messaging specification

 Message content and metadata

 Messages in the stream

 8.5 Deploying to Kubernetes

 Apache Kafka in Minikube

 Putting it all together

 9 Developing Spring microservices with Quarkus

 9.1 Quarkus/Spring API compatibility overview

 9.2 Spring dependency injection and configuration compatibility

 Setting up the Spring Cloud Config Server

 Using the Spring Config Server as a configuration source

 Converting the Bank service to use Spring Configuration APIs

 9.3 Quarkus/Spring Web API compatibility

 9.4 Quarkus/Spring Data JPA compatibility

 9.5 Deploying to Kubernetes

 9.6 How Quarkus implements Spring API compatibility

 9.7 Common Quarkus/Spring compatibility questions

 9.8 Comparing the Spring Boot and Quarkus startup processes

 Part 3. Observability, API definition, and security of microservices

 10 Capturing metrics

 10.1 The role of metrics in a microservices architecture

 10.2 Getting started with MicroProfile Metrics

 Graphing metrics with Prometheus and Grafana

 MicroProfile Metrics

 Instrumenting the Account service

 Instrumenting the TransactionService

 Creating business metrics

 MicroProfile Fault Tolerance and JAX-RS integration with MicroProfile Metrics

 Micrometer metrics

 Simulating a busy production system

 11 Tracing microservices

 11.1 How does tracing work?

 11.2 Jaeger

 Trace sampling

 Setting up the Minikube environment

 Installing Jaeger

 Microservice tracing with Jaeger

 11.3 Tracing specifications

 OpenTracing

 What is MicroProfile OpenTracing?

 OpenTelemetry

 11.4 Customizing application tracing

 Using @Traced

 Injecting a tracer

 Tracing database calls

 Tracing Kafka messages

 12 API visualization

 12.1 Viewing OpenAPI documents with Swagger UI

 Enabling OpenAPI

 Swagger UI

 12.2 MicroProfile OpenAPI

 Application information

 Customizing the schema output

 Defining operations

 Operation responses

 Tagging operations

 Filtering OpenAPI content

 12.3 Design-first development

 OpenAPI file base

 Mixing the file and annotations

 12.4 Code first or OpenAPI first?

 13 Securing a microservice

 13.1 Authorization and authentication overview

 13.2 Using file-based authentication and authorization

 13.3 Authentication and authorization with OpenID Connect

 Introduction to OpenID Connect (OIDC)

 OIDC and Keycloak

 Accessing a protected resource with OpenID Connect

 Testing the Code Authorization Flow

 13.4 Json Web Tokens (JWT) and MicroProfile JWT

 JWT header

 JWT payload

 JWT signature

 13.5 Securing the Transaction service using MicroProfile JWT

 13.6 Propagating the JWT

 Secure an Account service endpoint

 Propagating JWT from the Transaction service to the Account service

 13.7 Running the services in Kubernetes

 index

 front matter

preface

 We, the authors, have been involved in the Enterprise Java industry for more than a decade. We started working together at Red Hat in 2016, during the founding of MicroProfile to create Java microservices specifications, and with WildFly Swarm, now called Thorntail, as a runtime to implement those specifications.

 Since then, Kubernetes has continued to grow as a container orchestration platform. Given Red Hat’s integral involvement with Kubernetes and OpenShift—its enterprise distribution—our job was to facilitate Thorntail deployments on Kubernetes. We also worked with the MicroProfile community, who also recognized the growth of Kubernetes, to evolve its specifications to add support for Java microservices deployments on Kubernetes.

 We also recognized the limitations of Java and runtimes like Thorntail deployed to Kubernetes, consuming hundreds of megabytes of RAM for each microservice instance. Resource utilization can put Java at a considerable disadvantage, compared with other runtimes like Node.js or Golang, for shared deployment environments like Kubernetes clusters. To address this, Red Hat introduced Supersonic Subatomic Java—in other words, Quarkus!

 Quarkus is a unique runtime. It supports MicroProfile and other industry-leading specifications and frameworks, helping developers become productive quickly. Kubernetes is a first-class deployment platform for Quarkus, with built-in tooling that reduces native compilation and Kubernetes deployment to a single command. We have to say that working together with a couple of dozen other Red Hat employees crammed into a conference room in Neuchâtel, Switzerland, on Quarkus’s “launch day” was one of the most memorable and rewarding days of our professional careers.

 We recognize that plenty of books are available for MicroProfile, Kubernetes, and, more recently, Quarkus. We set out to write a book that reflects how the three used together are greater than the sum of their parts. Deploying to Kubernetes is not an afterthought; it is integral to each chapter. We wanted to go beyond developing an application locally by deploying it (implemented as a collection of microservices) to Kubernetes as it evolves throughout the book. We wanted to show how MicroProfile-based APIs interoperate with backend services while running in a Kubernetes cluster, like Prometheus and Grafana, Jaeger, and Kafka. We wanted a balance between demonstrating the step-by-step Quarkus live coding iterative development style with MicroProfile and Quarkus APIs like JUnit 5 and WireMock for automated testing of MicroProfile applications.

 The challenge is to bring microservices development with Quarkus, MicroProfile, and Kubernetes together in a single book and make it feel like the natural experience it truly is. Hopefully, we have met this challenge, and you learn as much from reading this book as we did in writing it. Happy reading (and coding)!

acknowledgments

 We would like to thank Elesha Hyde, our development editor, for being so understanding of our delays in finishing the writing. In addition, we’d like to thank all the reviewers: Alain Lompo, Alessandro Campeis, Andres Sacco, Asif Iqbal, Daniel Cortés, David Torrubia Iñigo, DeUndre’ Rushon, John Guthrie, Kent R. Spillner, Krzysztof Kamyczek, Michał Ambroziewicz, Mladen Knežic´, Ramakrishna Chintalapati, Sergio Britos, and Yogesh Shetty. Their suggestions helped make this a better book.

 Also, a thank-you goes to the entire Manning team for all their efforts on the project: Raphael Villela, technical development editor; Aleksander Dragosavljević, review editor; Keri Hales, production editor; Pamela Hunt, copyeditor; Mladen Knežić, technical proofreader; Katie Tennant, proofreader; as well as the rest of the production team. It’s been greatly appreciated, and the book wouldn’t be here today without them.

 John Clingan: I’d like to thank my wife, Tran, and daughters, Sarah and Hailey, who had a part-time spouse and father, respectively, while working on this book in the home office, car, and hotel during many weekend soccer tournaments. I also thank my coauthor, Ken, as an experienced author and friend, for his patience and guidance while authoring my first book.

 Ken Finnigan: I will be forever indebted to Erin, my wife, for her continued understanding and support throughout the process. I would also like to thank my sons, Lorcán and Daire, for understanding their dad disappearing to work on the book in the evenings or weekends.

about this book

 Over the last couple of years, Quarkus has exploded in popularity as a framework for developing microservices, and Eclipse MicroProfile is continuing to grow as a set of APIs for developing microservices with Java. This book details how to create, build, debug, and deploy Quarkus microservices with MicroProfile and Spring APIs to Kubernetes.

 Building and deploying a microservice is not the end of the story. To that end, this book also covers related aspects of microservices on Kubernetes, such as application health, monitoring and observability, security, and visualizing endpoints.

Who should read this book?

 The audience for the book includes Java EE and Jakarta EE developers with a few years of experience who may have some knowledge of microservices but are looking for guidance on best practices and the latest developments. Developers will gain insight into Eclipse MicroProfile and how to use the APIs within Quarkus, as well as how to deploy their Quarkus microservices to Kubernetes.

How this book is organized: A road map

 Chapter 1 introduces the reader to microservices by covering what they are, what a microservices architecture is, and why specifications for microservices are needed. Then it introduces Eclipse MicroProfile, Quarkus, and Kubernetes. Lastly, it introduces some characteristics of Kubernetes-native microservices.

 Chapter 2 delves deeper into Quarkus, starting with how to create a Quarkus project. It covers important topics such as live coding, writing tests, native executables, and how to package a Quarkus application and deploy it to Kubernetes.

 Chapter 3 introduces configuration with Eclipse MicroProfile in Quarkus, including how to set and retrieve it. Then it covers how to use a ConfigSource to define a new source of configuration for Quarkus.

 Chapter 4 covers database interactions with Panache. It explains how data sources work in Quarkus before covering three different patterns for database access with Panache: JPA, active record, and data repository. Lastly, it explains how to deploy a PostgreSQL database to Kubernetes.

 Chapter 5 introduces how Quarkus enables the consumption of external services with MicroProfile by using the REST Client and defines type-safe representations for them. It explains how to use CDI or a programmatic API to use the REST Client, and how it can be mocked for testing. Lastly, it covers how to add headers to the client request, or additional filters and providers used in processing the request.

 Chapter 6 introduces the concept of application health and how MicroProfile Health integrates with the Kubernetes Pod life cycle. It covers how to combine similar checks into a custom group and how to see the checks in a convenient manner in the UI.

 Chapter 7 covers all the resilience strategies offered by MicroProfile Fault Tolerance, including bulkheads, fallbacks, retries, and circuit breakers. It then covers how to override the settings of each strategy through properties.

 Chapter 8 introduces reactive streams, explaining what they are and how they are constructed from publishers, subscribers, and processors. It then explains how to create Reactive Streams in Quarkus with Reactive Messaging, as well as bridging imperative and reactive code with an emitter. Lastly, it covers deploying Apache Kafka to Kubernetes and deploying a reactive system consisting of microservices using it as a backbone.

 Chapter 9 covers how existing Spring developers can convert their applications to Quarkus with minimal changes. It then explains how to use the Spring Config Server as a ConfigSource in Quarkus. Lastly, it details what is compatible between Spring and Quarkus, without modification, for web and data access.

 Chapter 10 explains the importance of metrics in monitoring applications, especially in microservices architectures. It covers how to use Prometheus and Grafana for visualizing metrics, whether from MicroProfile Metrics or Micrometer.

 Chapter 11 introduces how to trace microservices with MicroProfile and OpenTracing. It then explains how to deploy Jaeger to Kubernetes, send traces from microservices to Jaeger, and view them in the UI. Next, it covers how to customize span names and inject a tracer to create custom spans. Lastly, the chapter covers how to trace database calls and messages sent to or from Apache Kafka.

 Chapter 12 examines API visualization with MicroProfile OpenAPI and how to view the generated documents with Swagger UI. Then it covers how to customize the OpenAPI document with application information, schema information, and specific details of the operations for REST endpoints. Lastly, it covers a design-first approach and how to use an existing OpenAPI document.

 Chapter 13 explains authentication and authorization for microservices, first with file-based authentication and also when using OpenID Connect with Keycloak. Then it covers protecting specific resources and how to test the authorization flow. Next, it explains JSON Web Tokens (JWT) and the APIs included for retrieving different parts of the token. Lastly, it covers how to secure a microservice with JWT and propagate tokens between microservices.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 All the code from the book can be found in the source code accompanying the book. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/kubernetes-native-microservices-with-quarkus-and-microprofile. The complete source code can be downloaded free of charge from the Manning website at https://www.manning.com/books/kubernetes-native-microservices-with-quarkus-and-microprofile and is also available via the GitHub repository at https://github.com/jclingan/manning-kube-native-microservices. The sample code is structured as a series of Maven modules for each chapter, or part of a chapter.

liveBook discussion forum

 Purchase of Kubernetes Native Microservices with Quarkus and MicroProfile includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/#!/book/kubernetes-native-microservices-with-quarkus-and-microprofile/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 	
 [image:]

 	
 John Clingan has more than 30 years of experience in the enterprise software industry as a developer, system administrator, consultant, technical sales engineer, and product manager. He has been a product manager for Java EE and the GlassFish reference implementation and is a founding member of MicroProfile. He is currently an active member of the Jakarta EE and MicroProfile communities and a member of the Quarkus team, where he focuses on the Quarkus community and its partners.

 	
 [image:]

 	
 Ken Finnigan has been a consultant and software engineer for more than 20 years with enterprises throughout the world. Ken has a history of delivering projects on time and on budget across many industries, providing key customer value. Ken is currently focused on all things observability, while also looking to innovate with Kubernetes-native development. Ken is part of the team developing Quarkus to be Supersonic Subatomic Java. He has previously served as the project lead for SmallRye, Thorntail, and LiveOak, with more than 10 years of experience contributing to open source. Ken is an author of several books in the tech space, including Enterprise Java Microservices (Manning, 2018).

about the cover illustration

 The figure on the cover of Kubernetes Native Microservices with Quarkus and MicroProfile is captioned “Femme insulaire de Minorque,” or islander woman of Menorca. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes civils actuels de tous les peuples connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Introduction

 What are microservices? When should I use Quarkus? Why is Kubernetes so important? These are a few of the questions we will address in part 1.

 Part 1 also takes the reader through creating their first Quarkus application and describes some key features of Quarkus, such as live reload and deployment to Kubernetes.

1 Introduction to Quarkus, MicroProfile, and Kubernetes

 This chapter covers

 	
Microservices overview

 	
Overview and history of MicroProfile

 	
Quarkus introduction

 	
Kubernetes introduction

 Entire books are available on Quarkus, microservices, MicroProfile, Spring, and Kubernetes. However, they tend to focus only on each specific topic. This book covers how to combine these topics into an effective and integrated development and deployment stack. Kubernetes-native microservices utilize and integrate with Kubernetes features naturally and efficiently. The result is a productive developer experience that is consistent with the expectations of Kubernetes platform administrators.

 This chapter begins by defining microservices and how and why they have evolved over the last decade as a popular enterprise software architecture. We then provide a brief history and overview of MicroProfile and its growth into a significant collection of microservices-related specifications. With a baseline understanding of microservices and MicroProfile, we introduce Quarkus as a Java runtime that supports these technologies. Last, we introduce some core Kubernetes concepts and why they make Kubernetes an ideal microservice deployment platform.

 Note A “runtime” is an execution environment that includes a collection of packaged frameworks that collectively support a developer’s application logic. Java EE (now Jakarta EE [https://jakarta.ee/]) application servers, Spring Boot, and Quarkus are all examples of Java runtimes: each is a Java execution environment with Java frameworks that support application logic.

1.1 What is a microservice?

 An internet search will result in hundreds of microservice definitions. There is no industry consensus on a single definition, but some common and well-understood principles exist. We are using a definition that aligns with those principles but with a particular emphasis on one principle—isolation. As defined in Enterprise Java Microservices (https://livebook.manning.com/book/enterprise-java-microservices), a microservice consists of a single deployment executing within a single process, isolated from other deployments and processes, that supports the fulfillment of a specific piece of business functionality.

 We are going to put a bit more emphasis on the runtime aspect of isolation than most other writings. With Kubernetes as the target deployment platform, we have an opportunity for optimizing code and the Java runtime itself. Although a microservice is isolated business functionality, it nearly always interacts with other microservices. That is the basis of many code examples for this book. There are a couple of useful points to make when breaking down the selected definition.

 First, a microservice implements a specific piece of business functionality, known as a bounded context (as explained by Eric Evans; https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215), which is a logical separation of multiple business problem domains within an enterprise. By logically breaking down a business domain into multiple bounded contexts, each bounded context more accurately represents its specific view of the business domain and becomes easier to model.

 As represented in figure 1.1, the set of bounded contexts for a small business accounting application may include accounts receivable, accounts payable, and invoicing. A traditional monolithic application would implement all three bounded contexts. Multiple bounded contexts within in a single monolith can result in “spaghetti code” as a result of unnecessary interdependencies and unplanned intermixing of contexts. In a microservices architecture, each of these capabilities is modeled individually as a bounded context and implemented as a microservice that addresses each specific bounded context.

 [image:]

 Figure 1.1 Bounded context: monolith vs. microservices

 Next, a microservice executes within a single isolated process. Although this is not a concrete requirement, it has become a preferred architectural approach. There are some practical reasons behind this, based on more than a decade of experience of deploying applications to Java EE application servers and servlet containers like Apache Tomcat. We refer to these synonymously as “application servers.”

 From a technical perspective, application servers can host multiple microservices. However, this deployment model has fallen out of favor for the following reasons:

 	
 Resource management—One microservice can starve other microservices of resources. The Java Virtual Machine (JVM) does not have built-in resource management to limit resource consumption by different applications within the same JVM instance.

 	
 Patching/upgrading—Patching or upgrading an application server negatively impacts the availability of all hosted microservices simultaneously.

 	
 Versioning—Each microservice development team may want to evolve at a different pace, causing an application server versioning-requirements mismatch. Some may want to leverage new features of the latest version, whereas others may prefer to avoid introducing risk because the current version is stable in production.

 	
 Stability—One poorly written microservice can cause stability issues for the entire application server, impacting the availability of the remaining stable applications.

 	
 Control—Developers rightfully cede control of shared infrastructure, like application servers, to a separate DevOps team. This limits developer options like JDK version, tuning for a specific microservice’s optimal performance, application server version, and more.

 Figure 1.2 shows that these issues have driven the industry toward adopting a single-application stack for microservices, which is a one-to-one mapping between a microservice application and its runtime. This began nearly a decade ago by deploying a single microservice per application server, and shortly thereafter evolved into specialized microservice runtimes like Dropwizard, Spring Boot, and, more recently, Quarkus to improve the developer and administrator experience. We refer to these single-application stacks as Java microservice runtimes and cover this concept in more detail later in the chapter. Note that with microservices, it is easier to split out and optimize the stack for a particular runtime like Java EE or Spring. An added benefit of the single-application stack is that it can also be implemented in non-Java technologies like Node.js or Golang, although this is out of scope of this discussion.

 [image:]

 Figure 1.2 Application servers vs. single-application stacks

1.1.1 The rise of microservices

 Early microservices tended to directly communicate with one another, an approach sometimes referred to as “smart services with dumb pipes.” A possible downside to this approach is the encoding within each service of the knowledge of what happens next. Tightly coupling this knowledge into the code makes it inflexible to dynamic change—and a potentially tedious task for engineers if it experiences regular change. If the knowledge around what happens next changes frequently, consider implementing the functionality using a business rules engine or utilizing events as part of an event-driven architecture. We will use both approaches in the example application.

 With the popularity of Netflix, with its thousands of microservices, and other unicorns like them, the popularity and thrall of microservices exploded. Microservices became the thing everyone wanted to develop for their next project.

 The rise of microservices led to perceived benefits in delivery speed, better utilization of resources with smaller teams, and shifting of operational concerns to the team developing the code. This last item we now refer to as DevOps.

 However, microservices were not the panacea that everyone hoped they would be. The benefits we mentioned previously don’t come automatically by virtue of developing a microservice. It takes organizational change for all the benefits to be achieved. It’s often forgotten that not all implementation patterns, such as microservices, are right for every organization, team, or even group of developers. Sometimes we must acknowledge that although microservices are not appropriate for a given situation, they would be perfect for another. As with everything in software engineering, do your homework, and don’t blindly adopt a pattern because it’s cool. That is the path to disaster!

1.1.2 Microservices architecture

 So, what is a microservices architecture, and what does it look like?

 Figure 1.3 shows just one example of many possible architectures that are applicable when developing microservices. We can have microservices calling databases, microservices calling other microservices, microservices communicating with external services, or microservices passing messages, or events, to brokers and streaming services. For example, to add a user experience, a frontend web UI microservice has been added whose purpose is to add, update, delete, and view relevant information in the accounts payable and accounts receivable microservices. The freedom of architecting microservices in any desired manner offers limitless options, which is also its downside. It becomes difficult to chart a path toward a meaningful microservices architecture. The key is to start with the smallest possible piece of functionality and begin building out from there. When it’s the first time a team is developing microservice architectures, it’s even more critical to not create a “big picture” up front. Taking the time to create that big picture without previous experience of microservices architecture design will consume time when it’s likely the final architecture will actually be very different. During the process of gaining experience with microservices, the architecture will shift over time toward a more appropriate one.

 [image:]

 Figure 1.3 Microservices architecture: collaborating microservices

 Note An alternative approach is to develop a monolith of loosely coupled components that can then be extracted out into microservices, strangling the monolith if deemed necessary down the road.

 In short, a microservices architecture can be almost anything that incorporates the coordination of services into a cohesive application that meets business requirements.

 Granted, with a limitless set of options for what can constitute a microservices architecture, architects and developers can benefit tremendously from having patterns and recommendations for how they can be designed.

 This is where microservices specifications come to the aid of enterprise Java developers.

1.1.3 The need for microservices specifications

 Java EE has been the standard-bearer for Enterprise Java specifications for roughly 20 years. However, Java EE has been traditionally focused on three-tier monolithic architecture with a steady, measured evolution and a strong focus on backward compatibility. Java EE stopped evolving between 2014 and 2017, just as the industry began to heavily adopt microservices.

 During that pause, the Java EE community began to experiment and deliver early microservices APIs. The risk of API fragmentation across Java runtimes that had been known for application portability increased. In addition, there was a risk of losing reusable skills. For example, Java EE APIs like JPA and JAX-RS are used with non-Java EE platforms like Spring and Dropwizard, making it easier to switch to a Java runtime that better meets business criteria. To avoid fragmentation and loss of reusable skills, the community decided to collaborate on microservice specifications.

1.2 MicroProfile

 To avoid Java API fragmentation and to leverage the collective vendor and community knowledge and resources, IBM, London Java Community (LJC), Payara, Red Hat, and Tomitribe founded MicroProfile in June 2016. The tagline, “Optimizing Enterprise Java for a Microservices Architecture,” recognizes that Java offers a solid foundation for building microservices. MicroProfile extends that foundation through the creation and evolution of Java API specifications for well-understood microservices patterns and cloud-related standards. These common APIs can be used by multiple frameworks and implementations or runtimes.

 Today, 12 specifications have been developed by the MicroProfile community, listed in table 1.1 and table 1.2. Most of the specifications in table 1.1 will be covered in future chapters.

 Note MicroProfile has grown to include 12 specifications. Some are concerned that including too many specifications in the overall platform is a barrier to entry for new implementations. For this reason, any new specification is outside the existing platform and referred to as a “standalone” specification. The MicroProfile community plans to review how to organize specifications in the future.

 Table 1.1 MicroProfile platform specifications

 	
 Specification

 	
 Description

 	
 Config

 	
 Externalizes application configuration

 	
 Fault Tolerance

 	
 Defines multiple strategies to improve application robustness

 	
 Health

 	
 Expresses application health to the underlying platform

 	
 JWT RBAC

 	
 Secures RESTful endpoints

 	
 Metrics

 	
 Exposes platform and application metrics

 	
 Open API

 	
 Java APIs for the OpenAPI specification that documents RESTful endpoints

 	
 OpenTracing

 	
 Defines behaviors and an API for accessing an OpenTracing-compliant Tracer object

 	
 REST Client

 	
 Type-safe invocation of REST endpoints

 Table 1.2 MicroProfile standalone specifications

 	
 Specification

 	
 Description

 	
 Context propagation

 	
 Propagates contexts across units of work that are thread-agnostic

 	
 GraphQL

 	
 Java API for the GraphQL query language

 	
 Reactive Streams operators

 	
 Allows two different libraries that provide asynchronous streaming to be able to stream data to and from each other

 	
 Reactive Streams messaging

 	
 Provides asynchronous messaging support based on Reactive Streams

1.2.1 History of MicroProfile

 MicroProfile is unique in the industry. Whereas specification organizations tend to evolve in an intentionally slow and measured manner, MicroProfile delivers industry specifications that evolve rapidly. In four short years, MicroProfile has released 12 specifications with nearly all having multiple updates and some having major updates. These updates deliver new features that work across multiple implementations in the hands of developers up to three times per year. In other words, MicroProfile keeps pace with changes in the industry.

 Figure 1.4 puts this in perspective. MicroProfile 1.0 was released in September 2016, adopting three Java EE specifications to define its core programming model, specifically, Java API for RESTful Services (JAX-RS) 2.0, Contexts and Dependency Injection (CDI) 1.2, and JSON Processing (JSON-P) 1.0. The MicroProfile founders looked to expand the vendor and community members, while also beginning specification development. The community immediately recognized that hosting MicroProfile in a vendor-neutral foundation would facilitate these goals. After considering the options, the Eclipse Foundation became the home of MicroProfile in December 2016. Over the next four years, MicroProfile released three major releases and nine minor releases that adopted JSON-B from Java EE and defined 12 “homegrown” specifications outlined in table 1.1 and table 1.2.

 [image:]

 Figure 1.4 MicroProfile releases

1.2.2 MicroProfile community core principles

 As an Eclipse Foundation working group, MicroProfile follows some of the Foundation’s core tenets like open source, vendor neutrality, and community engagement and collaboration. The MicroProfile Working Group Charter (https://www.eclipse.org/org/workinggroups/microprofile-charter.php) extends those tenets with the following additional principles:

 	
 Limited processes—MicroProfile uses the Eclipse Development Process and the MicroProfile Specification Process. Any additional processes specific to MicroProfile are created only when necessary.

 	
 Experiment and innovate—MicroProfile as a community provides an industry proving ground to incubate and experiment with well-established problems needing cross-Java-runtime APIs, gather user feedback, and adapt and iterate at a fast pace.

 	
 No backward-compatibility guarantee—Major versions of a specification developed within MicroProfile may break backward compatibility.

 	
 Implementation first—MicroProfile specifications are released only after an implementation has been created and both the specification and implementation have had sufficient time for community review.

 	
 Encourage brand adoption—Define guidelines that would allow usage of the MicroProfile brand without charge.

 	
 Openness—Transparency, inclusiveness, and eliminating barriers to participate are highly valued principles. Public meetings and lists are preferred. Lists are favored for key decisions. Specifications have been managed in a way that provides open access to all MicroProfile committers.

 	
 Low barrier to entry—It is MicroProfile’s intent to operate a low-cost working group. Budget will be evaluated annually and as membership changes for opportunities to maintain low fees and costs.

 These tenets make MicroProfile somewhat different from most organizations that create specifications. For example, MicroProfile considers itself an agile project and is willing to break backward compatibility. This willingness results from a rapid-moving specification project, and any breaking changes are well thought out with strong justification and as narrow a scope as possible.

1.3 Quarkus

 Quarkus is a Java microservice runtime. Does the industry really benefit from yet another Java microservice runtime? Yes! To understand why, let’s take a look at some inherent problems with existing runtimes.

 Most Java microservice runtimes use existing frameworks that were developed for shared environments like application servers, where each application has its own set of requirements. These frameworks are mature and still relevant but haven’t fundamentally changed since the mid-2000s and continue to rely heavily on dynamic runtime logic using Java reflection. More specifically, no substantive optimizations have been made to these frameworks for Java microservice runtimes. The result is high RAM utilization and slower startup time due to a large amount of work at application startup.

 Another pain point is that developer productivity often suffers with Java microservice runtimes. Every time a developer makes a change, they have to save the file, rebuild the application, restart the application, and refresh the browser. This can take tens of seconds, significantly impacting the productivity of the developer. Multiply that by the number of developers in a team over time, and it quickly equates to a large sunk resource cost for an enterprise.

 Developers and DevOps teams began to feel the pain of developing and deploying Java microservices and have been increasingly considering alternatives like Node.js and Golang due to their reduced RAM requirements and fast startup time. These alternatives can also achieve a 5- to 10-times deployment density on the same hardware, significantly reducing cost.

 Quarkus is a Java runtime that takes a fresh look at the needs of the modern Java microservice developer. It is designed to be as productive as Node.js for developers and consume as few resources as Golang. To many developers, Quarkus feels both new and familiar at the same time. It includes a lot of new, impactful features while supporting the APIs that developers are already familiar with.

 When developing microservices, runtimes often do not consider the target environment. Most runtimes are deployment-environment agnostic to be broadly relevant. Although Quarkus is used in a wide variety of deployment environments, it has specific enhancements and optimizations for Linux containers and Kubernetes. For this reason, Quarkus is referred to as Kubernetes-native Java.

1.3.1 Developer joy

 Developer joy is a top priority for Quarkus. Developers are rightfully enamored with the productivity of dynamic language runtimes like Node.js, and Quarkus is driving to deliver that experience, even though Java is a “static” (precompiled) language.

 The top developer joy feature is live coding, where code changes are detected, recompiled, and reloaded without having to restart the JVM. Live coding is enabled when Quarkus is started in developer mode using mvn quarkus:dev. Specifically, Quarkus checks for code changes when it receives external events like HTTP requests or Kafka messages. The developer simply makes code changes, saves the file, and refreshes the browser for near-instant updates. Live coding even works with pom.xml changes. The Quarkus Maven plugin will detect pom.xml changes and restart the JVM. It is not uncommon for Quarkus developers to start Quarkus in developer mode and then minimize the terminal window, never having to restart the JVM during a coding session.

 Note Quarkus supports both Maven and Gradle. This book references Maven commands and features, but equivalent capabilities are available with Gradle.

 Another developer joy feature is a unified configuration. Quarkus supports APIs and concepts from multiple ecosystems like Java EE, Eclipse Vert.x, and even Spring. Each of these ecosystems defines its own collection of configuration files. Quarkus unifies configuration so that all configuration options can be specified in a single application .properties configuration file. Quarkus supports MicroProfile Config, an API specification that includes support for multiple configuration sources. Chapter 3, “Configuring microservices,” discusses this in more detail.

 Future chapters discuss additional developer joy features as they are used. For example, chapter 4, “Database access with Panache,” discusses how to replace boilerplate database access code with a simplified data access API layered on the Java Persistence API (JPA) and Hibernate.

1.3.2 MicroProfile support

 Quarkus is a Java runtime with a focus on developing microservices to run on Kubernetes. MicroProfile is a collection of Java specifications for developing microservices. Therefore, it is a natural fit for Quarkus to implement MicroProfile specifications to facilitate microservices development. Also, developers can rehost their existing MicroProfile applications on Quarkus for improved productivity and runtime efficiency. Quarkus is continually evolving to stay current with MicroProfile releases. At the time of this writing, Quarkus supports MicroProfile 4.0 as described in section 1.2, MicroProfile, and all standalone MicroProfile specifications. Besides CDI and MicroProfile Config, which are included in the Quarkus core, each MicroProfile specification is available as a Quarkus extension that can be included using Maven dependencies.

1.3.3 Runtime efficiency

 Quarkus has become known for its fast startup time and low memory usage, earning its “Supersonic, Subatomic Java” marketing tagline. Quarkus can run applications on the JVM. It can also compile the application to a native binary using GraalVM Native Image (https://graalvm.org/). Table 1.3 compares Quarkus startup times with a traditional cloud-native Java stack, packaged and run as uber-JARs.

 Table 1.3 Startup plus time to first HTTP response (seconds)

 	

 	
 Traditional cloud-native Java stack

 	
 Quarkus JVM

 	
 Quarkus native

 	
 REST application

 	
 4.3

 	
 .943

 	
 .016

 	
 CRUD application

 	
 9.5

 	
 2.03

 	
 .042

 The REST application replies to HTTP REST requests, and the CRUD application creates, updates, and deletes data in a database. This table demonstrates that Quarkus can start significantly faster than traditional Java runtimes. Next, let’s look at the memory usage, as shown in table 1.4.

 Table 1.4 Memory usage (megabytes)

 	

 	
 Traditional cloud-native Java stack

 	
 Quarkus JVM

 	
 Quarkus native

 	
 REST application

 	
 136

 	
 73

 	
 12

 	
 CRUD application

 	
 209

 	
 145

 	
 28

 Quarkus achieves compelling RAM and startup time improvements over traditional cloud-native Java runtimes. It achieves this by rethinking the problem. Traditional cloud-native Java runtimes do a lot of work when they boot. Each time an application boots, it scans configuration files, scans for annotations, and instantiates and binds annotations to build an internal metamodel before executing application logic.

 Quarkus, on the other hand, executes these steps during compilation and records the results as bytecode that executes at application startup. In other words, Quarkus executes application logic immediately upon startup. The result is rapid startup time and lower memory utilization.

1.4 Kubernetes

 During the 2000s, virtual machines were the go-to platform for hosting Java application servers, which in turn often hosted dozens of monolithic applications. This was sufficient until the adoption of microservices within the enterprise, which caused an explosion in the number of application instances to hundreds, thousands, and up to tens of thousands for large organizations. Virtual machines use too many compute and management resources at this scale. For example, a virtual machine contains an entire operating system image, consuming more RAM and CPU resources than needed by the microservice, and must be tuned, patched, and upgraded. This was typically managed by a team of administrators, leaving little flexibility to developers.

 These limitations led to the popularity of Linux containers, in part due to their balanced approach to virtualization. Containers, like virtual machine images, include the capability of packaging an entire application stack in container images. These images can be run on any number of hosts and instantiated any number of times to achieve horizontal scalability for service reliability and performance. Linux containers are significantly more efficient than virtual machines because all containers running on the same host share the same Linux operating system kernel.

 Although containers offer efficient execution of microservices, managing hundreds to thousands of container instances and ensuring proper distribution across container hosts to ensure scalability and availability is difficult without help from an orchestration platform for containers. Kubernetes has become that platform, and it is available from popular cloud providers and can also be installed locally within a datacenter.

 This also redraws the boundary between developers and those who manage the Kubernetes clusters. Developers are no longer required to utilize the Java version, application server version, or even the same runtime that had been dictated to them in the past. Developers now have the freedom to choose their own stack, as long as it can be containerized.

1.4.1 Introduction to Kubernetes

 Kubernetes is a container orchestration platform that offers automated container deployment, scaling, and management. It originated at Google in various forms as a means to run internal workloads, was publicly announced in mid-2014, and version 1.0 was released mid-2015. Coinciding with the 1.0 release, Google worked with the Linux Foundation to form the Cloud Native Computing Foundation (CNCF), with Kubernetes being its first project. Today, Kubernetes has more than 100 contributing organizations and well over 500 individual contributors. With such large, varied, and active contributions, Kubernetes has become the de facto standard enterprise container orchestration platform. It is quite broad in functionality, so we’ll focus on the underlying Kubernetes features and concepts that are most relevant when developing and deploying a microservice.

 Kubernetes was not available before 2015, so early microservice deployments had to not only manage microservices but also manage infrastructure services to support a microservices infrastructure. Kubernetes offers some of these infrastructure services out of the box, making Kubernetes a compelling microservices platform. Although we are focusing on Java microservices, the following built-in features are runtime agnostic:

 	
 Service discovery—Services deployed to Kubernetes are given a stable DNS name and IP address. For a microservice to consume another microservice, it only has to locate the service by a DNS name. Unlike early microservice deployments, Kubernetes does not need a third-party service registry to act as an intermediary to locate a service.

 	
 Horizontal scaling—Applications can be scaled out and scaled in manually or automatically based on metrics like CPU usage.

 	
 Load balancing—Kubernetes load-balances across application instances. This removes the need for client-side load balancing that became popular during the early days of microservices.

 	
 Self-healing—Kubernetes restarts failing containers and directs traffic away from containers that are temporarily unable to serve traffic.

 	
 Configuration management—Kubernetes can store and manage microservice configuration. Configurations can change without updating the application, removing the need for external configuration services used by early microservice deployments.

 The Kubernetes architecture enables these features and is outlined next in figure 1.5, illustrating this summary of each architectural component:

 [image:]

 Figure 1.5 Kubernetes architecture

 	
 Cluster—A Kubernetes cluster abstracts hardware or virtual servers (nodes) and presents them as a pool of resources. A cluster consists of one or more administration (“master”) servers used to manage the cluster and any number of worker nodes used to run workloads (pods). The administration server exposes an API server used by administration tools, like kubectl, to interact with the cluster. When a workload (pod) is deployed to the cluster, the scheduler schedules the pod to execute on a node within the cluster.

 	
 Namespace—A means to divide cluster resources between projects or teams. A namespace can span multiple nodes in a cluster, so the diagram is a bit oversimplified for readability. Names defined within a namespace must be unique but can be reused across namespaces.

 	
 Pod—A pod is one or more containers that share the same storage volumes, network, namespace, and life cycle. Pods are atomic units, so deploying a pod deploys all containers within that pod to the same node. For example, a microservice may use a local out-of-process cache service. It may make sense to place the microservice and the caching service in the same pod if they are tightly coupled. This ensures they are deployed to the same node and have the same life cycle. The pods in the exercises consist of one container per pod, so it will “feel” as if a pod is the same thing as a container, but that is not the case. A pod is ephemeral, meaning a pod’s state is not maintained between destruction and any subsequent creation.

 	
 Replication controller—Ensures the number of running pods matches the specified number of replicas. Specifying more than one replica improves availability and service throughput. If a pod is killed, then the replication controller will instantiate a new one to replace it. A replication controller can also conduct a rolling upgrade when a new container image version is specified.

 	
 Deployment—A deployment is a higher-level abstraction that describes the state of a deployed application. For example, a deployment can specify the container image to be deployed, the number of replicas for that container image, health check probes used to check pod health, and more.

 	
 Service—A stable endpoint used to access a group of like pods that brings stability to a highly dynamic environment.

 Microservices are deployed within pods, and pods come and go, each with their own IP address. This is reflected in figure 1.6. For example, the replication controller scales the number of pods, either up or down, to meet the specified number of replicas (running pods). The Accounts Payable service has three replicas. The pod at IP address 172.17.0.4 is failing and needs to be replaced with a new pod. The pod at IP address 172.17.0.5 is running and receiving traffic. The pod at IP address 172.17.0.6 is starting and will be able to serve traffic once booted. This example shows quite a bit of instability with pods, each with its own IP address, failing and starting. Any service, such as the Frontend Web UI microservice described earlier, needs a stable IP address to connect to. A service creates a single IP address and a DNS name within the cluster so other microservices can access the service in a consistent manner, and requests are proxied to one of the replicas.

 [image:]

 Figure 1.6 Kubernetes service

 	
 ConfigMap—Used to store microservice configuration, separating configuration from the microservice itself. ConfigMaps are clear text. As an option, a Kubernetes Secret can be used to store confidential information.

